vpx/vp9/common/x86/vp9_subpixel_8t_intrin_avx2.c
Tom Finegan f600b50a6e Fix avx builds on macosx with clang 5.0.
The macosx release of clang v5.0 identifies itself as:
Apple LLVM version 5.0 (clang-500.2.79) (based on LLVM 3.3svn)

This version of clang uses the older _mm_broadcastsi128_si256, like
v3.3, as given away in the LLVM svn version above.

Change-Id: I4d6d59d5454efd57d2ae9e75f5eb7486af7cbd0c
2014-04-08 18:56:03 -07:00

545 lines
22 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <immintrin.h>
#include "vpx_ports/mem.h"
// filters for 16_h8 and 16_v8
DECLARE_ALIGNED(32, static const uint8_t, filt1_global_avx2[32]) = {
0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8,
0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8
};
DECLARE_ALIGNED(32, static const uint8_t, filt2_global_avx2[32]) = {
2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10,
2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10
};
DECLARE_ALIGNED(32, static const uint8_t, filt3_global_avx2[32]) = {
4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12,
4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12
};
DECLARE_ALIGNED(32, static const uint8_t, filt4_global_avx2[32]) = {
6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14,
6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14
};
#if defined(__clang__)
# if __clang_major__ < 3 || (__clang_major__ == 3 && __clang_minor__ <= 3) || \
(defined(__APPLE__) && __clang_major__ == 5 && __clang_minor__ == 0)
# define MM256_BROADCASTSI128_SI256(x) \
_mm_broadcastsi128_si256((__m128i const *)&(x))
# else // clang > 3.3, and not 5.0 on macosx.
# define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x)
# endif // clang <= 3.3
#elif defined(__GNUC__)
# if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 6)
# define MM256_BROADCASTSI128_SI256(x) \
_mm_broadcastsi128_si256((__m128i const *)&(x))
# elif __GNUC__ == 4 && __GNUC_MINOR__ == 7
# define MM256_BROADCASTSI128_SI256(x) _mm_broadcastsi128_si256(x)
# else // gcc > 4.7
# define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x)
# endif // gcc <= 4.6
#else // !(gcc || clang)
# define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x)
#endif // __clang__
void vp9_filter_block1d16_h8_avx2(unsigned char *src_ptr,
unsigned int src_pixels_per_line,
unsigned char *output_ptr,
unsigned int output_pitch,
unsigned int output_height,
int16_t *filter) {
__m128i filtersReg;
__m256i addFilterReg64, filt1Reg, filt2Reg, filt3Reg, filt4Reg;
__m256i firstFilters, secondFilters, thirdFilters, forthFilters;
__m256i srcRegFilt32b1_1, srcRegFilt32b2_1, srcRegFilt32b2, srcRegFilt32b3;
__m256i srcReg32b1, srcReg32b2, filtersReg32;
unsigned int i;
unsigned int src_stride, dst_stride;
// create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
addFilterReg64 = _mm256_set1_epi32((int)0x0400040u);
filtersReg = _mm_loadu_si128((__m128i *)filter);
// converting the 16 bit (short) to 8 bit (byte) and have the same data
// in both lanes of 128 bit register.
filtersReg =_mm_packs_epi16(filtersReg, filtersReg);
// have the same data in both lanes of a 256 bit register
filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
// duplicate only the first 16 bits (first and second byte)
// across 256 bit register
firstFilters = _mm256_shuffle_epi8(filtersReg32,
_mm256_set1_epi16(0x100u));
// duplicate only the second 16 bits (third and forth byte)
// across 256 bit register
secondFilters = _mm256_shuffle_epi8(filtersReg32,
_mm256_set1_epi16(0x302u));
// duplicate only the third 16 bits (fifth and sixth byte)
// across 256 bit register
thirdFilters = _mm256_shuffle_epi8(filtersReg32,
_mm256_set1_epi16(0x504u));
// duplicate only the forth 16 bits (seventh and eighth byte)
// across 256 bit register
forthFilters = _mm256_shuffle_epi8(filtersReg32,
_mm256_set1_epi16(0x706u));
filt1Reg = _mm256_load_si256((__m256i const *)filt1_global_avx2);
filt2Reg = _mm256_load_si256((__m256i const *)filt2_global_avx2);
filt3Reg = _mm256_load_si256((__m256i const *)filt3_global_avx2);
filt4Reg = _mm256_load_si256((__m256i const *)filt4_global_avx2);
// multiple the size of the source and destination stride by two
src_stride = src_pixels_per_line << 1;
dst_stride = output_pitch << 1;
for (i = output_height; i > 1; i-=2) {
// load the 2 strides of source
srcReg32b1 = _mm256_castsi128_si256(
_mm_loadu_si128((__m128i *)(src_ptr-3)));
srcReg32b1 = _mm256_inserti128_si256(srcReg32b1,
_mm_loadu_si128((__m128i *)
(src_ptr+src_pixels_per_line-3)), 1);
// filter the source buffer
srcRegFilt32b1_1= _mm256_shuffle_epi8(srcReg32b1, filt1Reg);
srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b1, filt2Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters);
srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, secondFilters);
// add and saturate the results together
srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, srcRegFilt32b2);
// filter the source buffer
srcRegFilt32b3= _mm256_shuffle_epi8(srcReg32b1, filt4Reg);
srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b1, filt3Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, forthFilters);
srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);
// add and saturate the results together
srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1,
_mm256_min_epi16(srcRegFilt32b3, srcRegFilt32b2));
// reading 2 strides of the next 16 bytes
// (part of it was being read by earlier read)
srcReg32b2 = _mm256_castsi128_si256(
_mm_loadu_si128((__m128i *)(src_ptr+5)));
srcReg32b2 = _mm256_inserti128_si256(srcReg32b2,
_mm_loadu_si128((__m128i *)
(src_ptr+src_pixels_per_line+5)), 1);
// add and saturate the results together
srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1,
_mm256_max_epi16(srcRegFilt32b3, srcRegFilt32b2));
// filter the source buffer
srcRegFilt32b2_1 = _mm256_shuffle_epi8(srcReg32b2, filt1Reg);
srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b2, filt2Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt32b2_1 = _mm256_maddubs_epi16(srcRegFilt32b2_1, firstFilters);
srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, secondFilters);
// add and saturate the results together
srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, srcRegFilt32b2);
// filter the source buffer
srcRegFilt32b3= _mm256_shuffle_epi8(srcReg32b2, filt4Reg);
srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b2, filt3Reg);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, forthFilters);
srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);
// add and saturate the results together
srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1,
_mm256_min_epi16(srcRegFilt32b3, srcRegFilt32b2));
srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1,
_mm256_max_epi16(srcRegFilt32b3, srcRegFilt32b2));
srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg64);
srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, addFilterReg64);
// shift by 7 bit each 16 bit
srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 7);
srcRegFilt32b2_1 = _mm256_srai_epi16(srcRegFilt32b2_1, 7);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1,
srcRegFilt32b2_1);
src_ptr+=src_stride;
// save 16 bytes
_mm_store_si128((__m128i*)output_ptr,
_mm256_castsi256_si128(srcRegFilt32b1_1));
// save the next 16 bits
_mm_store_si128((__m128i*)(output_ptr+output_pitch),
_mm256_extractf128_si256(srcRegFilt32b1_1, 1));
output_ptr+=dst_stride;
}
// if the number of strides is odd.
// process only 16 bytes
if (i > 0) {
__m128i srcReg1, srcReg2, srcRegFilt1_1, srcRegFilt2_1;
__m128i srcRegFilt2, srcRegFilt3;
srcReg1 = _mm_loadu_si128((__m128i *)(src_ptr-3));
// filter the source buffer
srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1,
_mm256_castsi256_si128(filt1Reg));
srcRegFilt2 = _mm_shuffle_epi8(srcReg1,
_mm256_castsi256_si128(filt2Reg));
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt1_1 = _mm_maddubs_epi16(srcRegFilt1_1,
_mm256_castsi256_si128(firstFilters));
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
_mm256_castsi256_si128(secondFilters));
// add and saturate the results together
srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2);
// filter the source buffer
srcRegFilt3= _mm_shuffle_epi8(srcReg1,
_mm256_castsi256_si128(filt4Reg));
srcRegFilt2= _mm_shuffle_epi8(srcReg1,
_mm256_castsi256_si128(filt3Reg));
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3,
_mm256_castsi256_si128(forthFilters));
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
_mm256_castsi256_si128(thirdFilters));
// add and saturate the results together
srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
_mm_min_epi16(srcRegFilt3, srcRegFilt2));
// reading the next 16 bytes
// (part of it was being read by earlier read)
srcReg2 = _mm_loadu_si128((__m128i *)(src_ptr+5));
// add and saturate the results together
srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
_mm_max_epi16(srcRegFilt3, srcRegFilt2));
// filter the source buffer
srcRegFilt2_1 = _mm_shuffle_epi8(srcReg2,
_mm256_castsi256_si128(filt1Reg));
srcRegFilt2 = _mm_shuffle_epi8(srcReg2,
_mm256_castsi256_si128(filt2Reg));
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt2_1 = _mm_maddubs_epi16(srcRegFilt2_1,
_mm256_castsi256_si128(firstFilters));
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
_mm256_castsi256_si128(secondFilters));
// add and saturate the results together
srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, srcRegFilt2);
// filter the source buffer
srcRegFilt3 = _mm_shuffle_epi8(srcReg2,
_mm256_castsi256_si128(filt4Reg));
srcRegFilt2 = _mm_shuffle_epi8(srcReg2,
_mm256_castsi256_si128(filt3Reg));
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3,
_mm256_castsi256_si128(forthFilters));
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
_mm256_castsi256_si128(thirdFilters));
// add and saturate the results together
srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
_mm_min_epi16(srcRegFilt3, srcRegFilt2));
srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
_mm_max_epi16(srcRegFilt3, srcRegFilt2));
srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
_mm256_castsi256_si128(addFilterReg64));
srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
_mm256_castsi256_si128(addFilterReg64));
// shift by 7 bit each 16 bit
srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 7);
srcRegFilt2_1 = _mm_srai_epi16(srcRegFilt2_1, 7);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, srcRegFilt2_1);
// save 16 bytes
_mm_store_si128((__m128i*)output_ptr, srcRegFilt1_1);
}
}
void vp9_filter_block1d16_v8_avx2(unsigned char *src_ptr,
unsigned int src_pitch,
unsigned char *output_ptr,
unsigned int out_pitch,
unsigned int output_height,
int16_t *filter) {
__m128i filtersReg;
__m256i addFilterReg64;
__m256i srcReg32b1, srcReg32b2, srcReg32b3, srcReg32b4, srcReg32b5;
__m256i srcReg32b6, srcReg32b7, srcReg32b8, srcReg32b9, srcReg32b10;
__m256i srcReg32b11, srcReg32b12, srcReg32b13, filtersReg32;
__m256i firstFilters, secondFilters, thirdFilters, forthFilters;
unsigned int i;
unsigned int src_stride, dst_stride;
// create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
addFilterReg64 = _mm256_set1_epi32((int)0x0400040u);
filtersReg = _mm_loadu_si128((__m128i *)filter);
// converting the 16 bit (short) to 8 bit (byte) and have the
// same data in both lanes of 128 bit register.
filtersReg =_mm_packs_epi16(filtersReg, filtersReg);
// have the same data in both lanes of a 256 bit register
filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
// duplicate only the first 16 bits (first and second byte)
// across 256 bit register
firstFilters = _mm256_shuffle_epi8(filtersReg32,
_mm256_set1_epi16(0x100u));
// duplicate only the second 16 bits (third and forth byte)
// across 256 bit register
secondFilters = _mm256_shuffle_epi8(filtersReg32,
_mm256_set1_epi16(0x302u));
// duplicate only the third 16 bits (fifth and sixth byte)
// across 256 bit register
thirdFilters = _mm256_shuffle_epi8(filtersReg32,
_mm256_set1_epi16(0x504u));
// duplicate only the forth 16 bits (seventh and eighth byte)
// across 256 bit register
forthFilters = _mm256_shuffle_epi8(filtersReg32,
_mm256_set1_epi16(0x706u));
// multiple the size of the source and destination stride by two
src_stride = src_pitch << 1;
dst_stride = out_pitch << 1;
// load 16 bytes 7 times in stride of src_pitch
srcReg32b1 = _mm256_castsi128_si256(
_mm_loadu_si128((__m128i *)(src_ptr)));
srcReg32b2 = _mm256_castsi128_si256(
_mm_loadu_si128((__m128i *)(src_ptr+src_pitch)));
srcReg32b3 = _mm256_castsi128_si256(
_mm_loadu_si128((__m128i *)(src_ptr+src_pitch*2)));
srcReg32b4 = _mm256_castsi128_si256(
_mm_loadu_si128((__m128i *)(src_ptr+src_pitch*3)));
srcReg32b5 = _mm256_castsi128_si256(
_mm_loadu_si128((__m128i *)(src_ptr+src_pitch*4)));
srcReg32b6 = _mm256_castsi128_si256(
_mm_loadu_si128((__m128i *)(src_ptr+src_pitch*5)));
srcReg32b7 = _mm256_castsi128_si256(
_mm_loadu_si128((__m128i *)(src_ptr+src_pitch*6)));
// have each consecutive loads on the same 256 register
srcReg32b1 = _mm256_inserti128_si256(srcReg32b1,
_mm256_castsi256_si128(srcReg32b2), 1);
srcReg32b2 = _mm256_inserti128_si256(srcReg32b2,
_mm256_castsi256_si128(srcReg32b3), 1);
srcReg32b3 = _mm256_inserti128_si256(srcReg32b3,
_mm256_castsi256_si128(srcReg32b4), 1);
srcReg32b4 = _mm256_inserti128_si256(srcReg32b4,
_mm256_castsi256_si128(srcReg32b5), 1);
srcReg32b5 = _mm256_inserti128_si256(srcReg32b5,
_mm256_castsi256_si128(srcReg32b6), 1);
srcReg32b6 = _mm256_inserti128_si256(srcReg32b6,
_mm256_castsi256_si128(srcReg32b7), 1);
// merge every two consecutive registers except the last one
srcReg32b10 = _mm256_unpacklo_epi8(srcReg32b1, srcReg32b2);
srcReg32b1 = _mm256_unpackhi_epi8(srcReg32b1, srcReg32b2);
// save
srcReg32b11 = _mm256_unpacklo_epi8(srcReg32b3, srcReg32b4);
// save
srcReg32b3 = _mm256_unpackhi_epi8(srcReg32b3, srcReg32b4);
// save
srcReg32b2 = _mm256_unpacklo_epi8(srcReg32b5, srcReg32b6);
// save
srcReg32b5 = _mm256_unpackhi_epi8(srcReg32b5, srcReg32b6);
for (i = output_height; i > 1; i-=2) {
// load the last 2 loads of 16 bytes and have every two
// consecutive loads in the same 256 bit register
srcReg32b8 = _mm256_castsi128_si256(
_mm_loadu_si128((__m128i *)(src_ptr+src_pitch*7)));
srcReg32b7 = _mm256_inserti128_si256(srcReg32b7,
_mm256_castsi256_si128(srcReg32b8), 1);
srcReg32b9 = _mm256_castsi128_si256(
_mm_loadu_si128((__m128i *)(src_ptr+src_pitch*8)));
srcReg32b8 = _mm256_inserti128_si256(srcReg32b8,
_mm256_castsi256_si128(srcReg32b9), 1);
// merge every two consecutive registers
// save
srcReg32b4 = _mm256_unpacklo_epi8(srcReg32b7, srcReg32b8);
srcReg32b7 = _mm256_unpackhi_epi8(srcReg32b7, srcReg32b8);
// multiply 2 adjacent elements with the filter and add the result
srcReg32b10 = _mm256_maddubs_epi16(srcReg32b10, firstFilters);
srcReg32b6 = _mm256_maddubs_epi16(srcReg32b4, forthFilters);
srcReg32b1 = _mm256_maddubs_epi16(srcReg32b1, firstFilters);
srcReg32b8 = _mm256_maddubs_epi16(srcReg32b7, forthFilters);
// add and saturate the results together
srcReg32b10 = _mm256_adds_epi16(srcReg32b10, srcReg32b6);
srcReg32b1 = _mm256_adds_epi16(srcReg32b1, srcReg32b8);
// multiply 2 adjacent elements with the filter and add the result
srcReg32b8 = _mm256_maddubs_epi16(srcReg32b11, secondFilters);
srcReg32b6 = _mm256_maddubs_epi16(srcReg32b3, secondFilters);
// multiply 2 adjacent elements with the filter and add the result
srcReg32b12 = _mm256_maddubs_epi16(srcReg32b2, thirdFilters);
srcReg32b13 = _mm256_maddubs_epi16(srcReg32b5, thirdFilters);
// add and saturate the results together
srcReg32b10 = _mm256_adds_epi16(srcReg32b10,
_mm256_min_epi16(srcReg32b8, srcReg32b12));
srcReg32b1 = _mm256_adds_epi16(srcReg32b1,
_mm256_min_epi16(srcReg32b6, srcReg32b13));
// add and saturate the results together
srcReg32b10 = _mm256_adds_epi16(srcReg32b10,
_mm256_max_epi16(srcReg32b8, srcReg32b12));
srcReg32b1 = _mm256_adds_epi16(srcReg32b1,
_mm256_max_epi16(srcReg32b6, srcReg32b13));
srcReg32b10 = _mm256_adds_epi16(srcReg32b10, addFilterReg64);
srcReg32b1 = _mm256_adds_epi16(srcReg32b1, addFilterReg64);
// shift by 7 bit each 16 bit
srcReg32b10 = _mm256_srai_epi16(srcReg32b10, 7);
srcReg32b1 = _mm256_srai_epi16(srcReg32b1, 7);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
srcReg32b1 = _mm256_packus_epi16(srcReg32b10, srcReg32b1);
src_ptr+=src_stride;
// save 16 bytes
_mm_store_si128((__m128i*)output_ptr,
_mm256_castsi256_si128(srcReg32b1));
// save the next 16 bits
_mm_store_si128((__m128i*)(output_ptr+out_pitch),
_mm256_extractf128_si256(srcReg32b1, 1));
output_ptr+=dst_stride;
// save part of the registers for next strides
srcReg32b10 = srcReg32b11;
srcReg32b1 = srcReg32b3;
srcReg32b11 = srcReg32b2;
srcReg32b3 = srcReg32b5;
srcReg32b2 = srcReg32b4;
srcReg32b5 = srcReg32b7;
srcReg32b7 = srcReg32b9;
}
if (i > 0) {
__m128i srcRegFilt1, srcRegFilt3, srcRegFilt4, srcRegFilt5;
__m128i srcRegFilt6, srcRegFilt7, srcRegFilt8;
// load the last 16 bytes
srcRegFilt8 = _mm_loadu_si128((__m128i *)(src_ptr+src_pitch*7));
// merge the last 2 results together
srcRegFilt4 = _mm_unpacklo_epi8(
_mm256_castsi256_si128(srcReg32b7), srcRegFilt8);
srcRegFilt7 = _mm_unpackhi_epi8(
_mm256_castsi256_si128(srcReg32b7), srcRegFilt8);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt1 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b10),
_mm256_castsi256_si128(firstFilters));
srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4,
_mm256_castsi256_si128(forthFilters));
srcRegFilt3 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b1),
_mm256_castsi256_si128(firstFilters));
srcRegFilt7 = _mm_maddubs_epi16(srcRegFilt7,
_mm256_castsi256_si128(forthFilters));
// add and saturate the results together
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4);
srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, srcRegFilt7);
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt4 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b11),
_mm256_castsi256_si128(secondFilters));
srcRegFilt5 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b3),
_mm256_castsi256_si128(secondFilters));
// multiply 2 adjacent elements with the filter and add the result
srcRegFilt6 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b2),
_mm256_castsi256_si128(thirdFilters));
srcRegFilt7 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b5),
_mm256_castsi256_si128(thirdFilters));
// add and saturate the results together
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
_mm_min_epi16(srcRegFilt4, srcRegFilt6));
srcRegFilt3 = _mm_adds_epi16(srcRegFilt3,
_mm_min_epi16(srcRegFilt5, srcRegFilt7));
// add and saturate the results together
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
_mm_max_epi16(srcRegFilt4, srcRegFilt6));
srcRegFilt3 = _mm_adds_epi16(srcRegFilt3,
_mm_max_epi16(srcRegFilt5, srcRegFilt7));
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
_mm256_castsi256_si128(addFilterReg64));
srcRegFilt3 = _mm_adds_epi16(srcRegFilt3,
_mm256_castsi256_si128(addFilterReg64));
// shift by 7 bit each 16 bit
srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);
srcRegFilt3 = _mm_srai_epi16(srcRegFilt3, 7);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt3);
// save 16 bytes
_mm_store_si128((__m128i*)output_ptr, srcRegFilt1);
}
}