67611119b5
Change-Id: I9afa02cae671bd3527cf344695e53d0cc767f549
4394 lines
159 KiB
C
4394 lines
159 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
|
|
#include "./vp9_rtcd.h"
|
|
#include "./vpx_dsp_rtcd.h"
|
|
|
|
#include "vpx_dsp/vpx_dsp_common.h"
|
|
#include "vpx_mem/vpx_mem.h"
|
|
#include "vpx_ports/mem.h"
|
|
#include "vpx_ports/system_state.h"
|
|
|
|
#include "vp9/common/vp9_common.h"
|
|
#include "vp9/common/vp9_entropy.h"
|
|
#include "vp9/common/vp9_entropymode.h"
|
|
#include "vp9/common/vp9_idct.h"
|
|
#include "vp9/common/vp9_mvref_common.h"
|
|
#include "vp9/common/vp9_pred_common.h"
|
|
#include "vp9/common/vp9_quant_common.h"
|
|
#include "vp9/common/vp9_reconinter.h"
|
|
#include "vp9/common/vp9_reconintra.h"
|
|
#include "vp9/common/vp9_scan.h"
|
|
#include "vp9/common/vp9_seg_common.h"
|
|
|
|
#include "vp9/encoder/vp9_cost.h"
|
|
#include "vp9/encoder/vp9_encodemb.h"
|
|
#include "vp9/encoder/vp9_encodemv.h"
|
|
#include "vp9/encoder/vp9_encoder.h"
|
|
#include "vp9/encoder/vp9_mcomp.h"
|
|
#include "vp9/encoder/vp9_quantize.h"
|
|
#include "vp9/encoder/vp9_ratectrl.h"
|
|
#include "vp9/encoder/vp9_rd.h"
|
|
#include "vp9/encoder/vp9_rdopt.h"
|
|
#include "vp9/encoder/vp9_aq_variance.h"
|
|
|
|
#define LAST_FRAME_MODE_MASK ((1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME) | \
|
|
(1 << INTRA_FRAME))
|
|
#define GOLDEN_FRAME_MODE_MASK ((1 << LAST_FRAME) | (1 << ALTREF_FRAME) | \
|
|
(1 << INTRA_FRAME))
|
|
#define ALT_REF_MODE_MASK ((1 << LAST_FRAME) | (1 << GOLDEN_FRAME) | \
|
|
(1 << INTRA_FRAME))
|
|
|
|
#define SECOND_REF_FRAME_MASK ((1 << ALTREF_FRAME) | 0x01)
|
|
|
|
#define MIN_EARLY_TERM_INDEX 3
|
|
#define NEW_MV_DISCOUNT_FACTOR 8
|
|
|
|
typedef struct {
|
|
PREDICTION_MODE mode;
|
|
MV_REFERENCE_FRAME ref_frame[2];
|
|
} MODE_DEFINITION;
|
|
|
|
typedef struct {
|
|
MV_REFERENCE_FRAME ref_frame[2];
|
|
} REF_DEFINITION;
|
|
|
|
struct rdcost_block_args {
|
|
MACROBLOCK *x;
|
|
ENTROPY_CONTEXT t_above[16];
|
|
ENTROPY_CONTEXT t_left[16];
|
|
int this_rate;
|
|
int64_t this_dist;
|
|
int64_t this_sse;
|
|
int64_t this_rd;
|
|
int64_t best_rd;
|
|
int exit_early;
|
|
int use_fast_coef_costing;
|
|
const scan_order *so;
|
|
uint8_t skippable;
|
|
};
|
|
|
|
#define LAST_NEW_MV_INDEX 6
|
|
static const MODE_DEFINITION vp9_mode_order[MAX_MODES] = {
|
|
{NEARESTMV, {LAST_FRAME, NONE}},
|
|
{NEARESTMV, {ALTREF_FRAME, NONE}},
|
|
{NEARESTMV, {GOLDEN_FRAME, NONE}},
|
|
|
|
{DC_PRED, {INTRA_FRAME, NONE}},
|
|
|
|
{NEWMV, {LAST_FRAME, NONE}},
|
|
{NEWMV, {ALTREF_FRAME, NONE}},
|
|
{NEWMV, {GOLDEN_FRAME, NONE}},
|
|
|
|
{NEARMV, {LAST_FRAME, NONE}},
|
|
{NEARMV, {ALTREF_FRAME, NONE}},
|
|
{NEARMV, {GOLDEN_FRAME, NONE}},
|
|
|
|
{ZEROMV, {LAST_FRAME, NONE}},
|
|
{ZEROMV, {GOLDEN_FRAME, NONE}},
|
|
{ZEROMV, {ALTREF_FRAME, NONE}},
|
|
|
|
{NEARESTMV, {LAST_FRAME, ALTREF_FRAME}},
|
|
{NEARESTMV, {GOLDEN_FRAME, ALTREF_FRAME}},
|
|
|
|
{TM_PRED, {INTRA_FRAME, NONE}},
|
|
|
|
{NEARMV, {LAST_FRAME, ALTREF_FRAME}},
|
|
{NEWMV, {LAST_FRAME, ALTREF_FRAME}},
|
|
{NEARMV, {GOLDEN_FRAME, ALTREF_FRAME}},
|
|
{NEWMV, {GOLDEN_FRAME, ALTREF_FRAME}},
|
|
|
|
{ZEROMV, {LAST_FRAME, ALTREF_FRAME}},
|
|
{ZEROMV, {GOLDEN_FRAME, ALTREF_FRAME}},
|
|
|
|
{H_PRED, {INTRA_FRAME, NONE}},
|
|
{V_PRED, {INTRA_FRAME, NONE}},
|
|
{D135_PRED, {INTRA_FRAME, NONE}},
|
|
{D207_PRED, {INTRA_FRAME, NONE}},
|
|
{D153_PRED, {INTRA_FRAME, NONE}},
|
|
{D63_PRED, {INTRA_FRAME, NONE}},
|
|
{D117_PRED, {INTRA_FRAME, NONE}},
|
|
{D45_PRED, {INTRA_FRAME, NONE}},
|
|
};
|
|
|
|
static const REF_DEFINITION vp9_ref_order[MAX_REFS] = {
|
|
{{LAST_FRAME, NONE}},
|
|
{{GOLDEN_FRAME, NONE}},
|
|
{{ALTREF_FRAME, NONE}},
|
|
{{LAST_FRAME, ALTREF_FRAME}},
|
|
{{GOLDEN_FRAME, ALTREF_FRAME}},
|
|
{{INTRA_FRAME, NONE}},
|
|
};
|
|
|
|
static void swap_block_ptr(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
|
|
int m, int n, int min_plane, int max_plane) {
|
|
int i;
|
|
|
|
for (i = min_plane; i < max_plane; ++i) {
|
|
struct macroblock_plane *const p = &x->plane[i];
|
|
struct macroblockd_plane *const pd = &x->e_mbd.plane[i];
|
|
|
|
p->coeff = ctx->coeff_pbuf[i][m];
|
|
p->qcoeff = ctx->qcoeff_pbuf[i][m];
|
|
pd->dqcoeff = ctx->dqcoeff_pbuf[i][m];
|
|
p->eobs = ctx->eobs_pbuf[i][m];
|
|
|
|
ctx->coeff_pbuf[i][m] = ctx->coeff_pbuf[i][n];
|
|
ctx->qcoeff_pbuf[i][m] = ctx->qcoeff_pbuf[i][n];
|
|
ctx->dqcoeff_pbuf[i][m] = ctx->dqcoeff_pbuf[i][n];
|
|
ctx->eobs_pbuf[i][m] = ctx->eobs_pbuf[i][n];
|
|
|
|
ctx->coeff_pbuf[i][n] = p->coeff;
|
|
ctx->qcoeff_pbuf[i][n] = p->qcoeff;
|
|
ctx->dqcoeff_pbuf[i][n] = pd->dqcoeff;
|
|
ctx->eobs_pbuf[i][n] = p->eobs;
|
|
}
|
|
}
|
|
|
|
static void model_rd_for_sb(VP9_COMP *cpi, BLOCK_SIZE bsize,
|
|
MACROBLOCK *x, MACROBLOCKD *xd,
|
|
int *out_rate_sum, int64_t *out_dist_sum,
|
|
int *skip_txfm_sb, int64_t *skip_sse_sb) {
|
|
// Note our transform coeffs are 8 times an orthogonal transform.
|
|
// Hence quantizer step is also 8 times. To get effective quantizer
|
|
// we need to divide by 8 before sending to modeling function.
|
|
int i;
|
|
int64_t rate_sum = 0;
|
|
int64_t dist_sum = 0;
|
|
const int ref = xd->mi[0]->ref_frame[0];
|
|
unsigned int sse;
|
|
unsigned int var = 0;
|
|
unsigned int sum_sse = 0;
|
|
int64_t total_sse = 0;
|
|
int skip_flag = 1;
|
|
const int shift = 6;
|
|
int rate;
|
|
int64_t dist;
|
|
const int dequant_shift =
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
(xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ?
|
|
xd->bd - 5 :
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
3;
|
|
|
|
x->pred_sse[ref] = 0;
|
|
|
|
for (i = 0; i < MAX_MB_PLANE; ++i) {
|
|
struct macroblock_plane *const p = &x->plane[i];
|
|
struct macroblockd_plane *const pd = &xd->plane[i];
|
|
const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
|
|
const TX_SIZE max_tx_size = max_txsize_lookup[bs];
|
|
const BLOCK_SIZE unit_size = txsize_to_bsize[max_tx_size];
|
|
const int64_t dc_thr = p->quant_thred[0] >> shift;
|
|
const int64_t ac_thr = p->quant_thred[1] >> shift;
|
|
// The low thresholds are used to measure if the prediction errors are
|
|
// low enough so that we can skip the mode search.
|
|
const int64_t low_dc_thr = VPXMIN(50, dc_thr >> 2);
|
|
const int64_t low_ac_thr = VPXMIN(80, ac_thr >> 2);
|
|
int bw = 1 << (b_width_log2_lookup[bs] - b_width_log2_lookup[unit_size]);
|
|
int bh = 1 << (b_height_log2_lookup[bs] - b_width_log2_lookup[unit_size]);
|
|
int idx, idy;
|
|
int lw = b_width_log2_lookup[unit_size] + 2;
|
|
int lh = b_height_log2_lookup[unit_size] + 2;
|
|
|
|
sum_sse = 0;
|
|
|
|
for (idy = 0; idy < bh; ++idy) {
|
|
for (idx = 0; idx < bw; ++idx) {
|
|
uint8_t *src = p->src.buf + (idy * p->src.stride << lh) + (idx << lw);
|
|
uint8_t *dst = pd->dst.buf + (idy * pd->dst.stride << lh) + (idx << lh);
|
|
int block_idx = (idy << 1) + idx;
|
|
int low_err_skip = 0;
|
|
|
|
var = cpi->fn_ptr[unit_size].vf(src, p->src.stride,
|
|
dst, pd->dst.stride, &sse);
|
|
x->bsse[(i << 2) + block_idx] = sse;
|
|
sum_sse += sse;
|
|
|
|
x->skip_txfm[(i << 2) + block_idx] = SKIP_TXFM_NONE;
|
|
if (!x->select_tx_size) {
|
|
// Check if all ac coefficients can be quantized to zero.
|
|
if (var < ac_thr || var == 0) {
|
|
x->skip_txfm[(i << 2) + block_idx] = SKIP_TXFM_AC_ONLY;
|
|
|
|
// Check if dc coefficient can be quantized to zero.
|
|
if (sse - var < dc_thr || sse == var) {
|
|
x->skip_txfm[(i << 2) + block_idx] = SKIP_TXFM_AC_DC;
|
|
|
|
if (!sse || (var < low_ac_thr && sse - var < low_dc_thr))
|
|
low_err_skip = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (skip_flag && !low_err_skip)
|
|
skip_flag = 0;
|
|
|
|
if (i == 0)
|
|
x->pred_sse[ref] += sse;
|
|
}
|
|
}
|
|
|
|
total_sse += sum_sse;
|
|
|
|
// Fast approximate the modelling function.
|
|
if (cpi->sf.simple_model_rd_from_var) {
|
|
int64_t rate;
|
|
const int64_t square_error = sum_sse;
|
|
int quantizer = (pd->dequant[1] >> dequant_shift);
|
|
|
|
if (quantizer < 120)
|
|
rate = (square_error * (280 - quantizer)) >> (16 - VP9_PROB_COST_SHIFT);
|
|
else
|
|
rate = 0;
|
|
dist = (square_error * quantizer) >> 8;
|
|
rate_sum += rate;
|
|
dist_sum += dist;
|
|
} else {
|
|
vp9_model_rd_from_var_lapndz(sum_sse, num_pels_log2_lookup[bs],
|
|
pd->dequant[1] >> dequant_shift,
|
|
&rate, &dist);
|
|
rate_sum += rate;
|
|
dist_sum += dist;
|
|
}
|
|
}
|
|
|
|
*skip_txfm_sb = skip_flag;
|
|
*skip_sse_sb = total_sse << 4;
|
|
*out_rate_sum = (int)rate_sum;
|
|
*out_dist_sum = dist_sum << 4;
|
|
}
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
int64_t vp9_highbd_block_error_c(const tran_low_t *coeff,
|
|
const tran_low_t *dqcoeff,
|
|
intptr_t block_size,
|
|
int64_t *ssz, int bd) {
|
|
int i;
|
|
int64_t error = 0, sqcoeff = 0;
|
|
int shift = 2 * (bd - 8);
|
|
int rounding = shift > 0 ? 1 << (shift - 1) : 0;
|
|
|
|
for (i = 0; i < block_size; i++) {
|
|
const int64_t diff = coeff[i] - dqcoeff[i];
|
|
error += diff * diff;
|
|
sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i];
|
|
}
|
|
assert(error >= 0 && sqcoeff >= 0);
|
|
error = (error + rounding) >> shift;
|
|
sqcoeff = (sqcoeff + rounding) >> shift;
|
|
|
|
*ssz = sqcoeff;
|
|
return error;
|
|
}
|
|
|
|
int64_t vp9_highbd_block_error_8bit_c(const tran_low_t *coeff,
|
|
const tran_low_t *dqcoeff,
|
|
intptr_t block_size,
|
|
int64_t *ssz) {
|
|
// Note that the C versions of these 2 functions (vp9_block_error and
|
|
// vp9_highbd_block_error_8bit are the same, but the optimized assembly
|
|
// routines are not compatible in the non high bitdepth configuration, so
|
|
// they still cannot share the same name.
|
|
return vp9_block_error_c(coeff, dqcoeff, block_size, ssz);
|
|
}
|
|
|
|
static int64_t vp9_highbd_block_error_dispatch(const tran_low_t *coeff,
|
|
const tran_low_t *dqcoeff,
|
|
intptr_t block_size,
|
|
int64_t *ssz, int bd) {
|
|
if (bd == 8) {
|
|
return vp9_highbd_block_error_8bit(coeff, dqcoeff, block_size, ssz);
|
|
} else {
|
|
return vp9_highbd_block_error(coeff, dqcoeff, block_size, ssz, bd);
|
|
}
|
|
}
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
int64_t vp9_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff,
|
|
intptr_t block_size, int64_t *ssz) {
|
|
int i;
|
|
int64_t error = 0, sqcoeff = 0;
|
|
|
|
for (i = 0; i < block_size; i++) {
|
|
const int diff = coeff[i] - dqcoeff[i];
|
|
error += diff * diff;
|
|
sqcoeff += coeff[i] * coeff[i];
|
|
}
|
|
|
|
*ssz = sqcoeff;
|
|
return error;
|
|
}
|
|
|
|
int64_t vp9_block_error_fp_c(const int16_t *coeff, const int16_t *dqcoeff,
|
|
int block_size) {
|
|
int i;
|
|
int64_t error = 0;
|
|
|
|
for (i = 0; i < block_size; i++) {
|
|
const int diff = coeff[i] - dqcoeff[i];
|
|
error += diff * diff;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/* The trailing '0' is a terminator which is used inside cost_coeffs() to
|
|
* decide whether to include cost of a trailing EOB node or not (i.e. we
|
|
* can skip this if the last coefficient in this transform block, e.g. the
|
|
* 16th coefficient in a 4x4 block or the 64th coefficient in a 8x8 block,
|
|
* were non-zero). */
|
|
static const int16_t band_counts[TX_SIZES][8] = {
|
|
{ 1, 2, 3, 4, 3, 16 - 13, 0 },
|
|
{ 1, 2, 3, 4, 11, 64 - 21, 0 },
|
|
{ 1, 2, 3, 4, 11, 256 - 21, 0 },
|
|
{ 1, 2, 3, 4, 11, 1024 - 21, 0 },
|
|
};
|
|
static int cost_coeffs(MACROBLOCK *x,
|
|
int plane, int block,
|
|
ENTROPY_CONTEXT *A, ENTROPY_CONTEXT *L,
|
|
TX_SIZE tx_size,
|
|
const int16_t *scan, const int16_t *nb,
|
|
int use_fast_coef_costing) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *mi = xd->mi[0];
|
|
const struct macroblock_plane *p = &x->plane[plane];
|
|
const PLANE_TYPE type = get_plane_type(plane);
|
|
const int16_t *band_count = &band_counts[tx_size][1];
|
|
const int eob = p->eobs[block];
|
|
const tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
|
|
unsigned int (*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
|
|
x->token_costs[tx_size][type][is_inter_block(mi)];
|
|
uint8_t token_cache[32 * 32];
|
|
int pt = combine_entropy_contexts(*A, *L);
|
|
int c, cost;
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
const int *cat6_high_cost = vp9_get_high_cost_table(xd->bd);
|
|
#else
|
|
const int *cat6_high_cost = vp9_get_high_cost_table(8);
|
|
#endif
|
|
|
|
// Check for consistency of tx_size with mode info
|
|
assert(type == PLANE_TYPE_Y ? mi->tx_size == tx_size :
|
|
get_uv_tx_size(mi, &xd->plane[plane]) == tx_size);
|
|
|
|
if (eob == 0) {
|
|
// single eob token
|
|
cost = token_costs[0][0][pt][EOB_TOKEN];
|
|
c = 0;
|
|
} else {
|
|
if (use_fast_coef_costing) {
|
|
int band_left = *band_count++;
|
|
|
|
// dc token
|
|
int v = qcoeff[0];
|
|
int16_t prev_t;
|
|
cost = vp9_get_token_cost(v, &prev_t, cat6_high_cost);
|
|
cost += (*token_costs)[0][pt][prev_t];
|
|
|
|
token_cache[0] = vp9_pt_energy_class[prev_t];
|
|
++token_costs;
|
|
|
|
// ac tokens
|
|
for (c = 1; c < eob; c++) {
|
|
const int rc = scan[c];
|
|
int16_t t;
|
|
|
|
v = qcoeff[rc];
|
|
cost += vp9_get_token_cost(v, &t, cat6_high_cost);
|
|
cost += (*token_costs)[!prev_t][!prev_t][t];
|
|
prev_t = t;
|
|
if (!--band_left) {
|
|
band_left = *band_count++;
|
|
++token_costs;
|
|
}
|
|
}
|
|
|
|
// eob token
|
|
if (band_left)
|
|
cost += (*token_costs)[0][!prev_t][EOB_TOKEN];
|
|
|
|
} else { // !use_fast_coef_costing
|
|
int band_left = *band_count++;
|
|
|
|
// dc token
|
|
int v = qcoeff[0];
|
|
int16_t tok;
|
|
unsigned int (*tok_cost_ptr)[COEFF_CONTEXTS][ENTROPY_TOKENS];
|
|
cost = vp9_get_token_cost(v, &tok, cat6_high_cost);
|
|
cost += (*token_costs)[0][pt][tok];
|
|
|
|
token_cache[0] = vp9_pt_energy_class[tok];
|
|
++token_costs;
|
|
|
|
tok_cost_ptr = &((*token_costs)[!tok]);
|
|
|
|
// ac tokens
|
|
for (c = 1; c < eob; c++) {
|
|
const int rc = scan[c];
|
|
|
|
v = qcoeff[rc];
|
|
cost += vp9_get_token_cost(v, &tok, cat6_high_cost);
|
|
pt = get_coef_context(nb, token_cache, c);
|
|
cost += (*tok_cost_ptr)[pt][tok];
|
|
token_cache[rc] = vp9_pt_energy_class[tok];
|
|
if (!--band_left) {
|
|
band_left = *band_count++;
|
|
++token_costs;
|
|
}
|
|
tok_cost_ptr = &((*token_costs)[!tok]);
|
|
}
|
|
|
|
// eob token
|
|
if (band_left) {
|
|
pt = get_coef_context(nb, token_cache, c);
|
|
cost += (*token_costs)[0][pt][EOB_TOKEN];
|
|
}
|
|
}
|
|
}
|
|
|
|
// is eob first coefficient;
|
|
*A = *L = (c > 0);
|
|
|
|
return cost;
|
|
}
|
|
|
|
static void dist_block(MACROBLOCK *x, int plane, int block, TX_SIZE tx_size,
|
|
int64_t *out_dist, int64_t *out_sse) {
|
|
const int ss_txfrm_size = tx_size << 1;
|
|
MACROBLOCKD* const xd = &x->e_mbd;
|
|
const struct macroblock_plane *const p = &x->plane[plane];
|
|
const struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
int64_t this_sse;
|
|
int shift = tx_size == TX_32X32 ? 0 : 2;
|
|
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
|
|
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
const int bd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd : 8;
|
|
*out_dist = vp9_highbd_block_error_dispatch(coeff, dqcoeff,
|
|
16 << ss_txfrm_size,
|
|
&this_sse, bd) >> shift;
|
|
#else
|
|
*out_dist = vp9_block_error(coeff, dqcoeff, 16 << ss_txfrm_size,
|
|
&this_sse) >> shift;
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
*out_sse = this_sse >> shift;
|
|
|
|
if (x->skip_encode && !is_inter_block(xd->mi[0])) {
|
|
// TODO(jingning): tune the model to better capture the distortion.
|
|
int64_t p = (pd->dequant[1] * pd->dequant[1] *
|
|
(1 << ss_txfrm_size)) >>
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
(shift + 2 + (bd - 8) * 2);
|
|
#else
|
|
(shift + 2);
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
*out_dist += (p >> 4);
|
|
*out_sse += p;
|
|
}
|
|
}
|
|
|
|
static int rate_block(int plane, int block, BLOCK_SIZE plane_bsize,
|
|
TX_SIZE tx_size, struct rdcost_block_args* args) {
|
|
int x_idx, y_idx;
|
|
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &x_idx, &y_idx);
|
|
|
|
return cost_coeffs(args->x, plane, block, args->t_above + x_idx,
|
|
args->t_left + y_idx, tx_size,
|
|
args->so->scan, args->so->neighbors,
|
|
args->use_fast_coef_costing);
|
|
}
|
|
|
|
static void block_rd_txfm(int plane, int block, BLOCK_SIZE plane_bsize,
|
|
TX_SIZE tx_size, void *arg) {
|
|
struct rdcost_block_args *args = arg;
|
|
MACROBLOCK *const x = args->x;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *const mi = xd->mi[0];
|
|
int64_t rd1, rd2, rd;
|
|
int rate;
|
|
int64_t dist;
|
|
int64_t sse;
|
|
|
|
if (args->exit_early)
|
|
return;
|
|
|
|
if (!is_inter_block(mi)) {
|
|
struct encode_b_args arg = {x, NULL, &mi->skip};
|
|
vp9_encode_block_intra(plane, block, plane_bsize, tx_size, &arg);
|
|
dist_block(x, plane, block, tx_size, &dist, &sse);
|
|
} else if (max_txsize_lookup[plane_bsize] == tx_size) {
|
|
if (x->skip_txfm[(plane << 2) + (block >> (tx_size << 1))] ==
|
|
SKIP_TXFM_NONE) {
|
|
// full forward transform and quantization
|
|
vp9_xform_quant(x, plane, block, plane_bsize, tx_size);
|
|
dist_block(x, plane, block, tx_size, &dist, &sse);
|
|
} else if (x->skip_txfm[(plane << 2) + (block >> (tx_size << 1))] ==
|
|
SKIP_TXFM_AC_ONLY) {
|
|
// compute DC coefficient
|
|
tran_low_t *const coeff = BLOCK_OFFSET(x->plane[plane].coeff, block);
|
|
tran_low_t *const dqcoeff = BLOCK_OFFSET(xd->plane[plane].dqcoeff, block);
|
|
vp9_xform_quant_dc(x, plane, block, plane_bsize, tx_size);
|
|
sse = x->bsse[(plane << 2) + (block >> (tx_size << 1))] << 4;
|
|
dist = sse;
|
|
if (x->plane[plane].eobs[block]) {
|
|
const int64_t orig_sse = (int64_t)coeff[0] * coeff[0];
|
|
const int64_t resd_sse = coeff[0] - dqcoeff[0];
|
|
int64_t dc_correct = orig_sse - resd_sse * resd_sse;
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
dc_correct >>= ((xd->bd - 8) * 2);
|
|
#endif
|
|
if (tx_size != TX_32X32)
|
|
dc_correct >>= 2;
|
|
|
|
dist = VPXMAX(0, sse - dc_correct);
|
|
}
|
|
} else {
|
|
// SKIP_TXFM_AC_DC
|
|
// skip forward transform
|
|
x->plane[plane].eobs[block] = 0;
|
|
sse = x->bsse[(plane << 2) + (block >> (tx_size << 1))] << 4;
|
|
dist = sse;
|
|
}
|
|
} else {
|
|
// full forward transform and quantization
|
|
vp9_xform_quant(x, plane, block, plane_bsize, tx_size);
|
|
dist_block(x, plane, block, tx_size, &dist, &sse);
|
|
}
|
|
|
|
rd = RDCOST(x->rdmult, x->rddiv, 0, dist);
|
|
if (args->this_rd + rd > args->best_rd) {
|
|
args->exit_early = 1;
|
|
return;
|
|
}
|
|
|
|
rate = rate_block(plane, block, plane_bsize, tx_size, args);
|
|
rd1 = RDCOST(x->rdmult, x->rddiv, rate, dist);
|
|
rd2 = RDCOST(x->rdmult, x->rddiv, 0, sse);
|
|
|
|
// TODO(jingning): temporarily enabled only for luma component
|
|
rd = VPXMIN(rd1, rd2);
|
|
if (plane == 0)
|
|
x->zcoeff_blk[tx_size][block] = !x->plane[plane].eobs[block] ||
|
|
(rd1 > rd2 && !xd->lossless);
|
|
|
|
args->this_rate += rate;
|
|
args->this_dist += dist;
|
|
args->this_sse += sse;
|
|
args->this_rd += rd;
|
|
|
|
if (args->this_rd > args->best_rd) {
|
|
args->exit_early = 1;
|
|
return;
|
|
}
|
|
|
|
args->skippable &= !x->plane[plane].eobs[block];
|
|
}
|
|
|
|
static void txfm_rd_in_plane(MACROBLOCK *x,
|
|
int *rate, int64_t *distortion,
|
|
int *skippable, int64_t *sse,
|
|
int64_t ref_best_rd, int plane,
|
|
BLOCK_SIZE bsize, TX_SIZE tx_size,
|
|
int use_fast_coef_casting) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
struct rdcost_block_args args;
|
|
vp9_zero(args);
|
|
args.x = x;
|
|
args.best_rd = ref_best_rd;
|
|
args.use_fast_coef_costing = use_fast_coef_casting;
|
|
args.skippable = 1;
|
|
|
|
if (plane == 0)
|
|
xd->mi[0]->tx_size = tx_size;
|
|
|
|
vp9_get_entropy_contexts(bsize, tx_size, pd, args.t_above, args.t_left);
|
|
|
|
args.so = get_scan(xd, tx_size, get_plane_type(plane), 0);
|
|
|
|
vp9_foreach_transformed_block_in_plane(xd, bsize, plane,
|
|
block_rd_txfm, &args);
|
|
if (args.exit_early) {
|
|
*rate = INT_MAX;
|
|
*distortion = INT64_MAX;
|
|
*sse = INT64_MAX;
|
|
*skippable = 0;
|
|
} else {
|
|
*distortion = args.this_dist;
|
|
*rate = args.this_rate;
|
|
*sse = args.this_sse;
|
|
*skippable = args.skippable;
|
|
}
|
|
}
|
|
|
|
static void choose_largest_tx_size(VP9_COMP *cpi, MACROBLOCK *x,
|
|
int *rate, int64_t *distortion,
|
|
int *skip, int64_t *sse,
|
|
int64_t ref_best_rd,
|
|
BLOCK_SIZE bs) {
|
|
const TX_SIZE max_tx_size = max_txsize_lookup[bs];
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[cm->tx_mode];
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *const mi = xd->mi[0];
|
|
|
|
mi->tx_size = VPXMIN(max_tx_size, largest_tx_size);
|
|
|
|
txfm_rd_in_plane(x, rate, distortion, skip,
|
|
sse, ref_best_rd, 0, bs,
|
|
mi->tx_size, cpi->sf.use_fast_coef_costing);
|
|
}
|
|
|
|
static void choose_tx_size_from_rd(VP9_COMP *cpi, MACROBLOCK *x,
|
|
int *rate,
|
|
int64_t *distortion,
|
|
int *skip,
|
|
int64_t *psse,
|
|
int64_t ref_best_rd,
|
|
BLOCK_SIZE bs) {
|
|
const TX_SIZE max_tx_size = max_txsize_lookup[bs];
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *const mi = xd->mi[0];
|
|
vpx_prob skip_prob = vp9_get_skip_prob(cm, xd);
|
|
int r[TX_SIZES][2], s[TX_SIZES];
|
|
int64_t d[TX_SIZES], sse[TX_SIZES];
|
|
int64_t rd[TX_SIZES][2] = {{INT64_MAX, INT64_MAX},
|
|
{INT64_MAX, INT64_MAX},
|
|
{INT64_MAX, INT64_MAX},
|
|
{INT64_MAX, INT64_MAX}};
|
|
int n, m;
|
|
int s0, s1;
|
|
int64_t best_rd = INT64_MAX;
|
|
TX_SIZE best_tx = max_tx_size;
|
|
int start_tx, end_tx;
|
|
|
|
const vpx_prob *tx_probs = get_tx_probs2(max_tx_size, xd, &cm->fc->tx_probs);
|
|
assert(skip_prob > 0);
|
|
s0 = vp9_cost_bit(skip_prob, 0);
|
|
s1 = vp9_cost_bit(skip_prob, 1);
|
|
|
|
if (cm->tx_mode == TX_MODE_SELECT) {
|
|
start_tx = max_tx_size;
|
|
end_tx = 0;
|
|
} else {
|
|
TX_SIZE chosen_tx_size = VPXMIN(max_tx_size,
|
|
tx_mode_to_biggest_tx_size[cm->tx_mode]);
|
|
start_tx = chosen_tx_size;
|
|
end_tx = chosen_tx_size;
|
|
}
|
|
|
|
for (n = start_tx; n >= end_tx; n--) {
|
|
int r_tx_size = 0;
|
|
for (m = 0; m <= n - (n == (int) max_tx_size); m++) {
|
|
if (m == n)
|
|
r_tx_size += vp9_cost_zero(tx_probs[m]);
|
|
else
|
|
r_tx_size += vp9_cost_one(tx_probs[m]);
|
|
}
|
|
txfm_rd_in_plane(x, &r[n][0], &d[n], &s[n],
|
|
&sse[n], ref_best_rd, 0, bs, n,
|
|
cpi->sf.use_fast_coef_costing);
|
|
r[n][1] = r[n][0];
|
|
if (r[n][0] < INT_MAX) {
|
|
r[n][1] += r_tx_size;
|
|
}
|
|
if (d[n] == INT64_MAX || r[n][0] == INT_MAX) {
|
|
rd[n][0] = rd[n][1] = INT64_MAX;
|
|
} else if (s[n]) {
|
|
if (is_inter_block(mi)) {
|
|
rd[n][0] = rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1, sse[n]);
|
|
r[n][1] -= r_tx_size;
|
|
} else {
|
|
rd[n][0] = RDCOST(x->rdmult, x->rddiv, s1, sse[n]);
|
|
rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1 + r_tx_size, sse[n]);
|
|
}
|
|
} else {
|
|
rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0] + s0, d[n]);
|
|
rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1] + s0, d[n]);
|
|
}
|
|
|
|
if (is_inter_block(mi) && !xd->lossless && !s[n] && sse[n] != INT64_MAX) {
|
|
rd[n][0] = VPXMIN(rd[n][0], RDCOST(x->rdmult, x->rddiv, s1, sse[n]));
|
|
rd[n][1] = VPXMIN(rd[n][1], RDCOST(x->rdmult, x->rddiv, s1, sse[n]));
|
|
}
|
|
|
|
// Early termination in transform size search.
|
|
if (cpi->sf.tx_size_search_breakout &&
|
|
(rd[n][1] == INT64_MAX ||
|
|
(n < (int) max_tx_size && rd[n][1] > rd[n + 1][1]) ||
|
|
s[n] == 1))
|
|
break;
|
|
|
|
if (rd[n][1] < best_rd) {
|
|
best_tx = n;
|
|
best_rd = rd[n][1];
|
|
}
|
|
}
|
|
mi->tx_size = best_tx;
|
|
|
|
*distortion = d[mi->tx_size];
|
|
*rate = r[mi->tx_size][cm->tx_mode == TX_MODE_SELECT];
|
|
*skip = s[mi->tx_size];
|
|
*psse = sse[mi->tx_size];
|
|
}
|
|
|
|
static void super_block_yrd(VP9_COMP *cpi, MACROBLOCK *x, int *rate,
|
|
int64_t *distortion, int *skip,
|
|
int64_t *psse, BLOCK_SIZE bs,
|
|
int64_t ref_best_rd) {
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
int64_t sse;
|
|
int64_t *ret_sse = psse ? psse : &sse;
|
|
|
|
assert(bs == xd->mi[0]->sb_type);
|
|
|
|
if (cpi->sf.tx_size_search_method == USE_LARGESTALL || xd->lossless) {
|
|
choose_largest_tx_size(cpi, x, rate, distortion, skip, ret_sse, ref_best_rd,
|
|
bs);
|
|
} else {
|
|
choose_tx_size_from_rd(cpi, x, rate, distortion, skip, ret_sse,
|
|
ref_best_rd, bs);
|
|
}
|
|
}
|
|
|
|
static int conditional_skipintra(PREDICTION_MODE mode,
|
|
PREDICTION_MODE best_intra_mode) {
|
|
if (mode == D117_PRED &&
|
|
best_intra_mode != V_PRED &&
|
|
best_intra_mode != D135_PRED)
|
|
return 1;
|
|
if (mode == D63_PRED &&
|
|
best_intra_mode != V_PRED &&
|
|
best_intra_mode != D45_PRED)
|
|
return 1;
|
|
if (mode == D207_PRED &&
|
|
best_intra_mode != H_PRED &&
|
|
best_intra_mode != D45_PRED)
|
|
return 1;
|
|
if (mode == D153_PRED &&
|
|
best_intra_mode != H_PRED &&
|
|
best_intra_mode != D135_PRED)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static int64_t rd_pick_intra4x4block(VP9_COMP *cpi, MACROBLOCK *x,
|
|
int row, int col,
|
|
PREDICTION_MODE *best_mode,
|
|
const int *bmode_costs,
|
|
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
|
|
int *bestrate, int *bestratey,
|
|
int64_t *bestdistortion,
|
|
BLOCK_SIZE bsize, int64_t rd_thresh) {
|
|
PREDICTION_MODE mode;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
int64_t best_rd = rd_thresh;
|
|
struct macroblock_plane *p = &x->plane[0];
|
|
struct macroblockd_plane *pd = &xd->plane[0];
|
|
const int src_stride = p->src.stride;
|
|
const int dst_stride = pd->dst.stride;
|
|
const uint8_t *src_init = &p->src.buf[row * 4 * src_stride + col * 4];
|
|
uint8_t *dst_init = &pd->dst.buf[row * 4 * src_stride + col * 4];
|
|
ENTROPY_CONTEXT ta[2], tempa[2];
|
|
ENTROPY_CONTEXT tl[2], templ[2];
|
|
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
|
|
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
|
|
int idx, idy;
|
|
uint8_t best_dst[8 * 8];
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
uint16_t best_dst16[8 * 8];
|
|
#endif
|
|
memcpy(ta, a, num_4x4_blocks_wide * sizeof(a[0]));
|
|
memcpy(tl, l, num_4x4_blocks_high * sizeof(l[0]));
|
|
|
|
xd->mi[0]->tx_size = TX_4X4;
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
|
|
int64_t this_rd;
|
|
int ratey = 0;
|
|
int64_t distortion = 0;
|
|
int rate = bmode_costs[mode];
|
|
|
|
if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode)))
|
|
continue;
|
|
|
|
// Only do the oblique modes if the best so far is
|
|
// one of the neighboring directional modes
|
|
if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
|
|
if (conditional_skipintra(mode, *best_mode))
|
|
continue;
|
|
}
|
|
|
|
memcpy(tempa, ta, num_4x4_blocks_wide * sizeof(ta[0]));
|
|
memcpy(templ, tl, num_4x4_blocks_high * sizeof(tl[0]));
|
|
|
|
for (idy = 0; idy < num_4x4_blocks_high; ++idy) {
|
|
for (idx = 0; idx < num_4x4_blocks_wide; ++idx) {
|
|
const int block = (row + idy) * 2 + (col + idx);
|
|
const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride];
|
|
uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride];
|
|
int16_t *const src_diff = vp9_raster_block_offset_int16(BLOCK_8X8,
|
|
block,
|
|
p->src_diff);
|
|
tran_low_t *const coeff = BLOCK_OFFSET(x->plane[0].coeff, block);
|
|
xd->mi[0]->bmi[block].as_mode = mode;
|
|
vp9_predict_intra_block(xd, 1, TX_4X4, mode,
|
|
x->skip_encode ? src : dst,
|
|
x->skip_encode ? src_stride : dst_stride,
|
|
dst, dst_stride,
|
|
col + idx, row + idy, 0);
|
|
vpx_highbd_subtract_block(4, 4, src_diff, 8, src, src_stride,
|
|
dst, dst_stride, xd->bd);
|
|
if (xd->lossless) {
|
|
const scan_order *so = &vp9_default_scan_orders[TX_4X4];
|
|
vp9_highbd_fwht4x4(src_diff, coeff, 8);
|
|
vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan);
|
|
ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy, TX_4X4,
|
|
so->scan, so->neighbors,
|
|
cpi->sf.use_fast_coef_costing);
|
|
if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
|
|
goto next_highbd;
|
|
vp9_highbd_iwht4x4_add(BLOCK_OFFSET(pd->dqcoeff, block),
|
|
dst, dst_stride,
|
|
p->eobs[block], xd->bd);
|
|
} else {
|
|
int64_t unused;
|
|
const TX_TYPE tx_type = get_tx_type_4x4(PLANE_TYPE_Y, xd, block);
|
|
const scan_order *so = &vp9_scan_orders[TX_4X4][tx_type];
|
|
if (tx_type == DCT_DCT)
|
|
vpx_highbd_fdct4x4(src_diff, coeff, 8);
|
|
else
|
|
vp9_highbd_fht4x4(src_diff, coeff, 8, tx_type);
|
|
vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan);
|
|
ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy, TX_4X4,
|
|
so->scan, so->neighbors,
|
|
cpi->sf.use_fast_coef_costing);
|
|
distortion += vp9_highbd_block_error_dispatch(
|
|
coeff, BLOCK_OFFSET(pd->dqcoeff, block),
|
|
16, &unused, xd->bd) >> 2;
|
|
if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
|
|
goto next_highbd;
|
|
vp9_highbd_iht4x4_add(tx_type, BLOCK_OFFSET(pd->dqcoeff, block),
|
|
dst, dst_stride, p->eobs[block], xd->bd);
|
|
}
|
|
}
|
|
}
|
|
|
|
rate += ratey;
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
|
|
|
|
if (this_rd < best_rd) {
|
|
*bestrate = rate;
|
|
*bestratey = ratey;
|
|
*bestdistortion = distortion;
|
|
best_rd = this_rd;
|
|
*best_mode = mode;
|
|
memcpy(a, tempa, num_4x4_blocks_wide * sizeof(tempa[0]));
|
|
memcpy(l, templ, num_4x4_blocks_high * sizeof(templ[0]));
|
|
for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) {
|
|
memcpy(best_dst16 + idy * 8,
|
|
CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride),
|
|
num_4x4_blocks_wide * 4 * sizeof(uint16_t));
|
|
}
|
|
}
|
|
next_highbd:
|
|
{}
|
|
}
|
|
if (best_rd >= rd_thresh || x->skip_encode)
|
|
return best_rd;
|
|
|
|
for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) {
|
|
memcpy(CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride),
|
|
best_dst16 + idy * 8,
|
|
num_4x4_blocks_wide * 4 * sizeof(uint16_t));
|
|
}
|
|
|
|
return best_rd;
|
|
}
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
|
|
int64_t this_rd;
|
|
int ratey = 0;
|
|
int64_t distortion = 0;
|
|
int rate = bmode_costs[mode];
|
|
|
|
if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode)))
|
|
continue;
|
|
|
|
// Only do the oblique modes if the best so far is
|
|
// one of the neighboring directional modes
|
|
if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
|
|
if (conditional_skipintra(mode, *best_mode))
|
|
continue;
|
|
}
|
|
|
|
memcpy(tempa, ta, num_4x4_blocks_wide * sizeof(ta[0]));
|
|
memcpy(templ, tl, num_4x4_blocks_high * sizeof(tl[0]));
|
|
|
|
for (idy = 0; idy < num_4x4_blocks_high; ++idy) {
|
|
for (idx = 0; idx < num_4x4_blocks_wide; ++idx) {
|
|
const int block = (row + idy) * 2 + (col + idx);
|
|
const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride];
|
|
uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride];
|
|
int16_t *const src_diff =
|
|
vp9_raster_block_offset_int16(BLOCK_8X8, block, p->src_diff);
|
|
tran_low_t *const coeff = BLOCK_OFFSET(x->plane[0].coeff, block);
|
|
xd->mi[0]->bmi[block].as_mode = mode;
|
|
vp9_predict_intra_block(xd, 1, TX_4X4, mode,
|
|
x->skip_encode ? src : dst,
|
|
x->skip_encode ? src_stride : dst_stride,
|
|
dst, dst_stride, col + idx, row + idy, 0);
|
|
vpx_subtract_block(4, 4, src_diff, 8, src, src_stride, dst, dst_stride);
|
|
|
|
if (xd->lossless) {
|
|
const scan_order *so = &vp9_default_scan_orders[TX_4X4];
|
|
vp9_fwht4x4(src_diff, coeff, 8);
|
|
vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan);
|
|
ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy, TX_4X4,
|
|
so->scan, so->neighbors,
|
|
cpi->sf.use_fast_coef_costing);
|
|
if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
|
|
goto next;
|
|
vp9_iwht4x4_add(BLOCK_OFFSET(pd->dqcoeff, block), dst, dst_stride,
|
|
p->eobs[block]);
|
|
} else {
|
|
int64_t unused;
|
|
const TX_TYPE tx_type = get_tx_type_4x4(PLANE_TYPE_Y, xd, block);
|
|
const scan_order *so = &vp9_scan_orders[TX_4X4][tx_type];
|
|
vp9_fht4x4(src_diff, coeff, 8, tx_type);
|
|
vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan);
|
|
ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy, TX_4X4,
|
|
so->scan, so->neighbors,
|
|
cpi->sf.use_fast_coef_costing);
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
distortion += vp9_highbd_block_error_8bit(
|
|
coeff, BLOCK_OFFSET(pd->dqcoeff, block), 16, &unused) >> 2;
|
|
#else
|
|
distortion += vp9_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, block),
|
|
16, &unused) >> 2;
|
|
#endif
|
|
if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
|
|
goto next;
|
|
vp9_iht4x4_add(tx_type, BLOCK_OFFSET(pd->dqcoeff, block),
|
|
dst, dst_stride, p->eobs[block]);
|
|
}
|
|
}
|
|
}
|
|
|
|
rate += ratey;
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
|
|
|
|
if (this_rd < best_rd) {
|
|
*bestrate = rate;
|
|
*bestratey = ratey;
|
|
*bestdistortion = distortion;
|
|
best_rd = this_rd;
|
|
*best_mode = mode;
|
|
memcpy(a, tempa, num_4x4_blocks_wide * sizeof(tempa[0]));
|
|
memcpy(l, templ, num_4x4_blocks_high * sizeof(templ[0]));
|
|
for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy)
|
|
memcpy(best_dst + idy * 8, dst_init + idy * dst_stride,
|
|
num_4x4_blocks_wide * 4);
|
|
}
|
|
next:
|
|
{}
|
|
}
|
|
|
|
if (best_rd >= rd_thresh || x->skip_encode)
|
|
return best_rd;
|
|
|
|
for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy)
|
|
memcpy(dst_init + idy * dst_stride, best_dst + idy * 8,
|
|
num_4x4_blocks_wide * 4);
|
|
|
|
return best_rd;
|
|
}
|
|
|
|
static int64_t rd_pick_intra_sub_8x8_y_mode(VP9_COMP *cpi, MACROBLOCK *mb,
|
|
int *rate, int *rate_y,
|
|
int64_t *distortion,
|
|
int64_t best_rd) {
|
|
int i, j;
|
|
const MACROBLOCKD *const xd = &mb->e_mbd;
|
|
MODE_INFO *const mic = xd->mi[0];
|
|
const MODE_INFO *above_mi = xd->above_mi;
|
|
const MODE_INFO *left_mi = xd->left_mi;
|
|
const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
|
|
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
|
|
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
|
|
int idx, idy;
|
|
int cost = 0;
|
|
int64_t total_distortion = 0;
|
|
int tot_rate_y = 0;
|
|
int64_t total_rd = 0;
|
|
const int *bmode_costs = cpi->mbmode_cost;
|
|
|
|
// Pick modes for each sub-block (of size 4x4, 4x8, or 8x4) in an 8x8 block.
|
|
for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
|
|
for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
|
|
PREDICTION_MODE best_mode = DC_PRED;
|
|
int r = INT_MAX, ry = INT_MAX;
|
|
int64_t d = INT64_MAX, this_rd = INT64_MAX;
|
|
i = idy * 2 + idx;
|
|
if (cpi->common.frame_type == KEY_FRAME) {
|
|
const PREDICTION_MODE A = vp9_above_block_mode(mic, above_mi, i);
|
|
const PREDICTION_MODE L = vp9_left_block_mode(mic, left_mi, i);
|
|
|
|
bmode_costs = cpi->y_mode_costs[A][L];
|
|
}
|
|
|
|
this_rd = rd_pick_intra4x4block(cpi, mb, idy, idx, &best_mode,
|
|
bmode_costs,
|
|
xd->plane[0].above_context + idx,
|
|
xd->plane[0].left_context + idy,
|
|
&r, &ry, &d, bsize, best_rd - total_rd);
|
|
|
|
if (this_rd >= best_rd - total_rd)
|
|
return INT64_MAX;
|
|
|
|
total_rd += this_rd;
|
|
cost += r;
|
|
total_distortion += d;
|
|
tot_rate_y += ry;
|
|
|
|
mic->bmi[i].as_mode = best_mode;
|
|
for (j = 1; j < num_4x4_blocks_high; ++j)
|
|
mic->bmi[i + j * 2].as_mode = best_mode;
|
|
for (j = 1; j < num_4x4_blocks_wide; ++j)
|
|
mic->bmi[i + j].as_mode = best_mode;
|
|
|
|
if (total_rd >= best_rd)
|
|
return INT64_MAX;
|
|
}
|
|
}
|
|
|
|
*rate = cost;
|
|
*rate_y = tot_rate_y;
|
|
*distortion = total_distortion;
|
|
mic->mode = mic->bmi[3].as_mode;
|
|
|
|
return RDCOST(mb->rdmult, mb->rddiv, cost, total_distortion);
|
|
}
|
|
|
|
// This function is used only for intra_only frames
|
|
static int64_t rd_pick_intra_sby_mode(VP9_COMP *cpi, MACROBLOCK *x,
|
|
int *rate, int *rate_tokenonly,
|
|
int64_t *distortion, int *skippable,
|
|
BLOCK_SIZE bsize,
|
|
int64_t best_rd) {
|
|
PREDICTION_MODE mode;
|
|
PREDICTION_MODE mode_selected = DC_PRED;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *const mic = xd->mi[0];
|
|
int this_rate, this_rate_tokenonly, s;
|
|
int64_t this_distortion, this_rd;
|
|
TX_SIZE best_tx = TX_4X4;
|
|
int *bmode_costs;
|
|
const MODE_INFO *above_mi = xd->above_mi;
|
|
const MODE_INFO *left_mi = xd->left_mi;
|
|
const PREDICTION_MODE A = vp9_above_block_mode(mic, above_mi, 0);
|
|
const PREDICTION_MODE L = vp9_left_block_mode(mic, left_mi, 0);
|
|
bmode_costs = cpi->y_mode_costs[A][L];
|
|
|
|
memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm));
|
|
/* Y Search for intra prediction mode */
|
|
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
|
|
if (cpi->sf.use_nonrd_pick_mode) {
|
|
// These speed features are turned on in hybrid non-RD and RD mode
|
|
// for key frame coding in the context of real-time setting.
|
|
if (conditional_skipintra(mode, mode_selected))
|
|
continue;
|
|
if (*skippable)
|
|
break;
|
|
}
|
|
|
|
mic->mode = mode;
|
|
|
|
super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion,
|
|
&s, NULL, bsize, best_rd);
|
|
|
|
if (this_rate_tokenonly == INT_MAX)
|
|
continue;
|
|
|
|
this_rate = this_rate_tokenonly + bmode_costs[mode];
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
|
|
|
|
if (this_rd < best_rd) {
|
|
mode_selected = mode;
|
|
best_rd = this_rd;
|
|
best_tx = mic->tx_size;
|
|
*rate = this_rate;
|
|
*rate_tokenonly = this_rate_tokenonly;
|
|
*distortion = this_distortion;
|
|
*skippable = s;
|
|
}
|
|
}
|
|
|
|
mic->mode = mode_selected;
|
|
mic->tx_size = best_tx;
|
|
|
|
return best_rd;
|
|
}
|
|
|
|
// Return value 0: early termination triggered, no valid rd cost available;
|
|
// 1: rd cost values are valid.
|
|
static int super_block_uvrd(const VP9_COMP *cpi, MACROBLOCK *x,
|
|
int *rate, int64_t *distortion, int *skippable,
|
|
int64_t *sse, BLOCK_SIZE bsize,
|
|
int64_t ref_best_rd) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *const mi = xd->mi[0];
|
|
const TX_SIZE uv_tx_size = get_uv_tx_size(mi, &xd->plane[1]);
|
|
int plane;
|
|
int pnrate = 0, pnskip = 1;
|
|
int64_t pndist = 0, pnsse = 0;
|
|
int is_cost_valid = 1;
|
|
|
|
if (ref_best_rd < 0)
|
|
is_cost_valid = 0;
|
|
|
|
if (is_inter_block(mi) && is_cost_valid) {
|
|
int plane;
|
|
for (plane = 1; plane < MAX_MB_PLANE; ++plane)
|
|
vp9_subtract_plane(x, bsize, plane);
|
|
}
|
|
|
|
*rate = 0;
|
|
*distortion = 0;
|
|
*sse = 0;
|
|
*skippable = 1;
|
|
|
|
for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
|
|
txfm_rd_in_plane(x, &pnrate, &pndist, &pnskip, &pnsse,
|
|
ref_best_rd, plane, bsize, uv_tx_size,
|
|
cpi->sf.use_fast_coef_costing);
|
|
if (pnrate == INT_MAX) {
|
|
is_cost_valid = 0;
|
|
break;
|
|
}
|
|
*rate += pnrate;
|
|
*distortion += pndist;
|
|
*sse += pnsse;
|
|
*skippable &= pnskip;
|
|
}
|
|
|
|
if (!is_cost_valid) {
|
|
// reset cost value
|
|
*rate = INT_MAX;
|
|
*distortion = INT64_MAX;
|
|
*sse = INT64_MAX;
|
|
*skippable = 0;
|
|
}
|
|
|
|
return is_cost_valid;
|
|
}
|
|
|
|
static int64_t rd_pick_intra_sbuv_mode(VP9_COMP *cpi, MACROBLOCK *x,
|
|
PICK_MODE_CONTEXT *ctx,
|
|
int *rate, int *rate_tokenonly,
|
|
int64_t *distortion, int *skippable,
|
|
BLOCK_SIZE bsize, TX_SIZE max_tx_size) {
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
PREDICTION_MODE mode;
|
|
PREDICTION_MODE mode_selected = DC_PRED;
|
|
int64_t best_rd = INT64_MAX, this_rd;
|
|
int this_rate_tokenonly, this_rate, s;
|
|
int64_t this_distortion, this_sse;
|
|
|
|
memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm));
|
|
for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
|
|
if (!(cpi->sf.intra_uv_mode_mask[max_tx_size] & (1 << mode)))
|
|
continue;
|
|
|
|
xd->mi[0]->uv_mode = mode;
|
|
|
|
if (!super_block_uvrd(cpi, x, &this_rate_tokenonly,
|
|
&this_distortion, &s, &this_sse, bsize, best_rd))
|
|
continue;
|
|
this_rate = this_rate_tokenonly +
|
|
cpi->intra_uv_mode_cost[cpi->common.frame_type]
|
|
[xd->mi[0]->mode][mode];
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
|
|
|
|
if (this_rd < best_rd) {
|
|
mode_selected = mode;
|
|
best_rd = this_rd;
|
|
*rate = this_rate;
|
|
*rate_tokenonly = this_rate_tokenonly;
|
|
*distortion = this_distortion;
|
|
*skippable = s;
|
|
if (!x->select_tx_size)
|
|
swap_block_ptr(x, ctx, 2, 0, 1, MAX_MB_PLANE);
|
|
}
|
|
}
|
|
|
|
xd->mi[0]->uv_mode = mode_selected;
|
|
return best_rd;
|
|
}
|
|
|
|
static int64_t rd_sbuv_dcpred(const VP9_COMP *cpi, MACROBLOCK *x,
|
|
int *rate, int *rate_tokenonly,
|
|
int64_t *distortion, int *skippable,
|
|
BLOCK_SIZE bsize) {
|
|
const VP9_COMMON *cm = &cpi->common;
|
|
int64_t unused;
|
|
|
|
x->e_mbd.mi[0]->uv_mode = DC_PRED;
|
|
memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm));
|
|
super_block_uvrd(cpi, x, rate_tokenonly, distortion,
|
|
skippable, &unused, bsize, INT64_MAX);
|
|
*rate = *rate_tokenonly +
|
|
cpi->intra_uv_mode_cost[cm->frame_type]
|
|
[x->e_mbd.mi[0]->mode][DC_PRED];
|
|
return RDCOST(x->rdmult, x->rddiv, *rate, *distortion);
|
|
}
|
|
|
|
static void choose_intra_uv_mode(VP9_COMP *cpi, MACROBLOCK *const x,
|
|
PICK_MODE_CONTEXT *ctx,
|
|
BLOCK_SIZE bsize, TX_SIZE max_tx_size,
|
|
int *rate_uv, int *rate_uv_tokenonly,
|
|
int64_t *dist_uv, int *skip_uv,
|
|
PREDICTION_MODE *mode_uv) {
|
|
// Use an estimated rd for uv_intra based on DC_PRED if the
|
|
// appropriate speed flag is set.
|
|
if (cpi->sf.use_uv_intra_rd_estimate) {
|
|
rd_sbuv_dcpred(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv,
|
|
skip_uv, bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize);
|
|
// Else do a proper rd search for each possible transform size that may
|
|
// be considered in the main rd loop.
|
|
} else {
|
|
rd_pick_intra_sbuv_mode(cpi, x, ctx,
|
|
rate_uv, rate_uv_tokenonly, dist_uv, skip_uv,
|
|
bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize, max_tx_size);
|
|
}
|
|
*mode_uv = x->e_mbd.mi[0]->uv_mode;
|
|
}
|
|
|
|
static int cost_mv_ref(const VP9_COMP *cpi, PREDICTION_MODE mode,
|
|
int mode_context) {
|
|
assert(is_inter_mode(mode));
|
|
return cpi->inter_mode_cost[mode_context][INTER_OFFSET(mode)];
|
|
}
|
|
|
|
static int set_and_cost_bmi_mvs(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
|
|
int i,
|
|
PREDICTION_MODE mode, int_mv this_mv[2],
|
|
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES],
|
|
int_mv seg_mvs[MAX_REF_FRAMES],
|
|
int_mv *best_ref_mv[2], const int *mvjcost,
|
|
int *mvcost[2]) {
|
|
MODE_INFO *const mi = xd->mi[0];
|
|
const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
|
|
int thismvcost = 0;
|
|
int idx, idy;
|
|
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[mi->sb_type];
|
|
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[mi->sb_type];
|
|
const int is_compound = has_second_ref(mi);
|
|
|
|
switch (mode) {
|
|
case NEWMV:
|
|
this_mv[0].as_int = seg_mvs[mi->ref_frame[0]].as_int;
|
|
thismvcost += vp9_mv_bit_cost(&this_mv[0].as_mv, &best_ref_mv[0]->as_mv,
|
|
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
|
|
if (is_compound) {
|
|
this_mv[1].as_int = seg_mvs[mi->ref_frame[1]].as_int;
|
|
thismvcost += vp9_mv_bit_cost(&this_mv[1].as_mv, &best_ref_mv[1]->as_mv,
|
|
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
|
|
}
|
|
break;
|
|
case NEARMV:
|
|
case NEARESTMV:
|
|
this_mv[0].as_int = frame_mv[mode][mi->ref_frame[0]].as_int;
|
|
if (is_compound)
|
|
this_mv[1].as_int = frame_mv[mode][mi->ref_frame[1]].as_int;
|
|
break;
|
|
case ZEROMV:
|
|
this_mv[0].as_int = 0;
|
|
if (is_compound)
|
|
this_mv[1].as_int = 0;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
mi->bmi[i].as_mv[0].as_int = this_mv[0].as_int;
|
|
if (is_compound)
|
|
mi->bmi[i].as_mv[1].as_int = this_mv[1].as_int;
|
|
|
|
mi->bmi[i].as_mode = mode;
|
|
|
|
for (idy = 0; idy < num_4x4_blocks_high; ++idy)
|
|
for (idx = 0; idx < num_4x4_blocks_wide; ++idx)
|
|
memmove(&mi->bmi[i + idy * 2 + idx], &mi->bmi[i], sizeof(mi->bmi[i]));
|
|
|
|
return cost_mv_ref(cpi, mode, mbmi_ext->mode_context[mi->ref_frame[0]]) +
|
|
thismvcost;
|
|
}
|
|
|
|
static int64_t encode_inter_mb_segment(VP9_COMP *cpi,
|
|
MACROBLOCK *x,
|
|
int64_t best_yrd,
|
|
int i,
|
|
int *labelyrate,
|
|
int64_t *distortion, int64_t *sse,
|
|
ENTROPY_CONTEXT *ta,
|
|
ENTROPY_CONTEXT *tl,
|
|
int mi_row, int mi_col) {
|
|
int k;
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
struct macroblockd_plane *const pd = &xd->plane[0];
|
|
struct macroblock_plane *const p = &x->plane[0];
|
|
MODE_INFO *const mi = xd->mi[0];
|
|
const BLOCK_SIZE plane_bsize = get_plane_block_size(mi->sb_type, pd);
|
|
const int width = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
|
|
const int height = 4 * num_4x4_blocks_high_lookup[plane_bsize];
|
|
int idx, idy;
|
|
|
|
const uint8_t *const src =
|
|
&p->src.buf[vp9_raster_block_offset(BLOCK_8X8, i, p->src.stride)];
|
|
uint8_t *const dst = &pd->dst.buf[vp9_raster_block_offset(BLOCK_8X8, i,
|
|
pd->dst.stride)];
|
|
int64_t thisdistortion = 0, thissse = 0;
|
|
int thisrate = 0, ref;
|
|
const scan_order *so = &vp9_default_scan_orders[TX_4X4];
|
|
const int is_compound = has_second_ref(mi);
|
|
const InterpKernel *kernel = vp9_filter_kernels[mi->interp_filter];
|
|
|
|
for (ref = 0; ref < 1 + is_compound; ++ref) {
|
|
const int bw = b_width_log2_lookup[BLOCK_8X8];
|
|
const int h = 4 * (i >> bw);
|
|
const int w = 4 * (i & ((1 << bw) - 1));
|
|
const struct scale_factors *sf = &xd->block_refs[ref]->sf;
|
|
int y_stride = pd->pre[ref].stride;
|
|
uint8_t *pre = pd->pre[ref].buf + (h * pd->pre[ref].stride + w);
|
|
|
|
if (vp9_is_scaled(sf)) {
|
|
const int x_start = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x));
|
|
const int y_start = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y));
|
|
|
|
y_stride = xd->block_refs[ref]->buf->y_stride;
|
|
pre = xd->block_refs[ref]->buf->y_buffer;
|
|
pre += scaled_buffer_offset(x_start + w, y_start + h,
|
|
y_stride, sf);
|
|
}
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
vp9_highbd_build_inter_predictor(pre, y_stride,
|
|
dst, pd->dst.stride,
|
|
&mi->bmi[i].as_mv[ref].as_mv,
|
|
&xd->block_refs[ref]->sf, width, height,
|
|
ref, kernel, MV_PRECISION_Q3,
|
|
mi_col * MI_SIZE + 4 * (i % 2),
|
|
mi_row * MI_SIZE + 4 * (i / 2), xd->bd);
|
|
} else {
|
|
vp9_build_inter_predictor(pre, y_stride,
|
|
dst, pd->dst.stride,
|
|
&mi->bmi[i].as_mv[ref].as_mv,
|
|
&xd->block_refs[ref]->sf, width, height, ref,
|
|
kernel, MV_PRECISION_Q3,
|
|
mi_col * MI_SIZE + 4 * (i % 2),
|
|
mi_row * MI_SIZE + 4 * (i / 2));
|
|
}
|
|
#else
|
|
vp9_build_inter_predictor(pre, y_stride,
|
|
dst, pd->dst.stride,
|
|
&mi->bmi[i].as_mv[ref].as_mv,
|
|
&xd->block_refs[ref]->sf, width, height, ref,
|
|
kernel, MV_PRECISION_Q3,
|
|
mi_col * MI_SIZE + 4 * (i % 2),
|
|
mi_row * MI_SIZE + 4 * (i / 2));
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
}
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
vpx_highbd_subtract_block(
|
|
height, width, vp9_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff),
|
|
8, src, p->src.stride, dst, pd->dst.stride, xd->bd);
|
|
} else {
|
|
vpx_subtract_block(
|
|
height, width, vp9_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff),
|
|
8, src, p->src.stride, dst, pd->dst.stride);
|
|
}
|
|
#else
|
|
vpx_subtract_block(height, width,
|
|
vp9_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff),
|
|
8, src, p->src.stride, dst, pd->dst.stride);
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
k = i;
|
|
for (idy = 0; idy < height / 4; ++idy) {
|
|
for (idx = 0; idx < width / 4; ++idx) {
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
const int bd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd : 8;
|
|
#endif
|
|
int64_t ssz, rd, rd1, rd2;
|
|
tran_low_t* coeff;
|
|
|
|
k += (idy * 2 + idx);
|
|
coeff = BLOCK_OFFSET(p->coeff, k);
|
|
x->fwd_txm4x4(vp9_raster_block_offset_int16(BLOCK_8X8, k, p->src_diff),
|
|
coeff, 8);
|
|
vp9_regular_quantize_b_4x4(x, 0, k, so->scan, so->iscan);
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
thisdistortion += vp9_highbd_block_error_dispatch(
|
|
coeff, BLOCK_OFFSET(pd->dqcoeff, k), 16, &ssz, bd);
|
|
#else
|
|
thisdistortion += vp9_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, k),
|
|
16, &ssz);
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
thissse += ssz;
|
|
thisrate += cost_coeffs(x, 0, k, ta + (k & 1), tl + (k >> 1), TX_4X4,
|
|
so->scan, so->neighbors,
|
|
cpi->sf.use_fast_coef_costing);
|
|
rd1 = RDCOST(x->rdmult, x->rddiv, thisrate, thisdistortion >> 2);
|
|
rd2 = RDCOST(x->rdmult, x->rddiv, 0, thissse >> 2);
|
|
rd = VPXMIN(rd1, rd2);
|
|
if (rd >= best_yrd)
|
|
return INT64_MAX;
|
|
}
|
|
}
|
|
|
|
*distortion = thisdistortion >> 2;
|
|
*labelyrate = thisrate;
|
|
*sse = thissse >> 2;
|
|
|
|
return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion);
|
|
}
|
|
|
|
typedef struct {
|
|
int eobs;
|
|
int brate;
|
|
int byrate;
|
|
int64_t bdist;
|
|
int64_t bsse;
|
|
int64_t brdcost;
|
|
int_mv mvs[2];
|
|
ENTROPY_CONTEXT ta[2];
|
|
ENTROPY_CONTEXT tl[2];
|
|
} SEG_RDSTAT;
|
|
|
|
typedef struct {
|
|
int_mv *ref_mv[2];
|
|
int_mv mvp;
|
|
|
|
int64_t segment_rd;
|
|
int r;
|
|
int64_t d;
|
|
int64_t sse;
|
|
int segment_yrate;
|
|
PREDICTION_MODE modes[4];
|
|
SEG_RDSTAT rdstat[4][INTER_MODES];
|
|
int mvthresh;
|
|
} BEST_SEG_INFO;
|
|
|
|
static INLINE int mv_check_bounds(const MACROBLOCK *x, const MV *mv) {
|
|
return (mv->row >> 3) < x->mv_row_min ||
|
|
(mv->row >> 3) > x->mv_row_max ||
|
|
(mv->col >> 3) < x->mv_col_min ||
|
|
(mv->col >> 3) > x->mv_col_max;
|
|
}
|
|
|
|
static INLINE void mi_buf_shift(MACROBLOCK *x, int i) {
|
|
MODE_INFO *const mi = x->e_mbd.mi[0];
|
|
struct macroblock_plane *const p = &x->plane[0];
|
|
struct macroblockd_plane *const pd = &x->e_mbd.plane[0];
|
|
|
|
p->src.buf = &p->src.buf[vp9_raster_block_offset(BLOCK_8X8, i,
|
|
p->src.stride)];
|
|
assert(((intptr_t)pd->pre[0].buf & 0x7) == 0);
|
|
pd->pre[0].buf = &pd->pre[0].buf[vp9_raster_block_offset(BLOCK_8X8, i,
|
|
pd->pre[0].stride)];
|
|
if (has_second_ref(mi))
|
|
pd->pre[1].buf = &pd->pre[1].buf[vp9_raster_block_offset(BLOCK_8X8, i,
|
|
pd->pre[1].stride)];
|
|
}
|
|
|
|
static INLINE void mi_buf_restore(MACROBLOCK *x, struct buf_2d orig_src,
|
|
struct buf_2d orig_pre[2]) {
|
|
MODE_INFO *mi = x->e_mbd.mi[0];
|
|
x->plane[0].src = orig_src;
|
|
x->e_mbd.plane[0].pre[0] = orig_pre[0];
|
|
if (has_second_ref(mi))
|
|
x->e_mbd.plane[0].pre[1] = orig_pre[1];
|
|
}
|
|
|
|
static INLINE int mv_has_subpel(const MV *mv) {
|
|
return (mv->row & 0x0F) || (mv->col & 0x0F);
|
|
}
|
|
|
|
// Check if NEARESTMV/NEARMV/ZEROMV is the cheapest way encode zero motion.
|
|
// TODO(aconverse): Find out if this is still productive then clean up or remove
|
|
static int check_best_zero_mv(
|
|
const VP9_COMP *cpi, const uint8_t mode_context[MAX_REF_FRAMES],
|
|
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES], int this_mode,
|
|
const MV_REFERENCE_FRAME ref_frames[2]) {
|
|
if ((this_mode == NEARMV || this_mode == NEARESTMV || this_mode == ZEROMV) &&
|
|
frame_mv[this_mode][ref_frames[0]].as_int == 0 &&
|
|
(ref_frames[1] == NONE ||
|
|
frame_mv[this_mode][ref_frames[1]].as_int == 0)) {
|
|
int rfc = mode_context[ref_frames[0]];
|
|
int c1 = cost_mv_ref(cpi, NEARMV, rfc);
|
|
int c2 = cost_mv_ref(cpi, NEARESTMV, rfc);
|
|
int c3 = cost_mv_ref(cpi, ZEROMV, rfc);
|
|
|
|
if (this_mode == NEARMV) {
|
|
if (c1 > c3) return 0;
|
|
} else if (this_mode == NEARESTMV) {
|
|
if (c2 > c3) return 0;
|
|
} else {
|
|
assert(this_mode == ZEROMV);
|
|
if (ref_frames[1] == NONE) {
|
|
if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0) ||
|
|
(c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0))
|
|
return 0;
|
|
} else {
|
|
if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0 &&
|
|
frame_mv[NEARESTMV][ref_frames[1]].as_int == 0) ||
|
|
(c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0 &&
|
|
frame_mv[NEARMV][ref_frames[1]].as_int == 0))
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static void joint_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
|
|
BLOCK_SIZE bsize,
|
|
int_mv *frame_mv,
|
|
int mi_row, int mi_col,
|
|
int_mv single_newmv[MAX_REF_FRAMES],
|
|
int *rate_mv) {
|
|
const VP9_COMMON *const cm = &cpi->common;
|
|
const int pw = 4 * num_4x4_blocks_wide_lookup[bsize];
|
|
const int ph = 4 * num_4x4_blocks_high_lookup[bsize];
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
MODE_INFO *mi = xd->mi[0];
|
|
const int refs[2] = {mi->ref_frame[0],
|
|
mi->ref_frame[1] < 0 ? 0 : mi->ref_frame[1]};
|
|
int_mv ref_mv[2];
|
|
int ite, ref;
|
|
const InterpKernel *kernel = vp9_filter_kernels[mi->interp_filter];
|
|
struct scale_factors sf;
|
|
|
|
// Do joint motion search in compound mode to get more accurate mv.
|
|
struct buf_2d backup_yv12[2][MAX_MB_PLANE];
|
|
int last_besterr[2] = {INT_MAX, INT_MAX};
|
|
const YV12_BUFFER_CONFIG *const scaled_ref_frame[2] = {
|
|
vp9_get_scaled_ref_frame(cpi, mi->ref_frame[0]),
|
|
vp9_get_scaled_ref_frame(cpi, mi->ref_frame[1])
|
|
};
|
|
|
|
// Prediction buffer from second frame.
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
DECLARE_ALIGNED(16, uint16_t, second_pred_alloc_16[64 * 64]);
|
|
uint8_t *second_pred;
|
|
#else
|
|
DECLARE_ALIGNED(16, uint8_t, second_pred[64 * 64]);
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
for (ref = 0; ref < 2; ++ref) {
|
|
ref_mv[ref] = x->mbmi_ext->ref_mvs[refs[ref]][0];
|
|
|
|
if (scaled_ref_frame[ref]) {
|
|
int i;
|
|
// Swap out the reference frame for a version that's been scaled to
|
|
// match the resolution of the current frame, allowing the existing
|
|
// motion search code to be used without additional modifications.
|
|
for (i = 0; i < MAX_MB_PLANE; i++)
|
|
backup_yv12[ref][i] = xd->plane[i].pre[ref];
|
|
vp9_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col,
|
|
NULL);
|
|
}
|
|
|
|
frame_mv[refs[ref]].as_int = single_newmv[refs[ref]].as_int;
|
|
}
|
|
|
|
// Since we have scaled the reference frames to match the size of the current
|
|
// frame we must use a unit scaling factor during mode selection.
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
vp9_setup_scale_factors_for_frame(&sf, cm->width, cm->height,
|
|
cm->width, cm->height,
|
|
cm->use_highbitdepth);
|
|
#else
|
|
vp9_setup_scale_factors_for_frame(&sf, cm->width, cm->height,
|
|
cm->width, cm->height);
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
// Allow joint search multiple times iteratively for each reference frame
|
|
// and break out of the search loop if it couldn't find a better mv.
|
|
for (ite = 0; ite < 4; ite++) {
|
|
struct buf_2d ref_yv12[2];
|
|
int bestsme = INT_MAX;
|
|
int sadpb = x->sadperbit16;
|
|
MV tmp_mv;
|
|
int search_range = 3;
|
|
|
|
int tmp_col_min = x->mv_col_min;
|
|
int tmp_col_max = x->mv_col_max;
|
|
int tmp_row_min = x->mv_row_min;
|
|
int tmp_row_max = x->mv_row_max;
|
|
int id = ite % 2; // Even iterations search in the first reference frame,
|
|
// odd iterations search in the second. The predictor
|
|
// found for the 'other' reference frame is factored in.
|
|
|
|
// Initialized here because of compiler problem in Visual Studio.
|
|
ref_yv12[0] = xd->plane[0].pre[0];
|
|
ref_yv12[1] = xd->plane[0].pre[1];
|
|
|
|
// Get the prediction block from the 'other' reference frame.
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
second_pred = CONVERT_TO_BYTEPTR(second_pred_alloc_16);
|
|
vp9_highbd_build_inter_predictor(ref_yv12[!id].buf,
|
|
ref_yv12[!id].stride,
|
|
second_pred, pw,
|
|
&frame_mv[refs[!id]].as_mv,
|
|
&sf, pw, ph, 0,
|
|
kernel, MV_PRECISION_Q3,
|
|
mi_col * MI_SIZE, mi_row * MI_SIZE,
|
|
xd->bd);
|
|
} else {
|
|
second_pred = (uint8_t *)second_pred_alloc_16;
|
|
vp9_build_inter_predictor(ref_yv12[!id].buf,
|
|
ref_yv12[!id].stride,
|
|
second_pred, pw,
|
|
&frame_mv[refs[!id]].as_mv,
|
|
&sf, pw, ph, 0,
|
|
kernel, MV_PRECISION_Q3,
|
|
mi_col * MI_SIZE, mi_row * MI_SIZE);
|
|
}
|
|
#else
|
|
vp9_build_inter_predictor(ref_yv12[!id].buf,
|
|
ref_yv12[!id].stride,
|
|
second_pred, pw,
|
|
&frame_mv[refs[!id]].as_mv,
|
|
&sf, pw, ph, 0,
|
|
kernel, MV_PRECISION_Q3,
|
|
mi_col * MI_SIZE, mi_row * MI_SIZE);
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
// Do compound motion search on the current reference frame.
|
|
if (id)
|
|
xd->plane[0].pre[0] = ref_yv12[id];
|
|
vp9_set_mv_search_range(x, &ref_mv[id].as_mv);
|
|
|
|
// Use the mv result from the single mode as mv predictor.
|
|
tmp_mv = frame_mv[refs[id]].as_mv;
|
|
|
|
tmp_mv.col >>= 3;
|
|
tmp_mv.row >>= 3;
|
|
|
|
// Small-range full-pixel motion search.
|
|
bestsme = vp9_refining_search_8p_c(x, &tmp_mv, sadpb,
|
|
search_range,
|
|
&cpi->fn_ptr[bsize],
|
|
&ref_mv[id].as_mv, second_pred);
|
|
if (bestsme < INT_MAX)
|
|
bestsme = vp9_get_mvpred_av_var(x, &tmp_mv, &ref_mv[id].as_mv,
|
|
second_pred, &cpi->fn_ptr[bsize], 1);
|
|
|
|
x->mv_col_min = tmp_col_min;
|
|
x->mv_col_max = tmp_col_max;
|
|
x->mv_row_min = tmp_row_min;
|
|
x->mv_row_max = tmp_row_max;
|
|
|
|
if (bestsme < INT_MAX) {
|
|
int dis; /* TODO: use dis in distortion calculation later. */
|
|
unsigned int sse;
|
|
bestsme = cpi->find_fractional_mv_step(
|
|
x, &tmp_mv,
|
|
&ref_mv[id].as_mv,
|
|
cpi->common.allow_high_precision_mv,
|
|
x->errorperbit,
|
|
&cpi->fn_ptr[bsize],
|
|
0, cpi->sf.mv.subpel_iters_per_step,
|
|
NULL,
|
|
x->nmvjointcost, x->mvcost,
|
|
&dis, &sse, second_pred,
|
|
pw, ph);
|
|
}
|
|
|
|
// Restore the pointer to the first (possibly scaled) prediction buffer.
|
|
if (id)
|
|
xd->plane[0].pre[0] = ref_yv12[0];
|
|
|
|
if (bestsme < last_besterr[id]) {
|
|
frame_mv[refs[id]].as_mv = tmp_mv;
|
|
last_besterr[id] = bestsme;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
*rate_mv = 0;
|
|
|
|
for (ref = 0; ref < 2; ++ref) {
|
|
if (scaled_ref_frame[ref]) {
|
|
// Restore the prediction frame pointers to their unscaled versions.
|
|
int i;
|
|
for (i = 0; i < MAX_MB_PLANE; i++)
|
|
xd->plane[i].pre[ref] = backup_yv12[ref][i];
|
|
}
|
|
|
|
*rate_mv += vp9_mv_bit_cost(&frame_mv[refs[ref]].as_mv,
|
|
&x->mbmi_ext->ref_mvs[refs[ref]][0].as_mv,
|
|
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
|
|
}
|
|
}
|
|
|
|
static int64_t rd_pick_best_sub8x8_mode(VP9_COMP *cpi, MACROBLOCK *x,
|
|
int_mv *best_ref_mv,
|
|
int_mv *second_best_ref_mv,
|
|
int64_t best_rd, int *returntotrate,
|
|
int *returnyrate,
|
|
int64_t *returndistortion,
|
|
int *skippable, int64_t *psse,
|
|
int mvthresh,
|
|
int_mv seg_mvs[4][MAX_REF_FRAMES],
|
|
BEST_SEG_INFO *bsi_buf, int filter_idx,
|
|
int mi_row, int mi_col) {
|
|
int i;
|
|
BEST_SEG_INFO *bsi = bsi_buf + filter_idx;
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
MODE_INFO *mi = xd->mi[0];
|
|
int mode_idx;
|
|
int k, br = 0, idx, idy;
|
|
int64_t bd = 0, block_sse = 0;
|
|
PREDICTION_MODE this_mode;
|
|
VP9_COMMON *cm = &cpi->common;
|
|
struct macroblock_plane *const p = &x->plane[0];
|
|
struct macroblockd_plane *const pd = &xd->plane[0];
|
|
const int label_count = 4;
|
|
int64_t this_segment_rd = 0;
|
|
int label_mv_thresh;
|
|
int segmentyrate = 0;
|
|
const BLOCK_SIZE bsize = mi->sb_type;
|
|
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
|
|
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
|
|
ENTROPY_CONTEXT t_above[2], t_left[2];
|
|
int subpelmv = 1, have_ref = 0;
|
|
SPEED_FEATURES *const sf = &cpi->sf;
|
|
const int has_second_rf = has_second_ref(mi);
|
|
const int inter_mode_mask = sf->inter_mode_mask[bsize];
|
|
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
|
|
|
|
vp9_zero(*bsi);
|
|
|
|
bsi->segment_rd = best_rd;
|
|
bsi->ref_mv[0] = best_ref_mv;
|
|
bsi->ref_mv[1] = second_best_ref_mv;
|
|
bsi->mvp.as_int = best_ref_mv->as_int;
|
|
bsi->mvthresh = mvthresh;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
bsi->modes[i] = ZEROMV;
|
|
|
|
memcpy(t_above, pd->above_context, sizeof(t_above));
|
|
memcpy(t_left, pd->left_context, sizeof(t_left));
|
|
|
|
// 64 makes this threshold really big effectively
|
|
// making it so that we very rarely check mvs on
|
|
// segments. setting this to 1 would make mv thresh
|
|
// roughly equal to what it is for macroblocks
|
|
label_mv_thresh = 1 * bsi->mvthresh / label_count;
|
|
|
|
// Segmentation method overheads
|
|
for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
|
|
for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
|
|
// TODO(jingning,rbultje): rewrite the rate-distortion optimization
|
|
// loop for 4x4/4x8/8x4 block coding. to be replaced with new rd loop
|
|
int_mv mode_mv[MB_MODE_COUNT][2];
|
|
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
|
|
PREDICTION_MODE mode_selected = ZEROMV;
|
|
int64_t best_rd = INT64_MAX;
|
|
const int i = idy * 2 + idx;
|
|
int ref;
|
|
|
|
for (ref = 0; ref < 1 + has_second_rf; ++ref) {
|
|
const MV_REFERENCE_FRAME frame = mi->ref_frame[ref];
|
|
frame_mv[ZEROMV][frame].as_int = 0;
|
|
vp9_append_sub8x8_mvs_for_idx(cm, xd, i, ref, mi_row, mi_col,
|
|
&frame_mv[NEARESTMV][frame],
|
|
&frame_mv[NEARMV][frame],
|
|
mbmi_ext->mode_context);
|
|
}
|
|
|
|
// search for the best motion vector on this segment
|
|
for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
|
|
const struct buf_2d orig_src = x->plane[0].src;
|
|
struct buf_2d orig_pre[2];
|
|
|
|
mode_idx = INTER_OFFSET(this_mode);
|
|
bsi->rdstat[i][mode_idx].brdcost = INT64_MAX;
|
|
if (!(inter_mode_mask & (1 << this_mode)))
|
|
continue;
|
|
|
|
if (!check_best_zero_mv(cpi, mbmi_ext->mode_context, frame_mv,
|
|
this_mode, mi->ref_frame))
|
|
continue;
|
|
|
|
memcpy(orig_pre, pd->pre, sizeof(orig_pre));
|
|
memcpy(bsi->rdstat[i][mode_idx].ta, t_above,
|
|
sizeof(bsi->rdstat[i][mode_idx].ta));
|
|
memcpy(bsi->rdstat[i][mode_idx].tl, t_left,
|
|
sizeof(bsi->rdstat[i][mode_idx].tl));
|
|
|
|
// motion search for newmv (single predictor case only)
|
|
if (!has_second_rf && this_mode == NEWMV &&
|
|
seg_mvs[i][mi->ref_frame[0]].as_int == INVALID_MV) {
|
|
MV *const new_mv = &mode_mv[NEWMV][0].as_mv;
|
|
int step_param = 0;
|
|
int bestsme = INT_MAX;
|
|
int sadpb = x->sadperbit4;
|
|
MV mvp_full;
|
|
int max_mv;
|
|
int cost_list[5];
|
|
|
|
/* Is the best so far sufficiently good that we cant justify doing
|
|
* and new motion search. */
|
|
if (best_rd < label_mv_thresh)
|
|
break;
|
|
|
|
if (cpi->oxcf.mode != BEST) {
|
|
// use previous block's result as next block's MV predictor.
|
|
if (i > 0) {
|
|
bsi->mvp.as_int = mi->bmi[i - 1].as_mv[0].as_int;
|
|
if (i == 2)
|
|
bsi->mvp.as_int = mi->bmi[i - 2].as_mv[0].as_int;
|
|
}
|
|
}
|
|
if (i == 0)
|
|
max_mv = x->max_mv_context[mi->ref_frame[0]];
|
|
else
|
|
max_mv =
|
|
VPXMAX(abs(bsi->mvp.as_mv.row), abs(bsi->mvp.as_mv.col)) >> 3;
|
|
|
|
if (sf->mv.auto_mv_step_size && cm->show_frame) {
|
|
// Take wtd average of the step_params based on the last frame's
|
|
// max mv magnitude and the best ref mvs of the current block for
|
|
// the given reference.
|
|
step_param = (vp9_init_search_range(max_mv) +
|
|
cpi->mv_step_param) / 2;
|
|
} else {
|
|
step_param = cpi->mv_step_param;
|
|
}
|
|
|
|
mvp_full.row = bsi->mvp.as_mv.row >> 3;
|
|
mvp_full.col = bsi->mvp.as_mv.col >> 3;
|
|
|
|
if (sf->adaptive_motion_search) {
|
|
mvp_full.row = x->pred_mv[mi->ref_frame[0]].row >> 3;
|
|
mvp_full.col = x->pred_mv[mi->ref_frame[0]].col >> 3;
|
|
step_param = VPXMAX(step_param, 8);
|
|
}
|
|
|
|
// adjust src pointer for this block
|
|
mi_buf_shift(x, i);
|
|
|
|
vp9_set_mv_search_range(x, &bsi->ref_mv[0]->as_mv);
|
|
|
|
bestsme = vp9_full_pixel_search(
|
|
cpi, x, bsize, &mvp_full, step_param, sadpb,
|
|
sf->mv.subpel_search_method != SUBPEL_TREE ? cost_list : NULL,
|
|
&bsi->ref_mv[0]->as_mv, new_mv,
|
|
INT_MAX, 1);
|
|
|
|
if (bestsme < INT_MAX) {
|
|
int distortion;
|
|
cpi->find_fractional_mv_step(
|
|
x,
|
|
new_mv,
|
|
&bsi->ref_mv[0]->as_mv,
|
|
cm->allow_high_precision_mv,
|
|
x->errorperbit, &cpi->fn_ptr[bsize],
|
|
sf->mv.subpel_force_stop,
|
|
sf->mv.subpel_iters_per_step,
|
|
cond_cost_list(cpi, cost_list),
|
|
x->nmvjointcost, x->mvcost,
|
|
&distortion,
|
|
&x->pred_sse[mi->ref_frame[0]],
|
|
NULL, 0, 0);
|
|
|
|
// save motion search result for use in compound prediction
|
|
seg_mvs[i][mi->ref_frame[0]].as_mv = *new_mv;
|
|
}
|
|
|
|
if (sf->adaptive_motion_search)
|
|
x->pred_mv[mi->ref_frame[0]] = *new_mv;
|
|
|
|
// restore src pointers
|
|
mi_buf_restore(x, orig_src, orig_pre);
|
|
}
|
|
|
|
if (has_second_rf) {
|
|
if (seg_mvs[i][mi->ref_frame[1]].as_int == INVALID_MV ||
|
|
seg_mvs[i][mi->ref_frame[0]].as_int == INVALID_MV)
|
|
continue;
|
|
}
|
|
|
|
if (has_second_rf && this_mode == NEWMV &&
|
|
mi->interp_filter == EIGHTTAP) {
|
|
// adjust src pointers
|
|
mi_buf_shift(x, i);
|
|
if (sf->comp_inter_joint_search_thresh <= bsize) {
|
|
int rate_mv;
|
|
joint_motion_search(cpi, x, bsize, frame_mv[this_mode],
|
|
mi_row, mi_col, seg_mvs[i],
|
|
&rate_mv);
|
|
seg_mvs[i][mi->ref_frame[0]].as_int =
|
|
frame_mv[this_mode][mi->ref_frame[0]].as_int;
|
|
seg_mvs[i][mi->ref_frame[1]].as_int =
|
|
frame_mv[this_mode][mi->ref_frame[1]].as_int;
|
|
}
|
|
// restore src pointers
|
|
mi_buf_restore(x, orig_src, orig_pre);
|
|
}
|
|
|
|
bsi->rdstat[i][mode_idx].brate =
|
|
set_and_cost_bmi_mvs(cpi, x, xd, i, this_mode, mode_mv[this_mode],
|
|
frame_mv, seg_mvs[i], bsi->ref_mv,
|
|
x->nmvjointcost, x->mvcost);
|
|
|
|
for (ref = 0; ref < 1 + has_second_rf; ++ref) {
|
|
bsi->rdstat[i][mode_idx].mvs[ref].as_int =
|
|
mode_mv[this_mode][ref].as_int;
|
|
if (num_4x4_blocks_wide > 1)
|
|
bsi->rdstat[i + 1][mode_idx].mvs[ref].as_int =
|
|
mode_mv[this_mode][ref].as_int;
|
|
if (num_4x4_blocks_high > 1)
|
|
bsi->rdstat[i + 2][mode_idx].mvs[ref].as_int =
|
|
mode_mv[this_mode][ref].as_int;
|
|
}
|
|
|
|
// Trap vectors that reach beyond the UMV borders
|
|
if (mv_check_bounds(x, &mode_mv[this_mode][0].as_mv) ||
|
|
(has_second_rf &&
|
|
mv_check_bounds(x, &mode_mv[this_mode][1].as_mv)))
|
|
continue;
|
|
|
|
if (filter_idx > 0) {
|
|
BEST_SEG_INFO *ref_bsi = bsi_buf;
|
|
subpelmv = 0;
|
|
have_ref = 1;
|
|
|
|
for (ref = 0; ref < 1 + has_second_rf; ++ref) {
|
|
subpelmv |= mv_has_subpel(&mode_mv[this_mode][ref].as_mv);
|
|
have_ref &= mode_mv[this_mode][ref].as_int ==
|
|
ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int;
|
|
}
|
|
|
|
if (filter_idx > 1 && !subpelmv && !have_ref) {
|
|
ref_bsi = bsi_buf + 1;
|
|
have_ref = 1;
|
|
for (ref = 0; ref < 1 + has_second_rf; ++ref)
|
|
have_ref &= mode_mv[this_mode][ref].as_int ==
|
|
ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int;
|
|
}
|
|
|
|
if (!subpelmv && have_ref &&
|
|
ref_bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) {
|
|
memcpy(&bsi->rdstat[i][mode_idx], &ref_bsi->rdstat[i][mode_idx],
|
|
sizeof(SEG_RDSTAT));
|
|
if (num_4x4_blocks_wide > 1)
|
|
bsi->rdstat[i + 1][mode_idx].eobs =
|
|
ref_bsi->rdstat[i + 1][mode_idx].eobs;
|
|
if (num_4x4_blocks_high > 1)
|
|
bsi->rdstat[i + 2][mode_idx].eobs =
|
|
ref_bsi->rdstat[i + 2][mode_idx].eobs;
|
|
|
|
if (bsi->rdstat[i][mode_idx].brdcost < best_rd) {
|
|
mode_selected = this_mode;
|
|
best_rd = bsi->rdstat[i][mode_idx].brdcost;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
bsi->rdstat[i][mode_idx].brdcost =
|
|
encode_inter_mb_segment(cpi, x,
|
|
bsi->segment_rd - this_segment_rd, i,
|
|
&bsi->rdstat[i][mode_idx].byrate,
|
|
&bsi->rdstat[i][mode_idx].bdist,
|
|
&bsi->rdstat[i][mode_idx].bsse,
|
|
bsi->rdstat[i][mode_idx].ta,
|
|
bsi->rdstat[i][mode_idx].tl,
|
|
mi_row, mi_col);
|
|
if (bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) {
|
|
bsi->rdstat[i][mode_idx].brdcost += RDCOST(x->rdmult, x->rddiv,
|
|
bsi->rdstat[i][mode_idx].brate, 0);
|
|
bsi->rdstat[i][mode_idx].brate += bsi->rdstat[i][mode_idx].byrate;
|
|
bsi->rdstat[i][mode_idx].eobs = p->eobs[i];
|
|
if (num_4x4_blocks_wide > 1)
|
|
bsi->rdstat[i + 1][mode_idx].eobs = p->eobs[i + 1];
|
|
if (num_4x4_blocks_high > 1)
|
|
bsi->rdstat[i + 2][mode_idx].eobs = p->eobs[i + 2];
|
|
}
|
|
|
|
if (bsi->rdstat[i][mode_idx].brdcost < best_rd) {
|
|
mode_selected = this_mode;
|
|
best_rd = bsi->rdstat[i][mode_idx].brdcost;
|
|
}
|
|
} /*for each 4x4 mode*/
|
|
|
|
if (best_rd == INT64_MAX) {
|
|
int iy, midx;
|
|
for (iy = i + 1; iy < 4; ++iy)
|
|
for (midx = 0; midx < INTER_MODES; ++midx)
|
|
bsi->rdstat[iy][midx].brdcost = INT64_MAX;
|
|
bsi->segment_rd = INT64_MAX;
|
|
return INT64_MAX;
|
|
}
|
|
|
|
mode_idx = INTER_OFFSET(mode_selected);
|
|
memcpy(t_above, bsi->rdstat[i][mode_idx].ta, sizeof(t_above));
|
|
memcpy(t_left, bsi->rdstat[i][mode_idx].tl, sizeof(t_left));
|
|
|
|
set_and_cost_bmi_mvs(cpi, x, xd, i, mode_selected, mode_mv[mode_selected],
|
|
frame_mv, seg_mvs[i], bsi->ref_mv, x->nmvjointcost,
|
|
x->mvcost);
|
|
|
|
br += bsi->rdstat[i][mode_idx].brate;
|
|
bd += bsi->rdstat[i][mode_idx].bdist;
|
|
block_sse += bsi->rdstat[i][mode_idx].bsse;
|
|
segmentyrate += bsi->rdstat[i][mode_idx].byrate;
|
|
this_segment_rd += bsi->rdstat[i][mode_idx].brdcost;
|
|
|
|
if (this_segment_rd > bsi->segment_rd) {
|
|
int iy, midx;
|
|
for (iy = i + 1; iy < 4; ++iy)
|
|
for (midx = 0; midx < INTER_MODES; ++midx)
|
|
bsi->rdstat[iy][midx].brdcost = INT64_MAX;
|
|
bsi->segment_rd = INT64_MAX;
|
|
return INT64_MAX;
|
|
}
|
|
}
|
|
} /* for each label */
|
|
|
|
bsi->r = br;
|
|
bsi->d = bd;
|
|
bsi->segment_yrate = segmentyrate;
|
|
bsi->segment_rd = this_segment_rd;
|
|
bsi->sse = block_sse;
|
|
|
|
// update the coding decisions
|
|
for (k = 0; k < 4; ++k)
|
|
bsi->modes[k] = mi->bmi[k].as_mode;
|
|
|
|
if (bsi->segment_rd > best_rd)
|
|
return INT64_MAX;
|
|
/* set it to the best */
|
|
for (i = 0; i < 4; i++) {
|
|
mode_idx = INTER_OFFSET(bsi->modes[i]);
|
|
mi->bmi[i].as_mv[0].as_int = bsi->rdstat[i][mode_idx].mvs[0].as_int;
|
|
if (has_second_ref(mi))
|
|
mi->bmi[i].as_mv[1].as_int = bsi->rdstat[i][mode_idx].mvs[1].as_int;
|
|
x->plane[0].eobs[i] = bsi->rdstat[i][mode_idx].eobs;
|
|
mi->bmi[i].as_mode = bsi->modes[i];
|
|
}
|
|
|
|
/*
|
|
* used to set mbmi->mv.as_int
|
|
*/
|
|
*returntotrate = bsi->r;
|
|
*returndistortion = bsi->d;
|
|
*returnyrate = bsi->segment_yrate;
|
|
*skippable = vp9_is_skippable_in_plane(x, BLOCK_8X8, 0);
|
|
*psse = bsi->sse;
|
|
mi->mode = bsi->modes[3];
|
|
|
|
return bsi->segment_rd;
|
|
}
|
|
|
|
static void estimate_ref_frame_costs(const VP9_COMMON *cm,
|
|
const MACROBLOCKD *xd,
|
|
int segment_id,
|
|
unsigned int *ref_costs_single,
|
|
unsigned int *ref_costs_comp,
|
|
vpx_prob *comp_mode_p) {
|
|
int seg_ref_active = segfeature_active(&cm->seg, segment_id,
|
|
SEG_LVL_REF_FRAME);
|
|
if (seg_ref_active) {
|
|
memset(ref_costs_single, 0, MAX_REF_FRAMES * sizeof(*ref_costs_single));
|
|
memset(ref_costs_comp, 0, MAX_REF_FRAMES * sizeof(*ref_costs_comp));
|
|
*comp_mode_p = 128;
|
|
} else {
|
|
vpx_prob intra_inter_p = vp9_get_intra_inter_prob(cm, xd);
|
|
vpx_prob comp_inter_p = 128;
|
|
|
|
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
|
|
comp_inter_p = vp9_get_reference_mode_prob(cm, xd);
|
|
*comp_mode_p = comp_inter_p;
|
|
} else {
|
|
*comp_mode_p = 128;
|
|
}
|
|
|
|
ref_costs_single[INTRA_FRAME] = vp9_cost_bit(intra_inter_p, 0);
|
|
|
|
if (cm->reference_mode != COMPOUND_REFERENCE) {
|
|
vpx_prob ref_single_p1 = vp9_get_pred_prob_single_ref_p1(cm, xd);
|
|
vpx_prob ref_single_p2 = vp9_get_pred_prob_single_ref_p2(cm, xd);
|
|
unsigned int base_cost = vp9_cost_bit(intra_inter_p, 1);
|
|
|
|
if (cm->reference_mode == REFERENCE_MODE_SELECT)
|
|
base_cost += vp9_cost_bit(comp_inter_p, 0);
|
|
|
|
ref_costs_single[LAST_FRAME] = ref_costs_single[GOLDEN_FRAME] =
|
|
ref_costs_single[ALTREF_FRAME] = base_cost;
|
|
ref_costs_single[LAST_FRAME] += vp9_cost_bit(ref_single_p1, 0);
|
|
ref_costs_single[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p1, 1);
|
|
ref_costs_single[ALTREF_FRAME] += vp9_cost_bit(ref_single_p1, 1);
|
|
ref_costs_single[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p2, 0);
|
|
ref_costs_single[ALTREF_FRAME] += vp9_cost_bit(ref_single_p2, 1);
|
|
} else {
|
|
ref_costs_single[LAST_FRAME] = 512;
|
|
ref_costs_single[GOLDEN_FRAME] = 512;
|
|
ref_costs_single[ALTREF_FRAME] = 512;
|
|
}
|
|
if (cm->reference_mode != SINGLE_REFERENCE) {
|
|
vpx_prob ref_comp_p = vp9_get_pred_prob_comp_ref_p(cm, xd);
|
|
unsigned int base_cost = vp9_cost_bit(intra_inter_p, 1);
|
|
|
|
if (cm->reference_mode == REFERENCE_MODE_SELECT)
|
|
base_cost += vp9_cost_bit(comp_inter_p, 1);
|
|
|
|
ref_costs_comp[LAST_FRAME] = base_cost + vp9_cost_bit(ref_comp_p, 0);
|
|
ref_costs_comp[GOLDEN_FRAME] = base_cost + vp9_cost_bit(ref_comp_p, 1);
|
|
} else {
|
|
ref_costs_comp[LAST_FRAME] = 512;
|
|
ref_costs_comp[GOLDEN_FRAME] = 512;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
|
|
int mode_index,
|
|
int64_t comp_pred_diff[REFERENCE_MODES],
|
|
int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS],
|
|
int skippable) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
|
|
// Take a snapshot of the coding context so it can be
|
|
// restored if we decide to encode this way
|
|
ctx->skip = x->skip;
|
|
ctx->skippable = skippable;
|
|
ctx->best_mode_index = mode_index;
|
|
ctx->mic = *xd->mi[0];
|
|
ctx->mbmi_ext = *x->mbmi_ext;
|
|
ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_REFERENCE];
|
|
ctx->comp_pred_diff = (int)comp_pred_diff[COMPOUND_REFERENCE];
|
|
ctx->hybrid_pred_diff = (int)comp_pred_diff[REFERENCE_MODE_SELECT];
|
|
|
|
memcpy(ctx->best_filter_diff, best_filter_diff,
|
|
sizeof(*best_filter_diff) * SWITCHABLE_FILTER_CONTEXTS);
|
|
}
|
|
|
|
static void setup_buffer_inter(VP9_COMP *cpi, MACROBLOCK *x,
|
|
MV_REFERENCE_FRAME ref_frame,
|
|
BLOCK_SIZE block_size,
|
|
int mi_row, int mi_col,
|
|
int_mv frame_nearest_mv[MAX_REF_FRAMES],
|
|
int_mv frame_near_mv[MAX_REF_FRAMES],
|
|
struct buf_2d yv12_mb[4][MAX_MB_PLANE]) {
|
|
const VP9_COMMON *cm = &cpi->common;
|
|
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *const mi = xd->mi[0];
|
|
int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame];
|
|
const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf;
|
|
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
|
|
|
|
assert(yv12 != NULL);
|
|
|
|
// TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this
|
|
// use the UV scaling factors.
|
|
vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf);
|
|
|
|
// Gets an initial list of candidate vectors from neighbours and orders them
|
|
vp9_find_mv_refs(cm, xd, mi, ref_frame, candidates, mi_row, mi_col,
|
|
mbmi_ext->mode_context);
|
|
|
|
// Candidate refinement carried out at encoder and decoder
|
|
vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates,
|
|
&frame_nearest_mv[ref_frame],
|
|
&frame_near_mv[ref_frame]);
|
|
|
|
// Further refinement that is encode side only to test the top few candidates
|
|
// in full and choose the best as the centre point for subsequent searches.
|
|
// The current implementation doesn't support scaling.
|
|
if (!vp9_is_scaled(sf) && block_size >= BLOCK_8X8)
|
|
vp9_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride,
|
|
ref_frame, block_size);
|
|
}
|
|
|
|
static void single_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
|
|
BLOCK_SIZE bsize,
|
|
int mi_row, int mi_col,
|
|
int_mv *tmp_mv, int *rate_mv) {
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
const VP9_COMMON *cm = &cpi->common;
|
|
MODE_INFO *mi = xd->mi[0];
|
|
struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0, 0}};
|
|
int bestsme = INT_MAX;
|
|
int step_param;
|
|
int sadpb = x->sadperbit16;
|
|
MV mvp_full;
|
|
int ref = mi->ref_frame[0];
|
|
MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv;
|
|
|
|
int tmp_col_min = x->mv_col_min;
|
|
int tmp_col_max = x->mv_col_max;
|
|
int tmp_row_min = x->mv_row_min;
|
|
int tmp_row_max = x->mv_row_max;
|
|
int cost_list[5];
|
|
|
|
const YV12_BUFFER_CONFIG *scaled_ref_frame = vp9_get_scaled_ref_frame(cpi,
|
|
ref);
|
|
|
|
MV pred_mv[3];
|
|
pred_mv[0] = x->mbmi_ext->ref_mvs[ref][0].as_mv;
|
|
pred_mv[1] = x->mbmi_ext->ref_mvs[ref][1].as_mv;
|
|
pred_mv[2] = x->pred_mv[ref];
|
|
|
|
if (scaled_ref_frame) {
|
|
int i;
|
|
// Swap out the reference frame for a version that's been scaled to
|
|
// match the resolution of the current frame, allowing the existing
|
|
// motion search code to be used without additional modifications.
|
|
for (i = 0; i < MAX_MB_PLANE; i++)
|
|
backup_yv12[i] = xd->plane[i].pre[0];
|
|
|
|
vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL);
|
|
}
|
|
|
|
vp9_set_mv_search_range(x, &ref_mv);
|
|
|
|
// Work out the size of the first step in the mv step search.
|
|
// 0 here is maximum length first step. 1 is VPXMAX >> 1 etc.
|
|
if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) {
|
|
// Take wtd average of the step_params based on the last frame's
|
|
// max mv magnitude and that based on the best ref mvs of the current
|
|
// block for the given reference.
|
|
step_param = (vp9_init_search_range(x->max_mv_context[ref]) +
|
|
cpi->mv_step_param) / 2;
|
|
} else {
|
|
step_param = cpi->mv_step_param;
|
|
}
|
|
|
|
if (cpi->sf.adaptive_motion_search && bsize < BLOCK_64X64) {
|
|
int boffset =
|
|
2 * (b_width_log2_lookup[BLOCK_64X64] -
|
|
VPXMIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize]));
|
|
step_param = VPXMAX(step_param, boffset);
|
|
}
|
|
|
|
if (cpi->sf.adaptive_motion_search) {
|
|
int bwl = b_width_log2_lookup[bsize];
|
|
int bhl = b_height_log2_lookup[bsize];
|
|
int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4);
|
|
|
|
if (tlevel < 5)
|
|
step_param += 2;
|
|
|
|
// prev_mv_sad is not setup for dynamically scaled frames.
|
|
if (cpi->oxcf.resize_mode != RESIZE_DYNAMIC) {
|
|
int i;
|
|
for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) {
|
|
if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) {
|
|
x->pred_mv[ref].row = 0;
|
|
x->pred_mv[ref].col = 0;
|
|
tmp_mv->as_int = INVALID_MV;
|
|
|
|
if (scaled_ref_frame) {
|
|
int i;
|
|
for (i = 0; i < MAX_MB_PLANE; ++i)
|
|
xd->plane[i].pre[0] = backup_yv12[i];
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
mvp_full = pred_mv[x->mv_best_ref_index[ref]];
|
|
|
|
mvp_full.col >>= 3;
|
|
mvp_full.row >>= 3;
|
|
|
|
bestsme = vp9_full_pixel_search(cpi, x, bsize, &mvp_full, step_param, sadpb,
|
|
cond_cost_list(cpi, cost_list),
|
|
&ref_mv, &tmp_mv->as_mv, INT_MAX, 1);
|
|
|
|
x->mv_col_min = tmp_col_min;
|
|
x->mv_col_max = tmp_col_max;
|
|
x->mv_row_min = tmp_row_min;
|
|
x->mv_row_max = tmp_row_max;
|
|
|
|
if (bestsme < INT_MAX) {
|
|
int dis; /* TODO: use dis in distortion calculation later. */
|
|
cpi->find_fractional_mv_step(x, &tmp_mv->as_mv, &ref_mv,
|
|
cm->allow_high_precision_mv,
|
|
x->errorperbit,
|
|
&cpi->fn_ptr[bsize],
|
|
cpi->sf.mv.subpel_force_stop,
|
|
cpi->sf.mv.subpel_iters_per_step,
|
|
cond_cost_list(cpi, cost_list),
|
|
x->nmvjointcost, x->mvcost,
|
|
&dis, &x->pred_sse[ref], NULL, 0, 0);
|
|
}
|
|
*rate_mv = vp9_mv_bit_cost(&tmp_mv->as_mv, &ref_mv,
|
|
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
|
|
|
|
if (cpi->sf.adaptive_motion_search)
|
|
x->pred_mv[ref] = tmp_mv->as_mv;
|
|
|
|
if (scaled_ref_frame) {
|
|
int i;
|
|
for (i = 0; i < MAX_MB_PLANE; i++)
|
|
xd->plane[i].pre[0] = backup_yv12[i];
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static INLINE void restore_dst_buf(MACROBLOCKD *xd,
|
|
uint8_t *orig_dst[MAX_MB_PLANE],
|
|
int orig_dst_stride[MAX_MB_PLANE]) {
|
|
int i;
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
xd->plane[i].dst.buf = orig_dst[i];
|
|
xd->plane[i].dst.stride = orig_dst_stride[i];
|
|
}
|
|
}
|
|
|
|
// In some situations we want to discount tha pparent cost of a new motion
|
|
// vector. Where there is a subtle motion field and especially where there is
|
|
// low spatial complexity then it can be hard to cover the cost of a new motion
|
|
// vector in a single block, even if that motion vector reduces distortion.
|
|
// However, once established that vector may be usable through the nearest and
|
|
// near mv modes to reduce distortion in subsequent blocks and also improve
|
|
// visual quality.
|
|
static int discount_newmv_test(const VP9_COMP *cpi,
|
|
int this_mode,
|
|
int_mv this_mv,
|
|
int_mv (*mode_mv)[MAX_REF_FRAMES],
|
|
int ref_frame) {
|
|
return (!cpi->rc.is_src_frame_alt_ref &&
|
|
(this_mode == NEWMV) &&
|
|
(this_mv.as_int != 0) &&
|
|
((mode_mv[NEARESTMV][ref_frame].as_int == 0) ||
|
|
(mode_mv[NEARESTMV][ref_frame].as_int == INVALID_MV)) &&
|
|
((mode_mv[NEARMV][ref_frame].as_int == 0) ||
|
|
(mode_mv[NEARMV][ref_frame].as_int == INVALID_MV)));
|
|
}
|
|
|
|
static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
|
|
BLOCK_SIZE bsize,
|
|
int *rate2, int64_t *distortion,
|
|
int *skippable,
|
|
int *rate_y, int *rate_uv,
|
|
int *disable_skip,
|
|
int_mv (*mode_mv)[MAX_REF_FRAMES],
|
|
int mi_row, int mi_col,
|
|
int_mv single_newmv[MAX_REF_FRAMES],
|
|
INTERP_FILTER (*single_filter)[MAX_REF_FRAMES],
|
|
int (*single_skippable)[MAX_REF_FRAMES],
|
|
int64_t *psse,
|
|
const int64_t ref_best_rd,
|
|
int64_t *mask_filter,
|
|
int64_t filter_cache[]) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
MODE_INFO *mi = xd->mi[0];
|
|
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
|
|
const int is_comp_pred = has_second_ref(mi);
|
|
const int this_mode = mi->mode;
|
|
int_mv *frame_mv = mode_mv[this_mode];
|
|
int i;
|
|
int refs[2] = { mi->ref_frame[0],
|
|
(mi->ref_frame[1] < 0 ? 0 : mi->ref_frame[1]) };
|
|
int_mv cur_mv[2];
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
DECLARE_ALIGNED(16, uint16_t, tmp_buf16[MAX_MB_PLANE * 64 * 64]);
|
|
uint8_t *tmp_buf;
|
|
#else
|
|
DECLARE_ALIGNED(16, uint8_t, tmp_buf[MAX_MB_PLANE * 64 * 64]);
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
int pred_exists = 0;
|
|
int intpel_mv;
|
|
int64_t rd, tmp_rd, best_rd = INT64_MAX;
|
|
int best_needs_copy = 0;
|
|
uint8_t *orig_dst[MAX_MB_PLANE];
|
|
int orig_dst_stride[MAX_MB_PLANE];
|
|
int rs = 0;
|
|
INTERP_FILTER best_filter = SWITCHABLE;
|
|
uint8_t skip_txfm[MAX_MB_PLANE << 2] = {0};
|
|
int64_t bsse[MAX_MB_PLANE << 2] = {0};
|
|
|
|
int bsl = mi_width_log2_lookup[bsize];
|
|
int pred_filter_search = cpi->sf.cb_pred_filter_search ?
|
|
(((mi_row + mi_col) >> bsl) +
|
|
get_chessboard_index(cm->current_video_frame)) & 0x1 : 0;
|
|
|
|
int skip_txfm_sb = 0;
|
|
int64_t skip_sse_sb = INT64_MAX;
|
|
int64_t distortion_y = 0, distortion_uv = 0;
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
tmp_buf = CONVERT_TO_BYTEPTR(tmp_buf16);
|
|
} else {
|
|
tmp_buf = (uint8_t *)tmp_buf16;
|
|
}
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
if (pred_filter_search) {
|
|
INTERP_FILTER af = SWITCHABLE, lf = SWITCHABLE;
|
|
if (xd->above_mi)
|
|
af = xd->above_mi->interp_filter;
|
|
if (xd->left_mi)
|
|
lf = xd->left_mi->interp_filter;
|
|
|
|
if ((this_mode != NEWMV) || (af == lf))
|
|
best_filter = af;
|
|
}
|
|
|
|
if (is_comp_pred) {
|
|
if (frame_mv[refs[0]].as_int == INVALID_MV ||
|
|
frame_mv[refs[1]].as_int == INVALID_MV)
|
|
return INT64_MAX;
|
|
|
|
if (cpi->sf.adaptive_mode_search) {
|
|
if (single_filter[this_mode][refs[0]] ==
|
|
single_filter[this_mode][refs[1]])
|
|
best_filter = single_filter[this_mode][refs[0]];
|
|
}
|
|
}
|
|
|
|
if (this_mode == NEWMV) {
|
|
int rate_mv;
|
|
if (is_comp_pred) {
|
|
// Initialize mv using single prediction mode result.
|
|
frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int;
|
|
frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int;
|
|
|
|
if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
|
|
joint_motion_search(cpi, x, bsize, frame_mv,
|
|
mi_row, mi_col, single_newmv, &rate_mv);
|
|
} else {
|
|
rate_mv = vp9_mv_bit_cost(&frame_mv[refs[0]].as_mv,
|
|
&x->mbmi_ext->ref_mvs[refs[0]][0].as_mv,
|
|
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
|
|
rate_mv += vp9_mv_bit_cost(&frame_mv[refs[1]].as_mv,
|
|
&x->mbmi_ext->ref_mvs[refs[1]][0].as_mv,
|
|
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
|
|
}
|
|
*rate2 += rate_mv;
|
|
} else {
|
|
int_mv tmp_mv;
|
|
single_motion_search(cpi, x, bsize, mi_row, mi_col,
|
|
&tmp_mv, &rate_mv);
|
|
if (tmp_mv.as_int == INVALID_MV)
|
|
return INT64_MAX;
|
|
|
|
frame_mv[refs[0]].as_int =
|
|
xd->mi[0]->bmi[0].as_mv[0].as_int = tmp_mv.as_int;
|
|
single_newmv[refs[0]].as_int = tmp_mv.as_int;
|
|
|
|
// Estimate the rate implications of a new mv but discount this
|
|
// under certain circumstances where we want to help initiate a weak
|
|
// motion field, where the distortion gain for a single block may not
|
|
// be enough to overcome the cost of a new mv.
|
|
if (discount_newmv_test(cpi, this_mode, tmp_mv, mode_mv, refs[0])) {
|
|
*rate2 += VPXMAX((rate_mv / NEW_MV_DISCOUNT_FACTOR), 1);
|
|
} else {
|
|
*rate2 += rate_mv;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < is_comp_pred + 1; ++i) {
|
|
cur_mv[i] = frame_mv[refs[i]];
|
|
// Clip "next_nearest" so that it does not extend to far out of image
|
|
if (this_mode != NEWMV)
|
|
clamp_mv2(&cur_mv[i].as_mv, xd);
|
|
|
|
if (mv_check_bounds(x, &cur_mv[i].as_mv))
|
|
return INT64_MAX;
|
|
mi->mv[i].as_int = cur_mv[i].as_int;
|
|
}
|
|
|
|
// do first prediction into the destination buffer. Do the next
|
|
// prediction into a temporary buffer. Then keep track of which one
|
|
// of these currently holds the best predictor, and use the other
|
|
// one for future predictions. In the end, copy from tmp_buf to
|
|
// dst if necessary.
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
orig_dst[i] = xd->plane[i].dst.buf;
|
|
orig_dst_stride[i] = xd->plane[i].dst.stride;
|
|
}
|
|
|
|
// We don't include the cost of the second reference here, because there
|
|
// are only two options: Last/ARF or Golden/ARF; The second one is always
|
|
// known, which is ARF.
|
|
//
|
|
// Under some circumstances we discount the cost of new mv mode to encourage
|
|
// initiation of a motion field.
|
|
if (discount_newmv_test(cpi, this_mode, frame_mv[refs[0]],
|
|
mode_mv, refs[0])) {
|
|
*rate2 += VPXMIN(cost_mv_ref(cpi, this_mode,
|
|
mbmi_ext->mode_context[refs[0]]),
|
|
cost_mv_ref(cpi, NEARESTMV,
|
|
mbmi_ext->mode_context[refs[0]]));
|
|
} else {
|
|
*rate2 += cost_mv_ref(cpi, this_mode, mbmi_ext->mode_context[refs[0]]);
|
|
}
|
|
|
|
if (RDCOST(x->rdmult, x->rddiv, *rate2, 0) > ref_best_rd &&
|
|
mi->mode != NEARESTMV)
|
|
return INT64_MAX;
|
|
|
|
pred_exists = 0;
|
|
// Are all MVs integer pel for Y and UV
|
|
intpel_mv = !mv_has_subpel(&mi->mv[0].as_mv);
|
|
if (is_comp_pred)
|
|
intpel_mv &= !mv_has_subpel(&mi->mv[1].as_mv);
|
|
|
|
// Search for best switchable filter by checking the variance of
|
|
// pred error irrespective of whether the filter will be used
|
|
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
|
|
filter_cache[i] = INT64_MAX;
|
|
|
|
if (cm->interp_filter != BILINEAR) {
|
|
if (x->source_variance < cpi->sf.disable_filter_search_var_thresh) {
|
|
best_filter = EIGHTTAP;
|
|
} else if (best_filter == SWITCHABLE) {
|
|
int newbest;
|
|
int tmp_rate_sum = 0;
|
|
int64_t tmp_dist_sum = 0;
|
|
|
|
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
|
|
int j;
|
|
int64_t rs_rd;
|
|
int tmp_skip_sb = 0;
|
|
int64_t tmp_skip_sse = INT64_MAX;
|
|
|
|
mi->interp_filter = i;
|
|
rs = vp9_get_switchable_rate(cpi, xd);
|
|
rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0);
|
|
|
|
if (i > 0 && intpel_mv) {
|
|
rd = RDCOST(x->rdmult, x->rddiv, tmp_rate_sum, tmp_dist_sum);
|
|
filter_cache[i] = rd;
|
|
filter_cache[SWITCHABLE_FILTERS] =
|
|
VPXMIN(filter_cache[SWITCHABLE_FILTERS], rd + rs_rd);
|
|
if (cm->interp_filter == SWITCHABLE)
|
|
rd += rs_rd;
|
|
*mask_filter = VPXMAX(*mask_filter, rd);
|
|
} else {
|
|
int rate_sum = 0;
|
|
int64_t dist_sum = 0;
|
|
if (i > 0 && cpi->sf.adaptive_interp_filter_search &&
|
|
(cpi->sf.interp_filter_search_mask & (1 << i))) {
|
|
rate_sum = INT_MAX;
|
|
dist_sum = INT64_MAX;
|
|
continue;
|
|
}
|
|
|
|
if ((cm->interp_filter == SWITCHABLE &&
|
|
(!i || best_needs_copy)) ||
|
|
(cm->interp_filter != SWITCHABLE &&
|
|
(cm->interp_filter == mi->interp_filter ||
|
|
(i == 0 && intpel_mv)))) {
|
|
restore_dst_buf(xd, orig_dst, orig_dst_stride);
|
|
} else {
|
|
for (j = 0; j < MAX_MB_PLANE; j++) {
|
|
xd->plane[j].dst.buf = tmp_buf + j * 64 * 64;
|
|
xd->plane[j].dst.stride = 64;
|
|
}
|
|
}
|
|
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
|
|
model_rd_for_sb(cpi, bsize, x, xd, &rate_sum, &dist_sum,
|
|
&tmp_skip_sb, &tmp_skip_sse);
|
|
|
|
rd = RDCOST(x->rdmult, x->rddiv, rate_sum, dist_sum);
|
|
filter_cache[i] = rd;
|
|
filter_cache[SWITCHABLE_FILTERS] =
|
|
VPXMIN(filter_cache[SWITCHABLE_FILTERS], rd + rs_rd);
|
|
if (cm->interp_filter == SWITCHABLE)
|
|
rd += rs_rd;
|
|
*mask_filter = VPXMAX(*mask_filter, rd);
|
|
|
|
if (i == 0 && intpel_mv) {
|
|
tmp_rate_sum = rate_sum;
|
|
tmp_dist_sum = dist_sum;
|
|
}
|
|
}
|
|
|
|
if (i == 0 && cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) {
|
|
if (rd / 2 > ref_best_rd) {
|
|
restore_dst_buf(xd, orig_dst, orig_dst_stride);
|
|
return INT64_MAX;
|
|
}
|
|
}
|
|
newbest = i == 0 || rd < best_rd;
|
|
|
|
if (newbest) {
|
|
best_rd = rd;
|
|
best_filter = mi->interp_filter;
|
|
if (cm->interp_filter == SWITCHABLE && i && !intpel_mv)
|
|
best_needs_copy = !best_needs_copy;
|
|
}
|
|
|
|
if ((cm->interp_filter == SWITCHABLE && newbest) ||
|
|
(cm->interp_filter != SWITCHABLE &&
|
|
cm->interp_filter == mi->interp_filter)) {
|
|
pred_exists = 1;
|
|
tmp_rd = best_rd;
|
|
|
|
skip_txfm_sb = tmp_skip_sb;
|
|
skip_sse_sb = tmp_skip_sse;
|
|
memcpy(skip_txfm, x->skip_txfm, sizeof(skip_txfm));
|
|
memcpy(bsse, x->bsse, sizeof(bsse));
|
|
}
|
|
}
|
|
restore_dst_buf(xd, orig_dst, orig_dst_stride);
|
|
}
|
|
}
|
|
// Set the appropriate filter
|
|
mi->interp_filter = cm->interp_filter != SWITCHABLE ?
|
|
cm->interp_filter : best_filter;
|
|
rs = cm->interp_filter == SWITCHABLE ? vp9_get_switchable_rate(cpi, xd) : 0;
|
|
|
|
if (pred_exists) {
|
|
if (best_needs_copy) {
|
|
// again temporarily set the buffers to local memory to prevent a memcpy
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
xd->plane[i].dst.buf = tmp_buf + i * 64 * 64;
|
|
xd->plane[i].dst.stride = 64;
|
|
}
|
|
}
|
|
rd = tmp_rd + RDCOST(x->rdmult, x->rddiv, rs, 0);
|
|
} else {
|
|
int tmp_rate;
|
|
int64_t tmp_dist;
|
|
// Handles the special case when a filter that is not in the
|
|
// switchable list (ex. bilinear) is indicated at the frame level, or
|
|
// skip condition holds.
|
|
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
|
|
model_rd_for_sb(cpi, bsize, x, xd, &tmp_rate, &tmp_dist,
|
|
&skip_txfm_sb, &skip_sse_sb);
|
|
rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate, tmp_dist);
|
|
memcpy(skip_txfm, x->skip_txfm, sizeof(skip_txfm));
|
|
memcpy(bsse, x->bsse, sizeof(bsse));
|
|
}
|
|
|
|
if (!is_comp_pred)
|
|
single_filter[this_mode][refs[0]] = mi->interp_filter;
|
|
|
|
if (cpi->sf.adaptive_mode_search)
|
|
if (is_comp_pred)
|
|
if (single_skippable[this_mode][refs[0]] &&
|
|
single_skippable[this_mode][refs[1]])
|
|
memset(skip_txfm, SKIP_TXFM_AC_DC, sizeof(skip_txfm));
|
|
|
|
if (cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) {
|
|
// if current pred_error modeled rd is substantially more than the best
|
|
// so far, do not bother doing full rd
|
|
if (rd / 2 > ref_best_rd) {
|
|
restore_dst_buf(xd, orig_dst, orig_dst_stride);
|
|
return INT64_MAX;
|
|
}
|
|
}
|
|
|
|
if (cm->interp_filter == SWITCHABLE)
|
|
*rate2 += rs;
|
|
|
|
memcpy(x->skip_txfm, skip_txfm, sizeof(skip_txfm));
|
|
memcpy(x->bsse, bsse, sizeof(bsse));
|
|
|
|
if (!skip_txfm_sb) {
|
|
int skippable_y, skippable_uv;
|
|
int64_t sseuv = INT64_MAX;
|
|
int64_t rdcosty = INT64_MAX;
|
|
|
|
// Y cost and distortion
|
|
vp9_subtract_plane(x, bsize, 0);
|
|
super_block_yrd(cpi, x, rate_y, &distortion_y, &skippable_y, psse,
|
|
bsize, ref_best_rd);
|
|
|
|
if (*rate_y == INT_MAX) {
|
|
*rate2 = INT_MAX;
|
|
*distortion = INT64_MAX;
|
|
restore_dst_buf(xd, orig_dst, orig_dst_stride);
|
|
return INT64_MAX;
|
|
}
|
|
|
|
*rate2 += *rate_y;
|
|
*distortion += distortion_y;
|
|
|
|
rdcosty = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion);
|
|
rdcosty = VPXMIN(rdcosty, RDCOST(x->rdmult, x->rddiv, 0, *psse));
|
|
|
|
if (!super_block_uvrd(cpi, x, rate_uv, &distortion_uv, &skippable_uv,
|
|
&sseuv, bsize, ref_best_rd - rdcosty)) {
|
|
*rate2 = INT_MAX;
|
|
*distortion = INT64_MAX;
|
|
restore_dst_buf(xd, orig_dst, orig_dst_stride);
|
|
return INT64_MAX;
|
|
}
|
|
|
|
*psse += sseuv;
|
|
*rate2 += *rate_uv;
|
|
*distortion += distortion_uv;
|
|
*skippable = skippable_y && skippable_uv;
|
|
} else {
|
|
x->skip = 1;
|
|
*disable_skip = 1;
|
|
|
|
// The cost of skip bit needs to be added.
|
|
*rate2 += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
|
|
|
|
*distortion = skip_sse_sb;
|
|
}
|
|
|
|
if (!is_comp_pred)
|
|
single_skippable[this_mode][refs[0]] = *skippable;
|
|
|
|
restore_dst_buf(xd, orig_dst, orig_dst_stride);
|
|
return 0; // The rate-distortion cost will be re-calculated by caller.
|
|
}
|
|
|
|
void vp9_rd_pick_intra_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
|
|
RD_COST *rd_cost, BLOCK_SIZE bsize,
|
|
PICK_MODE_CONTEXT *ctx, int64_t best_rd) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
struct macroblockd_plane *const pd = xd->plane;
|
|
int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0;
|
|
int y_skip = 0, uv_skip = 0;
|
|
int64_t dist_y = 0, dist_uv = 0;
|
|
TX_SIZE max_uv_tx_size;
|
|
x->skip_encode = 0;
|
|
ctx->skip = 0;
|
|
xd->mi[0]->ref_frame[0] = INTRA_FRAME;
|
|
xd->mi[0]->ref_frame[1] = NONE;
|
|
|
|
if (bsize >= BLOCK_8X8) {
|
|
if (rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly,
|
|
&dist_y, &y_skip, bsize,
|
|
best_rd) >= best_rd) {
|
|
rd_cost->rate = INT_MAX;
|
|
return;
|
|
}
|
|
} else {
|
|
y_skip = 0;
|
|
if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate_y, &rate_y_tokenonly,
|
|
&dist_y, best_rd) >= best_rd) {
|
|
rd_cost->rate = INT_MAX;
|
|
return;
|
|
}
|
|
}
|
|
max_uv_tx_size = get_uv_tx_size_impl(xd->mi[0]->tx_size, bsize,
|
|
pd[1].subsampling_x,
|
|
pd[1].subsampling_y);
|
|
rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv, &rate_uv_tokenonly,
|
|
&dist_uv, &uv_skip, VPXMAX(BLOCK_8X8, bsize),
|
|
max_uv_tx_size);
|
|
|
|
if (y_skip && uv_skip) {
|
|
rd_cost->rate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly +
|
|
vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
|
|
rd_cost->dist = dist_y + dist_uv;
|
|
} else {
|
|
rd_cost->rate = rate_y + rate_uv +
|
|
vp9_cost_bit(vp9_get_skip_prob(cm, xd), 0);
|
|
rd_cost->dist = dist_y + dist_uv;
|
|
}
|
|
|
|
ctx->mic = *xd->mi[0];
|
|
ctx->mbmi_ext = *x->mbmi_ext;
|
|
rd_cost->rdcost = RDCOST(x->rdmult, x->rddiv, rd_cost->rate, rd_cost->dist);
|
|
}
|
|
|
|
// This function is designed to apply a bias or adjustment to an rd value based
|
|
// on the relative variance of the source and reconstruction.
|
|
#define LOW_VAR_THRESH 16
|
|
#define VLOW_ADJ_MAX 25
|
|
#define VHIGH_ADJ_MAX 8
|
|
static void rd_variance_adjustment(VP9_COMP *cpi,
|
|
MACROBLOCK *x,
|
|
BLOCK_SIZE bsize,
|
|
int64_t *this_rd,
|
|
MV_REFERENCE_FRAME ref_frame,
|
|
unsigned int source_variance) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
unsigned int recon_variance;
|
|
unsigned int absvar_diff = 0;
|
|
int64_t var_error = 0;
|
|
int64_t var_factor = 0;
|
|
|
|
if (*this_rd == INT64_MAX)
|
|
return;
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
recon_variance =
|
|
vp9_high_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize, xd->bd);
|
|
} else {
|
|
recon_variance =
|
|
vp9_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
|
|
}
|
|
#else
|
|
recon_variance =
|
|
vp9_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
if ((source_variance + recon_variance) > LOW_VAR_THRESH) {
|
|
absvar_diff = (source_variance > recon_variance)
|
|
? (source_variance - recon_variance)
|
|
: (recon_variance - source_variance);
|
|
|
|
var_error = ((int64_t)200 * source_variance * recon_variance) /
|
|
(((int64_t)source_variance * source_variance) +
|
|
((int64_t)recon_variance * recon_variance));
|
|
var_error = 100 - var_error;
|
|
}
|
|
|
|
// Source variance above a threshold and ref frame is intra.
|
|
// This case is targeted mainly at discouraging intra modes that give rise
|
|
// to a predictor with a low spatial complexity compared to the source.
|
|
if ((source_variance > LOW_VAR_THRESH) && (ref_frame == INTRA_FRAME) &&
|
|
(source_variance > recon_variance)) {
|
|
var_factor = VPXMIN(absvar_diff, VPXMIN(VLOW_ADJ_MAX, var_error));
|
|
// A second possible case of interest is where the source variance
|
|
// is very low and we wish to discourage false texture or motion trails.
|
|
} else if ((source_variance < (LOW_VAR_THRESH >> 1)) &&
|
|
(recon_variance > source_variance)) {
|
|
var_factor = VPXMIN(absvar_diff, VPXMIN(VHIGH_ADJ_MAX, var_error));
|
|
}
|
|
*this_rd += (*this_rd * var_factor) / 100;
|
|
}
|
|
|
|
|
|
// Do we have an internal image edge (e.g. formatting bars).
|
|
int vp9_internal_image_edge(VP9_COMP *cpi) {
|
|
return (cpi->oxcf.pass == 2) &&
|
|
((cpi->twopass.this_frame_stats.inactive_zone_rows > 0) ||
|
|
(cpi->twopass.this_frame_stats.inactive_zone_cols > 0));
|
|
}
|
|
|
|
// Checks to see if a super block is on a horizontal image edge.
|
|
// In most cases this is the "real" edge unless there are formatting
|
|
// bars embedded in the stream.
|
|
int vp9_active_h_edge(VP9_COMP *cpi, int mi_row, int mi_step) {
|
|
int top_edge = 0;
|
|
int bottom_edge = cpi->common.mi_rows;
|
|
int is_active_h_edge = 0;
|
|
|
|
// For two pass account for any formatting bars detected.
|
|
if (cpi->oxcf.pass == 2) {
|
|
TWO_PASS *twopass = &cpi->twopass;
|
|
|
|
// The inactive region is specified in MBs not mi units.
|
|
// The image edge is in the following MB row.
|
|
top_edge += (int)(twopass->this_frame_stats.inactive_zone_rows * 2);
|
|
|
|
bottom_edge -= (int)(twopass->this_frame_stats.inactive_zone_rows * 2);
|
|
bottom_edge = VPXMAX(top_edge, bottom_edge);
|
|
}
|
|
|
|
if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) ||
|
|
((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) {
|
|
is_active_h_edge = 1;
|
|
}
|
|
return is_active_h_edge;
|
|
}
|
|
|
|
// Checks to see if a super block is on a vertical image edge.
|
|
// In most cases this is the "real" edge unless there are formatting
|
|
// bars embedded in the stream.
|
|
int vp9_active_v_edge(VP9_COMP *cpi, int mi_col, int mi_step) {
|
|
int left_edge = 0;
|
|
int right_edge = cpi->common.mi_cols;
|
|
int is_active_v_edge = 0;
|
|
|
|
// For two pass account for any formatting bars detected.
|
|
if (cpi->oxcf.pass == 2) {
|
|
TWO_PASS *twopass = &cpi->twopass;
|
|
|
|
// The inactive region is specified in MBs not mi units.
|
|
// The image edge is in the following MB row.
|
|
left_edge += (int)(twopass->this_frame_stats.inactive_zone_cols * 2);
|
|
|
|
right_edge -= (int)(twopass->this_frame_stats.inactive_zone_cols * 2);
|
|
right_edge = VPXMAX(left_edge, right_edge);
|
|
}
|
|
|
|
if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) ||
|
|
((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) {
|
|
is_active_v_edge = 1;
|
|
}
|
|
return is_active_v_edge;
|
|
}
|
|
|
|
// Checks to see if a super block is at the edge of the active image.
|
|
// In most cases this is the "real" edge unless there are formatting
|
|
// bars embedded in the stream.
|
|
int vp9_active_edge_sb(VP9_COMP *cpi,
|
|
int mi_row, int mi_col) {
|
|
return vp9_active_h_edge(cpi, mi_row, MI_BLOCK_SIZE) ||
|
|
vp9_active_v_edge(cpi, mi_col, MI_BLOCK_SIZE);
|
|
}
|
|
|
|
void vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi,
|
|
TileDataEnc *tile_data,
|
|
MACROBLOCK *x,
|
|
int mi_row, int mi_col,
|
|
RD_COST *rd_cost, BLOCK_SIZE bsize,
|
|
PICK_MODE_CONTEXT *ctx,
|
|
int64_t best_rd_so_far) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
TileInfo *const tile_info = &tile_data->tile_info;
|
|
RD_OPT *const rd_opt = &cpi->rd;
|
|
SPEED_FEATURES *const sf = &cpi->sf;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *const mi = xd->mi[0];
|
|
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
|
|
const struct segmentation *const seg = &cm->seg;
|
|
PREDICTION_MODE this_mode;
|
|
MV_REFERENCE_FRAME ref_frame, second_ref_frame;
|
|
unsigned char segment_id = mi->segment_id;
|
|
int comp_pred, i, k;
|
|
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
|
|
struct buf_2d yv12_mb[4][MAX_MB_PLANE];
|
|
int_mv single_newmv[MAX_REF_FRAMES] = { { 0 } };
|
|
INTERP_FILTER single_inter_filter[MB_MODE_COUNT][MAX_REF_FRAMES];
|
|
int single_skippable[MB_MODE_COUNT][MAX_REF_FRAMES];
|
|
static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
|
|
VP9_ALT_FLAG };
|
|
int64_t best_rd = best_rd_so_far;
|
|
int64_t best_pred_diff[REFERENCE_MODES];
|
|
int64_t best_pred_rd[REFERENCE_MODES];
|
|
int64_t best_filter_rd[SWITCHABLE_FILTER_CONTEXTS];
|
|
int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS];
|
|
MODE_INFO best_mbmode;
|
|
int best_mode_skippable = 0;
|
|
int midx, best_mode_index = -1;
|
|
unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES];
|
|
vpx_prob comp_mode_p;
|
|
int64_t best_intra_rd = INT64_MAX;
|
|
unsigned int best_pred_sse = UINT_MAX;
|
|
PREDICTION_MODE best_intra_mode = DC_PRED;
|
|
int rate_uv_intra[TX_SIZES], rate_uv_tokenonly[TX_SIZES];
|
|
int64_t dist_uv[TX_SIZES];
|
|
int skip_uv[TX_SIZES];
|
|
PREDICTION_MODE mode_uv[TX_SIZES];
|
|
const int intra_cost_penalty = vp9_get_intra_cost_penalty(
|
|
cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth);
|
|
int best_skip2 = 0;
|
|
uint8_t ref_frame_skip_mask[2] = { 0 };
|
|
uint16_t mode_skip_mask[MAX_REF_FRAMES] = { 0 };
|
|
int mode_skip_start = sf->mode_skip_start + 1;
|
|
const int *const rd_threshes = rd_opt->threshes[segment_id][bsize];
|
|
const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize];
|
|
int64_t mode_threshold[MAX_MODES];
|
|
int *mode_map = tile_data->mode_map[bsize];
|
|
const int mode_search_skip_flags = sf->mode_search_skip_flags;
|
|
int64_t mask_filter = 0;
|
|
int64_t filter_cache[SWITCHABLE_FILTER_CONTEXTS];
|
|
|
|
vp9_zero(best_mbmode);
|
|
|
|
x->skip_encode = sf->skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
|
|
|
|
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
|
|
filter_cache[i] = INT64_MAX;
|
|
|
|
estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
|
|
&comp_mode_p);
|
|
|
|
for (i = 0; i < REFERENCE_MODES; ++i)
|
|
best_pred_rd[i] = INT64_MAX;
|
|
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
|
|
best_filter_rd[i] = INT64_MAX;
|
|
for (i = 0; i < TX_SIZES; i++)
|
|
rate_uv_intra[i] = INT_MAX;
|
|
for (i = 0; i < MAX_REF_FRAMES; ++i)
|
|
x->pred_sse[i] = INT_MAX;
|
|
for (i = 0; i < MB_MODE_COUNT; ++i) {
|
|
for (k = 0; k < MAX_REF_FRAMES; ++k) {
|
|
single_inter_filter[i][k] = SWITCHABLE;
|
|
single_skippable[i][k] = 0;
|
|
}
|
|
}
|
|
|
|
rd_cost->rate = INT_MAX;
|
|
|
|
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
|
|
x->pred_mv_sad[ref_frame] = INT_MAX;
|
|
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
|
|
assert(get_ref_frame_buffer(cpi, ref_frame) != NULL);
|
|
setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col,
|
|
frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb);
|
|
}
|
|
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
|
|
frame_mv[ZEROMV][ref_frame].as_int = 0;
|
|
}
|
|
|
|
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
|
|
if (!(cpi->ref_frame_flags & flag_list[ref_frame])) {
|
|
// Skip checking missing references in both single and compound reference
|
|
// modes. Note that a mode will be skipped if both reference frames
|
|
// are masked out.
|
|
ref_frame_skip_mask[0] |= (1 << ref_frame);
|
|
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
|
|
} else if (sf->reference_masking) {
|
|
for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
|
|
// Skip fixed mv modes for poor references
|
|
if ((x->pred_mv_sad[ref_frame] >> 2) > x->pred_mv_sad[i]) {
|
|
mode_skip_mask[ref_frame] |= INTER_NEAREST_NEAR_ZERO;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// If the segment reference frame feature is enabled....
|
|
// then do nothing if the current ref frame is not allowed..
|
|
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
|
|
get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) {
|
|
ref_frame_skip_mask[0] |= (1 << ref_frame);
|
|
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
|
|
}
|
|
}
|
|
|
|
// Disable this drop out case if the ref frame
|
|
// segment level feature is enabled for this segment. This is to
|
|
// prevent the possibility that we end up unable to pick any mode.
|
|
if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
|
|
// Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
|
|
// unless ARNR filtering is enabled in which case we want
|
|
// an unfiltered alternative. We allow near/nearest as well
|
|
// because they may result in zero-zero MVs but be cheaper.
|
|
if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) {
|
|
ref_frame_skip_mask[0] = (1 << LAST_FRAME) | (1 << GOLDEN_FRAME);
|
|
ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK;
|
|
mode_skip_mask[ALTREF_FRAME] = ~INTER_NEAREST_NEAR_ZERO;
|
|
if (frame_mv[NEARMV][ALTREF_FRAME].as_int != 0)
|
|
mode_skip_mask[ALTREF_FRAME] |= (1 << NEARMV);
|
|
if (frame_mv[NEARESTMV][ALTREF_FRAME].as_int != 0)
|
|
mode_skip_mask[ALTREF_FRAME] |= (1 << NEARESTMV);
|
|
}
|
|
}
|
|
|
|
if (cpi->rc.is_src_frame_alt_ref) {
|
|
if (sf->alt_ref_search_fp) {
|
|
mode_skip_mask[ALTREF_FRAME] = 0;
|
|
ref_frame_skip_mask[0] = ~(1 << ALTREF_FRAME);
|
|
ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK;
|
|
}
|
|
}
|
|
|
|
if (sf->alt_ref_search_fp)
|
|
if (!cm->show_frame && x->pred_mv_sad[GOLDEN_FRAME] < INT_MAX)
|
|
if (x->pred_mv_sad[ALTREF_FRAME] > (x->pred_mv_sad[GOLDEN_FRAME] << 1))
|
|
mode_skip_mask[ALTREF_FRAME] |= INTER_ALL;
|
|
|
|
if (sf->adaptive_mode_search) {
|
|
if (cm->show_frame && !cpi->rc.is_src_frame_alt_ref &&
|
|
cpi->rc.frames_since_golden >= 3)
|
|
if (x->pred_mv_sad[GOLDEN_FRAME] > (x->pred_mv_sad[LAST_FRAME] << 1))
|
|
mode_skip_mask[GOLDEN_FRAME] |= INTER_ALL;
|
|
}
|
|
|
|
if (bsize > sf->max_intra_bsize) {
|
|
ref_frame_skip_mask[0] |= (1 << INTRA_FRAME);
|
|
ref_frame_skip_mask[1] |= (1 << INTRA_FRAME);
|
|
}
|
|
|
|
mode_skip_mask[INTRA_FRAME] |=
|
|
~(sf->intra_y_mode_mask[max_txsize_lookup[bsize]]);
|
|
|
|
for (i = 0; i <= LAST_NEW_MV_INDEX; ++i)
|
|
mode_threshold[i] = 0;
|
|
for (i = LAST_NEW_MV_INDEX + 1; i < MAX_MODES; ++i)
|
|
mode_threshold[i] = ((int64_t)rd_threshes[i] * rd_thresh_freq_fact[i]) >> 5;
|
|
|
|
midx = sf->schedule_mode_search ? mode_skip_start : 0;
|
|
while (midx > 4) {
|
|
uint8_t end_pos = 0;
|
|
for (i = 5; i < midx; ++i) {
|
|
if (mode_threshold[mode_map[i - 1]] > mode_threshold[mode_map[i]]) {
|
|
uint8_t tmp = mode_map[i];
|
|
mode_map[i] = mode_map[i - 1];
|
|
mode_map[i - 1] = tmp;
|
|
end_pos = i;
|
|
}
|
|
}
|
|
midx = end_pos;
|
|
}
|
|
|
|
for (midx = 0; midx < MAX_MODES; ++midx) {
|
|
int mode_index = mode_map[midx];
|
|
int mode_excluded = 0;
|
|
int64_t this_rd = INT64_MAX;
|
|
int disable_skip = 0;
|
|
int compmode_cost = 0;
|
|
int rate2 = 0, rate_y = 0, rate_uv = 0;
|
|
int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0;
|
|
int skippable = 0;
|
|
int this_skip2 = 0;
|
|
int64_t total_sse = INT64_MAX;
|
|
int early_term = 0;
|
|
|
|
this_mode = vp9_mode_order[mode_index].mode;
|
|
ref_frame = vp9_mode_order[mode_index].ref_frame[0];
|
|
second_ref_frame = vp9_mode_order[mode_index].ref_frame[1];
|
|
|
|
// Look at the reference frame of the best mode so far and set the
|
|
// skip mask to look at a subset of the remaining modes.
|
|
if (midx == mode_skip_start && best_mode_index >= 0) {
|
|
switch (best_mbmode.ref_frame[0]) {
|
|
case INTRA_FRAME:
|
|
break;
|
|
case LAST_FRAME:
|
|
ref_frame_skip_mask[0] |= LAST_FRAME_MODE_MASK;
|
|
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
|
|
break;
|
|
case GOLDEN_FRAME:
|
|
ref_frame_skip_mask[0] |= GOLDEN_FRAME_MODE_MASK;
|
|
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
|
|
break;
|
|
case ALTREF_FRAME:
|
|
ref_frame_skip_mask[0] |= ALT_REF_MODE_MASK;
|
|
break;
|
|
case NONE:
|
|
case MAX_REF_FRAMES:
|
|
assert(0 && "Invalid Reference frame");
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((ref_frame_skip_mask[0] & (1 << ref_frame)) &&
|
|
(ref_frame_skip_mask[1] & (1 << VPXMAX(0, second_ref_frame))))
|
|
continue;
|
|
|
|
if (mode_skip_mask[ref_frame] & (1 << this_mode))
|
|
continue;
|
|
|
|
// Test best rd so far against threshold for trying this mode.
|
|
if (best_mode_skippable && sf->schedule_mode_search)
|
|
mode_threshold[mode_index] <<= 1;
|
|
|
|
if (best_rd < mode_threshold[mode_index])
|
|
continue;
|
|
|
|
if (sf->motion_field_mode_search) {
|
|
const int mi_width = VPXMIN(num_8x8_blocks_wide_lookup[bsize],
|
|
tile_info->mi_col_end - mi_col);
|
|
const int mi_height = VPXMIN(num_8x8_blocks_high_lookup[bsize],
|
|
tile_info->mi_row_end - mi_row);
|
|
const int bsl = mi_width_log2_lookup[bsize];
|
|
int cb_partition_search_ctrl = (((mi_row + mi_col) >> bsl)
|
|
+ get_chessboard_index(cm->current_video_frame)) & 0x1;
|
|
MODE_INFO *ref_mi;
|
|
int const_motion = 1;
|
|
int skip_ref_frame = !cb_partition_search_ctrl;
|
|
MV_REFERENCE_FRAME rf = NONE;
|
|
int_mv ref_mv;
|
|
ref_mv.as_int = INVALID_MV;
|
|
|
|
if ((mi_row - 1) >= tile_info->mi_row_start) {
|
|
ref_mv = xd->mi[-xd->mi_stride]->mv[0];
|
|
rf = xd->mi[-xd->mi_stride]->ref_frame[0];
|
|
for (i = 0; i < mi_width; ++i) {
|
|
ref_mi = xd->mi[-xd->mi_stride + i];
|
|
const_motion &= (ref_mv.as_int == ref_mi->mv[0].as_int) &&
|
|
(ref_frame == ref_mi->ref_frame[0]);
|
|
skip_ref_frame &= (rf == ref_mi->ref_frame[0]);
|
|
}
|
|
}
|
|
|
|
if ((mi_col - 1) >= tile_info->mi_col_start) {
|
|
if (ref_mv.as_int == INVALID_MV)
|
|
ref_mv = xd->mi[-1]->mv[0];
|
|
if (rf == NONE)
|
|
rf = xd->mi[-1]->ref_frame[0];
|
|
for (i = 0; i < mi_height; ++i) {
|
|
ref_mi = xd->mi[i * xd->mi_stride - 1];
|
|
const_motion &= (ref_mv.as_int == ref_mi->mv[0].as_int) &&
|
|
(ref_frame == ref_mi->ref_frame[0]);
|
|
skip_ref_frame &= (rf == ref_mi->ref_frame[0]);
|
|
}
|
|
}
|
|
|
|
if (skip_ref_frame && this_mode != NEARESTMV && this_mode != NEWMV)
|
|
if (rf > INTRA_FRAME)
|
|
if (ref_frame != rf)
|
|
continue;
|
|
|
|
if (const_motion)
|
|
if (this_mode == NEARMV || this_mode == ZEROMV)
|
|
continue;
|
|
}
|
|
|
|
comp_pred = second_ref_frame > INTRA_FRAME;
|
|
if (comp_pred) {
|
|
if (!cpi->allow_comp_inter_inter)
|
|
continue;
|
|
|
|
// Skip compound inter modes if ARF is not available.
|
|
if (!(cpi->ref_frame_flags & flag_list[second_ref_frame]))
|
|
continue;
|
|
|
|
// Do not allow compound prediction if the segment level reference frame
|
|
// feature is in use as in this case there can only be one reference.
|
|
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
|
|
continue;
|
|
|
|
if ((mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) &&
|
|
best_mode_index >= 0 && best_mbmode.ref_frame[0] == INTRA_FRAME)
|
|
continue;
|
|
|
|
mode_excluded = cm->reference_mode == SINGLE_REFERENCE;
|
|
} else {
|
|
if (ref_frame != INTRA_FRAME)
|
|
mode_excluded = cm->reference_mode == COMPOUND_REFERENCE;
|
|
}
|
|
|
|
if (ref_frame == INTRA_FRAME) {
|
|
if (sf->adaptive_mode_search)
|
|
if ((x->source_variance << num_pels_log2_lookup[bsize]) > best_pred_sse)
|
|
continue;
|
|
|
|
if (this_mode != DC_PRED) {
|
|
// Disable intra modes other than DC_PRED for blocks with low variance
|
|
// Threshold for intra skipping based on source variance
|
|
// TODO(debargha): Specialize the threshold for super block sizes
|
|
const unsigned int skip_intra_var_thresh = 64;
|
|
if ((mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) &&
|
|
x->source_variance < skip_intra_var_thresh)
|
|
continue;
|
|
// Only search the oblique modes if the best so far is
|
|
// one of the neighboring directional modes
|
|
if ((mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) &&
|
|
(this_mode >= D45_PRED && this_mode <= TM_PRED)) {
|
|
if (best_mode_index >= 0 &&
|
|
best_mbmode.ref_frame[0] > INTRA_FRAME)
|
|
continue;
|
|
}
|
|
if (mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
|
|
if (conditional_skipintra(this_mode, best_intra_mode))
|
|
continue;
|
|
}
|
|
}
|
|
} else {
|
|
const MV_REFERENCE_FRAME ref_frames[2] = {ref_frame, second_ref_frame};
|
|
if (!check_best_zero_mv(cpi, mbmi_ext->mode_context, frame_mv,
|
|
this_mode, ref_frames))
|
|
continue;
|
|
}
|
|
|
|
mi->mode = this_mode;
|
|
mi->uv_mode = DC_PRED;
|
|
mi->ref_frame[0] = ref_frame;
|
|
mi->ref_frame[1] = second_ref_frame;
|
|
// Evaluate all sub-pel filters irrespective of whether we can use
|
|
// them for this frame.
|
|
mi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP
|
|
: cm->interp_filter;
|
|
mi->mv[0].as_int = mi->mv[1].as_int = 0;
|
|
|
|
x->skip = 0;
|
|
set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
|
|
|
|
// Select prediction reference frames.
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
|
|
if (comp_pred)
|
|
xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
|
|
}
|
|
|
|
if (ref_frame == INTRA_FRAME) {
|
|
TX_SIZE uv_tx;
|
|
struct macroblockd_plane *const pd = &xd->plane[1];
|
|
memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
|
|
super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable,
|
|
NULL, bsize, best_rd);
|
|
if (rate_y == INT_MAX)
|
|
continue;
|
|
|
|
uv_tx = get_uv_tx_size_impl(mi->tx_size, bsize, pd->subsampling_x,
|
|
pd->subsampling_y);
|
|
if (rate_uv_intra[uv_tx] == INT_MAX) {
|
|
choose_intra_uv_mode(cpi, x, ctx, bsize, uv_tx,
|
|
&rate_uv_intra[uv_tx], &rate_uv_tokenonly[uv_tx],
|
|
&dist_uv[uv_tx], &skip_uv[uv_tx], &mode_uv[uv_tx]);
|
|
}
|
|
|
|
rate_uv = rate_uv_tokenonly[uv_tx];
|
|
distortion_uv = dist_uv[uv_tx];
|
|
skippable = skippable && skip_uv[uv_tx];
|
|
mi->uv_mode = mode_uv[uv_tx];
|
|
|
|
rate2 = rate_y + cpi->mbmode_cost[mi->mode] + rate_uv_intra[uv_tx];
|
|
if (this_mode != DC_PRED && this_mode != TM_PRED)
|
|
rate2 += intra_cost_penalty;
|
|
distortion2 = distortion_y + distortion_uv;
|
|
} else {
|
|
this_rd = handle_inter_mode(cpi, x, bsize,
|
|
&rate2, &distortion2, &skippable,
|
|
&rate_y, &rate_uv,
|
|
&disable_skip, frame_mv,
|
|
mi_row, mi_col,
|
|
single_newmv, single_inter_filter,
|
|
single_skippable, &total_sse, best_rd,
|
|
&mask_filter, filter_cache);
|
|
if (this_rd == INT64_MAX)
|
|
continue;
|
|
|
|
compmode_cost = vp9_cost_bit(comp_mode_p, comp_pred);
|
|
|
|
if (cm->reference_mode == REFERENCE_MODE_SELECT)
|
|
rate2 += compmode_cost;
|
|
}
|
|
|
|
// Estimate the reference frame signaling cost and add it
|
|
// to the rolling cost variable.
|
|
if (comp_pred) {
|
|
rate2 += ref_costs_comp[ref_frame];
|
|
} else {
|
|
rate2 += ref_costs_single[ref_frame];
|
|
}
|
|
|
|
if (!disable_skip) {
|
|
const vpx_prob skip_prob = vp9_get_skip_prob(cm, xd);
|
|
const int skip_cost0 = vp9_cost_bit(skip_prob, 0);
|
|
const int skip_cost1 = vp9_cost_bit(skip_prob, 1);
|
|
|
|
if (skippable) {
|
|
// Back out the coefficient coding costs
|
|
rate2 -= (rate_y + rate_uv);
|
|
|
|
// Cost the skip mb case
|
|
rate2 += skip_cost1;
|
|
} else if (ref_frame != INTRA_FRAME && !xd->lossless) {
|
|
if (RDCOST(x->rdmult, x->rddiv,
|
|
rate_y + rate_uv + skip_cost0, distortion2) <
|
|
RDCOST(x->rdmult, x->rddiv, skip_cost1, total_sse)) {
|
|
// Add in the cost of the no skip flag.
|
|
rate2 += skip_cost0;
|
|
} else {
|
|
// FIXME(rbultje) make this work for splitmv also
|
|
assert(total_sse >= 0);
|
|
|
|
rate2 += skip_cost1;
|
|
distortion2 = total_sse;
|
|
rate2 -= (rate_y + rate_uv);
|
|
this_skip2 = 1;
|
|
}
|
|
} else {
|
|
// Add in the cost of the no skip flag.
|
|
rate2 += skip_cost0;
|
|
}
|
|
|
|
// Calculate the final RD estimate for this mode.
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
|
|
}
|
|
|
|
// Apply an adjustment to the rd value based on the similarity of the
|
|
// source variance and reconstructed variance.
|
|
rd_variance_adjustment(cpi, x, bsize, &this_rd,
|
|
ref_frame, x->source_variance);
|
|
|
|
if (ref_frame == INTRA_FRAME) {
|
|
// Keep record of best intra rd
|
|
if (this_rd < best_intra_rd) {
|
|
best_intra_rd = this_rd;
|
|
best_intra_mode = mi->mode;
|
|
}
|
|
}
|
|
|
|
if (!disable_skip && ref_frame == INTRA_FRAME) {
|
|
for (i = 0; i < REFERENCE_MODES; ++i)
|
|
best_pred_rd[i] = VPXMIN(best_pred_rd[i], this_rd);
|
|
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
|
|
best_filter_rd[i] = VPXMIN(best_filter_rd[i], this_rd);
|
|
}
|
|
|
|
// Did this mode help.. i.e. is it the new best mode
|
|
if (this_rd < best_rd || x->skip) {
|
|
int max_plane = MAX_MB_PLANE;
|
|
if (!mode_excluded) {
|
|
// Note index of best mode so far
|
|
best_mode_index = mode_index;
|
|
|
|
if (ref_frame == INTRA_FRAME) {
|
|
/* required for left and above block mv */
|
|
mi->mv[0].as_int = 0;
|
|
max_plane = 1;
|
|
} else {
|
|
best_pred_sse = x->pred_sse[ref_frame];
|
|
}
|
|
|
|
rd_cost->rate = rate2;
|
|
rd_cost->dist = distortion2;
|
|
rd_cost->rdcost = this_rd;
|
|
best_rd = this_rd;
|
|
best_mbmode = *mi;
|
|
best_skip2 = this_skip2;
|
|
best_mode_skippable = skippable;
|
|
|
|
if (!x->select_tx_size)
|
|
swap_block_ptr(x, ctx, 1, 0, 0, max_plane);
|
|
memcpy(ctx->zcoeff_blk, x->zcoeff_blk[mi->tx_size],
|
|
sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk);
|
|
|
|
// TODO(debargha): enhance this test with a better distortion prediction
|
|
// based on qp, activity mask and history
|
|
if ((mode_search_skip_flags & FLAG_EARLY_TERMINATE) &&
|
|
(mode_index > MIN_EARLY_TERM_INDEX)) {
|
|
int qstep = xd->plane[0].dequant[1];
|
|
// TODO(debargha): Enhance this by specializing for each mode_index
|
|
int scale = 4;
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
qstep >>= (xd->bd - 8);
|
|
}
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
if (x->source_variance < UINT_MAX) {
|
|
const int var_adjust = (x->source_variance < 16);
|
|
scale -= var_adjust;
|
|
}
|
|
if (ref_frame > INTRA_FRAME &&
|
|
distortion2 * scale < qstep * qstep) {
|
|
early_term = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* keep record of best compound/single-only prediction */
|
|
if (!disable_skip && ref_frame != INTRA_FRAME) {
|
|
int64_t single_rd, hybrid_rd, single_rate, hybrid_rate;
|
|
|
|
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
|
|
single_rate = rate2 - compmode_cost;
|
|
hybrid_rate = rate2;
|
|
} else {
|
|
single_rate = rate2;
|
|
hybrid_rate = rate2 + compmode_cost;
|
|
}
|
|
|
|
single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
|
|
hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
|
|
|
|
if (!comp_pred) {
|
|
if (single_rd < best_pred_rd[SINGLE_REFERENCE])
|
|
best_pred_rd[SINGLE_REFERENCE] = single_rd;
|
|
} else {
|
|
if (single_rd < best_pred_rd[COMPOUND_REFERENCE])
|
|
best_pred_rd[COMPOUND_REFERENCE] = single_rd;
|
|
}
|
|
if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT])
|
|
best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd;
|
|
|
|
/* keep record of best filter type */
|
|
if (!mode_excluded && cm->interp_filter != BILINEAR) {
|
|
int64_t ref = filter_cache[cm->interp_filter == SWITCHABLE ?
|
|
SWITCHABLE_FILTERS : cm->interp_filter];
|
|
|
|
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
|
|
int64_t adj_rd;
|
|
if (ref == INT64_MAX)
|
|
adj_rd = 0;
|
|
else if (filter_cache[i] == INT64_MAX)
|
|
// when early termination is triggered, the encoder does not have
|
|
// access to the rate-distortion cost. it only knows that the cost
|
|
// should be above the maximum valid value. hence it takes the known
|
|
// maximum plus an arbitrary constant as the rate-distortion cost.
|
|
adj_rd = mask_filter - ref + 10;
|
|
else
|
|
adj_rd = filter_cache[i] - ref;
|
|
|
|
adj_rd += this_rd;
|
|
best_filter_rd[i] = VPXMIN(best_filter_rd[i], adj_rd);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (early_term)
|
|
break;
|
|
|
|
if (x->skip && !comp_pred)
|
|
break;
|
|
}
|
|
|
|
// The inter modes' rate costs are not calculated precisely in some cases.
|
|
// Therefore, sometimes, NEWMV is chosen instead of NEARESTMV, NEARMV, and
|
|
// ZEROMV. Here, checks are added for those cases, and the mode decisions
|
|
// are corrected.
|
|
if (best_mbmode.mode == NEWMV) {
|
|
const MV_REFERENCE_FRAME refs[2] = {best_mbmode.ref_frame[0],
|
|
best_mbmode.ref_frame[1]};
|
|
int comp_pred_mode = refs[1] > INTRA_FRAME;
|
|
|
|
if (frame_mv[NEARESTMV][refs[0]].as_int == best_mbmode.mv[0].as_int &&
|
|
((comp_pred_mode && frame_mv[NEARESTMV][refs[1]].as_int ==
|
|
best_mbmode.mv[1].as_int) || !comp_pred_mode))
|
|
best_mbmode.mode = NEARESTMV;
|
|
else if (frame_mv[NEARMV][refs[0]].as_int == best_mbmode.mv[0].as_int &&
|
|
((comp_pred_mode && frame_mv[NEARMV][refs[1]].as_int ==
|
|
best_mbmode.mv[1].as_int) || !comp_pred_mode))
|
|
best_mbmode.mode = NEARMV;
|
|
else if (best_mbmode.mv[0].as_int == 0 &&
|
|
((comp_pred_mode && best_mbmode.mv[1].as_int == 0) || !comp_pred_mode))
|
|
best_mbmode.mode = ZEROMV;
|
|
}
|
|
|
|
if (best_mode_index < 0 || best_rd >= best_rd_so_far) {
|
|
rd_cost->rate = INT_MAX;
|
|
rd_cost->rdcost = INT64_MAX;
|
|
return;
|
|
}
|
|
|
|
// If we used an estimate for the uv intra rd in the loop above...
|
|
if (sf->use_uv_intra_rd_estimate) {
|
|
// Do Intra UV best rd mode selection if best mode choice above was intra.
|
|
if (best_mbmode.ref_frame[0] == INTRA_FRAME) {
|
|
TX_SIZE uv_tx_size;
|
|
*mi = best_mbmode;
|
|
uv_tx_size = get_uv_tx_size(mi, &xd->plane[1]);
|
|
rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv_intra[uv_tx_size],
|
|
&rate_uv_tokenonly[uv_tx_size],
|
|
&dist_uv[uv_tx_size],
|
|
&skip_uv[uv_tx_size],
|
|
bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize,
|
|
uv_tx_size);
|
|
}
|
|
}
|
|
|
|
assert((cm->interp_filter == SWITCHABLE) ||
|
|
(cm->interp_filter == best_mbmode.interp_filter) ||
|
|
!is_inter_block(&best_mbmode));
|
|
|
|
if (!cpi->rc.is_src_frame_alt_ref)
|
|
vp9_update_rd_thresh_fact(tile_data->thresh_freq_fact,
|
|
sf->adaptive_rd_thresh, bsize, best_mode_index);
|
|
|
|
// macroblock modes
|
|
*mi = best_mbmode;
|
|
x->skip |= best_skip2;
|
|
|
|
for (i = 0; i < REFERENCE_MODES; ++i) {
|
|
if (best_pred_rd[i] == INT64_MAX)
|
|
best_pred_diff[i] = INT_MIN;
|
|
else
|
|
best_pred_diff[i] = best_rd - best_pred_rd[i];
|
|
}
|
|
|
|
if (!x->skip) {
|
|
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
|
|
if (best_filter_rd[i] == INT64_MAX)
|
|
best_filter_diff[i] = 0;
|
|
else
|
|
best_filter_diff[i] = best_rd - best_filter_rd[i];
|
|
}
|
|
if (cm->interp_filter == SWITCHABLE)
|
|
assert(best_filter_diff[SWITCHABLE_FILTERS] == 0);
|
|
} else {
|
|
vp9_zero(best_filter_diff);
|
|
}
|
|
|
|
// TODO(yunqingwang): Moving this line in front of the above best_filter_diff
|
|
// updating code causes PSNR loss. Need to figure out the confliction.
|
|
x->skip |= best_mode_skippable;
|
|
|
|
if (!x->skip && !x->select_tx_size) {
|
|
int has_high_freq_coeff = 0;
|
|
int plane;
|
|
int max_plane = is_inter_block(xd->mi[0])
|
|
? MAX_MB_PLANE : 1;
|
|
for (plane = 0; plane < max_plane; ++plane) {
|
|
x->plane[plane].eobs = ctx->eobs_pbuf[plane][1];
|
|
has_high_freq_coeff |= vp9_has_high_freq_in_plane(x, bsize, plane);
|
|
}
|
|
|
|
for (plane = max_plane; plane < MAX_MB_PLANE; ++plane) {
|
|
x->plane[plane].eobs = ctx->eobs_pbuf[plane][2];
|
|
has_high_freq_coeff |= vp9_has_high_freq_in_plane(x, bsize, plane);
|
|
}
|
|
|
|
best_mode_skippable |= !has_high_freq_coeff;
|
|
}
|
|
|
|
assert(best_mode_index >= 0);
|
|
|
|
store_coding_context(x, ctx, best_mode_index, best_pred_diff,
|
|
best_filter_diff, best_mode_skippable);
|
|
}
|
|
|
|
void vp9_rd_pick_inter_mode_sb_seg_skip(VP9_COMP *cpi,
|
|
TileDataEnc *tile_data,
|
|
MACROBLOCK *x,
|
|
RD_COST *rd_cost,
|
|
BLOCK_SIZE bsize,
|
|
PICK_MODE_CONTEXT *ctx,
|
|
int64_t best_rd_so_far) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *const mi = xd->mi[0];
|
|
unsigned char segment_id = mi->segment_id;
|
|
const int comp_pred = 0;
|
|
int i;
|
|
int64_t best_pred_diff[REFERENCE_MODES];
|
|
int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS];
|
|
unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES];
|
|
vpx_prob comp_mode_p;
|
|
INTERP_FILTER best_filter = SWITCHABLE;
|
|
int64_t this_rd = INT64_MAX;
|
|
int rate2 = 0;
|
|
const int64_t distortion2 = 0;
|
|
|
|
x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
|
|
|
|
estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
|
|
&comp_mode_p);
|
|
|
|
for (i = 0; i < MAX_REF_FRAMES; ++i)
|
|
x->pred_sse[i] = INT_MAX;
|
|
for (i = LAST_FRAME; i < MAX_REF_FRAMES; ++i)
|
|
x->pred_mv_sad[i] = INT_MAX;
|
|
|
|
rd_cost->rate = INT_MAX;
|
|
|
|
assert(segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP));
|
|
|
|
mi->mode = ZEROMV;
|
|
mi->uv_mode = DC_PRED;
|
|
mi->ref_frame[0] = LAST_FRAME;
|
|
mi->ref_frame[1] = NONE;
|
|
mi->mv[0].as_int = 0;
|
|
x->skip = 1;
|
|
|
|
if (cm->interp_filter != BILINEAR) {
|
|
best_filter = EIGHTTAP;
|
|
if (cm->interp_filter == SWITCHABLE &&
|
|
x->source_variance >= cpi->sf.disable_filter_search_var_thresh) {
|
|
int rs;
|
|
int best_rs = INT_MAX;
|
|
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
|
|
mi->interp_filter = i;
|
|
rs = vp9_get_switchable_rate(cpi, xd);
|
|
if (rs < best_rs) {
|
|
best_rs = rs;
|
|
best_filter = mi->interp_filter;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Set the appropriate filter
|
|
if (cm->interp_filter == SWITCHABLE) {
|
|
mi->interp_filter = best_filter;
|
|
rate2 += vp9_get_switchable_rate(cpi, xd);
|
|
} else {
|
|
mi->interp_filter = cm->interp_filter;
|
|
}
|
|
|
|
if (cm->reference_mode == REFERENCE_MODE_SELECT)
|
|
rate2 += vp9_cost_bit(comp_mode_p, comp_pred);
|
|
|
|
// Estimate the reference frame signaling cost and add it
|
|
// to the rolling cost variable.
|
|
rate2 += ref_costs_single[LAST_FRAME];
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
|
|
|
|
rd_cost->rate = rate2;
|
|
rd_cost->dist = distortion2;
|
|
rd_cost->rdcost = this_rd;
|
|
|
|
if (this_rd >= best_rd_so_far) {
|
|
rd_cost->rate = INT_MAX;
|
|
rd_cost->rdcost = INT64_MAX;
|
|
return;
|
|
}
|
|
|
|
assert((cm->interp_filter == SWITCHABLE) ||
|
|
(cm->interp_filter == mi->interp_filter));
|
|
|
|
vp9_update_rd_thresh_fact(tile_data->thresh_freq_fact,
|
|
cpi->sf.adaptive_rd_thresh, bsize, THR_ZEROMV);
|
|
|
|
vp9_zero(best_pred_diff);
|
|
vp9_zero(best_filter_diff);
|
|
|
|
if (!x->select_tx_size)
|
|
swap_block_ptr(x, ctx, 1, 0, 0, MAX_MB_PLANE);
|
|
store_coding_context(x, ctx, THR_ZEROMV,
|
|
best_pred_diff, best_filter_diff, 0);
|
|
}
|
|
|
|
void vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi,
|
|
TileDataEnc *tile_data,
|
|
MACROBLOCK *x,
|
|
int mi_row, int mi_col,
|
|
RD_COST *rd_cost,
|
|
BLOCK_SIZE bsize,
|
|
PICK_MODE_CONTEXT *ctx,
|
|
int64_t best_rd_so_far) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
RD_OPT *const rd_opt = &cpi->rd;
|
|
SPEED_FEATURES *const sf = &cpi->sf;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *const mi = xd->mi[0];
|
|
const struct segmentation *const seg = &cm->seg;
|
|
MV_REFERENCE_FRAME ref_frame, second_ref_frame;
|
|
unsigned char segment_id = mi->segment_id;
|
|
int comp_pred, i;
|
|
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
|
|
struct buf_2d yv12_mb[4][MAX_MB_PLANE];
|
|
static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
|
|
VP9_ALT_FLAG };
|
|
int64_t best_rd = best_rd_so_far;
|
|
int64_t best_yrd = best_rd_so_far; // FIXME(rbultje) more precise
|
|
int64_t best_pred_diff[REFERENCE_MODES];
|
|
int64_t best_pred_rd[REFERENCE_MODES];
|
|
int64_t best_filter_rd[SWITCHABLE_FILTER_CONTEXTS];
|
|
int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS];
|
|
MODE_INFO best_mbmode;
|
|
int ref_index, best_ref_index = 0;
|
|
unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES];
|
|
vpx_prob comp_mode_p;
|
|
INTERP_FILTER tmp_best_filter = SWITCHABLE;
|
|
int rate_uv_intra, rate_uv_tokenonly;
|
|
int64_t dist_uv;
|
|
int skip_uv;
|
|
PREDICTION_MODE mode_uv = DC_PRED;
|
|
const int intra_cost_penalty = vp9_get_intra_cost_penalty(
|
|
cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth);
|
|
int_mv seg_mvs[4][MAX_REF_FRAMES];
|
|
b_mode_info best_bmodes[4];
|
|
int best_skip2 = 0;
|
|
int ref_frame_skip_mask[2] = { 0 };
|
|
int64_t mask_filter = 0;
|
|
int64_t filter_cache[SWITCHABLE_FILTER_CONTEXTS];
|
|
int internal_active_edge =
|
|
vp9_active_edge_sb(cpi, mi_row, mi_col) && vp9_internal_image_edge(cpi);
|
|
|
|
x->skip_encode = sf->skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
|
|
memset(x->zcoeff_blk[TX_4X4], 0, 4);
|
|
vp9_zero(best_mbmode);
|
|
|
|
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
|
|
filter_cache[i] = INT64_MAX;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
int j;
|
|
for (j = 0; j < MAX_REF_FRAMES; j++)
|
|
seg_mvs[i][j].as_int = INVALID_MV;
|
|
}
|
|
|
|
estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
|
|
&comp_mode_p);
|
|
|
|
for (i = 0; i < REFERENCE_MODES; ++i)
|
|
best_pred_rd[i] = INT64_MAX;
|
|
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
|
|
best_filter_rd[i] = INT64_MAX;
|
|
rate_uv_intra = INT_MAX;
|
|
|
|
rd_cost->rate = INT_MAX;
|
|
|
|
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
|
|
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
|
|
setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col,
|
|
frame_mv[NEARESTMV], frame_mv[NEARMV],
|
|
yv12_mb);
|
|
} else {
|
|
ref_frame_skip_mask[0] |= (1 << ref_frame);
|
|
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
|
|
}
|
|
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
|
|
frame_mv[ZEROMV][ref_frame].as_int = 0;
|
|
}
|
|
|
|
for (ref_index = 0; ref_index < MAX_REFS; ++ref_index) {
|
|
int mode_excluded = 0;
|
|
int64_t this_rd = INT64_MAX;
|
|
int disable_skip = 0;
|
|
int compmode_cost = 0;
|
|
int rate2 = 0, rate_y = 0, rate_uv = 0;
|
|
int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0;
|
|
int skippable = 0;
|
|
int i;
|
|
int this_skip2 = 0;
|
|
int64_t total_sse = INT_MAX;
|
|
int early_term = 0;
|
|
struct buf_2d backup_yv12[2][MAX_MB_PLANE];
|
|
|
|
ref_frame = vp9_ref_order[ref_index].ref_frame[0];
|
|
second_ref_frame = vp9_ref_order[ref_index].ref_frame[1];
|
|
|
|
#if CONFIG_BETTER_HW_COMPATIBILITY
|
|
// forbid 8X4 and 4X8 partitions if any reference frame is scaled.
|
|
if (bsize == BLOCK_8X4 || bsize == BLOCK_4X8) {
|
|
int ref_scaled = vp9_is_scaled(&cm->frame_refs[ref_frame - 1].sf);
|
|
if (second_ref_frame > INTRA_FRAME)
|
|
ref_scaled += vp9_is_scaled(&cm->frame_refs[second_ref_frame - 1].sf);
|
|
if (ref_scaled)
|
|
continue;
|
|
}
|
|
#endif
|
|
// Look at the reference frame of the best mode so far and set the
|
|
// skip mask to look at a subset of the remaining modes.
|
|
if (ref_index > 2 && sf->mode_skip_start < MAX_MODES) {
|
|
if (ref_index == 3) {
|
|
switch (best_mbmode.ref_frame[0]) {
|
|
case INTRA_FRAME:
|
|
break;
|
|
case LAST_FRAME:
|
|
ref_frame_skip_mask[0] |= (1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME);
|
|
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
|
|
break;
|
|
case GOLDEN_FRAME:
|
|
ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | (1 << ALTREF_FRAME);
|
|
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
|
|
break;
|
|
case ALTREF_FRAME:
|
|
ref_frame_skip_mask[0] |= (1 << GOLDEN_FRAME) | (1 << LAST_FRAME);
|
|
break;
|
|
case NONE:
|
|
case MAX_REF_FRAMES:
|
|
assert(0 && "Invalid Reference frame");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((ref_frame_skip_mask[0] & (1 << ref_frame)) &&
|
|
(ref_frame_skip_mask[1] & (1 << VPXMAX(0, second_ref_frame))))
|
|
continue;
|
|
|
|
// Test best rd so far against threshold for trying this mode.
|
|
if (!internal_active_edge &&
|
|
rd_less_than_thresh(best_rd,
|
|
rd_opt->threshes[segment_id][bsize][ref_index],
|
|
tile_data->thresh_freq_fact[bsize][ref_index]))
|
|
continue;
|
|
|
|
comp_pred = second_ref_frame > INTRA_FRAME;
|
|
if (comp_pred) {
|
|
if (!cpi->allow_comp_inter_inter)
|
|
continue;
|
|
if (!(cpi->ref_frame_flags & flag_list[second_ref_frame]))
|
|
continue;
|
|
// Do not allow compound prediction if the segment level reference frame
|
|
// feature is in use as in this case there can only be one reference.
|
|
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
|
|
continue;
|
|
|
|
if ((sf->mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) &&
|
|
best_mbmode.ref_frame[0] == INTRA_FRAME)
|
|
continue;
|
|
}
|
|
|
|
if (comp_pred)
|
|
mode_excluded = cm->reference_mode == SINGLE_REFERENCE;
|
|
else if (ref_frame != INTRA_FRAME)
|
|
mode_excluded = cm->reference_mode == COMPOUND_REFERENCE;
|
|
|
|
// If the segment reference frame feature is enabled....
|
|
// then do nothing if the current ref frame is not allowed..
|
|
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
|
|
get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) {
|
|
continue;
|
|
// Disable this drop out case if the ref frame
|
|
// segment level feature is enabled for this segment. This is to
|
|
// prevent the possibility that we end up unable to pick any mode.
|
|
} else if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
|
|
// Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
|
|
// unless ARNR filtering is enabled in which case we want
|
|
// an unfiltered alternative. We allow near/nearest as well
|
|
// because they may result in zero-zero MVs but be cheaper.
|
|
if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0))
|
|
continue;
|
|
}
|
|
|
|
mi->tx_size = TX_4X4;
|
|
mi->uv_mode = DC_PRED;
|
|
mi->ref_frame[0] = ref_frame;
|
|
mi->ref_frame[1] = second_ref_frame;
|
|
// Evaluate all sub-pel filters irrespective of whether we can use
|
|
// them for this frame.
|
|
mi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP
|
|
: cm->interp_filter;
|
|
x->skip = 0;
|
|
set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
|
|
|
|
// Select prediction reference frames.
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
|
|
if (comp_pred)
|
|
xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
|
|
}
|
|
|
|
if (ref_frame == INTRA_FRAME) {
|
|
int rate;
|
|
if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate, &rate_y,
|
|
&distortion_y, best_rd) >= best_rd)
|
|
continue;
|
|
rate2 += rate;
|
|
rate2 += intra_cost_penalty;
|
|
distortion2 += distortion_y;
|
|
|
|
if (rate_uv_intra == INT_MAX) {
|
|
choose_intra_uv_mode(cpi, x, ctx, bsize, TX_4X4,
|
|
&rate_uv_intra,
|
|
&rate_uv_tokenonly,
|
|
&dist_uv, &skip_uv,
|
|
&mode_uv);
|
|
}
|
|
rate2 += rate_uv_intra;
|
|
rate_uv = rate_uv_tokenonly;
|
|
distortion2 += dist_uv;
|
|
distortion_uv = dist_uv;
|
|
mi->uv_mode = mode_uv;
|
|
} else {
|
|
int rate;
|
|
int64_t distortion;
|
|
int64_t this_rd_thresh;
|
|
int64_t tmp_rd, tmp_best_rd = INT64_MAX, tmp_best_rdu = INT64_MAX;
|
|
int tmp_best_rate = INT_MAX, tmp_best_ratey = INT_MAX;
|
|
int64_t tmp_best_distortion = INT_MAX, tmp_best_sse, uv_sse;
|
|
int tmp_best_skippable = 0;
|
|
int switchable_filter_index;
|
|
int_mv *second_ref = comp_pred ?
|
|
&x->mbmi_ext->ref_mvs[second_ref_frame][0] : NULL;
|
|
b_mode_info tmp_best_bmodes[16];
|
|
MODE_INFO tmp_best_mbmode;
|
|
BEST_SEG_INFO bsi[SWITCHABLE_FILTERS];
|
|
int pred_exists = 0;
|
|
int uv_skippable;
|
|
|
|
YV12_BUFFER_CONFIG *scaled_ref_frame[2] = {NULL, NULL};
|
|
int ref;
|
|
|
|
for (ref = 0; ref < 2; ++ref) {
|
|
scaled_ref_frame[ref] = mi->ref_frame[ref] > INTRA_FRAME ?
|
|
vp9_get_scaled_ref_frame(cpi, mi->ref_frame[ref]) : NULL;
|
|
|
|
if (scaled_ref_frame[ref]) {
|
|
int i;
|
|
// Swap out the reference frame for a version that's been scaled to
|
|
// match the resolution of the current frame, allowing the existing
|
|
// motion search code to be used without additional modifications.
|
|
for (i = 0; i < MAX_MB_PLANE; i++)
|
|
backup_yv12[ref][i] = xd->plane[i].pre[ref];
|
|
vp9_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col,
|
|
NULL);
|
|
}
|
|
}
|
|
|
|
this_rd_thresh = (ref_frame == LAST_FRAME) ?
|
|
rd_opt->threshes[segment_id][bsize][THR_LAST] :
|
|
rd_opt->threshes[segment_id][bsize][THR_ALTR];
|
|
this_rd_thresh = (ref_frame == GOLDEN_FRAME) ?
|
|
rd_opt->threshes[segment_id][bsize][THR_GOLD] : this_rd_thresh;
|
|
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
|
|
filter_cache[i] = INT64_MAX;
|
|
|
|
if (cm->interp_filter != BILINEAR) {
|
|
tmp_best_filter = EIGHTTAP;
|
|
if (x->source_variance < sf->disable_filter_search_var_thresh) {
|
|
tmp_best_filter = EIGHTTAP;
|
|
} else if (sf->adaptive_pred_interp_filter == 1 &&
|
|
ctx->pred_interp_filter < SWITCHABLE) {
|
|
tmp_best_filter = ctx->pred_interp_filter;
|
|
} else if (sf->adaptive_pred_interp_filter == 2) {
|
|
tmp_best_filter = ctx->pred_interp_filter < SWITCHABLE ?
|
|
ctx->pred_interp_filter : 0;
|
|
} else {
|
|
for (switchable_filter_index = 0;
|
|
switchable_filter_index < SWITCHABLE_FILTERS;
|
|
++switchable_filter_index) {
|
|
int newbest, rs;
|
|
int64_t rs_rd;
|
|
MB_MODE_INFO_EXT *mbmi_ext = x->mbmi_ext;
|
|
mi->interp_filter = switchable_filter_index;
|
|
tmp_rd = rd_pick_best_sub8x8_mode(cpi, x,
|
|
&mbmi_ext->ref_mvs[ref_frame][0],
|
|
second_ref, best_yrd, &rate,
|
|
&rate_y, &distortion,
|
|
&skippable, &total_sse,
|
|
(int) this_rd_thresh, seg_mvs,
|
|
bsi, switchable_filter_index,
|
|
mi_row, mi_col);
|
|
|
|
if (tmp_rd == INT64_MAX)
|
|
continue;
|
|
rs = vp9_get_switchable_rate(cpi, xd);
|
|
rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0);
|
|
filter_cache[switchable_filter_index] = tmp_rd;
|
|
filter_cache[SWITCHABLE_FILTERS] =
|
|
VPXMIN(filter_cache[SWITCHABLE_FILTERS], tmp_rd + rs_rd);
|
|
if (cm->interp_filter == SWITCHABLE)
|
|
tmp_rd += rs_rd;
|
|
|
|
mask_filter = VPXMAX(mask_filter, tmp_rd);
|
|
|
|
newbest = (tmp_rd < tmp_best_rd);
|
|
if (newbest) {
|
|
tmp_best_filter = mi->interp_filter;
|
|
tmp_best_rd = tmp_rd;
|
|
}
|
|
if ((newbest && cm->interp_filter == SWITCHABLE) ||
|
|
(mi->interp_filter == cm->interp_filter &&
|
|
cm->interp_filter != SWITCHABLE)) {
|
|
tmp_best_rdu = tmp_rd;
|
|
tmp_best_rate = rate;
|
|
tmp_best_ratey = rate_y;
|
|
tmp_best_distortion = distortion;
|
|
tmp_best_sse = total_sse;
|
|
tmp_best_skippable = skippable;
|
|
tmp_best_mbmode = *mi;
|
|
for (i = 0; i < 4; i++) {
|
|
tmp_best_bmodes[i] = xd->mi[0]->bmi[i];
|
|
x->zcoeff_blk[TX_4X4][i] = !x->plane[0].eobs[i];
|
|
}
|
|
pred_exists = 1;
|
|
if (switchable_filter_index == 0 &&
|
|
sf->use_rd_breakout &&
|
|
best_rd < INT64_MAX) {
|
|
if (tmp_best_rdu / 2 > best_rd) {
|
|
// skip searching the other filters if the first is
|
|
// already substantially larger than the best so far
|
|
tmp_best_filter = mi->interp_filter;
|
|
tmp_best_rdu = INT64_MAX;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} // switchable_filter_index loop
|
|
}
|
|
}
|
|
|
|
if (tmp_best_rdu == INT64_MAX && pred_exists)
|
|
continue;
|
|
|
|
mi->interp_filter = (cm->interp_filter == SWITCHABLE ?
|
|
tmp_best_filter : cm->interp_filter);
|
|
if (!pred_exists) {
|
|
// Handles the special case when a filter that is not in the
|
|
// switchable list (bilinear, 6-tap) is indicated at the frame level
|
|
tmp_rd = rd_pick_best_sub8x8_mode(cpi, x,
|
|
&x->mbmi_ext->ref_mvs[ref_frame][0],
|
|
second_ref, best_yrd, &rate, &rate_y,
|
|
&distortion, &skippable, &total_sse,
|
|
(int) this_rd_thresh, seg_mvs, bsi, 0,
|
|
mi_row, mi_col);
|
|
if (tmp_rd == INT64_MAX)
|
|
continue;
|
|
} else {
|
|
total_sse = tmp_best_sse;
|
|
rate = tmp_best_rate;
|
|
rate_y = tmp_best_ratey;
|
|
distortion = tmp_best_distortion;
|
|
skippable = tmp_best_skippable;
|
|
*mi = tmp_best_mbmode;
|
|
for (i = 0; i < 4; i++)
|
|
xd->mi[0]->bmi[i] = tmp_best_bmodes[i];
|
|
}
|
|
|
|
rate2 += rate;
|
|
distortion2 += distortion;
|
|
|
|
if (cm->interp_filter == SWITCHABLE)
|
|
rate2 += vp9_get_switchable_rate(cpi, xd);
|
|
|
|
if (!mode_excluded)
|
|
mode_excluded = comp_pred ? cm->reference_mode == SINGLE_REFERENCE
|
|
: cm->reference_mode == COMPOUND_REFERENCE;
|
|
|
|
compmode_cost = vp9_cost_bit(comp_mode_p, comp_pred);
|
|
|
|
tmp_best_rdu =
|
|
best_rd - VPXMIN(RDCOST(x->rdmult, x->rddiv, rate2, distortion2),
|
|
RDCOST(x->rdmult, x->rddiv, 0, total_sse));
|
|
|
|
if (tmp_best_rdu > 0) {
|
|
// If even the 'Y' rd value of split is higher than best so far
|
|
// then dont bother looking at UV
|
|
vp9_build_inter_predictors_sbuv(&x->e_mbd, mi_row, mi_col,
|
|
BLOCK_8X8);
|
|
memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm));
|
|
if (!super_block_uvrd(cpi, x, &rate_uv, &distortion_uv, &uv_skippable,
|
|
&uv_sse, BLOCK_8X8, tmp_best_rdu)) {
|
|
for (ref = 0; ref < 2; ++ref) {
|
|
if (scaled_ref_frame[ref]) {
|
|
int i;
|
|
for (i = 0; i < MAX_MB_PLANE; ++i)
|
|
xd->plane[i].pre[ref] = backup_yv12[ref][i];
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
rate2 += rate_uv;
|
|
distortion2 += distortion_uv;
|
|
skippable = skippable && uv_skippable;
|
|
total_sse += uv_sse;
|
|
}
|
|
|
|
for (ref = 0; ref < 2; ++ref) {
|
|
if (scaled_ref_frame[ref]) {
|
|
// Restore the prediction frame pointers to their unscaled versions.
|
|
int i;
|
|
for (i = 0; i < MAX_MB_PLANE; ++i)
|
|
xd->plane[i].pre[ref] = backup_yv12[ref][i];
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cm->reference_mode == REFERENCE_MODE_SELECT)
|
|
rate2 += compmode_cost;
|
|
|
|
// Estimate the reference frame signaling cost and add it
|
|
// to the rolling cost variable.
|
|
if (second_ref_frame > INTRA_FRAME) {
|
|
rate2 += ref_costs_comp[ref_frame];
|
|
} else {
|
|
rate2 += ref_costs_single[ref_frame];
|
|
}
|
|
|
|
if (!disable_skip) {
|
|
const vpx_prob skip_prob = vp9_get_skip_prob(cm, xd);
|
|
const int skip_cost0 = vp9_cost_bit(skip_prob, 0);
|
|
const int skip_cost1 = vp9_cost_bit(skip_prob, 1);
|
|
|
|
// Skip is never coded at the segment level for sub8x8 blocks and instead
|
|
// always coded in the bitstream at the mode info level.
|
|
if (ref_frame != INTRA_FRAME && !xd->lossless) {
|
|
if (RDCOST(x->rdmult, x->rddiv,
|
|
rate_y + rate_uv + skip_cost0, distortion2) <
|
|
RDCOST(x->rdmult, x->rddiv, skip_cost1, total_sse)) {
|
|
// Add in the cost of the no skip flag.
|
|
rate2 += skip_cost0;
|
|
} else {
|
|
// FIXME(rbultje) make this work for splitmv also
|
|
rate2 += skip_cost1;
|
|
distortion2 = total_sse;
|
|
assert(total_sse >= 0);
|
|
rate2 -= (rate_y + rate_uv);
|
|
rate_y = 0;
|
|
rate_uv = 0;
|
|
this_skip2 = 1;
|
|
}
|
|
} else {
|
|
// Add in the cost of the no skip flag.
|
|
rate2 += skip_cost0;
|
|
}
|
|
|
|
// Calculate the final RD estimate for this mode.
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
|
|
}
|
|
|
|
if (!disable_skip && ref_frame == INTRA_FRAME) {
|
|
for (i = 0; i < REFERENCE_MODES; ++i)
|
|
best_pred_rd[i] = VPXMIN(best_pred_rd[i], this_rd);
|
|
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
|
|
best_filter_rd[i] = VPXMIN(best_filter_rd[i], this_rd);
|
|
}
|
|
|
|
// Did this mode help.. i.e. is it the new best mode
|
|
if (this_rd < best_rd || x->skip) {
|
|
if (!mode_excluded) {
|
|
int max_plane = MAX_MB_PLANE;
|
|
// Note index of best mode so far
|
|
best_ref_index = ref_index;
|
|
|
|
if (ref_frame == INTRA_FRAME) {
|
|
/* required for left and above block mv */
|
|
mi->mv[0].as_int = 0;
|
|
max_plane = 1;
|
|
}
|
|
|
|
rd_cost->rate = rate2;
|
|
rd_cost->dist = distortion2;
|
|
rd_cost->rdcost = this_rd;
|
|
best_rd = this_rd;
|
|
best_yrd = best_rd -
|
|
RDCOST(x->rdmult, x->rddiv, rate_uv, distortion_uv);
|
|
best_mbmode = *mi;
|
|
best_skip2 = this_skip2;
|
|
if (!x->select_tx_size)
|
|
swap_block_ptr(x, ctx, 1, 0, 0, max_plane);
|
|
memcpy(ctx->zcoeff_blk, x->zcoeff_blk[TX_4X4],
|
|
sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk);
|
|
|
|
for (i = 0; i < 4; i++)
|
|
best_bmodes[i] = xd->mi[0]->bmi[i];
|
|
|
|
// TODO(debargha): enhance this test with a better distortion prediction
|
|
// based on qp, activity mask and history
|
|
if ((sf->mode_search_skip_flags & FLAG_EARLY_TERMINATE) &&
|
|
(ref_index > MIN_EARLY_TERM_INDEX)) {
|
|
int qstep = xd->plane[0].dequant[1];
|
|
// TODO(debargha): Enhance this by specializing for each mode_index
|
|
int scale = 4;
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
qstep >>= (xd->bd - 8);
|
|
}
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
if (x->source_variance < UINT_MAX) {
|
|
const int var_adjust = (x->source_variance < 16);
|
|
scale -= var_adjust;
|
|
}
|
|
if (ref_frame > INTRA_FRAME &&
|
|
distortion2 * scale < qstep * qstep) {
|
|
early_term = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* keep record of best compound/single-only prediction */
|
|
if (!disable_skip && ref_frame != INTRA_FRAME) {
|
|
int64_t single_rd, hybrid_rd, single_rate, hybrid_rate;
|
|
|
|
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
|
|
single_rate = rate2 - compmode_cost;
|
|
hybrid_rate = rate2;
|
|
} else {
|
|
single_rate = rate2;
|
|
hybrid_rate = rate2 + compmode_cost;
|
|
}
|
|
|
|
single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
|
|
hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
|
|
|
|
if (!comp_pred && single_rd < best_pred_rd[SINGLE_REFERENCE])
|
|
best_pred_rd[SINGLE_REFERENCE] = single_rd;
|
|
else if (comp_pred && single_rd < best_pred_rd[COMPOUND_REFERENCE])
|
|
best_pred_rd[COMPOUND_REFERENCE] = single_rd;
|
|
|
|
if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT])
|
|
best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd;
|
|
}
|
|
|
|
/* keep record of best filter type */
|
|
if (!mode_excluded && !disable_skip && ref_frame != INTRA_FRAME &&
|
|
cm->interp_filter != BILINEAR) {
|
|
int64_t ref = filter_cache[cm->interp_filter == SWITCHABLE ?
|
|
SWITCHABLE_FILTERS : cm->interp_filter];
|
|
int64_t adj_rd;
|
|
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
|
|
if (ref == INT64_MAX)
|
|
adj_rd = 0;
|
|
else if (filter_cache[i] == INT64_MAX)
|
|
// when early termination is triggered, the encoder does not have
|
|
// access to the rate-distortion cost. it only knows that the cost
|
|
// should be above the maximum valid value. hence it takes the known
|
|
// maximum plus an arbitrary constant as the rate-distortion cost.
|
|
adj_rd = mask_filter - ref + 10;
|
|
else
|
|
adj_rd = filter_cache[i] - ref;
|
|
|
|
adj_rd += this_rd;
|
|
best_filter_rd[i] = VPXMIN(best_filter_rd[i], adj_rd);
|
|
}
|
|
}
|
|
|
|
if (early_term)
|
|
break;
|
|
|
|
if (x->skip && !comp_pred)
|
|
break;
|
|
}
|
|
|
|
if (best_rd >= best_rd_so_far) {
|
|
rd_cost->rate = INT_MAX;
|
|
rd_cost->rdcost = INT64_MAX;
|
|
return;
|
|
}
|
|
|
|
// If we used an estimate for the uv intra rd in the loop above...
|
|
if (sf->use_uv_intra_rd_estimate) {
|
|
// Do Intra UV best rd mode selection if best mode choice above was intra.
|
|
if (best_mbmode.ref_frame[0] == INTRA_FRAME) {
|
|
*mi = best_mbmode;
|
|
rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv_intra,
|
|
&rate_uv_tokenonly,
|
|
&dist_uv,
|
|
&skip_uv,
|
|
BLOCK_8X8, TX_4X4);
|
|
}
|
|
}
|
|
|
|
if (best_rd == INT64_MAX) {
|
|
rd_cost->rate = INT_MAX;
|
|
rd_cost->dist = INT64_MAX;
|
|
rd_cost->rdcost = INT64_MAX;
|
|
return;
|
|
}
|
|
|
|
assert((cm->interp_filter == SWITCHABLE) ||
|
|
(cm->interp_filter == best_mbmode.interp_filter) ||
|
|
!is_inter_block(&best_mbmode));
|
|
|
|
vp9_update_rd_thresh_fact(tile_data->thresh_freq_fact,
|
|
sf->adaptive_rd_thresh, bsize, best_ref_index);
|
|
|
|
// macroblock modes
|
|
*mi = best_mbmode;
|
|
x->skip |= best_skip2;
|
|
if (!is_inter_block(&best_mbmode)) {
|
|
for (i = 0; i < 4; i++)
|
|
xd->mi[0]->bmi[i].as_mode = best_bmodes[i].as_mode;
|
|
} else {
|
|
for (i = 0; i < 4; ++i)
|
|
memcpy(&xd->mi[0]->bmi[i], &best_bmodes[i], sizeof(b_mode_info));
|
|
|
|
mi->mv[0].as_int = xd->mi[0]->bmi[3].as_mv[0].as_int;
|
|
mi->mv[1].as_int = xd->mi[0]->bmi[3].as_mv[1].as_int;
|
|
}
|
|
|
|
for (i = 0; i < REFERENCE_MODES; ++i) {
|
|
if (best_pred_rd[i] == INT64_MAX)
|
|
best_pred_diff[i] = INT_MIN;
|
|
else
|
|
best_pred_diff[i] = best_rd - best_pred_rd[i];
|
|
}
|
|
|
|
if (!x->skip) {
|
|
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
|
|
if (best_filter_rd[i] == INT64_MAX)
|
|
best_filter_diff[i] = 0;
|
|
else
|
|
best_filter_diff[i] = best_rd - best_filter_rd[i];
|
|
}
|
|
if (cm->interp_filter == SWITCHABLE)
|
|
assert(best_filter_diff[SWITCHABLE_FILTERS] == 0);
|
|
} else {
|
|
vp9_zero(best_filter_diff);
|
|
}
|
|
|
|
store_coding_context(x, ctx, best_ref_index,
|
|
best_pred_diff, best_filter_diff, 0);
|
|
}
|