vpx/vpx_dsp/x86/variance_impl_avx2.c
clang-format 099bd7f07e vpx_dsp: apply clang-format
Change-Id: I3ea3e77364879928bd916f2b0a7838073ade5975
2016-07-25 14:14:19 -07:00

705 lines
27 KiB
C

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <immintrin.h> // AVX2
#include "./vpx_dsp_rtcd.h"
#include "vpx_ports/mem.h"
DECLARE_ALIGNED(32, static const uint8_t, bilinear_filters_avx2[512]) = {
16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16,
0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 14, 2, 14, 2, 14, 2,
14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14,
2, 14, 2, 14, 2, 14, 2, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4,
12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12,
4, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6,
10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6,
10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10,
6, 10, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4,
12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 2, 14, 2, 14,
2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2,
14, 2, 14, 2, 14, 2, 14, 2, 14,
};
void vpx_get16x16var_avx2(const unsigned char *src_ptr, int source_stride,
const unsigned char *ref_ptr, int recon_stride,
unsigned int *SSE, int *Sum) {
__m256i src, src_expand_low, src_expand_high, ref, ref_expand_low;
__m256i ref_expand_high, madd_low, madd_high;
unsigned int i, src_2strides, ref_2strides;
__m256i zero_reg = _mm256_set1_epi16(0);
__m256i sum_ref_src = _mm256_set1_epi16(0);
__m256i madd_ref_src = _mm256_set1_epi16(0);
// processing two strides in a 256 bit register reducing the number
// of loop stride by half (comparing to the sse2 code)
src_2strides = source_stride << 1;
ref_2strides = recon_stride << 1;
for (i = 0; i < 8; i++) {
src = _mm256_castsi128_si256(_mm_loadu_si128((__m128i const *)(src_ptr)));
src = _mm256_inserti128_si256(
src, _mm_loadu_si128((__m128i const *)(src_ptr + source_stride)), 1);
ref = _mm256_castsi128_si256(_mm_loadu_si128((__m128i const *)(ref_ptr)));
ref = _mm256_inserti128_si256(
ref, _mm_loadu_si128((__m128i const *)(ref_ptr + recon_stride)), 1);
// expanding to 16 bit each lane
src_expand_low = _mm256_unpacklo_epi8(src, zero_reg);
src_expand_high = _mm256_unpackhi_epi8(src, zero_reg);
ref_expand_low = _mm256_unpacklo_epi8(ref, zero_reg);
ref_expand_high = _mm256_unpackhi_epi8(ref, zero_reg);
// src-ref
src_expand_low = _mm256_sub_epi16(src_expand_low, ref_expand_low);
src_expand_high = _mm256_sub_epi16(src_expand_high, ref_expand_high);
// madd low (src - ref)
madd_low = _mm256_madd_epi16(src_expand_low, src_expand_low);
// add high to low
src_expand_low = _mm256_add_epi16(src_expand_low, src_expand_high);
// madd high (src - ref)
madd_high = _mm256_madd_epi16(src_expand_high, src_expand_high);
sum_ref_src = _mm256_add_epi16(sum_ref_src, src_expand_low);
// add high to low
madd_ref_src =
_mm256_add_epi32(madd_ref_src, _mm256_add_epi32(madd_low, madd_high));
src_ptr += src_2strides;
ref_ptr += ref_2strides;
}
{
__m128i sum_res, madd_res;
__m128i expand_sum_low, expand_sum_high, expand_sum;
__m128i expand_madd_low, expand_madd_high, expand_madd;
__m128i ex_expand_sum_low, ex_expand_sum_high, ex_expand_sum;
// extract the low lane and add it to the high lane
sum_res = _mm_add_epi16(_mm256_castsi256_si128(sum_ref_src),
_mm256_extractf128_si256(sum_ref_src, 1));
madd_res = _mm_add_epi32(_mm256_castsi256_si128(madd_ref_src),
_mm256_extractf128_si256(madd_ref_src, 1));
// padding each 2 bytes with another 2 zeroed bytes
expand_sum_low =
_mm_unpacklo_epi16(_mm256_castsi256_si128(zero_reg), sum_res);
expand_sum_high =
_mm_unpackhi_epi16(_mm256_castsi256_si128(zero_reg), sum_res);
// shifting the sign 16 bits right
expand_sum_low = _mm_srai_epi32(expand_sum_low, 16);
expand_sum_high = _mm_srai_epi32(expand_sum_high, 16);
expand_sum = _mm_add_epi32(expand_sum_low, expand_sum_high);
// expand each 32 bits of the madd result to 64 bits
expand_madd_low =
_mm_unpacklo_epi32(madd_res, _mm256_castsi256_si128(zero_reg));
expand_madd_high =
_mm_unpackhi_epi32(madd_res, _mm256_castsi256_si128(zero_reg));
expand_madd = _mm_add_epi32(expand_madd_low, expand_madd_high);
ex_expand_sum_low =
_mm_unpacklo_epi32(expand_sum, _mm256_castsi256_si128(zero_reg));
ex_expand_sum_high =
_mm_unpackhi_epi32(expand_sum, _mm256_castsi256_si128(zero_reg));
ex_expand_sum = _mm_add_epi32(ex_expand_sum_low, ex_expand_sum_high);
// shift 8 bytes eight
madd_res = _mm_srli_si128(expand_madd, 8);
sum_res = _mm_srli_si128(ex_expand_sum, 8);
madd_res = _mm_add_epi32(madd_res, expand_madd);
sum_res = _mm_add_epi32(sum_res, ex_expand_sum);
*((int *)SSE) = _mm_cvtsi128_si32(madd_res);
*((int *)Sum) = _mm_cvtsi128_si32(sum_res);
}
}
void vpx_get32x32var_avx2(const unsigned char *src_ptr, int source_stride,
const unsigned char *ref_ptr, int recon_stride,
unsigned int *SSE, int *Sum) {
__m256i src, src_expand_low, src_expand_high, ref, ref_expand_low;
__m256i ref_expand_high, madd_low, madd_high;
unsigned int i;
__m256i zero_reg = _mm256_set1_epi16(0);
__m256i sum_ref_src = _mm256_set1_epi16(0);
__m256i madd_ref_src = _mm256_set1_epi16(0);
// processing 32 elements in parallel
for (i = 0; i < 16; i++) {
src = _mm256_loadu_si256((__m256i const *)(src_ptr));
ref = _mm256_loadu_si256((__m256i const *)(ref_ptr));
// expanding to 16 bit each lane
src_expand_low = _mm256_unpacklo_epi8(src, zero_reg);
src_expand_high = _mm256_unpackhi_epi8(src, zero_reg);
ref_expand_low = _mm256_unpacklo_epi8(ref, zero_reg);
ref_expand_high = _mm256_unpackhi_epi8(ref, zero_reg);
// src-ref
src_expand_low = _mm256_sub_epi16(src_expand_low, ref_expand_low);
src_expand_high = _mm256_sub_epi16(src_expand_high, ref_expand_high);
// madd low (src - ref)
madd_low = _mm256_madd_epi16(src_expand_low, src_expand_low);
// add high to low
src_expand_low = _mm256_add_epi16(src_expand_low, src_expand_high);
// madd high (src - ref)
madd_high = _mm256_madd_epi16(src_expand_high, src_expand_high);
sum_ref_src = _mm256_add_epi16(sum_ref_src, src_expand_low);
// add high to low
madd_ref_src =
_mm256_add_epi32(madd_ref_src, _mm256_add_epi32(madd_low, madd_high));
src_ptr += source_stride;
ref_ptr += recon_stride;
}
{
__m256i expand_sum_low, expand_sum_high, expand_sum;
__m256i expand_madd_low, expand_madd_high, expand_madd;
__m256i ex_expand_sum_low, ex_expand_sum_high, ex_expand_sum;
// padding each 2 bytes with another 2 zeroed bytes
expand_sum_low = _mm256_unpacklo_epi16(zero_reg, sum_ref_src);
expand_sum_high = _mm256_unpackhi_epi16(zero_reg, sum_ref_src);
// shifting the sign 16 bits right
expand_sum_low = _mm256_srai_epi32(expand_sum_low, 16);
expand_sum_high = _mm256_srai_epi32(expand_sum_high, 16);
expand_sum = _mm256_add_epi32(expand_sum_low, expand_sum_high);
// expand each 32 bits of the madd result to 64 bits
expand_madd_low = _mm256_unpacklo_epi32(madd_ref_src, zero_reg);
expand_madd_high = _mm256_unpackhi_epi32(madd_ref_src, zero_reg);
expand_madd = _mm256_add_epi32(expand_madd_low, expand_madd_high);
ex_expand_sum_low = _mm256_unpacklo_epi32(expand_sum, zero_reg);
ex_expand_sum_high = _mm256_unpackhi_epi32(expand_sum, zero_reg);
ex_expand_sum = _mm256_add_epi32(ex_expand_sum_low, ex_expand_sum_high);
// shift 8 bytes eight
madd_ref_src = _mm256_srli_si256(expand_madd, 8);
sum_ref_src = _mm256_srli_si256(ex_expand_sum, 8);
madd_ref_src = _mm256_add_epi32(madd_ref_src, expand_madd);
sum_ref_src = _mm256_add_epi32(sum_ref_src, ex_expand_sum);
// extract the low lane and the high lane and add the results
*((int *)SSE) =
_mm_cvtsi128_si32(_mm256_castsi256_si128(madd_ref_src)) +
_mm_cvtsi128_si32(_mm256_extractf128_si256(madd_ref_src, 1));
*((int *)Sum) = _mm_cvtsi128_si32(_mm256_castsi256_si128(sum_ref_src)) +
_mm_cvtsi128_si32(_mm256_extractf128_si256(sum_ref_src, 1));
}
}
#define FILTER_SRC(filter) \
/* filter the source */ \
exp_src_lo = _mm256_maddubs_epi16(exp_src_lo, filter); \
exp_src_hi = _mm256_maddubs_epi16(exp_src_hi, filter); \
\
/* add 8 to source */ \
exp_src_lo = _mm256_add_epi16(exp_src_lo, pw8); \
exp_src_hi = _mm256_add_epi16(exp_src_hi, pw8); \
\
/* divide source by 16 */ \
exp_src_lo = _mm256_srai_epi16(exp_src_lo, 4); \
exp_src_hi = _mm256_srai_epi16(exp_src_hi, 4);
#define MERGE_WITH_SRC(src_reg, reg) \
exp_src_lo = _mm256_unpacklo_epi8(src_reg, reg); \
exp_src_hi = _mm256_unpackhi_epi8(src_reg, reg);
#define LOAD_SRC_DST \
/* load source and destination */ \
src_reg = _mm256_loadu_si256((__m256i const *)(src)); \
dst_reg = _mm256_loadu_si256((__m256i const *)(dst));
#define AVG_NEXT_SRC(src_reg, size_stride) \
src_next_reg = _mm256_loadu_si256((__m256i const *)(src + size_stride)); \
/* average between current and next stride source */ \
src_reg = _mm256_avg_epu8(src_reg, src_next_reg);
#define MERGE_NEXT_SRC(src_reg, size_stride) \
src_next_reg = _mm256_loadu_si256((__m256i const *)(src + size_stride)); \
MERGE_WITH_SRC(src_reg, src_next_reg)
#define CALC_SUM_SSE_INSIDE_LOOP \
/* expand each byte to 2 bytes */ \
exp_dst_lo = _mm256_unpacklo_epi8(dst_reg, zero_reg); \
exp_dst_hi = _mm256_unpackhi_epi8(dst_reg, zero_reg); \
/* source - dest */ \
exp_src_lo = _mm256_sub_epi16(exp_src_lo, exp_dst_lo); \
exp_src_hi = _mm256_sub_epi16(exp_src_hi, exp_dst_hi); \
/* caculate sum */ \
sum_reg = _mm256_add_epi16(sum_reg, exp_src_lo); \
exp_src_lo = _mm256_madd_epi16(exp_src_lo, exp_src_lo); \
sum_reg = _mm256_add_epi16(sum_reg, exp_src_hi); \
exp_src_hi = _mm256_madd_epi16(exp_src_hi, exp_src_hi); \
/* calculate sse */ \
sse_reg = _mm256_add_epi32(sse_reg, exp_src_lo); \
sse_reg = _mm256_add_epi32(sse_reg, exp_src_hi);
// final calculation to sum and sse
#define CALC_SUM_AND_SSE \
res_cmp = _mm256_cmpgt_epi16(zero_reg, sum_reg); \
sse_reg_hi = _mm256_srli_si256(sse_reg, 8); \
sum_reg_lo = _mm256_unpacklo_epi16(sum_reg, res_cmp); \
sum_reg_hi = _mm256_unpackhi_epi16(sum_reg, res_cmp); \
sse_reg = _mm256_add_epi32(sse_reg, sse_reg_hi); \
sum_reg = _mm256_add_epi32(sum_reg_lo, sum_reg_hi); \
\
sse_reg_hi = _mm256_srli_si256(sse_reg, 4); \
sum_reg_hi = _mm256_srli_si256(sum_reg, 8); \
\
sse_reg = _mm256_add_epi32(sse_reg, sse_reg_hi); \
sum_reg = _mm256_add_epi32(sum_reg, sum_reg_hi); \
*((int *)sse) = _mm_cvtsi128_si32(_mm256_castsi256_si128(sse_reg)) + \
_mm_cvtsi128_si32(_mm256_extractf128_si256(sse_reg, 1)); \
sum_reg_hi = _mm256_srli_si256(sum_reg, 4); \
sum_reg = _mm256_add_epi32(sum_reg, sum_reg_hi); \
sum = _mm_cvtsi128_si32(_mm256_castsi256_si128(sum_reg)) + \
_mm_cvtsi128_si32(_mm256_extractf128_si256(sum_reg, 1));
unsigned int vpx_sub_pixel_variance32xh_avx2(const uint8_t *src, int src_stride,
int x_offset, int y_offset,
const uint8_t *dst, int dst_stride,
int height, unsigned int *sse) {
__m256i src_reg, dst_reg, exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi;
__m256i sse_reg, sum_reg, sse_reg_hi, res_cmp, sum_reg_lo, sum_reg_hi;
__m256i zero_reg;
int i, sum;
sum_reg = _mm256_set1_epi16(0);
sse_reg = _mm256_set1_epi16(0);
zero_reg = _mm256_set1_epi16(0);
// x_offset = 0 and y_offset = 0
if (x_offset == 0) {
if (y_offset == 0) {
for (i = 0; i < height; i++) {
LOAD_SRC_DST
// expend each byte to 2 bytes
MERGE_WITH_SRC(src_reg, zero_reg)
CALC_SUM_SSE_INSIDE_LOOP
src += src_stride;
dst += dst_stride;
}
// x_offset = 0 and y_offset = 8
} else if (y_offset == 8) {
__m256i src_next_reg;
for (i = 0; i < height; i++) {
LOAD_SRC_DST
AVG_NEXT_SRC(src_reg, src_stride)
// expend each byte to 2 bytes
MERGE_WITH_SRC(src_reg, zero_reg)
CALC_SUM_SSE_INSIDE_LOOP
src += src_stride;
dst += dst_stride;
}
// x_offset = 0 and y_offset = bilin interpolation
} else {
__m256i filter, pw8, src_next_reg;
y_offset <<= 5;
filter = _mm256_load_si256(
(__m256i const *)(bilinear_filters_avx2 + y_offset));
pw8 = _mm256_set1_epi16(8);
for (i = 0; i < height; i++) {
LOAD_SRC_DST
MERGE_NEXT_SRC(src_reg, src_stride)
FILTER_SRC(filter)
CALC_SUM_SSE_INSIDE_LOOP
src += src_stride;
dst += dst_stride;
}
}
// x_offset = 8 and y_offset = 0
} else if (x_offset == 8) {
if (y_offset == 0) {
__m256i src_next_reg;
for (i = 0; i < height; i++) {
LOAD_SRC_DST
AVG_NEXT_SRC(src_reg, 1)
// expand each byte to 2 bytes
MERGE_WITH_SRC(src_reg, zero_reg)
CALC_SUM_SSE_INSIDE_LOOP
src += src_stride;
dst += dst_stride;
}
// x_offset = 8 and y_offset = 8
} else if (y_offset == 8) {
__m256i src_next_reg, src_avg;
// load source and another source starting from the next
// following byte
src_reg = _mm256_loadu_si256((__m256i const *)(src));
AVG_NEXT_SRC(src_reg, 1)
for (i = 0; i < height; i++) {
src_avg = src_reg;
src += src_stride;
LOAD_SRC_DST
AVG_NEXT_SRC(src_reg, 1)
// average between previous average to current average
src_avg = _mm256_avg_epu8(src_avg, src_reg);
// expand each byte to 2 bytes
MERGE_WITH_SRC(src_avg, zero_reg)
// save current source average
CALC_SUM_SSE_INSIDE_LOOP
dst += dst_stride;
}
// x_offset = 8 and y_offset = bilin interpolation
} else {
__m256i filter, pw8, src_next_reg, src_avg;
y_offset <<= 5;
filter = _mm256_load_si256(
(__m256i const *)(bilinear_filters_avx2 + y_offset));
pw8 = _mm256_set1_epi16(8);
// load source and another source starting from the next
// following byte
src_reg = _mm256_loadu_si256((__m256i const *)(src));
AVG_NEXT_SRC(src_reg, 1)
for (i = 0; i < height; i++) {
// save current source average
src_avg = src_reg;
src += src_stride;
LOAD_SRC_DST
AVG_NEXT_SRC(src_reg, 1)
MERGE_WITH_SRC(src_avg, src_reg)
FILTER_SRC(filter)
CALC_SUM_SSE_INSIDE_LOOP
dst += dst_stride;
}
}
// x_offset = bilin interpolation and y_offset = 0
} else {
if (y_offset == 0) {
__m256i filter, pw8, src_next_reg;
x_offset <<= 5;
filter = _mm256_load_si256(
(__m256i const *)(bilinear_filters_avx2 + x_offset));
pw8 = _mm256_set1_epi16(8);
for (i = 0; i < height; i++) {
LOAD_SRC_DST
MERGE_NEXT_SRC(src_reg, 1)
FILTER_SRC(filter)
CALC_SUM_SSE_INSIDE_LOOP
src += src_stride;
dst += dst_stride;
}
// x_offset = bilin interpolation and y_offset = 8
} else if (y_offset == 8) {
__m256i filter, pw8, src_next_reg, src_pack;
x_offset <<= 5;
filter = _mm256_load_si256(
(__m256i const *)(bilinear_filters_avx2 + x_offset));
pw8 = _mm256_set1_epi16(8);
src_reg = _mm256_loadu_si256((__m256i const *)(src));
MERGE_NEXT_SRC(src_reg, 1)
FILTER_SRC(filter)
// convert each 16 bit to 8 bit to each low and high lane source
src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
for (i = 0; i < height; i++) {
src += src_stride;
LOAD_SRC_DST
MERGE_NEXT_SRC(src_reg, 1)
FILTER_SRC(filter)
src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
// average between previous pack to the current
src_pack = _mm256_avg_epu8(src_pack, src_reg);
MERGE_WITH_SRC(src_pack, zero_reg)
CALC_SUM_SSE_INSIDE_LOOP
src_pack = src_reg;
dst += dst_stride;
}
// x_offset = bilin interpolation and y_offset = bilin interpolation
} else {
__m256i xfilter, yfilter, pw8, src_next_reg, src_pack;
x_offset <<= 5;
xfilter = _mm256_load_si256(
(__m256i const *)(bilinear_filters_avx2 + x_offset));
y_offset <<= 5;
yfilter = _mm256_load_si256(
(__m256i const *)(bilinear_filters_avx2 + y_offset));
pw8 = _mm256_set1_epi16(8);
// load source and another source starting from the next
// following byte
src_reg = _mm256_loadu_si256((__m256i const *)(src));
MERGE_NEXT_SRC(src_reg, 1)
FILTER_SRC(xfilter)
// convert each 16 bit to 8 bit to each low and high lane source
src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
for (i = 0; i < height; i++) {
src += src_stride;
LOAD_SRC_DST
MERGE_NEXT_SRC(src_reg, 1)
FILTER_SRC(xfilter)
src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
// merge previous pack to current pack source
MERGE_WITH_SRC(src_pack, src_reg)
// filter the source
FILTER_SRC(yfilter)
src_pack = src_reg;
CALC_SUM_SSE_INSIDE_LOOP
dst += dst_stride;
}
}
}
CALC_SUM_AND_SSE
return sum;
}
unsigned int vpx_sub_pixel_avg_variance32xh_avx2(
const uint8_t *src, int src_stride, int x_offset, int y_offset,
const uint8_t *dst, int dst_stride, const uint8_t *sec, int sec_stride,
int height, unsigned int *sse) {
__m256i sec_reg;
__m256i src_reg, dst_reg, exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi;
__m256i sse_reg, sum_reg, sse_reg_hi, res_cmp, sum_reg_lo, sum_reg_hi;
__m256i zero_reg;
int i, sum;
sum_reg = _mm256_set1_epi16(0);
sse_reg = _mm256_set1_epi16(0);
zero_reg = _mm256_set1_epi16(0);
// x_offset = 0 and y_offset = 0
if (x_offset == 0) {
if (y_offset == 0) {
for (i = 0; i < height; i++) {
LOAD_SRC_DST
sec_reg = _mm256_loadu_si256((__m256i const *)(sec));
src_reg = _mm256_avg_epu8(src_reg, sec_reg);
sec += sec_stride;
// expend each byte to 2 bytes
MERGE_WITH_SRC(src_reg, zero_reg)
CALC_SUM_SSE_INSIDE_LOOP
src += src_stride;
dst += dst_stride;
}
} else if (y_offset == 8) {
__m256i src_next_reg;
for (i = 0; i < height; i++) {
LOAD_SRC_DST
AVG_NEXT_SRC(src_reg, src_stride)
sec_reg = _mm256_loadu_si256((__m256i const *)(sec));
src_reg = _mm256_avg_epu8(src_reg, sec_reg);
sec += sec_stride;
// expend each byte to 2 bytes
MERGE_WITH_SRC(src_reg, zero_reg)
CALC_SUM_SSE_INSIDE_LOOP
src += src_stride;
dst += dst_stride;
}
// x_offset = 0 and y_offset = bilin interpolation
} else {
__m256i filter, pw8, src_next_reg;
y_offset <<= 5;
filter = _mm256_load_si256(
(__m256i const *)(bilinear_filters_avx2 + y_offset));
pw8 = _mm256_set1_epi16(8);
for (i = 0; i < height; i++) {
LOAD_SRC_DST
MERGE_NEXT_SRC(src_reg, src_stride)
FILTER_SRC(filter)
src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
sec_reg = _mm256_loadu_si256((__m256i const *)(sec));
src_reg = _mm256_avg_epu8(src_reg, sec_reg);
sec += sec_stride;
MERGE_WITH_SRC(src_reg, zero_reg)
CALC_SUM_SSE_INSIDE_LOOP
src += src_stride;
dst += dst_stride;
}
}
// x_offset = 8 and y_offset = 0
} else if (x_offset == 8) {
if (y_offset == 0) {
__m256i src_next_reg;
for (i = 0; i < height; i++) {
LOAD_SRC_DST
AVG_NEXT_SRC(src_reg, 1)
sec_reg = _mm256_loadu_si256((__m256i const *)(sec));
src_reg = _mm256_avg_epu8(src_reg, sec_reg);
sec += sec_stride;
// expand each byte to 2 bytes
MERGE_WITH_SRC(src_reg, zero_reg)
CALC_SUM_SSE_INSIDE_LOOP
src += src_stride;
dst += dst_stride;
}
// x_offset = 8 and y_offset = 8
} else if (y_offset == 8) {
__m256i src_next_reg, src_avg;
// load source and another source starting from the next
// following byte
src_reg = _mm256_loadu_si256((__m256i const *)(src));
AVG_NEXT_SRC(src_reg, 1)
for (i = 0; i < height; i++) {
// save current source average
src_avg = src_reg;
src += src_stride;
LOAD_SRC_DST
AVG_NEXT_SRC(src_reg, 1)
// average between previous average to current average
src_avg = _mm256_avg_epu8(src_avg, src_reg);
sec_reg = _mm256_loadu_si256((__m256i const *)(sec));
src_avg = _mm256_avg_epu8(src_avg, sec_reg);
sec += sec_stride;
// expand each byte to 2 bytes
MERGE_WITH_SRC(src_avg, zero_reg)
CALC_SUM_SSE_INSIDE_LOOP
dst += dst_stride;
}
// x_offset = 8 and y_offset = bilin interpolation
} else {
__m256i filter, pw8, src_next_reg, src_avg;
y_offset <<= 5;
filter = _mm256_load_si256(
(__m256i const *)(bilinear_filters_avx2 + y_offset));
pw8 = _mm256_set1_epi16(8);
// load source and another source starting from the next
// following byte
src_reg = _mm256_loadu_si256((__m256i const *)(src));
AVG_NEXT_SRC(src_reg, 1)
for (i = 0; i < height; i++) {
// save current source average
src_avg = src_reg;
src += src_stride;
LOAD_SRC_DST
AVG_NEXT_SRC(src_reg, 1)
MERGE_WITH_SRC(src_avg, src_reg)
FILTER_SRC(filter)
src_avg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
sec_reg = _mm256_loadu_si256((__m256i const *)(sec));
src_avg = _mm256_avg_epu8(src_avg, sec_reg);
// expand each byte to 2 bytes
MERGE_WITH_SRC(src_avg, zero_reg)
sec += sec_stride;
CALC_SUM_SSE_INSIDE_LOOP
dst += dst_stride;
}
}
// x_offset = bilin interpolation and y_offset = 0
} else {
if (y_offset == 0) {
__m256i filter, pw8, src_next_reg;
x_offset <<= 5;
filter = _mm256_load_si256(
(__m256i const *)(bilinear_filters_avx2 + x_offset));
pw8 = _mm256_set1_epi16(8);
for (i = 0; i < height; i++) {
LOAD_SRC_DST
MERGE_NEXT_SRC(src_reg, 1)
FILTER_SRC(filter)
src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
sec_reg = _mm256_loadu_si256((__m256i const *)(sec));
src_reg = _mm256_avg_epu8(src_reg, sec_reg);
MERGE_WITH_SRC(src_reg, zero_reg)
sec += sec_stride;
CALC_SUM_SSE_INSIDE_LOOP
src += src_stride;
dst += dst_stride;
}
// x_offset = bilin interpolation and y_offset = 8
} else if (y_offset == 8) {
__m256i filter, pw8, src_next_reg, src_pack;
x_offset <<= 5;
filter = _mm256_load_si256(
(__m256i const *)(bilinear_filters_avx2 + x_offset));
pw8 = _mm256_set1_epi16(8);
src_reg = _mm256_loadu_si256((__m256i const *)(src));
MERGE_NEXT_SRC(src_reg, 1)
FILTER_SRC(filter)
// convert each 16 bit to 8 bit to each low and high lane source
src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
for (i = 0; i < height; i++) {
src += src_stride;
LOAD_SRC_DST
MERGE_NEXT_SRC(src_reg, 1)
FILTER_SRC(filter)
src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
// average between previous pack to the current
src_pack = _mm256_avg_epu8(src_pack, src_reg);
sec_reg = _mm256_loadu_si256((__m256i const *)(sec));
src_pack = _mm256_avg_epu8(src_pack, sec_reg);
sec += sec_stride;
MERGE_WITH_SRC(src_pack, zero_reg)
src_pack = src_reg;
CALC_SUM_SSE_INSIDE_LOOP
dst += dst_stride;
}
// x_offset = bilin interpolation and y_offset = bilin interpolation
} else {
__m256i xfilter, yfilter, pw8, src_next_reg, src_pack;
x_offset <<= 5;
xfilter = _mm256_load_si256(
(__m256i const *)(bilinear_filters_avx2 + x_offset));
y_offset <<= 5;
yfilter = _mm256_load_si256(
(__m256i const *)(bilinear_filters_avx2 + y_offset));
pw8 = _mm256_set1_epi16(8);
// load source and another source starting from the next
// following byte
src_reg = _mm256_loadu_si256((__m256i const *)(src));
MERGE_NEXT_SRC(src_reg, 1)
FILTER_SRC(xfilter)
// convert each 16 bit to 8 bit to each low and high lane source
src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
for (i = 0; i < height; i++) {
src += src_stride;
LOAD_SRC_DST
MERGE_NEXT_SRC(src_reg, 1)
FILTER_SRC(xfilter)
src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
// merge previous pack to current pack source
MERGE_WITH_SRC(src_pack, src_reg)
// filter the source
FILTER_SRC(yfilter)
src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
sec_reg = _mm256_loadu_si256((__m256i const *)(sec));
src_pack = _mm256_avg_epu8(src_pack, sec_reg);
MERGE_WITH_SRC(src_pack, zero_reg)
src_pack = src_reg;
sec += sec_stride;
CALC_SUM_SSE_INSIDE_LOOP
dst += dst_stride;
}
}
}
CALC_SUM_AND_SSE
return sum;
}