vpx/vp9/common/vp9_entropy.c
2013-12-04 16:46:41 -08:00

469 lines
20 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_onyxc_int.h"
#include "vp9/common/vp9_entropymode.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx/vpx_integer.h"
DECLARE_ALIGNED(16, const uint8_t, vp9_norm[256]) = {
0, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
DECLARE_ALIGNED(16, const uint8_t,
vp9_coefband_trans_8x8plus[1024]) = {
0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 5,
// beyond MAXBAND_INDEX+1 all values are filled as 5
5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
};
DECLARE_ALIGNED(16, const uint8_t, vp9_coefband_trans_4x4[16]) = {
0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5,
};
DECLARE_ALIGNED(16, const uint8_t, vp9_pt_energy_class[ENTROPY_TOKENS]) = {
0, 1, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5
};
const vp9_tree_index vp9_coefmodel_tree[TREE_SIZE(UNCONSTRAINED_NODES + 1)] = {
-EOB_MODEL_TOKEN, 2,
-ZERO_TOKEN, 4,
-ONE_TOKEN, -TWO_TOKEN,
};
// Model obtained from a 2-sided zero-centerd distribuition derived
// from a Pareto distribution. The cdf of the distribution is:
// cdf(x) = 0.5 + 0.5 * sgn(x) * [1 - {alpha/(alpha + |x|)} ^ beta]
//
// For a given beta and a given probablity of the 1-node, the alpha
// is first solved, and then the {alpha, beta} pair is used to generate
// the probabilities for the rest of the nodes.
// beta = 8
// Every odd line in this table can be generated from the even lines
// by averaging :
// vp9_pareto8_full[l][node] = ( vp9_pareto8_full[l-1][node] +
// vp9_pareto8_full[l+1][node] ) >> 1;
const vp9_prob vp9_pareto8_full[COEFF_PROB_MODELS][MODEL_NODES] = {
{ 3, 86, 128, 6, 86, 23, 88, 29},
{ 6, 86, 128, 11, 87, 42, 91, 52},
{ 9, 86, 129, 17, 88, 61, 94, 76},
{ 12, 86, 129, 22, 88, 77, 97, 93},
{ 15, 87, 129, 28, 89, 93, 100, 110},
{ 17, 87, 129, 33, 90, 105, 103, 123},
{ 20, 88, 130, 38, 91, 118, 106, 136},
{ 23, 88, 130, 43, 91, 128, 108, 146},
{ 26, 89, 131, 48, 92, 139, 111, 156},
{ 28, 89, 131, 53, 93, 147, 114, 163},
{ 31, 90, 131, 58, 94, 156, 117, 171},
{ 34, 90, 131, 62, 94, 163, 119, 177},
{ 37, 90, 132, 66, 95, 171, 122, 184},
{ 39, 90, 132, 70, 96, 177, 124, 189},
{ 42, 91, 132, 75, 97, 183, 127, 194},
{ 44, 91, 132, 79, 97, 188, 129, 198},
{ 47, 92, 133, 83, 98, 193, 132, 202},
{ 49, 92, 133, 86, 99, 197, 134, 205},
{ 52, 93, 133, 90, 100, 201, 137, 208},
{ 54, 93, 133, 94, 100, 204, 139, 211},
{ 57, 94, 134, 98, 101, 208, 142, 214},
{ 59, 94, 134, 101, 102, 211, 144, 216},
{ 62, 94, 135, 105, 103, 214, 146, 218},
{ 64, 94, 135, 108, 103, 216, 148, 220},
{ 66, 95, 135, 111, 104, 219, 151, 222},
{ 68, 95, 135, 114, 105, 221, 153, 223},
{ 71, 96, 136, 117, 106, 224, 155, 225},
{ 73, 96, 136, 120, 106, 225, 157, 226},
{ 76, 97, 136, 123, 107, 227, 159, 228},
{ 78, 97, 136, 126, 108, 229, 160, 229},
{ 80, 98, 137, 129, 109, 231, 162, 231},
{ 82, 98, 137, 131, 109, 232, 164, 232},
{ 84, 98, 138, 134, 110, 234, 166, 233},
{ 86, 98, 138, 137, 111, 235, 168, 234},
{ 89, 99, 138, 140, 112, 236, 170, 235},
{ 91, 99, 138, 142, 112, 237, 171, 235},
{ 93, 100, 139, 145, 113, 238, 173, 236},
{ 95, 100, 139, 147, 114, 239, 174, 237},
{ 97, 101, 140, 149, 115, 240, 176, 238},
{ 99, 101, 140, 151, 115, 241, 177, 238},
{101, 102, 140, 154, 116, 242, 179, 239},
{103, 102, 140, 156, 117, 242, 180, 239},
{105, 103, 141, 158, 118, 243, 182, 240},
{107, 103, 141, 160, 118, 243, 183, 240},
{109, 104, 141, 162, 119, 244, 185, 241},
{111, 104, 141, 164, 119, 244, 186, 241},
{113, 104, 142, 166, 120, 245, 187, 242},
{114, 104, 142, 168, 121, 245, 188, 242},
{116, 105, 143, 170, 122, 246, 190, 243},
{118, 105, 143, 171, 122, 246, 191, 243},
{120, 106, 143, 173, 123, 247, 192, 244},
{121, 106, 143, 175, 124, 247, 193, 244},
{123, 107, 144, 177, 125, 248, 195, 244},
{125, 107, 144, 178, 125, 248, 196, 244},
{127, 108, 145, 180, 126, 249, 197, 245},
{128, 108, 145, 181, 127, 249, 198, 245},
{130, 109, 145, 183, 128, 249, 199, 245},
{132, 109, 145, 184, 128, 249, 200, 245},
{134, 110, 146, 186, 129, 250, 201, 246},
{135, 110, 146, 187, 130, 250, 202, 246},
{137, 111, 147, 189, 131, 251, 203, 246},
{138, 111, 147, 190, 131, 251, 204, 246},
{140, 112, 147, 192, 132, 251, 205, 247},
{141, 112, 147, 193, 132, 251, 206, 247},
{143, 113, 148, 194, 133, 251, 207, 247},
{144, 113, 148, 195, 134, 251, 207, 247},
{146, 114, 149, 197, 135, 252, 208, 248},
{147, 114, 149, 198, 135, 252, 209, 248},
{149, 115, 149, 199, 136, 252, 210, 248},
{150, 115, 149, 200, 137, 252, 210, 248},
{152, 115, 150, 201, 138, 252, 211, 248},
{153, 115, 150, 202, 138, 252, 212, 248},
{155, 116, 151, 204, 139, 253, 213, 249},
{156, 116, 151, 205, 139, 253, 213, 249},
{158, 117, 151, 206, 140, 253, 214, 249},
{159, 117, 151, 207, 141, 253, 215, 249},
{161, 118, 152, 208, 142, 253, 216, 249},
{162, 118, 152, 209, 142, 253, 216, 249},
{163, 119, 153, 210, 143, 253, 217, 249},
{164, 119, 153, 211, 143, 253, 217, 249},
{166, 120, 153, 212, 144, 254, 218, 250},
{167, 120, 153, 212, 145, 254, 219, 250},
{168, 121, 154, 213, 146, 254, 220, 250},
{169, 121, 154, 214, 146, 254, 220, 250},
{171, 122, 155, 215, 147, 254, 221, 250},
{172, 122, 155, 216, 147, 254, 221, 250},
{173, 123, 155, 217, 148, 254, 222, 250},
{174, 123, 155, 217, 149, 254, 222, 250},
{176, 124, 156, 218, 150, 254, 223, 250},
{177, 124, 156, 219, 150, 254, 223, 250},
{178, 125, 157, 220, 151, 254, 224, 251},
{179, 125, 157, 220, 151, 254, 224, 251},
{180, 126, 157, 221, 152, 254, 225, 251},
{181, 126, 157, 221, 152, 254, 225, 251},
{183, 127, 158, 222, 153, 254, 226, 251},
{184, 127, 158, 223, 154, 254, 226, 251},
{185, 128, 159, 224, 155, 255, 227, 251},
{186, 128, 159, 224, 155, 255, 227, 251},
{187, 129, 160, 225, 156, 255, 228, 251},
{188, 130, 160, 225, 156, 255, 228, 251},
{189, 131, 160, 226, 157, 255, 228, 251},
{190, 131, 160, 226, 158, 255, 228, 251},
{191, 132, 161, 227, 159, 255, 229, 251},
{192, 132, 161, 227, 159, 255, 229, 251},
{193, 133, 162, 228, 160, 255, 230, 252},
{194, 133, 162, 229, 160, 255, 230, 252},
{195, 134, 163, 230, 161, 255, 231, 252},
{196, 134, 163, 230, 161, 255, 231, 252},
{197, 135, 163, 231, 162, 255, 231, 252},
{198, 135, 163, 231, 162, 255, 231, 252},
{199, 136, 164, 232, 163, 255, 232, 252},
{200, 136, 164, 232, 164, 255, 232, 252},
{201, 137, 165, 233, 165, 255, 233, 252},
{201, 137, 165, 233, 165, 255, 233, 252},
{202, 138, 166, 233, 166, 255, 233, 252},
{203, 138, 166, 233, 166, 255, 233, 252},
{204, 139, 166, 234, 167, 255, 234, 252},
{205, 139, 166, 234, 167, 255, 234, 252},
{206, 140, 167, 235, 168, 255, 235, 252},
{206, 140, 167, 235, 168, 255, 235, 252},
{207, 141, 168, 236, 169, 255, 235, 252},
{208, 141, 168, 236, 170, 255, 235, 252},
{209, 142, 169, 237, 171, 255, 236, 252},
{209, 143, 169, 237, 171, 255, 236, 252},
{210, 144, 169, 237, 172, 255, 236, 252},
{211, 144, 169, 237, 172, 255, 236, 252},
{212, 145, 170, 238, 173, 255, 237, 252},
{213, 145, 170, 238, 173, 255, 237, 252},
{214, 146, 171, 239, 174, 255, 237, 253},
{214, 146, 171, 239, 174, 255, 237, 253},
{215, 147, 172, 240, 175, 255, 238, 253},
{215, 147, 172, 240, 175, 255, 238, 253},
{216, 148, 173, 240, 176, 255, 238, 253},
{217, 148, 173, 240, 176, 255, 238, 253},
{218, 149, 173, 241, 177, 255, 239, 253},
{218, 149, 173, 241, 178, 255, 239, 253},
{219, 150, 174, 241, 179, 255, 239, 253},
{219, 151, 174, 241, 179, 255, 239, 253},
{220, 152, 175, 242, 180, 255, 240, 253},
{221, 152, 175, 242, 180, 255, 240, 253},
{222, 153, 176, 242, 181, 255, 240, 253},
{222, 153, 176, 242, 181, 255, 240, 253},
{223, 154, 177, 243, 182, 255, 240, 253},
{223, 154, 177, 243, 182, 255, 240, 253},
{224, 155, 178, 244, 183, 255, 241, 253},
{224, 155, 178, 244, 183, 255, 241, 253},
{225, 156, 178, 244, 184, 255, 241, 253},
{225, 157, 178, 244, 184, 255, 241, 253},
{226, 158, 179, 244, 185, 255, 242, 253},
{227, 158, 179, 244, 185, 255, 242, 253},
{228, 159, 180, 245, 186, 255, 242, 253},
{228, 159, 180, 245, 186, 255, 242, 253},
{229, 160, 181, 245, 187, 255, 242, 253},
{229, 160, 181, 245, 187, 255, 242, 253},
{230, 161, 182, 246, 188, 255, 243, 253},
{230, 162, 182, 246, 188, 255, 243, 253},
{231, 163, 183, 246, 189, 255, 243, 253},
{231, 163, 183, 246, 189, 255, 243, 253},
{232, 164, 184, 247, 190, 255, 243, 253},
{232, 164, 184, 247, 190, 255, 243, 253},
{233, 165, 185, 247, 191, 255, 244, 253},
{233, 165, 185, 247, 191, 255, 244, 253},
{234, 166, 185, 247, 192, 255, 244, 253},
{234, 167, 185, 247, 192, 255, 244, 253},
{235, 168, 186, 248, 193, 255, 244, 253},
{235, 168, 186, 248, 193, 255, 244, 253},
{236, 169, 187, 248, 194, 255, 244, 253},
{236, 169, 187, 248, 194, 255, 244, 253},
{236, 170, 188, 248, 195, 255, 245, 253},
{236, 170, 188, 248, 195, 255, 245, 253},
{237, 171, 189, 249, 196, 255, 245, 254},
{237, 172, 189, 249, 196, 255, 245, 254},
{238, 173, 190, 249, 197, 255, 245, 254},
{238, 173, 190, 249, 197, 255, 245, 254},
{239, 174, 191, 249, 198, 255, 245, 254},
{239, 174, 191, 249, 198, 255, 245, 254},
{240, 175, 192, 249, 199, 255, 246, 254},
{240, 176, 192, 249, 199, 255, 246, 254},
{240, 177, 193, 250, 200, 255, 246, 254},
{240, 177, 193, 250, 200, 255, 246, 254},
{241, 178, 194, 250, 201, 255, 246, 254},
{241, 178, 194, 250, 201, 255, 246, 254},
{242, 179, 195, 250, 202, 255, 246, 254},
{242, 180, 195, 250, 202, 255, 246, 254},
{242, 181, 196, 250, 203, 255, 247, 254},
{242, 181, 196, 250, 203, 255, 247, 254},
{243, 182, 197, 251, 204, 255, 247, 254},
{243, 183, 197, 251, 204, 255, 247, 254},
{244, 184, 198, 251, 205, 255, 247, 254},
{244, 184, 198, 251, 205, 255, 247, 254},
{244, 185, 199, 251, 206, 255, 247, 254},
{244, 185, 199, 251, 206, 255, 247, 254},
{245, 186, 200, 251, 207, 255, 247, 254},
{245, 187, 200, 251, 207, 255, 247, 254},
{246, 188, 201, 252, 207, 255, 248, 254},
{246, 188, 201, 252, 207, 255, 248, 254},
{246, 189, 202, 252, 208, 255, 248, 254},
{246, 190, 202, 252, 208, 255, 248, 254},
{247, 191, 203, 252, 209, 255, 248, 254},
{247, 191, 203, 252, 209, 255, 248, 254},
{247, 192, 204, 252, 210, 255, 248, 254},
{247, 193, 204, 252, 210, 255, 248, 254},
{248, 194, 205, 252, 211, 255, 248, 254},
{248, 194, 205, 252, 211, 255, 248, 254},
{248, 195, 206, 252, 212, 255, 249, 254},
{248, 196, 206, 252, 212, 255, 249, 254},
{249, 197, 207, 253, 213, 255, 249, 254},
{249, 197, 207, 253, 213, 255, 249, 254},
{249, 198, 208, 253, 214, 255, 249, 254},
{249, 199, 209, 253, 214, 255, 249, 254},
{250, 200, 210, 253, 215, 255, 249, 254},
{250, 200, 210, 253, 215, 255, 249, 254},
{250, 201, 211, 253, 215, 255, 249, 254},
{250, 202, 211, 253, 215, 255, 249, 254},
{250, 203, 212, 253, 216, 255, 249, 254},
{250, 203, 212, 253, 216, 255, 249, 254},
{251, 204, 213, 253, 217, 255, 250, 254},
{251, 205, 213, 253, 217, 255, 250, 254},
{251, 206, 214, 254, 218, 255, 250, 254},
{251, 206, 215, 254, 218, 255, 250, 254},
{252, 207, 216, 254, 219, 255, 250, 254},
{252, 208, 216, 254, 219, 255, 250, 254},
{252, 209, 217, 254, 220, 255, 250, 254},
{252, 210, 217, 254, 220, 255, 250, 254},
{252, 211, 218, 254, 221, 255, 250, 254},
{252, 212, 218, 254, 221, 255, 250, 254},
{253, 213, 219, 254, 222, 255, 250, 254},
{253, 213, 220, 254, 222, 255, 250, 254},
{253, 214, 221, 254, 223, 255, 250, 254},
{253, 215, 221, 254, 223, 255, 250, 254},
{253, 216, 222, 254, 224, 255, 251, 254},
{253, 217, 223, 254, 224, 255, 251, 254},
{253, 218, 224, 254, 225, 255, 251, 254},
{253, 219, 224, 254, 225, 255, 251, 254},
{254, 220, 225, 254, 225, 255, 251, 254},
{254, 221, 226, 254, 225, 255, 251, 254},
{254, 222, 227, 255, 226, 255, 251, 254},
{254, 223, 227, 255, 226, 255, 251, 254},
{254, 224, 228, 255, 227, 255, 251, 254},
{254, 225, 229, 255, 227, 255, 251, 254},
{254, 226, 230, 255, 228, 255, 251, 254},
{254, 227, 230, 255, 229, 255, 251, 254},
{255, 228, 231, 255, 230, 255, 251, 254},
{255, 229, 232, 255, 230, 255, 251, 254},
{255, 230, 233, 255, 231, 255, 252, 254},
{255, 231, 234, 255, 231, 255, 252, 254},
{255, 232, 235, 255, 232, 255, 252, 254},
{255, 233, 236, 255, 232, 255, 252, 254},
{255, 235, 237, 255, 233, 255, 252, 254},
{255, 236, 238, 255, 234, 255, 252, 254},
{255, 238, 240, 255, 235, 255, 252, 255},
{255, 239, 241, 255, 235, 255, 252, 254},
{255, 241, 243, 255, 236, 255, 252, 254},
{255, 243, 245, 255, 237, 255, 252, 254},
{255, 246, 247, 255, 239, 255, 253, 255},
{255, 246, 247, 255, 239, 255, 253, 255},
};
static void extend_to_full_distribution(vp9_prob *probs, vp9_prob p) {
vpx_memcpy(probs, vp9_pareto8_full[p = 0 ? 0 : p - 1],
MODEL_NODES * sizeof(vp9_prob));
}
void vp9_model_to_full_probs(const vp9_prob *model, vp9_prob *full) {
if (full != model)
vpx_memcpy(full, model, sizeof(vp9_prob) * UNCONSTRAINED_NODES);
extend_to_full_distribution(&full[UNCONSTRAINED_NODES], model[PIVOT_NODE]);
}
#include "vp9/common/vp9_default_coef_probs.h"
void vp9_default_coef_probs(VP9_COMMON *cm) {
vp9_copy(cm->fc.coef_probs[TX_4X4], default_coef_probs_4x4);
vp9_copy(cm->fc.coef_probs[TX_8X8], default_coef_probs_8x8);
vp9_copy(cm->fc.coef_probs[TX_16X16], default_coef_probs_16x16);
vp9_copy(cm->fc.coef_probs[TX_32X32], default_coef_probs_32x32);
}
#define COEF_COUNT_SAT 24
#define COEF_MAX_UPDATE_FACTOR 112
#define COEF_COUNT_SAT_KEY 24
#define COEF_MAX_UPDATE_FACTOR_KEY 112
#define COEF_COUNT_SAT_AFTER_KEY 24
#define COEF_MAX_UPDATE_FACTOR_AFTER_KEY 128
static void adapt_coef_probs(VP9_COMMON *cm, TX_SIZE tx_size,
unsigned int count_sat,
unsigned int update_factor) {
const FRAME_CONTEXT *pre_fc = &cm->frame_contexts[cm->frame_context_idx];
vp9_coeff_probs_model *dst_coef_probs = cm->fc.coef_probs[tx_size];
const vp9_coeff_probs_model *pre_coef_probs = pre_fc->coef_probs[tx_size];
vp9_coeff_count_model *coef_counts = cm->counts.coef[tx_size];
unsigned int (*eob_branch_count)[REF_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS] =
cm->counts.eob_branch[tx_size];
int i, j, k, l, m;
unsigned int branch_ct[UNCONSTRAINED_NODES][2];
for (i = 0; i < BLOCK_TYPES; ++i)
for (j = 0; j < REF_TYPES; ++j)
for (k = 0; k < COEF_BANDS; ++k)
for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
if (l >= 3 && k == 0)
continue;
vp9_tree_probs_from_distribution(vp9_coefmodel_tree, branch_ct,
coef_counts[i][j][k][l]);
branch_ct[0][1] = eob_branch_count[i][j][k][l] - branch_ct[0][0];
for (m = 0; m < UNCONSTRAINED_NODES; ++m)
dst_coef_probs[i][j][k][l][m] = merge_probs(
pre_coef_probs[i][j][k][l][m],
branch_ct[m],
count_sat, update_factor);
}
}
void vp9_adapt_coef_probs(VP9_COMMON *cm) {
TX_SIZE t;
unsigned int count_sat, update_factor;
if (frame_is_intra_only(cm)) {
update_factor = COEF_MAX_UPDATE_FACTOR_KEY;
count_sat = COEF_COUNT_SAT_KEY;
} else if (cm->last_frame_type == KEY_FRAME) {
update_factor = COEF_MAX_UPDATE_FACTOR_AFTER_KEY; /* adapt quickly */
count_sat = COEF_COUNT_SAT_AFTER_KEY;
} else {
update_factor = COEF_MAX_UPDATE_FACTOR;
count_sat = COEF_COUNT_SAT;
}
for (t = TX_4X4; t <= TX_32X32; t++)
adapt_coef_probs(cm, t, count_sat, update_factor);
}