vpx/vp8/encoder/rdopt.c
Paul Wilkins 6adbe09058 Tuning for the more exact quantizer.
Small changes to the default zero bin and rounding tables.
Though the tables are currently the same for the Y1 and Y2 cases
I have left them as separate tables in case we want to tune this later.

There is now some adjustment of the zbin based on the prediction mode.
Previously this was restricted to an adjustment for gf/arf 0,0 MV.

The exact quantizer now marginal outperforms and is the default.

The overall average gain is about 0.5%

Change-Id: I5e4353f3d5326dde4e86823684b236a1e9ea7f47
2010-11-10 09:52:58 +00:00

2195 lines
71 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdio.h>
#include <math.h>
#include <limits.h>
#include <assert.h>
#include "pragmas.h"
#include "tokenize.h"
#include "treewriter.h"
#include "onyx_int.h"
#include "modecosts.h"
#include "encodeintra.h"
#include "entropymode.h"
#include "reconinter.h"
#include "reconintra.h"
#include "reconintra4x4.h"
#include "findnearmv.h"
#include "encodemb.h"
#include "quantize.h"
#include "idct.h"
#include "g_common.h"
#include "variance.h"
#include "mcomp.h"
#include "vpx_mem/vpx_mem.h"
#include "dct.h"
#include "systemdependent.h"
#define DIAMONDSEARCH 1
#if CONFIG_RUNTIME_CPU_DETECT
#define IF_RTCD(x) (x)
#else
#define IF_RTCD(x) NULL
#endif
void vp8cx_mb_init_quantizer(VP8_COMP *cpi, MACROBLOCK *x);
#define RDFUNC(RM,DM,R,D,target_rd) ( ((128+(R)*(RM)) >> 8) + (DM)*(D) )
/*int RDFUNC( int RM,int DM, int R, int D, int target_r )
{
int rd_value;
rd_value = ( ((128+(R)*(RM)) >> 8) + (DM)*(D) );
return rd_value;
}*/
#define UVRDFUNC(RM,DM,R,D,target_r) RDFUNC(RM,DM,R,D,target_r)
#define RDCOST(RM,DM,R,D) ( ((128+(R)*(RM)) >> 8) + (DM)*(D) )
#define MAXF(a,b) (((a) > (b)) ? (a) : (b))
const int vp8_auto_speed_thresh[17] =
{
1000,
200,
150,
130,
150,
125,
120,
115,
115,
115,
115,
115,
115,
115,
115,
115,
105
};
const MB_PREDICTION_MODE vp8_mode_order[MAX_MODES] =
{
ZEROMV,
DC_PRED,
NEARESTMV,
NEARMV,
ZEROMV,
NEARESTMV,
ZEROMV,
NEARESTMV,
NEARMV,
NEARMV,
V_PRED,
H_PRED,
TM_PRED,
NEWMV,
NEWMV,
NEWMV,
SPLITMV,
SPLITMV,
SPLITMV,
B_PRED,
};
const MV_REFERENCE_FRAME vp8_ref_frame_order[MAX_MODES] =
{
LAST_FRAME,
INTRA_FRAME,
LAST_FRAME,
LAST_FRAME,
GOLDEN_FRAME,
GOLDEN_FRAME,
ALTREF_FRAME,
ALTREF_FRAME,
GOLDEN_FRAME,
ALTREF_FRAME,
INTRA_FRAME,
INTRA_FRAME,
INTRA_FRAME,
LAST_FRAME,
GOLDEN_FRAME,
ALTREF_FRAME,
LAST_FRAME,
GOLDEN_FRAME,
ALTREF_FRAME,
INTRA_FRAME,
};
static void fill_token_costs(
unsigned int c [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [vp8_coef_tokens],
const vp8_prob p [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [vp8_coef_tokens-1]
)
{
int i, j, k;
for (i = 0; i < BLOCK_TYPES; i++)
for (j = 0; j < COEF_BANDS; j++)
for (k = 0; k < PREV_COEF_CONTEXTS; k++)
vp8_cost_tokens((int *)(c [i][j][k]), p [i][j][k], vp8_coef_tree);
}
static int rd_iifactor [ 32 ] = { 4, 4, 3, 2, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
};
// The values in this table should be reviewed
static int sad_per_bit16lut[128] =
{
4, 4, 4, 4, 4, 4, 4, 4, // 4
4, 4, 4, 4, 4, 4, 4, 4, // 1
4, 4, 4, 4, 4, 4, 4, 4, // 2
4, 4, 4, 4, 4, 4, 4, 4, // 3
4, 4, 4, 4, 4, 4, 4, 4, // 4
4, 4, 12, 12, 13, 13, 14, 14, // 5
14, 14, 14, 15, 15, 15, 15, 15, // 6
15, 15, 15, 15, 15, 15, 15, 15, // 7
15, 15, 15, 15, 15, 16, 16, 16, // 8
16, 16, 18, 18, 18, 18, 19, 19, // 9
19, 19, 19, 19, 19, 19, 19, 19, // 10
20, 20, 22, 22, 22, 22, 21, 21, // 11
22, 22, 22, 22, 22, 22, 22, 22, // 12
22, 22, 22, 22, 22, 22, 22, 22, // 13
22, 22, 22, 22, 22, 22, 22, 22, // 14
22, 22, 22, 22, 22, 22, 22, 22, // 15
};
static int sad_per_bit4lut[128] =
{
4, 4, 4, 4, 4, 4, 4, 4, // 4
4, 4, 4, 4, 4, 4, 4, 4, // 1
4, 4, 4, 4, 4, 4, 4, 4, // 2
4, 4, 4, 4, 4, 4, 4, 4, // 3
4, 4, 4, 4, 4, 4, 4, 4, // 4
4, 4, 15, 15, 15, 15, 16, 16, // 5
16, 17, 17, 17, 17, 17, 17, 17, // 6
17, 17, 19, 19, 22, 22, 21, 21, // 7
23, 23, 23, 23, 23, 24, 24, 24, // 8
25, 25, 27, 27, 27, 27, 28, 28, // 9
28, 28, 29, 29, 29, 29, 29, 29, // 10
30, 30, 31, 31, 31, 31, 32, 32, // 11
34, 34, 34, 34, 34, 34, 34, 34, // 12
34, 34, 34, 34, 34, 34, 34, 34, // 13
34, 34, 34, 34, 34, 34, 34, 34, // 14
34, 34, 34, 34, 34, 34, 34, 34, // 15
};
void vp8cx_initialize_me_consts(VP8_COMP *cpi, int QIndex)
{
cpi->mb.sadperbit16 = sad_per_bit16lut[QIndex];
cpi->mb.sadperbit4 = sad_per_bit4lut[QIndex];
}
void vp8_initialize_rd_consts(VP8_COMP *cpi, int Qvalue)
{
int q;
int i;
int *thresh;
int threshmult;
double capped_q = (Qvalue < 160) ? (double)Qvalue : 160.0;
double rdconst = 3.00;
vp8_clear_system_state(); //__asm emms;
// Further tests required to see if optimum is different
// for key frames, golden frames and arf frames.
// if (cpi->common.refresh_golden_frame ||
// cpi->common.refresh_alt_ref_frame)
cpi->RDMULT = (int)(rdconst * (capped_q * capped_q));
// Extend rate multiplier along side quantizer zbin increases
if (cpi->zbin_over_quant > 0)
{
double oq_factor;
double modq;
// Experimental code using the same basic equation as used for Q above
// The units of cpi->zbin_over_quant are 1/128 of Q bin size
oq_factor = 1.0 + ((double)0.0015625 * cpi->zbin_over_quant);
modq = (int)((double)capped_q * oq_factor);
cpi->RDMULT = (int)(rdconst * (modq * modq));
}
if (cpi->pass == 2 && (cpi->common.frame_type != KEY_FRAME))
{
if (cpi->next_iiratio > 31)
cpi->RDMULT += (cpi->RDMULT * rd_iifactor[31]) >> 4;
else
cpi->RDMULT += (cpi->RDMULT * rd_iifactor[cpi->next_iiratio]) >> 4;
}
if (cpi->RDMULT < 125)
cpi->RDMULT = 125;
cpi->mb.errorperbit = (cpi->RDMULT / 100);
if (cpi->mb.errorperbit < 1)
cpi->mb.errorperbit = 1;
vp8_set_speed_features(cpi);
if (cpi->common.simpler_lpf)
cpi->common.filter_type = SIMPLE_LOOPFILTER;
q = (int)pow(Qvalue, 1.25);
if (q < 8)
q = 8;
if (cpi->ref_frame_flags == VP8_ALT_FLAG)
{
thresh = &cpi->rd_threshes[THR_NEWA];
threshmult = cpi->sf.thresh_mult[THR_NEWA];
}
else if (cpi->ref_frame_flags == VP8_GOLD_FLAG)
{
thresh = &cpi->rd_threshes[THR_NEWG];
threshmult = cpi->sf.thresh_mult[THR_NEWG];
}
else
{
thresh = &cpi->rd_threshes[THR_NEWMV];
threshmult = cpi->sf.thresh_mult[THR_NEWMV];
}
if (cpi->RDMULT > 1000)
{
cpi->RDDIV = 1;
cpi->RDMULT /= 100;
for (i = 0; i < MAX_MODES; i++)
{
if (cpi->sf.thresh_mult[i] < INT_MAX)
{
cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q / 100;
}
else
{
cpi->rd_threshes[i] = INT_MAX;
}
cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i];
}
}
else
{
cpi->RDDIV = 100;
for (i = 0; i < MAX_MODES; i++)
{
if (cpi->sf.thresh_mult[i] < (INT_MAX / q))
{
cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q;
}
else
{
cpi->rd_threshes[i] = INT_MAX;
}
cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i];
}
}
fill_token_costs(
cpi->mb.token_costs,
(const vp8_prob( *)[8][3][11]) cpi->common.fc.coef_probs
);
vp8_init_mode_costs(cpi);
}
void vp8_auto_select_speed(VP8_COMP *cpi)
{
int used = cpi->oxcf.cpu_used;
int milliseconds_for_compress = (int)(1000000 / cpi->oxcf.frame_rate);
milliseconds_for_compress = milliseconds_for_compress * (16 - cpi->oxcf.cpu_used) / 16;
#if 0
if (0)
{
FILE *f;
f = fopen("speed.stt", "a");
fprintf(f, " %8ld %10ld %10ld %10ld\n",
cpi->common.current_video_frame, cpi->Speed, milliseconds_for_compress, cpi->avg_pick_mode_time);
fclose(f);
}
#endif
/*
// this is done during parameter valid check
if( used > 16)
used = 16;
if( used < -16)
used = -16;
*/
if (cpi->avg_pick_mode_time < milliseconds_for_compress && (cpi->avg_encode_time - cpi->avg_pick_mode_time) < milliseconds_for_compress)
{
if (cpi->avg_pick_mode_time == 0)
{
cpi->Speed = 4;
}
else
{
if (milliseconds_for_compress * 100 < cpi->avg_encode_time * 95)
{
cpi->Speed += 2;
cpi->avg_pick_mode_time = 0;
cpi->avg_encode_time = 0;
if (cpi->Speed > 16)
{
cpi->Speed = 16;
}
}
if (milliseconds_for_compress * 100 > cpi->avg_encode_time * vp8_auto_speed_thresh[cpi->Speed])
{
cpi->Speed -= 1;
cpi->avg_pick_mode_time = 0;
cpi->avg_encode_time = 0;
// In real-time mode, cpi->speed is in [4, 16].
if (cpi->Speed < 4) //if ( cpi->Speed < 0 )
{
cpi->Speed = 4; //cpi->Speed = 0;
}
}
}
}
else
{
cpi->Speed += 4;
if (cpi->Speed > 16)
cpi->Speed = 16;
cpi->avg_pick_mode_time = 0;
cpi->avg_encode_time = 0;
}
}
int vp8_block_error_c(short *coeff, short *dqcoeff)
{
int i;
int error = 0;
for (i = 0; i < 16; i++)
{
int this_diff = coeff[i] - dqcoeff[i];
error += this_diff * this_diff;
}
return error;
}
int vp8_mbblock_error_c(MACROBLOCK *mb, int dc)
{
BLOCK *be;
BLOCKD *bd;
int i, j;
int berror, error = 0;
for (i = 0; i < 16; i++)
{
be = &mb->block[i];
bd = &mb->e_mbd.block[i];
berror = 0;
for (j = dc; j < 16; j++)
{
int this_diff = be->coeff[j] - bd->dqcoeff[j];
berror += this_diff * this_diff;
}
error += berror;
}
return error;
}
int vp8_mbuverror_c(MACROBLOCK *mb)
{
BLOCK *be;
BLOCKD *bd;
int i;
int error = 0;
for (i = 16; i < 24; i++)
{
be = &mb->block[i];
bd = &mb->e_mbd.block[i];
error += vp8_block_error_c(be->coeff, bd->dqcoeff);
}
return error;
}
#if !(CONFIG_REALTIME_ONLY)
static int macro_block_max_error(MACROBLOCK *mb)
{
int error = 0;
int dc = 0;
BLOCK *be;
int i, j;
int berror;
dc = !(mb->e_mbd.mode_info_context->mbmi.mode == B_PRED || mb->e_mbd.mode_info_context->mbmi.mode == SPLITMV);
for (i = 0; i < 16; i++)
{
be = &mb->block[i];
berror = 0;
for (j = dc; j < 16; j++)
{
int this_diff = be->coeff[j];
berror += this_diff * this_diff;
}
error += berror;
}
for (i = 16; i < 24; i++)
{
be = &mb->block[i];
berror = 0;
for (j = 0; j < 16; j++)
{
int this_diff = be->coeff[j];
berror += this_diff * this_diff;
}
error += berror;
}
error <<= 2;
if (dc)
{
be = &mb->block[24];
berror = 0;
for (j = 0; j < 16; j++)
{
int this_diff = be->coeff[j];
berror += this_diff * this_diff;
}
error += berror;
}
error >>= 4;
return error;
}
#endif
int VP8_UVSSE(MACROBLOCK *x, const vp8_variance_rtcd_vtable_t *rtcd)
{
unsigned char *uptr, *vptr;
unsigned char *upred_ptr = (*(x->block[16].base_src) + x->block[16].src);
unsigned char *vpred_ptr = (*(x->block[20].base_src) + x->block[20].src);
int uv_stride = x->block[16].src_stride;
unsigned int sse1 = 0;
unsigned int sse2 = 0;
int mv_row;
int mv_col;
int offset;
int pre_stride = x->e_mbd.block[16].pre_stride;
vp8_build_uvmvs(&x->e_mbd, 0);
mv_row = x->e_mbd.block[16].bmi.mv.as_mv.row;
mv_col = x->e_mbd.block[16].bmi.mv.as_mv.col;
offset = (mv_row >> 3) * pre_stride + (mv_col >> 3);
uptr = x->e_mbd.pre.u_buffer + offset;
vptr = x->e_mbd.pre.v_buffer + offset;
if ((mv_row | mv_col) & 7)
{
VARIANCE_INVOKE(rtcd, subpixvar8x8)(uptr, pre_stride, mv_col & 7, mv_row & 7, upred_ptr, uv_stride, &sse2);
VARIANCE_INVOKE(rtcd, subpixvar8x8)(vptr, pre_stride, mv_col & 7, mv_row & 7, vpred_ptr, uv_stride, &sse1);
sse2 += sse1;
}
else
{
VARIANCE_INVOKE(rtcd, subpixvar8x8)(uptr, pre_stride, mv_col & 7, mv_row & 7, upred_ptr, uv_stride, &sse2);
VARIANCE_INVOKE(rtcd, subpixvar8x8)(vptr, pre_stride, mv_col & 7, mv_row & 7, vpred_ptr, uv_stride, &sse1);
sse2 += sse1;
}
return sse2;
}
#if !(CONFIG_REALTIME_ONLY)
static int cost_coeffs(MACROBLOCK *mb, BLOCKD *b, int type, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l)
{
int c = !type; /* start at coef 0, unless Y with Y2 */
int eob = b->eob;
int pt ; /* surrounding block/prev coef predictor */
int cost = 0;
short *qcoeff_ptr = b->qcoeff;
VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l);
# define QC( I) ( qcoeff_ptr [vp8_default_zig_zag1d[I]] )
for (; c < eob; c++)
{
int v = QC(c);
int t = vp8_dct_value_tokens_ptr[v].Token;
cost += mb->token_costs [type] [vp8_coef_bands[c]] [pt] [t];
cost += vp8_dct_value_cost_ptr[v];
pt = vp8_prev_token_class[t];
}
# undef QC
if (c < 16)
cost += mb->token_costs [type] [vp8_coef_bands[c]] [pt] [DCT_EOB_TOKEN];
pt = (c != !type); // is eob first coefficient;
*a = *l = pt;
return cost;
}
int vp8_rdcost_mby(MACROBLOCK *mb)
{
int cost = 0;
int b;
int type = 0;
MACROBLOCKD *x = &mb->e_mbd;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
vpx_memcpy(&t_above, mb->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, mb->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
if (x->mode_info_context->mbmi.mode == SPLITMV)
type = 3;
for (b = 0; b < 16; b++)
cost += cost_coeffs(mb, x->block + b, type,
ta + vp8_block2above[b], tl + vp8_block2left[b]);
if (x->mode_info_context->mbmi.mode != SPLITMV)
cost += cost_coeffs(mb, x->block + 24, 1,
ta + vp8_block2above[24], tl + vp8_block2left[24]);
return cost;
}
static void rd_pick_intra4x4block(
VP8_COMP *cpi,
MACROBLOCK *x,
BLOCK *be,
BLOCKD *b,
B_PREDICTION_MODE *best_mode,
B_PREDICTION_MODE above,
B_PREDICTION_MODE left,
ENTROPY_CONTEXT *a,
ENTROPY_CONTEXT *l,
int *bestrate,
int *bestratey,
int *bestdistortion)
{
B_PREDICTION_MODE mode;
int best_rd = INT_MAX; // 1<<30
int rate = 0;
int distortion;
unsigned int *mode_costs;
ENTROPY_CONTEXT ta = *a, tempa = *a;
ENTROPY_CONTEXT tl = *l, templ = *l;
if (x->e_mbd.frame_type == KEY_FRAME)
{
mode_costs = x->bmode_costs[above][left];
}
else
{
mode_costs = x->inter_bmode_costs;
}
for (mode = B_DC_PRED; mode <= B_HU_PRED; mode++)
{
int this_rd;
int ratey;
rate = mode_costs[mode];
vp8_encode_intra4x4block_rd(IF_RTCD(&cpi->rtcd), x, be, b, mode);
tempa = ta;
templ = tl;
ratey = cost_coeffs(x, b, 3, &tempa, &templ);
rate += ratey;
distortion = ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), berr)(be->coeff, b->dqcoeff) >> 2;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd)
{
*bestrate = rate;
*bestratey = ratey;
*bestdistortion = distortion;
best_rd = this_rd;
*best_mode = mode;
*a = tempa;
*l = templ;
}
}
b->bmi.mode = (B_PREDICTION_MODE)(*best_mode);
vp8_encode_intra4x4block_rd(IF_RTCD(&cpi->rtcd), x, be, b, b->bmi.mode);
}
int vp8_rd_pick_intra4x4mby_modes(VP8_COMP *cpi, MACROBLOCK *mb, int *Rate, int *rate_y, int *Distortion)
{
MACROBLOCKD *const xd = &mb->e_mbd;
int i;
int cost = mb->mbmode_cost [xd->frame_type] [B_PRED];
int distortion = 0;
int tot_rate_y = 0;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
vpx_memcpy(&t_above, mb->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, mb->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
vp8_intra_prediction_down_copy(xd);
for (i = 0; i < 16; i++)
{
MODE_INFO *const mic = xd->mode_info_context;
const int mis = xd->mode_info_stride;
const B_PREDICTION_MODE A = vp8_above_bmi(mic, i, mis)->mode;
const B_PREDICTION_MODE L = vp8_left_bmi(mic, i)->mode;
B_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_mode);
int UNINITIALIZED_IS_SAFE(r), UNINITIALIZED_IS_SAFE(ry), UNINITIALIZED_IS_SAFE(d);
rd_pick_intra4x4block(
cpi, mb, mb->block + i, xd->block + i, &best_mode, A, L,
ta + vp8_block2above[i],
tl + vp8_block2left[i], &r, &ry, &d);
cost += r;
distortion += d;
tot_rate_y += ry;
mic->bmi[i].mode = xd->block[i].bmi.mode = best_mode;
}
*Rate = cost;
*rate_y += tot_rate_y;
*Distortion = distortion;
return RDCOST(mb->rdmult, mb->rddiv, cost, distortion);
}
int vp8_rd_pick_intra16x16mby_mode(VP8_COMP *cpi, MACROBLOCK *x, int *Rate, int *rate_y, int *Distortion)
{
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
int rate, ratey;
unsigned int distortion;
int best_rd = INT_MAX;
//Y Search for 16x16 intra prediction mode
for (mode = DC_PRED; mode <= TM_PRED; mode++)
{
int this_rd;
int dummy;
rate = 0;
x->e_mbd.mode_info_context->mbmi.mode = mode;
rate += x->mbmode_cost[x->e_mbd.frame_type][x->e_mbd.mode_info_context->mbmi.mode];
vp8_encode_intra16x16mbyrd(IF_RTCD(&cpi->rtcd), x);
ratey = vp8_rdcost_mby(x);
rate += ratey;
VARIANCE_INVOKE(&cpi->rtcd.variance, get16x16var)(x->src.y_buffer, x->src.y_stride, x->e_mbd.dst.y_buffer, x->e_mbd.dst.y_stride, &distortion, &dummy);
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd)
{
mode_selected = mode;
best_rd = this_rd;
*Rate = rate;
*rate_y = ratey;
*Distortion = (int)distortion;
}
}
x->e_mbd.mode_info_context->mbmi.mode = mode_selected;
return best_rd;
}
static int rd_cost_mbuv(MACROBLOCK *mb)
{
int b;
int cost = 0;
MACROBLOCKD *x = &mb->e_mbd;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
vpx_memcpy(&t_above, mb->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, mb->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
for (b = 16; b < 20; b++)
cost += cost_coeffs(mb, x->block + b, vp8_block2type[b],
ta + vp8_block2above[b], tl + vp8_block2left[b]);
for (b = 20; b < 24; b++)
cost += cost_coeffs(mb, x->block + b, vp8_block2type[b],
ta + vp8_block2above[b], tl + vp8_block2left[b]);
return cost;
}
unsigned int vp8_get_mbuvrecon_error(const vp8_variance_rtcd_vtable_t *rtcd, const MACROBLOCK *x) // sum of squares
{
unsigned int sse0, sse1;
int sum0, sum1;
VARIANCE_INVOKE(rtcd, get8x8var)(x->src.u_buffer, x->src.uv_stride, x->e_mbd.dst.u_buffer, x->e_mbd.dst.uv_stride, &sse0, &sum0);
VARIANCE_INVOKE(rtcd, get8x8var)(x->src.v_buffer, x->src.uv_stride, x->e_mbd.dst.v_buffer, x->e_mbd.dst.uv_stride, &sse1, &sum1);
return (sse0 + sse1);
}
static int vp8_rd_inter_uv(VP8_COMP *cpi, MACROBLOCK *x, int *rate, int *distortion, int fullpixel)
{
vp8_build_uvmvs(&x->e_mbd, fullpixel);
vp8_encode_inter16x16uvrd(IF_RTCD(&cpi->rtcd), x);
*rate = rd_cost_mbuv(x);
*distortion = ENCODEMB_INVOKE(&cpi->rtcd.encodemb, mbuverr)(x) / 4;
return UVRDFUNC(x->rdmult, x->rddiv, *rate, *distortion, cpi->target_bits_per_mb);
}
int vp8_rd_pick_intra_mbuv_mode(VP8_COMP *cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly, int *distortion)
{
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
int best_rd = INT_MAX;
int UNINITIALIZED_IS_SAFE(d), UNINITIALIZED_IS_SAFE(r);
int rate_to;
for (mode = DC_PRED; mode <= TM_PRED; mode++)
{
int rate;
int distortion;
int this_rd;
x->e_mbd.mode_info_context->mbmi.uv_mode = mode;
vp8_encode_intra16x16mbuvrd(IF_RTCD(&cpi->rtcd), x);
rate_to = rd_cost_mbuv(x);
rate = rate_to + x->intra_uv_mode_cost[x->e_mbd.frame_type][x->e_mbd.mode_info_context->mbmi.uv_mode];
distortion = vp8_get_mbuvrecon_error(IF_RTCD(&cpi->rtcd.variance), x);
this_rd = UVRDFUNC(x->rdmult, x->rddiv, rate, distortion, cpi->target_bits_per_mb);
if (this_rd < best_rd)
{
best_rd = this_rd;
d = distortion;
r = rate;
*rate_tokenonly = rate_to;
mode_selected = mode;
}
}
*rate = r;
*distortion = d;
x->e_mbd.mode_info_context->mbmi.uv_mode = mode_selected;
return best_rd;
}
#endif
int vp8_cost_mv_ref(MB_PREDICTION_MODE m, const int near_mv_ref_ct[4])
{
vp8_prob p [VP8_MVREFS-1];
assert(NEARESTMV <= m && m <= SPLITMV);
vp8_mv_ref_probs(p, near_mv_ref_ct);
return vp8_cost_token(vp8_mv_ref_tree, p,
vp8_mv_ref_encoding_array - NEARESTMV + m);
}
void vp8_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, MV *mv)
{
int i;
x->e_mbd.mode_info_context->mbmi.mode = mb;
x->e_mbd.mode_info_context->mbmi.mv.as_mv.row = mv->row;
x->e_mbd.mode_info_context->mbmi.mv.as_mv.col = mv->col;
for (i = 0; i < 16; i++)
{
B_MODE_INFO *bmi = &x->e_mbd.block[i].bmi;
bmi->mode = (B_PREDICTION_MODE) mb;
bmi->mv.as_mv.row = mv->row;
bmi->mv.as_mv.col = mv->col;
}
}
#if !(CONFIG_REALTIME_ONLY)
static int labels2mode(
MACROBLOCK *x,
int const *labelings, int which_label,
B_PREDICTION_MODE this_mode,
MV *this_mv, MV *best_ref_mv,
int *mvcost[2]
)
{
MACROBLOCKD *const xd = & x->e_mbd;
MODE_INFO *const mic = xd->mode_info_context;
const int mis = xd->mode_info_stride;
int cost = 0;
int thismvcost = 0;
/* We have to be careful retrieving previously-encoded motion vectors.
Ones from this macroblock have to be pulled from the BLOCKD array
as they have not yet made it to the bmi array in our MB_MODE_INFO. */
int i = 0;
do
{
BLOCKD *const d = xd->block + i;
const int row = i >> 2, col = i & 3;
B_PREDICTION_MODE m;
if (labelings[i] != which_label)
continue;
if (col && labelings[i] == labelings[i-1])
m = LEFT4X4;
else if (row && labelings[i] == labelings[i-4])
m = ABOVE4X4;
else
{
// the only time we should do costing for new motion vector or mode
// is when we are on a new label (jbb May 08, 2007)
switch (m = this_mode)
{
case NEW4X4 :
thismvcost = vp8_mv_bit_cost(this_mv, best_ref_mv, mvcost, 102);
break;
case LEFT4X4:
*this_mv = col ? d[-1].bmi.mv.as_mv : vp8_left_bmi(mic, i)->mv.as_mv;
break;
case ABOVE4X4:
*this_mv = row ? d[-4].bmi.mv.as_mv : vp8_above_bmi(mic, i, mis)->mv.as_mv;
break;
case ZERO4X4:
this_mv->row = this_mv->col = 0;
break;
default:
break;
}
if (m == ABOVE4X4) // replace above with left if same
{
const MV mv = col ? d[-1].bmi.mv.as_mv : vp8_left_bmi(mic, i)->mv.as_mv;
if (mv.row == this_mv->row && mv.col == this_mv->col)
m = LEFT4X4;
}
cost = x->inter_bmode_costs[ m];
}
d->bmi.mode = m;
d->bmi.mv.as_mv = *this_mv;
}
while (++i < 16);
cost += thismvcost ;
return cost;
}
static int rdcost_mbsegment_y(MACROBLOCK *mb, const int *labels,
int which_label, ENTROPY_CONTEXT *ta,
ENTROPY_CONTEXT *tl)
{
int cost = 0;
int b;
MACROBLOCKD *x = &mb->e_mbd;
for (b = 0; b < 16; b++)
if (labels[ b] == which_label)
cost += cost_coeffs(mb, x->block + b, 3,
ta + vp8_block2above[b],
tl + vp8_block2left[b]);
return cost;
}
static unsigned int vp8_encode_inter_mb_segment(MACROBLOCK *x, int const *labels, int which_label, const vp8_encodemb_rtcd_vtable_t *rtcd)
{
int i;
unsigned int distortion = 0;
for (i = 0; i < 16; i++)
{
if (labels[i] == which_label)
{
BLOCKD *bd = &x->e_mbd.block[i];
BLOCK *be = &x->block[i];
vp8_build_inter_predictors_b(bd, 16, x->e_mbd.subpixel_predict);
ENCODEMB_INVOKE(rtcd, subb)(be, bd, 16);
x->vp8_short_fdct4x4(be->src_diff, be->coeff, 32);
// set to 0 no way to account for 2nd order DC so discount
//be->coeff[0] = 0;
x->quantize_b(be, bd);
distortion += ENCODEMB_INVOKE(rtcd, berr)(be->coeff, bd->dqcoeff);
}
}
return distortion;
}
static void macro_block_yrd(MACROBLOCK *mb, int *Rate, int *Distortion, const vp8_encodemb_rtcd_vtable_t *rtcd)
{
int b;
MACROBLOCKD *const x = &mb->e_mbd;
BLOCK *const mb_y2 = mb->block + 24;
BLOCKD *const x_y2 = x->block + 24;
short *Y2DCPtr = mb_y2->src_diff;
BLOCK *beptr;
int d;
ENCODEMB_INVOKE(rtcd, submby)(mb->src_diff, mb->src.y_buffer, mb->e_mbd.predictor, mb->src.y_stride);
// Fdct and building the 2nd order block
for (beptr = mb->block; beptr < mb->block + 16; beptr += 2)
{
mb->vp8_short_fdct8x4(beptr->src_diff, beptr->coeff, 32);
*Y2DCPtr++ = beptr->coeff[0];
*Y2DCPtr++ = beptr->coeff[16];
}
// 2nd order fdct
if (x->mode_info_context->mbmi.mode != SPLITMV)
{
mb->short_walsh4x4(mb_y2->src_diff, mb_y2->coeff, 8);
}
// Quantization
for (b = 0; b < 16; b++)
{
mb->quantize_b(&mb->block[b], &mb->e_mbd.block[b]);
}
// DC predication and Quantization of 2nd Order block
if (x->mode_info_context->mbmi.mode != SPLITMV)
{
{
mb->quantize_b(mb_y2, x_y2);
}
}
// Distortion
if (x->mode_info_context->mbmi.mode == SPLITMV)
d = ENCODEMB_INVOKE(rtcd, mberr)(mb, 0) << 2;
else
{
d = ENCODEMB_INVOKE(rtcd, mberr)(mb, 1) << 2;
d += ENCODEMB_INVOKE(rtcd, berr)(mb_y2->coeff, x_y2->dqcoeff);
}
*Distortion = (d >> 4);
// rate
*Rate = vp8_rdcost_mby(mb);
}
unsigned char vp8_mbsplit_offset2[4][16] = {
{ 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 2, 8, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
};
static int vp8_rd_pick_best_mbsegmentation(VP8_COMP *cpi, MACROBLOCK *x, MV *best_ref_mv, int best_rd, int *mdcounts, int *returntotrate, int *returnyrate, int *returndistortion, int compressor_speed, int *mvcost[2], int mvthresh, int fullpixel)
{
int i, segmentation;
B_PREDICTION_MODE this_mode;
MACROBLOCKD *xc = &x->e_mbd;
BLOCK *c;
BLOCKD *e;
int const *labels;
int best_segment_rd = INT_MAX;
int best_seg = 0;
int br = 0;
int bd = 0;
int bsr = 0;
int bsd = 0;
int bestsegmentyrate = 0;
static const int segmentation_to_sseshift[4] = {3, 3, 2, 0};
// FIX TO Rd error outrange bug PGW 9 june 2004
B_PREDICTION_MODE bmodes[16] = {ZERO4X4, ZERO4X4, ZERO4X4, ZERO4X4,
ZERO4X4, ZERO4X4, ZERO4X4, ZERO4X4,
ZERO4X4, ZERO4X4, ZERO4X4, ZERO4X4,
ZERO4X4, ZERO4X4, ZERO4X4, ZERO4X4
};
MV bmvs[16];
int beobs[16];
vpx_memset(beobs, 0, sizeof(beobs));
for (segmentation = 0; segmentation < VP8_NUMMBSPLITS; segmentation++)
{
int label_count;
int this_segment_rd = 0;
int label_mv_thresh;
int rate = 0;
int sbr = 0;
int sbd = 0;
int sseshift;
int segmentyrate = 0;
vp8_variance_fn_ptr_t *v_fn_ptr;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
ENTROPY_CONTEXT_PLANES t_above_b, t_left_b;
ENTROPY_CONTEXT *ta_b;
ENTROPY_CONTEXT *tl_b;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
ta_b = (ENTROPY_CONTEXT *)&t_above_b;
tl_b = (ENTROPY_CONTEXT *)&t_left_b;
br = 0;
bd = 0;
v_fn_ptr = &cpi->fn_ptr[segmentation];
sseshift = segmentation_to_sseshift[segmentation];
labels = vp8_mbsplits[segmentation];
label_count = vp8_mbsplit_count[segmentation];
// 64 makes this threshold really big effectively
// making it so that we very rarely check mvs on
// segments. setting this to 1 would make mv thresh
// roughly equal to what it is for macroblocks
label_mv_thresh = 1 * mvthresh / label_count ;
// Segmentation method overheads
rate = vp8_cost_token(vp8_mbsplit_tree, vp8_mbsplit_probs, vp8_mbsplit_encodings + segmentation);
rate += vp8_cost_mv_ref(SPLITMV, mdcounts);
this_segment_rd += RDFUNC(x->rdmult, x->rddiv, rate, 0, cpi->target_bits_per_mb);
br += rate;
for (i = 0; i < label_count; i++)
{
MV mode_mv[B_MODE_COUNT];
int best_label_rd = INT_MAX;
B_PREDICTION_MODE mode_selected = ZERO4X4;
int j;
int bestlabelyrate = 0;
// find first label
j = vp8_mbsplit_offset2[segmentation][i];
c = &x->block[j];
e = &x->e_mbd.block[j];
// search for the best motion vector on this segment
for (this_mode = LEFT4X4; this_mode <= NEW4X4 ; this_mode ++)
{
int distortion;
int this_rd;
int num00;
int labelyrate;
ENTROPY_CONTEXT_PLANES t_above_s, t_left_s;
ENTROPY_CONTEXT *ta_s;
ENTROPY_CONTEXT *tl_s;
vpx_memcpy(&t_above_s, &t_above, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left_s, &t_left, sizeof(ENTROPY_CONTEXT_PLANES));
ta_s = (ENTROPY_CONTEXT *)&t_above_s;
tl_s = (ENTROPY_CONTEXT *)&t_left_s;
if (this_mode == NEW4X4)
{
int step_param = 0;
int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
int n;
int thissme;
int bestsme = INT_MAX;
MV temp_mv;
// Is the best so far sufficiently good that we cant justify doing and new motion search.
if (best_label_rd < label_mv_thresh)
break;
{
int sadpb = x->sadperbit4;
if (cpi->sf.search_method == HEX)
bestsme = vp8_hex_search(x, c, e, best_ref_mv, &mode_mv[NEW4X4], step_param, sadpb/*x->errorperbit*/, &num00, v_fn_ptr, x->mvsadcost, mvcost);
else
{
bestsme = cpi->diamond_search_sad(x, c, e, best_ref_mv, &mode_mv[NEW4X4], step_param, sadpb / 2/*x->errorperbit*/, &num00, v_fn_ptr, x->mvsadcost, mvcost);
n = num00;
num00 = 0;
while (n < further_steps)
{
n++;
if (num00)
num00--;
else
{
thissme = cpi->diamond_search_sad(x, c, e, best_ref_mv, &temp_mv, step_param + n, sadpb / 2/*x->errorperbit*/, &num00, v_fn_ptr, x->mvsadcost, mvcost);
if (thissme < bestsme)
{
bestsme = thissme;
mode_mv[NEW4X4].row = temp_mv.row;
mode_mv[NEW4X4].col = temp_mv.col;
}
}
}
}
// Should we do a full search (best quality only)
if ((compressor_speed == 0) && (bestsme >> sseshift) > 4000)
{
thissme = cpi->full_search_sad(x, c, e, best_ref_mv, sadpb / 4, 16, v_fn_ptr, x->mvcost, x->mvsadcost);
if (thissme < bestsme)
{
bestsme = thissme;
mode_mv[NEW4X4] = e->bmi.mv.as_mv;
}
else
{
// The full search result is actually worse so re-instate the previous best vector
e->bmi.mv.as_mv = mode_mv[NEW4X4];
}
}
}
if (bestsme < INT_MAX)
{
if (!fullpixel)
cpi->find_fractional_mv_step(x, c, e, &mode_mv[NEW4X4], best_ref_mv, x->errorperbit / 2, v_fn_ptr, mvcost);
else
vp8_skip_fractional_mv_step(x, c, e, &mode_mv[NEW4X4], best_ref_mv, x->errorperbit, v_fn_ptr, mvcost);
}
}
rate = labels2mode(x, labels, i, this_mode, &mode_mv[this_mode], best_ref_mv, mvcost);
// Trap vectors that reach beyond the UMV borders
if (((mode_mv[this_mode].row >> 3) < x->mv_row_min) || ((mode_mv[this_mode].row >> 3) > x->mv_row_max) ||
((mode_mv[this_mode].col >> 3) < x->mv_col_min) || ((mode_mv[this_mode].col >> 3) > x->mv_col_max))
{
continue;
}
distortion = vp8_encode_inter_mb_segment(x, labels, i, IF_RTCD(&cpi->rtcd.encodemb)) / 4;
labelyrate = rdcost_mbsegment_y(x, labels, i, ta_s, tl_s);
rate += labelyrate;
this_rd = RDFUNC(x->rdmult, x->rddiv, rate, distortion, cpi->target_bits_per_mb);
if (this_rd < best_label_rd)
{
sbr = rate;
sbd = distortion;
bestlabelyrate = labelyrate;
mode_selected = this_mode;
best_label_rd = this_rd;
vpx_memcpy(ta_b, ta_s, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(tl_b, tl_s, sizeof(ENTROPY_CONTEXT_PLANES));
}
}
vpx_memcpy(ta, ta_b, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(tl, tl_b, sizeof(ENTROPY_CONTEXT_PLANES));
labels2mode(x, labels, i, mode_selected, &mode_mv[mode_selected], best_ref_mv, mvcost);
br += sbr;
bd += sbd;
segmentyrate += bestlabelyrate;
this_segment_rd += best_label_rd;
if ((this_segment_rd > best_rd) || (this_segment_rd > best_segment_rd))
break;
}
if ((this_segment_rd <= best_rd) && (this_segment_rd < best_segment_rd))
{
bsr = br;
bsd = bd;
bestsegmentyrate = segmentyrate;
best_segment_rd = this_segment_rd;
best_seg = segmentation;
// store everything needed to come back to this!!
for (i = 0; i < 16; i++)
{
BLOCKD *bd = &x->e_mbd.block[i];
bmvs[i] = bd->bmi.mv.as_mv;
bmodes[i] = bd->bmi.mode;
beobs[i] = bd->eob;
}
}
}
// set it to the best
for (i = 0; i < 16; i++)
{
BLOCKD *bd = &x->e_mbd.block[i];
bd->bmi.mv.as_mv = bmvs[i];
bd->bmi.mode = bmodes[i];
bd->eob = beobs[i];
}
*returntotrate = bsr;
*returndistortion = bsd;
*returnyrate = bestsegmentyrate;
// save partitions
labels = vp8_mbsplits[best_seg];
x->e_mbd.mode_info_context->mbmi.partitioning = best_seg;
x->partition_info->count = vp8_mbsplit_count[best_seg];
for (i = 0; i < x->partition_info->count; i++)
{
int j;
j = vp8_mbsplit_offset2[best_seg][i];
x->partition_info->bmi[i].mode = x->e_mbd.block[j].bmi.mode;
x->partition_info->bmi[i].mv.as_mv = x->e_mbd.block[j].bmi.mv.as_mv;
}
return best_segment_rd;
}
int vp8_rd_pick_inter_mode(VP8_COMP *cpi, MACROBLOCK *x, int recon_yoffset, int recon_uvoffset, int *returnrate, int *returndistortion, int *returnintra)
{
BLOCK *b = &x->block[0];
BLOCKD *d = &x->e_mbd.block[0];
MACROBLOCKD *xd = &x->e_mbd;
B_MODE_INFO best_bmodes[16];
MB_MODE_INFO best_mbmode;
PARTITION_INFO best_partition;
MV best_ref_mv;
MV mode_mv[MB_MODE_COUNT];
MB_PREDICTION_MODE this_mode;
int num00;
int best_mode_index = 0;
int i;
int mode_index;
int mdcounts[4];
int rate;
int distortion;
int best_rd = INT_MAX; // 1 << 30;
int ref_frame_cost[MAX_REF_FRAMES];
int rate2, distortion2;
int uv_intra_rate, uv_intra_distortion, uv_intra_rate_tokenonly;
int rate_y, UNINITIALIZED_IS_SAFE(rate_uv);
//int all_rds[MAX_MODES]; // Experimental debug code.
//int all_rates[MAX_MODES];
//int all_dist[MAX_MODES];
//int intermodecost[MAX_MODES];
MB_PREDICTION_MODE uv_intra_mode;
int sse;
int sum;
int uvintra_eob = 0;
int tteob = 0;
int force_no_skip = 0;
*returnintra = INT_MAX;
vpx_memset(&best_mbmode, 0, sizeof(best_mbmode)); // clean
cpi->mbs_tested_so_far++; // Count of the number of MBs tested so far this frame
x->skip = 0;
ref_frame_cost[INTRA_FRAME] = vp8_cost_zero(cpi->prob_intra_coded);
// Experimental code
// Adjust the RD multiplier based on the best case distortion we saw in the most recently coded mb
//if ( (cpi->last_mb_distortion) > 0 && (cpi->target_bits_per_mb > 0) )
/*{
int tmprdmult;
//tmprdmult = (cpi->last_mb_distortion * 256) / ((cpi->av_per_frame_bandwidth*256)/cpi->common.MBs);
tmprdmult = (cpi->last_mb_distortion * 256) / cpi->target_bits_per_mb;
//tmprdmult = tmprdmult;
//if ( tmprdmult > cpi->RDMULT * 2 )
// tmprdmult = cpi->RDMULT * 2;
//else if ( tmprdmult < cpi->RDMULT / 2 )
// tmprdmult = cpi->RDMULT / 2;
//tmprdmult = (tmprdmult < 25) ? 25 : tmprdmult;
//x->rdmult = tmprdmult;
}*/
// Special case treatment when GF and ARF are not sensible options for reference
if (cpi->ref_frame_flags == VP8_LAST_FLAG)
{
ref_frame_cost[LAST_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
+ vp8_cost_zero(255);
ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
+ vp8_cost_one(255)
+ vp8_cost_zero(128);
ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
+ vp8_cost_one(255)
+ vp8_cost_one(128);
}
else
{
ref_frame_cost[LAST_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
+ vp8_cost_zero(cpi->prob_last_coded);
ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
+ vp8_cost_one(cpi->prob_last_coded)
+ vp8_cost_zero(cpi->prob_gf_coded);
ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
+ vp8_cost_one(cpi->prob_last_coded)
+ vp8_cost_one(cpi->prob_gf_coded);
}
vpx_memset(mode_mv, 0, sizeof(mode_mv));
x->e_mbd.mode_info_context->mbmi.ref_frame = INTRA_FRAME;
vp8_rd_pick_intra_mbuv_mode(cpi, x, &uv_intra_rate, &uv_intra_rate_tokenonly, &uv_intra_distortion);
uv_intra_mode = x->e_mbd.mode_info_context->mbmi.uv_mode;
{
uvintra_eob = 0;
for (i = 16; i < 24; i++)
uvintra_eob += x->e_mbd.block[i].eob;
}
for (mode_index = 0; mode_index < MAX_MODES; mode_index++)
{
int frame_cost;
int this_rd = INT_MAX;
int lf_or_gf = 0; // Lat Frame (01) or gf/arf (1)
int disable_skip = 0;
force_no_skip = 0;
// Experimental debug code.
// Record of rd values recorded for this MB. -1 indicates not measured
//all_rds[mode_index] = -1;
//all_rates[mode_index] = -1;
//all_dist[mode_index] = -1;
//intermodecost[mode_index] = -1;
// Test best rd so far against threshold for trying this mode.
if (best_rd <= cpi->rd_threshes[mode_index])
continue;
// These variables hold are rolling total cost and distortion for this mode
rate2 = 0;
distortion2 = 0;
// Where skip is allowable add in the default per mb cost for the no skip case.
// where we then decide to skip we have to delete this and replace it with the
// cost of signallying a skip
if (cpi->common.mb_no_coeff_skip)
{
rate2 += vp8_cost_bit(cpi->prob_skip_false, 0);
}
this_mode = vp8_mode_order[mode_index];
x->e_mbd.mode_info_context->mbmi.mode = this_mode;
x->e_mbd.mode_info_context->mbmi.uv_mode = DC_PRED;
x->e_mbd.mode_info_context->mbmi.ref_frame = vp8_ref_frame_order[mode_index];
//Only consider ZEROMV/ALTREF_FRAME for alt ref frame.
if (cpi->is_src_frame_alt_ref)
{
if (this_mode != ZEROMV || x->e_mbd.mode_info_context->mbmi.ref_frame != ALTREF_FRAME)
continue;
}
if (x->e_mbd.mode_info_context->mbmi.ref_frame == LAST_FRAME)
{
YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx];
if (!(cpi->ref_frame_flags & VP8_LAST_FLAG))
continue;
lf_or_gf = 0; // Local last frame vs Golden frame flag
// Set up pointers for this macro block into the previous frame recon buffer
x->e_mbd.pre.y_buffer = lst_yv12->y_buffer + recon_yoffset;
x->e_mbd.pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset;
x->e_mbd.pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset;
}
else if (x->e_mbd.mode_info_context->mbmi.ref_frame == GOLDEN_FRAME)
{
YV12_BUFFER_CONFIG *gld_yv12 = &cpi->common.yv12_fb[cpi->common.gld_fb_idx];
// not supposed to reference gold frame
if (!(cpi->ref_frame_flags & VP8_GOLD_FLAG))
continue;
lf_or_gf = 1; // Local last frame vs Golden frame flag
// Set up pointers for this macro block into the previous frame recon buffer
x->e_mbd.pre.y_buffer = gld_yv12->y_buffer + recon_yoffset;
x->e_mbd.pre.u_buffer = gld_yv12->u_buffer + recon_uvoffset;
x->e_mbd.pre.v_buffer = gld_yv12->v_buffer + recon_uvoffset;
}
else if (x->e_mbd.mode_info_context->mbmi.ref_frame == ALTREF_FRAME)
{
YV12_BUFFER_CONFIG *alt_yv12 = &cpi->common.yv12_fb[cpi->common.alt_fb_idx];
// not supposed to reference alt ref frame
if (!(cpi->ref_frame_flags & VP8_ALT_FLAG))
continue;
//if ( !cpi->source_alt_ref_active )
// continue;
lf_or_gf = 1; // Local last frame vs Golden frame flag
// Set up pointers for this macro block into the previous frame recon buffer
x->e_mbd.pre.y_buffer = alt_yv12->y_buffer + recon_yoffset;
x->e_mbd.pre.u_buffer = alt_yv12->u_buffer + recon_uvoffset;
x->e_mbd.pre.v_buffer = alt_yv12->v_buffer + recon_uvoffset;
}
vp8_find_near_mvs(&x->e_mbd,
x->e_mbd.mode_info_context,
&mode_mv[NEARESTMV], &mode_mv[NEARMV], &best_ref_mv,
mdcounts, x->e_mbd.mode_info_context->mbmi.ref_frame, cpi->common.ref_frame_sign_bias);
// Estimate the reference frame signaling cost and add it to the rolling cost variable.
frame_cost = ref_frame_cost[x->e_mbd.mode_info_context->mbmi.ref_frame];
rate2 += frame_cost;
if (this_mode <= B_PRED)
{
for (i = 0; i < 16; i++)
{
vpx_memset(&x->e_mbd.block[i].bmi, 0, sizeof(B_MODE_INFO));
}
}
// Check to see if the testing frequency for this mode is at its max
// If so then prevent it from being tested and increase the threshold for its testing
if (cpi->mode_test_hit_counts[mode_index] && (cpi->mode_check_freq[mode_index] > 1))
{
if (cpi->mbs_tested_so_far <= cpi->mode_check_freq[mode_index] * cpi->mode_test_hit_counts[mode_index])
{
// Increase the threshold for coding this mode to make it less likely to be chosen
cpi->rd_thresh_mult[mode_index] += 4;
if (cpi->rd_thresh_mult[mode_index] > MAX_THRESHMULT)
cpi->rd_thresh_mult[mode_index] = MAX_THRESHMULT;
cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * cpi->rd_thresh_mult[mode_index];
continue;
}
}
// We have now reached the point where we are going to test the current mode so increment the counter for the number of times it has been tested
cpi->mode_test_hit_counts[mode_index] ++;
// Experimental code. Special case for gf and arf zeromv modes. Increase zbin size to supress noise
if (cpi->zbin_mode_boost_enabled)
{
if ( vp8_ref_frame_order[mode_index] == INTRA_FRAME )
cpi->zbin_mode_boost = 0;
else
{
if (vp8_mode_order[mode_index] == ZEROMV)
{
if (vp8_ref_frame_order[mode_index] != LAST_FRAME)
cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST;
else
cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST;
}
else if (vp8_ref_frame_order[mode_index] == SPLITMV)
cpi->zbin_mode_boost = 0;
else
cpi->zbin_mode_boost = MV_ZBIN_BOOST;
}
vp8cx_mb_init_quantizer(cpi, x);
}
switch (this_mode)
{
case B_PRED:
// Note the rate value returned here includes the cost of coding the BPRED mode : x->mbmode_cost[x->e_mbd.frame_type][BPRED];
vp8_rd_pick_intra4x4mby_modes(cpi, x, &rate, &rate_y, &distortion);
rate2 += rate;
//rate_y = rate;
distortion2 += distortion;
rate2 += uv_intra_rate;
rate_uv = uv_intra_rate_tokenonly;
distortion2 += uv_intra_distortion;
break;
case SPLITMV:
{
int frame_cost_rd = RDFUNC(x->rdmult, x->rddiv, frame_cost, 0, cpi->target_bits_per_mb);
int saved_rate = rate2;
// vp8_rd_pick_best_mbsegmentation looks only at Y and does not account for frame_cost.
// (best_rd - frame_cost_rd) is thus a conservative breakout number.
int breakout_rd = best_rd - frame_cost_rd;
int tmp_rd;
if (x->e_mbd.mode_info_context->mbmi.ref_frame == LAST_FRAME)
tmp_rd = vp8_rd_pick_best_mbsegmentation(cpi, x, &best_ref_mv, breakout_rd, mdcounts, &rate, &rate_y, &distortion, cpi->compressor_speed, x->mvcost, cpi->rd_threshes[THR_NEWMV], cpi->common.full_pixel) ;
else if (x->e_mbd.mode_info_context->mbmi.ref_frame == GOLDEN_FRAME)
tmp_rd = vp8_rd_pick_best_mbsegmentation(cpi, x, &best_ref_mv, breakout_rd, mdcounts, &rate, &rate_y, &distortion, cpi->compressor_speed, x->mvcost, cpi->rd_threshes[THR_NEWG], cpi->common.full_pixel) ;
else
tmp_rd = vp8_rd_pick_best_mbsegmentation(cpi, x, &best_ref_mv, breakout_rd, mdcounts, &rate, &rate_y, &distortion, cpi->compressor_speed, x->mvcost, cpi->rd_threshes[THR_NEWA], cpi->common.full_pixel) ;
rate2 += rate;
distortion2 += distortion;
// If even the 'Y' rd value of split is higher than best so far then dont bother looking at UV
if (tmp_rd < breakout_rd)
{
// Now work out UV cost and add it in
vp8_rd_inter_uv(cpi, x, &rate, &distortion, cpi->common.full_pixel);
rate2 += rate;
rate_uv = rate;
distortion2 += distortion;
}
else
{
this_rd = INT_MAX;
disable_skip = 1;
}
// Trap cases where the best split mode has all vectors coded 0,0 (or all the same)
if (0)
{
int allsame = 1;
for (i = 1; i < 16; i++)
{
BLOCKD *bd = &x->e_mbd.block[i];
if (bd->bmi.mv.as_int != x->e_mbd.block[0].bmi.mv.as_int) //(bmvs[i].col != bmvs[i-1].col) || (bmvs[i].row != bmvs[i-1].row ) )
{
allsame = 0;
break;
}
}
if (allsame)
{
// reset mode and mv and jump to newmv
this_mode = NEWMV;
distortion2 = 0;
rate2 = saved_rate;
mode_mv[NEWMV].row = x->e_mbd.block[0].bmi.mv.as_mv.row;
mode_mv[NEWMV].col = x->e_mbd.block[0].bmi.mv.as_mv.col;
rate2 += vp8_mv_bit_cost(&mode_mv[NEWMV], &best_ref_mv, x->mvcost, 96);
goto mv_selected;
}
}
// trap cases where the 8x8s can be promoted to 8x16s or 16x8s
if (0)//x->partition_info->count == 4)
{
if (x->partition_info->bmi[0].mv.as_int == x->partition_info->bmi[1].mv.as_int
&& x->partition_info->bmi[2].mv.as_int == x->partition_info->bmi[3].mv.as_int)
{
const int *labels = vp8_mbsplits[2];
x->e_mbd.mode_info_context->mbmi.partitioning = 0;
rate -= vp8_cost_token(vp8_mbsplit_tree, vp8_mbsplit_probs, vp8_mbsplit_encodings + 2);
rate += vp8_cost_token(vp8_mbsplit_tree, vp8_mbsplit_probs, vp8_mbsplit_encodings);
//rate -= x->inter_bmode_costs[ x->partition_info->bmi[1]];
//rate -= x->inter_bmode_costs[ x->partition_info->bmi[3]];
x->partition_info->bmi[1] = x->partition_info->bmi[2];
}
}
}
break;
case DC_PRED:
case V_PRED:
case H_PRED:
case TM_PRED:
x->e_mbd.mode_info_context->mbmi.ref_frame = INTRA_FRAME;
vp8_build_intra_predictors_mby_ptr(&x->e_mbd);
{
macro_block_yrd(x, &rate, &distortion, IF_RTCD(&cpi->rtcd.encodemb)) ;
rate2 += rate;
rate_y = rate;
distortion2 += distortion;
rate2 += x->mbmode_cost[x->e_mbd.frame_type][x->e_mbd.mode_info_context->mbmi.mode];
rate2 += uv_intra_rate;
rate_uv = uv_intra_rate_tokenonly;
distortion2 += uv_intra_distortion;
}
break;
case NEWMV:
// Decrement full search counter
if (cpi->check_freq[lf_or_gf] > 0)
cpi->check_freq[lf_or_gf] --;
{
int thissme;
int bestsme = INT_MAX;
int step_param = cpi->sf.first_step;
int search_range;
int further_steps;
int n;
// Work out how long a search we should do
search_range = MAXF(abs(best_ref_mv.col), abs(best_ref_mv.row)) >> 3;
if (search_range >= x->vector_range)
x->vector_range = search_range;
else if (x->vector_range > cpi->sf.min_fs_radius)
x->vector_range--;
// Initial step/diamond search
{
int sadpb = x->sadperbit16;
if (cpi->sf.search_method == HEX)
{
bestsme = vp8_hex_search(x, b, d, &best_ref_mv, &d->bmi.mv.as_mv, step_param, sadpb/*x->errorperbit*/, &num00, &cpi->fn_ptr[BLOCK_16X16], x->mvsadcost, x->mvcost);
mode_mv[NEWMV].row = d->bmi.mv.as_mv.row;
mode_mv[NEWMV].col = d->bmi.mv.as_mv.col;
}
else
{
bestsme = cpi->diamond_search_sad(x, b, d, &best_ref_mv, &d->bmi.mv.as_mv, step_param, sadpb / 2/*x->errorperbit*/, &num00, &cpi->fn_ptr[BLOCK_16X16], x->mvsadcost, x->mvcost); //sadpb < 9
mode_mv[NEWMV].row = d->bmi.mv.as_mv.row;
mode_mv[NEWMV].col = d->bmi.mv.as_mv.col;
// Further step/diamond searches as necessary
n = 0;
further_steps = (cpi->sf.max_step_search_steps - 1) - step_param;
n = num00;
num00 = 0;
while (n < further_steps)
{
n++;
if (num00)
num00--;
else
{
thissme = cpi->diamond_search_sad(x, b, d, &best_ref_mv, &d->bmi.mv.as_mv, step_param + n, sadpb / 4/*x->errorperbit*/, &num00, &cpi->fn_ptr[BLOCK_16X16], x->mvsadcost, x->mvcost); //sadpb = 9
if (thissme < bestsme)
{
bestsme = thissme;
mode_mv[NEWMV].row = d->bmi.mv.as_mv.row;
mode_mv[NEWMV].col = d->bmi.mv.as_mv.col;
}
else
{
d->bmi.mv.as_mv.row = mode_mv[NEWMV].row;
d->bmi.mv.as_mv.col = mode_mv[NEWMV].col;
}
}
}
}
}
// Should we do a full search
if (!cpi->check_freq[lf_or_gf] || cpi->do_full[lf_or_gf])
{
int thissme;
int full_flag_thresh = 0;
// Update x->vector_range based on best vector found in step search
search_range = MAXF(abs(d->bmi.mv.as_mv.row), abs(d->bmi.mv.as_mv.col));
if (search_range > x->vector_range)
x->vector_range = search_range;
else
search_range = x->vector_range;
// Apply limits
search_range = (search_range > cpi->sf.max_fs_radius) ? cpi->sf.max_fs_radius : search_range;
{
int sadpb = x->sadperbit16 >> 2;
thissme = cpi->full_search_sad(x, b, d, &best_ref_mv, sadpb, search_range, &cpi->fn_ptr[BLOCK_16X16], x->mvcost, x->mvsadcost);
}
// Barrier threshold to initiating full search
// full_flag_thresh = 10 + (thissme >> 7);
if ((thissme + full_flag_thresh) < bestsme)
{
cpi->do_full[lf_or_gf] ++;
bestsme = thissme;
}
else if (thissme < bestsme)
bestsme = thissme;
else
{
cpi->do_full[lf_or_gf] = cpi->do_full[lf_or_gf] >> 1;
cpi->check_freq[lf_or_gf] = cpi->sf.full_freq[lf_or_gf];
// The full search result is actually worse so re-instate the previous best vector
d->bmi.mv.as_mv.row = mode_mv[NEWMV].row;
d->bmi.mv.as_mv.col = mode_mv[NEWMV].col;
}
}
if (bestsme < INT_MAX)
// cpi->find_fractional_mv_step(x,b,d,&d->bmi.mv.as_mv,&best_ref_mv,x->errorperbit/2,cpi->fn_ptr.svf,cpi->fn_ptr.vf,x->mvcost); // normal mvc=11
cpi->find_fractional_mv_step(x, b, d, &d->bmi.mv.as_mv, &best_ref_mv, x->errorperbit / 4, &cpi->fn_ptr[BLOCK_16X16], x->mvcost);
mode_mv[NEWMV].row = d->bmi.mv.as_mv.row;
mode_mv[NEWMV].col = d->bmi.mv.as_mv.col;
// Add the new motion vector cost to our rolling cost variable
rate2 += vp8_mv_bit_cost(&mode_mv[NEWMV], &best_ref_mv, x->mvcost, 96);
}
case NEARESTMV:
case NEARMV:
// Clip "next_nearest" so that it does not extend to far out of image
if (mode_mv[this_mode].col < (xd->mb_to_left_edge - LEFT_TOP_MARGIN))
mode_mv[this_mode].col = xd->mb_to_left_edge - LEFT_TOP_MARGIN;
else if (mode_mv[this_mode].col > xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN)
mode_mv[this_mode].col = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN;
if (mode_mv[this_mode].row < (xd->mb_to_top_edge - LEFT_TOP_MARGIN))
mode_mv[this_mode].row = xd->mb_to_top_edge - LEFT_TOP_MARGIN;
else if (mode_mv[this_mode].row > xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN)
mode_mv[this_mode].row = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN;
// Do not bother proceeding if the vector (from newmv,nearest or near) is 0,0 as this should then be coded using the zeromv mode.
if (((this_mode == NEARMV) || (this_mode == NEARESTMV)) &&
((mode_mv[this_mode].row == 0) && (mode_mv[this_mode].col == 0)))
continue;
case ZEROMV:
mv_selected:
// Trap vectors that reach beyond the UMV borders
// Note that ALL New MV, Nearest MV Near MV and Zero MV code drops through to this point
// because of the lack of break statements in the previous two cases.
if (((mode_mv[this_mode].row >> 3) < x->mv_row_min) || ((mode_mv[this_mode].row >> 3) > x->mv_row_max) ||
((mode_mv[this_mode].col >> 3) < x->mv_col_min) || ((mode_mv[this_mode].col >> 3) > x->mv_col_max))
continue;
vp8_set_mbmode_and_mvs(x, this_mode, &mode_mv[this_mode]);
vp8_build_inter_predictors_mby(&x->e_mbd);
VARIANCE_INVOKE(&cpi->rtcd.variance, get16x16var)(x->src.y_buffer, x->src.y_stride, x->e_mbd.predictor, 16, (unsigned int *)(&sse), &sum);
if (cpi->active_map_enabled && x->active_ptr[0] == 0)
{
x->skip = 1;
}
else if (sse < x->encode_breakout)
{
// Check u and v to make sure skip is ok
int sse2 = 0;
sse2 = VP8_UVSSE(x, IF_RTCD(&cpi->rtcd.variance));
if (sse2 * 2 < x->encode_breakout)
{
x->skip = 1;
distortion2 = sse;
rate2 = 500;
disable_skip = 1; // We have no real rate data so trying to adjust for rate_y and rate_uv below will cause problems.
this_rd = RDFUNC(x->rdmult, x->rddiv, rate2, distortion2, cpi->target_bits_per_mb);
break; // (PGW) Move break here from below - for now at least
}
else
x->skip = 0;
}
//intermodecost[mode_index] = vp8_cost_mv_ref(this_mode, mdcounts); // Experimental debug code
// Add in the Mv/mode cost
rate2 += vp8_cost_mv_ref(this_mode, mdcounts);
// Y cost and distortion
macro_block_yrd(x, &rate, &distortion, IF_RTCD(&cpi->rtcd.encodemb));
rate2 += rate;
rate_y = rate;
distortion2 += distortion;
// UV cost and distortion
vp8_rd_inter_uv(cpi, x, &rate, &distortion, cpi->common.full_pixel);
rate2 += rate;
rate_uv = rate;
distortion2 += distortion;
break;
default:
break;
}
if (!disable_skip)
{
// Test for the condition where skip block will be activated because there are no non zero coefficients and make any necessary adjustment for rate
if (cpi->common.mb_no_coeff_skip)
{
tteob = 0;
for (i = 0; i <= 24; i++)
{
tteob += x->e_mbd.block[i].eob;
}
if (tteob == 0)
{
#if 1
rate2 -= (rate_y + rate_uv);
// Back out no skip flag costing and add in skip flag costing
if (cpi->prob_skip_false)
{
rate2 += vp8_cost_bit(cpi->prob_skip_false, 1);
rate2 -= vp8_cost_bit(cpi->prob_skip_false, 0);
}
#else
int rateuseskip;
int ratenotuseskip;
ratenotuseskip = rate_y + rate_uv + vp8_cost_bit(cpi->prob_skip_false, 0);
rateuseskip = vp8_cost_bit(cpi->prob_skip_false, 1);
if (1) // rateuseskip<ratenotuseskip)
{
rate2 -= ratenotuseskip;
rate2 += rateuseskip;
force_no_skip = 0;
}
else
{
force_no_skip = 1;
}
#endif
}
#if 0
else
{
int rateuseskip;
int ratenotuseskip;
int maxdistortion;
int minrate;
int skip_rd;
// distortion when no coeff is encoded
maxdistortion = macro_block_max_error(x);
ratenotuseskip = rate_y + rate_uv + vp8_cost_bit(cpi->prob_skip_false, 0);
rateuseskip = vp8_cost_bit(cpi->prob_skip_false, 1);
minrate = rateuseskip - ratenotuseskip;
skip_rd = RDFUNC(x->rdmult, x->rddiv, minrate, maxdistortion - distortion2, cpi->target_bits_per_mb);
if (skip_rd + 50 < 0 && x->e_mbd.mbmi.ref_frame != INTRA_FRAME && rate_y + rate_uv < 4000)
{
force_no_skip = 1;
rate2 = rate2 + rateuseskip - ratenotuseskip;
distortion2 = maxdistortion;
}
else
{
force_no_skip = 0;
}
}
#endif
}
// Calculate the final RD estimate for this mode
this_rd = RDFUNC(x->rdmult, x->rddiv, rate2, distortion2, cpi->target_bits_per_mb);
}
// Experimental debug code.
//all_rds[mode_index] = this_rd;
//all_rates[mode_index] = rate2;
//all_dist[mode_index] = distortion2;
if ((x->e_mbd.mode_info_context->mbmi.ref_frame == INTRA_FRAME) && (this_rd < *returnintra))
{
*returnintra = this_rd ;
}
// Did this mode help.. i.i is it the new best mode
if (this_rd < best_rd || x->skip)
{
// Note index of best mode so far
best_mode_index = mode_index;
x->e_mbd.mode_info_context->mbmi.force_no_skip = force_no_skip;
if (this_mode <= B_PRED)
{
x->e_mbd.mode_info_context->mbmi.uv_mode = uv_intra_mode;
}
*returnrate = rate2;
*returndistortion = distortion2;
best_rd = this_rd;
vpx_memcpy(&best_mbmode, &x->e_mbd.mode_info_context->mbmi, sizeof(MB_MODE_INFO));
vpx_memcpy(&best_partition, x->partition_info, sizeof(PARTITION_INFO));
for (i = 0; i < 16; i++)
{
vpx_memcpy(&best_bmodes[i], &x->e_mbd.block[i].bmi, sizeof(B_MODE_INFO));
}
// Testing this mode gave rise to an improvement in best error score. Lower threshold a bit for next time
cpi->rd_thresh_mult[mode_index] = (cpi->rd_thresh_mult[mode_index] >= (MIN_THRESHMULT + 2)) ? cpi->rd_thresh_mult[mode_index] - 2 : MIN_THRESHMULT;
cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * cpi->rd_thresh_mult[mode_index];
}
// If the mode did not help improve the best error case then raise the threshold for testing that mode next time around.
else
{
cpi->rd_thresh_mult[mode_index] += 4;
if (cpi->rd_thresh_mult[mode_index] > MAX_THRESHMULT)
cpi->rd_thresh_mult[mode_index] = MAX_THRESHMULT;
cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * cpi->rd_thresh_mult[mode_index];
}
if (x->skip)
break;
}
// Reduce the activation RD thresholds for the best choice mode
if ((cpi->rd_baseline_thresh[best_mode_index] > 0) && (cpi->rd_baseline_thresh[best_mode_index] < (INT_MAX >> 2)))
{
int best_adjustment = (cpi->rd_thresh_mult[best_mode_index] >> 2);
cpi->rd_thresh_mult[best_mode_index] = (cpi->rd_thresh_mult[best_mode_index] >= (MIN_THRESHMULT + best_adjustment)) ? cpi->rd_thresh_mult[best_mode_index] - best_adjustment : MIN_THRESHMULT;
cpi->rd_threshes[best_mode_index] = (cpi->rd_baseline_thresh[best_mode_index] >> 7) * cpi->rd_thresh_mult[best_mode_index];
// If we chose a split mode then reset the new MV thresholds as well
/*if ( vp8_mode_order[best_mode_index] == SPLITMV )
{
best_adjustment = 4; //(cpi->rd_thresh_mult[THR_NEWMV] >> 4);
cpi->rd_thresh_mult[THR_NEWMV] = (cpi->rd_thresh_mult[THR_NEWMV] >= (MIN_THRESHMULT+best_adjustment)) ? cpi->rd_thresh_mult[THR_NEWMV]-best_adjustment: MIN_THRESHMULT;
cpi->rd_threshes[THR_NEWMV] = (cpi->rd_baseline_thresh[THR_NEWMV] >> 7) * cpi->rd_thresh_mult[THR_NEWMV];
best_adjustment = 4; //(cpi->rd_thresh_mult[THR_NEWG] >> 4);
cpi->rd_thresh_mult[THR_NEWG] = (cpi->rd_thresh_mult[THR_NEWG] >= (MIN_THRESHMULT+best_adjustment)) ? cpi->rd_thresh_mult[THR_NEWG]-best_adjustment: MIN_THRESHMULT;
cpi->rd_threshes[THR_NEWG] = (cpi->rd_baseline_thresh[THR_NEWG] >> 7) * cpi->rd_thresh_mult[THR_NEWG];
best_adjustment = 4; //(cpi->rd_thresh_mult[THR_NEWA] >> 4);
cpi->rd_thresh_mult[THR_NEWA] = (cpi->rd_thresh_mult[THR_NEWA] >= (MIN_THRESHMULT+best_adjustment)) ? cpi->rd_thresh_mult[THR_NEWA]-best_adjustment: MIN_THRESHMULT;
cpi->rd_threshes[THR_NEWA] = (cpi->rd_baseline_thresh[THR_NEWA] >> 7) * cpi->rd_thresh_mult[THR_NEWA];
}*/
}
// If we have chosen new mv or split then decay the full search check count more quickly.
if ((vp8_mode_order[best_mode_index] == NEWMV) || (vp8_mode_order[best_mode_index] == SPLITMV))
{
int lf_or_gf = (vp8_ref_frame_order[best_mode_index] == LAST_FRAME) ? 0 : 1;
if (cpi->check_freq[lf_or_gf] && !cpi->do_full[lf_or_gf])
{
cpi->check_freq[lf_or_gf] --;
}
}
// Keep a record of best mode index that we chose
cpi->last_best_mode_index = best_mode_index;
// Note how often each mode chosen as best
cpi->mode_chosen_counts[best_mode_index] ++;
if (cpi->is_src_frame_alt_ref && (best_mbmode.mode != ZEROMV || best_mbmode.ref_frame != ALTREF_FRAME))
{
best_mbmode.mode = ZEROMV;
best_mbmode.ref_frame = ALTREF_FRAME;
best_mbmode.mv.as_int = 0;
best_mbmode.uv_mode = 0;
best_mbmode.mb_skip_coeff = (cpi->common.mb_no_coeff_skip) ? 1 : 0;
best_mbmode.partitioning = 0;
best_mbmode.dc_diff = 0;
vpx_memcpy(&x->e_mbd.mode_info_context->mbmi, &best_mbmode, sizeof(MB_MODE_INFO));
vpx_memcpy(x->partition_info, &best_partition, sizeof(PARTITION_INFO));
for (i = 0; i < 16; i++)
{
vpx_memset(&x->e_mbd.block[i].bmi, 0, sizeof(B_MODE_INFO));
}
x->e_mbd.mode_info_context->mbmi.mv.as_int = 0;
return best_rd;
}
// macroblock modes
vpx_memcpy(&x->e_mbd.mode_info_context->mbmi, &best_mbmode, sizeof(MB_MODE_INFO));
vpx_memcpy(x->partition_info, &best_partition, sizeof(PARTITION_INFO));
for (i = 0; i < 16; i++)
{
vpx_memcpy(&x->e_mbd.block[i].bmi, &best_bmodes[i], sizeof(B_MODE_INFO));
}
x->e_mbd.mode_info_context->mbmi.mv.as_mv = x->e_mbd.block[15].bmi.mv.as_mv;
return best_rd;
}
#endif