vpx/vpx_dsp/x86/vpx_subpixel_8t_intrin_avx2.c
Zoe Liu 7186a2dd86 Code refactor on InterpKernel
It in essence refactors the code for both the interpolation
filtering and the convolution. This change includes the moving
of all the files as well as the changing of the code from vp9_
prefix to vpx_ prefix accordingly, for underneath architectures:
(1) x86;
(2) arm/neon; and
(3) mips/msa.
The work on mips/drsp2 will be done in a separate change list.

Change-Id: Ic3ce7fb7f81210db7628b373c73553db68793c46
2015-07-31 10:27:33 -07:00

603 lines
25 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Due to a header conflict between math.h and intrinsics includes with ceil()
// in certain configurations under vs9 this include needs to precede
// immintrin.h.
#include <immintrin.h>
#include "./vpx_dsp_rtcd.h"
#include "vpx_dsp/x86/convolve.h"
#include "vpx_ports/mem.h"
// filters for 16_h8 and 16_v8
DECLARE_ALIGNED(32, static const uint8_t, filt1_global_avx2[32]) = {
0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8,
0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8
};
DECLARE_ALIGNED(32, static const uint8_t, filt2_global_avx2[32]) = {
2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10,
2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10
};
DECLARE_ALIGNED(32, static const uint8_t, filt3_global_avx2[32]) = {
4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12,
4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12
};
DECLARE_ALIGNED(32, static const uint8_t, filt4_global_avx2[32]) = {
6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14,
6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14
};
#if defined(__clang__)
# if __clang_major__ < 3 || (__clang_major__ == 3 && __clang_minor__ <= 3) || \
(defined(__APPLE__) && __clang_major__ == 5 && __clang_minor__ == 0)
# define MM256_BROADCASTSI128_SI256(x) \
_mm_broadcastsi128_si256((__m128i const *)&(x))
# else // clang > 3.3, and not 5.0 on macosx.
# define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x)
# endif // clang <= 3.3
#elif defined(__GNUC__)
# if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 6)
# define MM256_BROADCASTSI128_SI256(x) \
_mm_broadcastsi128_si256((__m128i const *)&(x))
# elif __GNUC__ == 4 && __GNUC_MINOR__ == 7
# define MM256_BROADCASTSI128_SI256(x) _mm_broadcastsi128_si256(x)
# else // gcc > 4.7
# define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x)
# endif // gcc <= 4.6
#else // !(gcc || clang)
# define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x)
#endif // __clang__
static void vpx_filter_block1d16_h8_avx2(const uint8_t *src_ptr,
ptrdiff_t src_pixels_per_line,
uint8_t *output_ptr,
ptrdiff_t output_pitch,
uint32_t output_height,
const int16_t *filter) {
__m128i filtersReg;
__m256i addFilterReg64, filt1Reg, filt2Reg, filt3Reg, filt4Reg;
__m256i firstFilters, secondFilters, thirdFilters, forthFilters;
__m256i srcRegFilt32b1_1, srcRegFilt32b2_1, srcRegFilt32b2, srcRegFilt32b3;
__m256i srcReg32b1, srcReg32b2, filtersReg32;
unsigned int i;
ptrdiff_t src_stride, dst_stride;
// create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
addFilterReg64 = _mm256_set1_epi32((int)0x0400040u);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
// converting the 16 bit (short) to 8 bit (byte) and have the same data
// in both lanes of 128 bit register.
filtersReg =_mm_packs_epi16(filtersReg, filtersReg);
// have the same data in both lanes of a 256 bit register
filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
// duplicate only the first 16 bits (first and second byte)
// across 256 bit register
firstFilters = _mm256_shuffle_epi8(filtersReg32,
_mm256_set1_epi16(0x100u));
// duplicate only the second 16 bits (third and forth byte)
// across 256 bit register
secondFilters = _mm256_shuffle_epi8(filtersReg32,
_mm256_set1_epi16(0x302u));
// duplicate only the third 16 bits (fifth and sixth byte)
// across 256 bit register
thirdFilters = _mm256_shuffle_epi8(filtersReg32,
_mm256_set1_epi16(0x504u));
// duplicate only the forth 16 bits (seventh and eighth byte)
// across 256 bit register
forthFilters = _mm256_shuffle_epi8(filtersReg32,
_mm256_set1_epi16(0x706u));
filt1Reg = _mm256_load_si256((__m256i const *)filt1_global_avx2);
filt2Reg = _mm256_load_si256((__m256i const *)filt2_global_avx2);
filt3Reg = _mm256_load_si256((__m256i const *)filt3_global_avx2);
filt4Reg = _mm256_load_si256((__m256i const *)filt4_global_avx2);
// multiple the size of the source and destination stride by two
src_stride = src_pixels_per_line << 1;
dst_stride = output_pitch << 1;
for (i = output_height; i > 1; i-=2) {
// load the 2 strides of source
srcReg32b1 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src_ptr - 3)));
srcReg32b1 = _mm256_inserti128_si256(srcReg32b1,
_mm_loadu_si128((const __m128i *)
(src_ptr+src_pixels_per_line-3)), 1);
// filter the source buffer
srcRegFilt32b1_1= _mm256_shuffle_epi8(srcReg32b1, filt1Reg);
srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b1, filt4Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters);
srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters);
// add and saturate the results together
srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, srcRegFilt32b2);
// filter the source buffer
srcRegFilt32b3= _mm256_shuffle_epi8(srcReg32b1, filt2Reg);
srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b1, filt3Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters);
srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);
// add and saturate the results together
srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1,
_mm256_min_epi16(srcRegFilt32b3, srcRegFilt32b2));
// reading 2 strides of the next 16 bytes
// (part of it was being read by earlier read)
srcReg32b2 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src_ptr + 5)));
srcReg32b2 = _mm256_inserti128_si256(srcReg32b2,
_mm_loadu_si128((const __m128i *)
(src_ptr+src_pixels_per_line+5)), 1);
// add and saturate the results together
srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1,
_mm256_max_epi16(srcRegFilt32b3, srcRegFilt32b2));
// filter the source buffer
srcRegFilt32b2_1 = _mm256_shuffle_epi8(srcReg32b2, filt1Reg);
srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b2, filt4Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt32b2_1 = _mm256_maddubs_epi16(srcRegFilt32b2_1, firstFilters);
srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters);
// add and saturate the results together
srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, srcRegFilt32b2);
// filter the source buffer
srcRegFilt32b3= _mm256_shuffle_epi8(srcReg32b2, filt2Reg);
srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b2, filt3Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters);
srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);
// add and saturate the results together
srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1,
_mm256_min_epi16(srcRegFilt32b3, srcRegFilt32b2));
srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1,
_mm256_max_epi16(srcRegFilt32b3, srcRegFilt32b2));
srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg64);
srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, addFilterReg64);
// shift by 7 bit each 16 bit
srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 7);
srcRegFilt32b2_1 = _mm256_srai_epi16(srcRegFilt32b2_1, 7);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1,
srcRegFilt32b2_1);
src_ptr+=src_stride;
// save 16 bytes
_mm_store_si128((__m128i*)output_ptr,
_mm256_castsi256_si128(srcRegFilt32b1_1));
// save the next 16 bits
_mm_store_si128((__m128i*)(output_ptr+output_pitch),
_mm256_extractf128_si256(srcRegFilt32b1_1, 1));
output_ptr+=dst_stride;
}
// if the number of strides is odd.
// process only 16 bytes
if (i > 0) {
__m128i srcReg1, srcReg2, srcRegFilt1_1, srcRegFilt2_1;
__m128i srcRegFilt2, srcRegFilt3;
srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr - 3));
// filter the source buffer
srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1,
_mm256_castsi256_si128(filt1Reg));
srcRegFilt2 = _mm_shuffle_epi8(srcReg1,
_mm256_castsi256_si128(filt4Reg));
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt1_1 = _mm_maddubs_epi16(srcRegFilt1_1,
_mm256_castsi256_si128(firstFilters));
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
_mm256_castsi256_si128(forthFilters));
// add and saturate the results together
srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2);
// filter the source buffer
srcRegFilt3= _mm_shuffle_epi8(srcReg1,
_mm256_castsi256_si128(filt2Reg));
srcRegFilt2= _mm_shuffle_epi8(srcReg1,
_mm256_castsi256_si128(filt3Reg));
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3,
_mm256_castsi256_si128(secondFilters));
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
_mm256_castsi256_si128(thirdFilters));
// add and saturate the results together
srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
_mm_min_epi16(srcRegFilt3, srcRegFilt2));
// reading the next 16 bytes
// (part of it was being read by earlier read)
srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + 5));
// add and saturate the results together
srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
_mm_max_epi16(srcRegFilt3, srcRegFilt2));
// filter the source buffer
srcRegFilt2_1 = _mm_shuffle_epi8(srcReg2,
_mm256_castsi256_si128(filt1Reg));
srcRegFilt2 = _mm_shuffle_epi8(srcReg2,
_mm256_castsi256_si128(filt4Reg));
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt2_1 = _mm_maddubs_epi16(srcRegFilt2_1,
_mm256_castsi256_si128(firstFilters));
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
_mm256_castsi256_si128(forthFilters));
// add and saturate the results together
srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, srcRegFilt2);
// filter the source buffer
srcRegFilt3 = _mm_shuffle_epi8(srcReg2,
_mm256_castsi256_si128(filt2Reg));
srcRegFilt2 = _mm_shuffle_epi8(srcReg2,
_mm256_castsi256_si128(filt3Reg));
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3,
_mm256_castsi256_si128(secondFilters));
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
_mm256_castsi256_si128(thirdFilters));
// add and saturate the results together
srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
_mm_min_epi16(srcRegFilt3, srcRegFilt2));
srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
_mm_max_epi16(srcRegFilt3, srcRegFilt2));
srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
_mm256_castsi256_si128(addFilterReg64));
srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
_mm256_castsi256_si128(addFilterReg64));
// shift by 7 bit each 16 bit
srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 7);
srcRegFilt2_1 = _mm_srai_epi16(srcRegFilt2_1, 7);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, srcRegFilt2_1);
// save 16 bytes
_mm_store_si128((__m128i*)output_ptr, srcRegFilt1_1);
}
}
static void vpx_filter_block1d16_v8_avx2(const uint8_t *src_ptr,
ptrdiff_t src_pitch,
uint8_t *output_ptr,
ptrdiff_t out_pitch,
uint32_t output_height,
const int16_t *filter) {
__m128i filtersReg;
__m256i addFilterReg64;
__m256i srcReg32b1, srcReg32b2, srcReg32b3, srcReg32b4, srcReg32b5;
__m256i srcReg32b6, srcReg32b7, srcReg32b8, srcReg32b9, srcReg32b10;
__m256i srcReg32b11, srcReg32b12, filtersReg32;
__m256i firstFilters, secondFilters, thirdFilters, forthFilters;
unsigned int i;
ptrdiff_t src_stride, dst_stride;
// create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
addFilterReg64 = _mm256_set1_epi32((int)0x0400040u);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
// converting the 16 bit (short) to 8 bit (byte) and have the
// same data in both lanes of 128 bit register.
filtersReg =_mm_packs_epi16(filtersReg, filtersReg);
// have the same data in both lanes of a 256 bit register
filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
// duplicate only the first 16 bits (first and second byte)
// across 256 bit register
firstFilters = _mm256_shuffle_epi8(filtersReg32,
_mm256_set1_epi16(0x100u));
// duplicate only the second 16 bits (third and forth byte)
// across 256 bit register
secondFilters = _mm256_shuffle_epi8(filtersReg32,
_mm256_set1_epi16(0x302u));
// duplicate only the third 16 bits (fifth and sixth byte)
// across 256 bit register
thirdFilters = _mm256_shuffle_epi8(filtersReg32,
_mm256_set1_epi16(0x504u));
// duplicate only the forth 16 bits (seventh and eighth byte)
// across 256 bit register
forthFilters = _mm256_shuffle_epi8(filtersReg32,
_mm256_set1_epi16(0x706u));
// multiple the size of the source and destination stride by two
src_stride = src_pitch << 1;
dst_stride = out_pitch << 1;
// load 16 bytes 7 times in stride of src_pitch
srcReg32b1 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src_ptr)));
srcReg32b2 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch)));
srcReg32b3 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 2)));
srcReg32b4 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 3)));
srcReg32b5 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4)));
srcReg32b6 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5)));
srcReg32b7 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6)));
// have each consecutive loads on the same 256 register
srcReg32b1 = _mm256_inserti128_si256(srcReg32b1,
_mm256_castsi256_si128(srcReg32b2), 1);
srcReg32b2 = _mm256_inserti128_si256(srcReg32b2,
_mm256_castsi256_si128(srcReg32b3), 1);
srcReg32b3 = _mm256_inserti128_si256(srcReg32b3,
_mm256_castsi256_si128(srcReg32b4), 1);
srcReg32b4 = _mm256_inserti128_si256(srcReg32b4,
_mm256_castsi256_si128(srcReg32b5), 1);
srcReg32b5 = _mm256_inserti128_si256(srcReg32b5,
_mm256_castsi256_si128(srcReg32b6), 1);
srcReg32b6 = _mm256_inserti128_si256(srcReg32b6,
_mm256_castsi256_si128(srcReg32b7), 1);
// merge every two consecutive registers except the last one
srcReg32b10 = _mm256_unpacklo_epi8(srcReg32b1, srcReg32b2);
srcReg32b1 = _mm256_unpackhi_epi8(srcReg32b1, srcReg32b2);
// save
srcReg32b11 = _mm256_unpacklo_epi8(srcReg32b3, srcReg32b4);
// save
srcReg32b3 = _mm256_unpackhi_epi8(srcReg32b3, srcReg32b4);
// save
srcReg32b2 = _mm256_unpacklo_epi8(srcReg32b5, srcReg32b6);
// save
srcReg32b5 = _mm256_unpackhi_epi8(srcReg32b5, srcReg32b6);
for (i = output_height; i > 1; i-=2) {
// load the last 2 loads of 16 bytes and have every two
// consecutive loads in the same 256 bit register
srcReg32b8 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7)));
srcReg32b7 = _mm256_inserti128_si256(srcReg32b7,
_mm256_castsi256_si128(srcReg32b8), 1);
srcReg32b9 = _mm256_castsi128_si256(
_mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 8)));
srcReg32b8 = _mm256_inserti128_si256(srcReg32b8,
_mm256_castsi256_si128(srcReg32b9), 1);
// merge every two consecutive registers
// save
srcReg32b4 = _mm256_unpacklo_epi8(srcReg32b7, srcReg32b8);
srcReg32b7 = _mm256_unpackhi_epi8(srcReg32b7, srcReg32b8);
// multiply 2 adjacent elements with the filter and add the result
srcReg32b10 = _mm256_maddubs_epi16(srcReg32b10, firstFilters);
srcReg32b6 = _mm256_maddubs_epi16(srcReg32b4, forthFilters);
// add and saturate the results together
srcReg32b10 = _mm256_adds_epi16(srcReg32b10, srcReg32b6);
// multiply 2 adjacent elements with the filter and add the result
srcReg32b8 = _mm256_maddubs_epi16(srcReg32b11, secondFilters);
srcReg32b12 = _mm256_maddubs_epi16(srcReg32b2, thirdFilters);
// add and saturate the results together
srcReg32b10 = _mm256_adds_epi16(srcReg32b10,
_mm256_min_epi16(srcReg32b8, srcReg32b12));
srcReg32b10 = _mm256_adds_epi16(srcReg32b10,
_mm256_max_epi16(srcReg32b8, srcReg32b12));
// multiply 2 adjacent elements with the filter and add the result
srcReg32b1 = _mm256_maddubs_epi16(srcReg32b1, firstFilters);
srcReg32b6 = _mm256_maddubs_epi16(srcReg32b7, forthFilters);
srcReg32b1 = _mm256_adds_epi16(srcReg32b1, srcReg32b6);
// multiply 2 adjacent elements with the filter and add the result
srcReg32b8 = _mm256_maddubs_epi16(srcReg32b3, secondFilters);
srcReg32b12 = _mm256_maddubs_epi16(srcReg32b5, thirdFilters);
// add and saturate the results together
srcReg32b1 = _mm256_adds_epi16(srcReg32b1,
_mm256_min_epi16(srcReg32b8, srcReg32b12));
srcReg32b1 = _mm256_adds_epi16(srcReg32b1,
_mm256_max_epi16(srcReg32b8, srcReg32b12));
srcReg32b10 = _mm256_adds_epi16(srcReg32b10, addFilterReg64);
srcReg32b1 = _mm256_adds_epi16(srcReg32b1, addFilterReg64);
// shift by 7 bit each 16 bit
srcReg32b10 = _mm256_srai_epi16(srcReg32b10, 7);
srcReg32b1 = _mm256_srai_epi16(srcReg32b1, 7);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
srcReg32b1 = _mm256_packus_epi16(srcReg32b10, srcReg32b1);
src_ptr+=src_stride;
// save 16 bytes
_mm_store_si128((__m128i*)output_ptr,
_mm256_castsi256_si128(srcReg32b1));
// save the next 16 bits
_mm_store_si128((__m128i*)(output_ptr+out_pitch),
_mm256_extractf128_si256(srcReg32b1, 1));
output_ptr+=dst_stride;
// save part of the registers for next strides
srcReg32b10 = srcReg32b11;
srcReg32b1 = srcReg32b3;
srcReg32b11 = srcReg32b2;
srcReg32b3 = srcReg32b5;
srcReg32b2 = srcReg32b4;
srcReg32b5 = srcReg32b7;
srcReg32b7 = srcReg32b9;
}
if (i > 0) {
__m128i srcRegFilt1, srcRegFilt3, srcRegFilt4, srcRegFilt5;
__m128i srcRegFilt6, srcRegFilt7, srcRegFilt8;
// load the last 16 bytes
srcRegFilt8 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7));
// merge the last 2 results together
srcRegFilt4 = _mm_unpacklo_epi8(
_mm256_castsi256_si128(srcReg32b7), srcRegFilt8);
srcRegFilt7 = _mm_unpackhi_epi8(
_mm256_castsi256_si128(srcReg32b7), srcRegFilt8);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt1 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b10),
_mm256_castsi256_si128(firstFilters));
srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4,
_mm256_castsi256_si128(forthFilters));
srcRegFilt3 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b1),
_mm256_castsi256_si128(firstFilters));
srcRegFilt7 = _mm_maddubs_epi16(srcRegFilt7,
_mm256_castsi256_si128(forthFilters));
// add and saturate the results together
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4);
srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, srcRegFilt7);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt4 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b11),
_mm256_castsi256_si128(secondFilters));
srcRegFilt5 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b3),
_mm256_castsi256_si128(secondFilters));
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt6 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b2),
_mm256_castsi256_si128(thirdFilters));
srcRegFilt7 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b5),
_mm256_castsi256_si128(thirdFilters));
// add and saturate the results together
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
_mm_min_epi16(srcRegFilt4, srcRegFilt6));
srcRegFilt3 = _mm_adds_epi16(srcRegFilt3,
_mm_min_epi16(srcRegFilt5, srcRegFilt7));
// add and saturate the results together
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
_mm_max_epi16(srcRegFilt4, srcRegFilt6));
srcRegFilt3 = _mm_adds_epi16(srcRegFilt3,
_mm_max_epi16(srcRegFilt5, srcRegFilt7));
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
_mm256_castsi256_si128(addFilterReg64));
srcRegFilt3 = _mm_adds_epi16(srcRegFilt3,
_mm256_castsi256_si128(addFilterReg64));
// shift by 7 bit each 16 bit
srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);
srcRegFilt3 = _mm_srai_epi16(srcRegFilt3, 7);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt3);
// save 16 bytes
_mm_store_si128((__m128i*)output_ptr, srcRegFilt1);
}
}
#if HAVE_AVX2 && HAVE_SSSE3
filter8_1dfunction vpx_filter_block1d4_v8_ssse3;
#if ARCH_X86_64
filter8_1dfunction vpx_filter_block1d8_v8_intrin_ssse3;
filter8_1dfunction vpx_filter_block1d8_h8_intrin_ssse3;
filter8_1dfunction vpx_filter_block1d4_h8_intrin_ssse3;
#define vpx_filter_block1d8_v8_avx2 vpx_filter_block1d8_v8_intrin_ssse3
#define vpx_filter_block1d8_h8_avx2 vpx_filter_block1d8_h8_intrin_ssse3
#define vpx_filter_block1d4_h8_avx2 vpx_filter_block1d4_h8_intrin_ssse3
#else // ARCH_X86
filter8_1dfunction vpx_filter_block1d8_v8_ssse3;
filter8_1dfunction vpx_filter_block1d8_h8_ssse3;
filter8_1dfunction vpx_filter_block1d4_h8_ssse3;
#define vpx_filter_block1d8_v8_avx2 vpx_filter_block1d8_v8_ssse3
#define vpx_filter_block1d8_h8_avx2 vpx_filter_block1d8_h8_ssse3
#define vpx_filter_block1d4_h8_avx2 vpx_filter_block1d4_h8_ssse3
#endif // ARCH_X86_64
filter8_1dfunction vpx_filter_block1d16_v2_ssse3;
filter8_1dfunction vpx_filter_block1d16_h2_ssse3;
filter8_1dfunction vpx_filter_block1d8_v2_ssse3;
filter8_1dfunction vpx_filter_block1d8_h2_ssse3;
filter8_1dfunction vpx_filter_block1d4_v2_ssse3;
filter8_1dfunction vpx_filter_block1d4_h2_ssse3;
#define vpx_filter_block1d4_v8_avx2 vpx_filter_block1d4_v8_ssse3
#define vpx_filter_block1d16_v2_avx2 vpx_filter_block1d16_v2_ssse3
#define vpx_filter_block1d16_h2_avx2 vpx_filter_block1d16_h2_ssse3
#define vpx_filter_block1d8_v2_avx2 vpx_filter_block1d8_v2_ssse3
#define vpx_filter_block1d8_h2_avx2 vpx_filter_block1d8_h2_ssse3
#define vpx_filter_block1d4_v2_avx2 vpx_filter_block1d4_v2_ssse3
#define vpx_filter_block1d4_h2_avx2 vpx_filter_block1d4_h2_ssse3
// void vpx_convolve8_horiz_avx2(const uint8_t *src, ptrdiff_t src_stride,
// uint8_t *dst, ptrdiff_t dst_stride,
// const int16_t *filter_x, int x_step_q4,
// const int16_t *filter_y, int y_step_q4,
// int w, int h);
// void vpx_convolve8_vert_avx2(const uint8_t *src, ptrdiff_t src_stride,
// uint8_t *dst, ptrdiff_t dst_stride,
// const int16_t *filter_x, int x_step_q4,
// const int16_t *filter_y, int y_step_q4,
// int w, int h);
FUN_CONV_1D(horiz, x_step_q4, filter_x, h, src, , avx2);
FUN_CONV_1D(vert, y_step_q4, filter_y, v, src - src_stride * 3, , avx2);
// void vpx_convolve8_avx2(const uint8_t *src, ptrdiff_t src_stride,
// uint8_t *dst, ptrdiff_t dst_stride,
// const int16_t *filter_x, int x_step_q4,
// const int16_t *filter_y, int y_step_q4,
// int w, int h);
FUN_CONV_2D(, avx2);
#endif // HAVE_AX2 && HAVE_SSSE3