vpx/test/vp9_quantize_test.cc
Johann af08fbb444 quantize test: promote RandRange() result to signed
Avoid unsigned overflow warning:
unsigned integer overflow: 19974 - 32703 cannot be represented in type
'unsigned int'

Change-Id: Ifebee014342e4c6f3b53306c0cad6ae0b465ac12
2017-07-20 08:17:48 -07:00

409 lines
16 KiB
C++

/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "./vpx_config.h"
#include "./vpx_dsp_rtcd.h"
#include "test/acm_random.h"
#include "test/buffer.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_scan.h"
#include "vpx/vpx_codec.h"
#include "vpx/vpx_integer.h"
using libvpx_test::ACMRandom;
using libvpx_test::Buffer;
namespace {
const int number_of_iterations = 100;
typedef void (*QuantizeFunc)(const tran_low_t *coeff, intptr_t count,
int skip_block, const int16_t *zbin,
const int16_t *round, const int16_t *quant,
const int16_t *quant_shift, tran_low_t *qcoeff,
tran_low_t *dqcoeff, const int16_t *dequant,
uint16_t *eob, const int16_t *scan,
const int16_t *iscan);
typedef std::tr1::tuple<QuantizeFunc, QuantizeFunc, vpx_bit_depth_t>
QuantizeParam;
class VP9QuantizeTest : public ::testing::TestWithParam<QuantizeParam> {
public:
virtual ~VP9QuantizeTest() {}
virtual void SetUp() {
quantize_op_ = GET_PARAM(0);
ref_quantize_op_ = GET_PARAM(1);
bit_depth_ = GET_PARAM(2);
max_value_ = (1 << bit_depth_) - 1;
}
virtual void TearDown() { libvpx_test::ClearSystemState(); }
protected:
vpx_bit_depth_t bit_depth_;
int max_value_;
QuantizeFunc quantize_op_;
QuantizeFunc ref_quantize_op_;
};
class VP9Quantize32Test : public ::testing::TestWithParam<QuantizeParam> {
public:
virtual ~VP9Quantize32Test() {}
virtual void SetUp() {
quantize_op_ = GET_PARAM(0);
ref_quantize_op_ = GET_PARAM(1);
bit_depth_ = GET_PARAM(2);
max_value_ = (1 << bit_depth_) - 1;
}
virtual void TearDown() { libvpx_test::ClearSystemState(); }
protected:
vpx_bit_depth_t bit_depth_;
int max_value_;
QuantizeFunc quantize_op_;
QuantizeFunc ref_quantize_op_;
};
TEST_P(VP9QuantizeTest, OperationCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
Buffer<tran_low_t> coeff = Buffer<tran_low_t>(16, 16, 0, 16);
ASSERT_TRUE(coeff.Init());
DECLARE_ALIGNED(16, int16_t, zbin_ptr[8]);
DECLARE_ALIGNED(16, int16_t, round_ptr[8]);
DECLARE_ALIGNED(16, int16_t, quant_ptr[8]);
DECLARE_ALIGNED(16, int16_t, quant_shift_ptr[8]);
DECLARE_ALIGNED(16, int16_t, dequant_ptr[8]);
Buffer<tran_low_t> qcoeff = Buffer<tran_low_t>(16, 16, 0, 32);
ASSERT_TRUE(qcoeff.Init());
Buffer<tran_low_t> dqcoeff = Buffer<tran_low_t>(16, 16, 0, 32);
ASSERT_TRUE(dqcoeff.Init());
Buffer<tran_low_t> ref_qcoeff = Buffer<tran_low_t>(16, 16, 0);
ASSERT_TRUE(ref_qcoeff.Init());
Buffer<tran_low_t> ref_dqcoeff = Buffer<tran_low_t>(16, 16, 0);
ASSERT_TRUE(ref_dqcoeff.Init());
uint16_t eob, ref_eob;
for (int i = 0; i < number_of_iterations; ++i) {
const int skip_block = i == 0;
const TX_SIZE sz = (TX_SIZE)(i % 3); // TX_4X4, TX_8X8 TX_16X16
const TX_TYPE tx_type = (TX_TYPE)((i >> 2) % 3);
const scan_order *scan_order = &vp9_scan_orders[sz][tx_type];
const int count = (4 << sz) * (4 << sz); // 16, 64, 256
coeff.Set(&rnd, 0, max_value_);
for (int j = 0; j < 2; j++) {
// Values determined by deconstructing vp9_init_quantizer().
// zbin may be up to 1143 for 8 and 10 bit Y values, or 1200 for 12 bit Y
// values or U/V values of any bit depth. This is because y_delta is not
// factored into the vp9_ac_quant() call.
zbin_ptr[j] = rnd.RandRange(1200);
// round may be up to 685 for Y values or 914 for U/V.
round_ptr[j] = rnd.RandRange(914);
// quant ranges from 1 to -32703
quant_ptr[j] = static_cast<int>(rnd.RandRange(32704)) - 32703;
// quant_shift goes up to 1 << 16.
quant_shift_ptr[j] = rnd.RandRange(16384);
// dequant maxes out at 1828 for all cases.
dequant_ptr[j] = rnd.RandRange(1828);
}
for (int j = 2; j < 8; j++) {
zbin_ptr[j] = zbin_ptr[1];
round_ptr[j] = round_ptr[1];
quant_ptr[j] = quant_ptr[1];
quant_shift_ptr[j] = quant_shift_ptr[1];
dequant_ptr[j] = dequant_ptr[1];
}
ref_quantize_op_(
coeff.TopLeftPixel(), count, skip_block, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, ref_qcoeff.TopLeftPixel(), ref_dqcoeff.TopLeftPixel(),
dequant_ptr, &ref_eob, scan_order->scan, scan_order->iscan);
ASM_REGISTER_STATE_CHECK(quantize_op_(
coeff.TopLeftPixel(), count, skip_block, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, qcoeff.TopLeftPixel(), dqcoeff.TopLeftPixel(),
dequant_ptr, &eob, scan_order->scan, scan_order->iscan));
EXPECT_TRUE(qcoeff.CheckValues(ref_qcoeff));
EXPECT_TRUE(dqcoeff.CheckValues(ref_dqcoeff));
EXPECT_EQ(eob, ref_eob);
if (HasFailure()) {
printf("Failure on iteration %d.\n", i);
qcoeff.PrintDifference(ref_qcoeff);
dqcoeff.PrintDifference(ref_dqcoeff);
return;
}
}
}
TEST_P(VP9Quantize32Test, OperationCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
Buffer<tran_low_t> coeff = Buffer<tran_low_t>(32, 32, 0, 16);
ASSERT_TRUE(coeff.Init());
DECLARE_ALIGNED(16, int16_t, zbin_ptr[8]);
DECLARE_ALIGNED(16, int16_t, round_ptr[8]);
DECLARE_ALIGNED(16, int16_t, quant_ptr[8]);
DECLARE_ALIGNED(16, int16_t, quant_shift_ptr[8]);
DECLARE_ALIGNED(16, int16_t, dequant_ptr[8]);
Buffer<tran_low_t> qcoeff = Buffer<tran_low_t>(32, 32, 0, 32);
ASSERT_TRUE(qcoeff.Init());
Buffer<tran_low_t> dqcoeff = Buffer<tran_low_t>(32, 32, 0, 32);
ASSERT_TRUE(dqcoeff.Init());
Buffer<tran_low_t> ref_qcoeff = Buffer<tran_low_t>(32, 32, 0);
ASSERT_TRUE(ref_qcoeff.Init());
Buffer<tran_low_t> ref_dqcoeff = Buffer<tran_low_t>(32, 32, 0);
ASSERT_TRUE(ref_dqcoeff.Init());
uint16_t eob, ref_eob;
for (int i = 0; i < number_of_iterations; ++i) {
const int skip_block = i == 0;
const TX_SIZE sz = TX_32X32;
const TX_TYPE tx_type = (TX_TYPE)(i % 4);
const scan_order *scan_order = &vp9_scan_orders[sz][tx_type];
const int count = (4 << sz) * (4 << sz); // 1024
coeff.Set(&rnd, 0, max_value_);
for (int j = 0; j < 2; j++) {
zbin_ptr[j] = rnd.RandRange(1200);
round_ptr[j] = rnd.RandRange(914);
quant_ptr[j] = static_cast<int>(rnd.RandRange(32704)) - 32703;
quant_shift_ptr[j] = rnd.RandRange(16384);
dequant_ptr[j] = rnd.RandRange(1828);
}
for (int j = 2; j < 8; j++) {
zbin_ptr[j] = zbin_ptr[1];
round_ptr[j] = round_ptr[1];
quant_ptr[j] = quant_ptr[1];
quant_shift_ptr[j] = quant_shift_ptr[1];
dequant_ptr[j] = dequant_ptr[1];
}
ref_quantize_op_(
coeff.TopLeftPixel(), count, skip_block, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, ref_qcoeff.TopLeftPixel(), ref_dqcoeff.TopLeftPixel(),
dequant_ptr, &ref_eob, scan_order->scan, scan_order->iscan);
ASM_REGISTER_STATE_CHECK(quantize_op_(
coeff.TopLeftPixel(), count, skip_block, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, qcoeff.TopLeftPixel(), dqcoeff.TopLeftPixel(),
dequant_ptr, &eob, scan_order->scan, scan_order->iscan));
EXPECT_TRUE(qcoeff.CheckValues(ref_qcoeff));
EXPECT_TRUE(dqcoeff.CheckValues(ref_dqcoeff));
EXPECT_EQ(eob, ref_eob);
if (HasFailure()) {
printf("Failure on iteration %d.\n", i);
qcoeff.PrintDifference(ref_qcoeff);
dqcoeff.PrintDifference(ref_dqcoeff);
return;
}
}
}
TEST_P(VP9QuantizeTest, EOBCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
Buffer<tran_low_t> coeff = Buffer<tran_low_t>(16, 16, 0, 16);
ASSERT_TRUE(coeff.Init());
DECLARE_ALIGNED(16, int16_t, zbin_ptr[8]);
DECLARE_ALIGNED(16, int16_t, round_ptr[8]);
DECLARE_ALIGNED(16, int16_t, quant_ptr[8]);
DECLARE_ALIGNED(16, int16_t, quant_shift_ptr[8]);
DECLARE_ALIGNED(16, int16_t, dequant_ptr[8]);
Buffer<tran_low_t> qcoeff = Buffer<tran_low_t>(16, 16, 0, 32);
ASSERT_TRUE(qcoeff.Init());
Buffer<tran_low_t> dqcoeff = Buffer<tran_low_t>(16, 16, 0, 32);
ASSERT_TRUE(dqcoeff.Init());
Buffer<tran_low_t> ref_qcoeff = Buffer<tran_low_t>(16, 16, 0);
ASSERT_TRUE(ref_qcoeff.Init());
Buffer<tran_low_t> ref_dqcoeff = Buffer<tran_low_t>(16, 16, 0);
ASSERT_TRUE(ref_dqcoeff.Init());
uint16_t eob, ref_eob;
for (int i = 0; i < number_of_iterations; ++i) {
int skip_block = i == 0;
TX_SIZE sz = (TX_SIZE)(i % 3); // TX_4X4, TX_8X8 TX_16X16
TX_TYPE tx_type = (TX_TYPE)((i >> 2) % 3);
const scan_order *scan_order = &vp9_scan_orders[sz][tx_type];
int count = (4 << sz) * (4 << sz); // 16, 64, 256
// Two random entries
coeff.Set(0);
coeff.TopLeftPixel()[rnd(count)] = rnd.RandRange(max_value_);
coeff.TopLeftPixel()[rnd(count)] = rnd.RandRange(max_value_);
for (int j = 0; j < 2; j++) {
zbin_ptr[j] = rnd.RandRange(1200);
round_ptr[j] = rnd.RandRange(914);
quant_ptr[j] = static_cast<int>(rnd.RandRange(32704)) - 32703;
quant_shift_ptr[j] = rnd.RandRange(16384);
dequant_ptr[j] = rnd.RandRange(1828);
}
for (int j = 2; j < 8; j++) {
zbin_ptr[j] = zbin_ptr[1];
round_ptr[j] = round_ptr[1];
quant_ptr[j] = quant_ptr[1];
quant_shift_ptr[j] = quant_shift_ptr[1];
dequant_ptr[j] = dequant_ptr[1];
}
ref_quantize_op_(
coeff.TopLeftPixel(), count, skip_block, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, ref_qcoeff.TopLeftPixel(), ref_dqcoeff.TopLeftPixel(),
dequant_ptr, &ref_eob, scan_order->scan, scan_order->iscan);
ASM_REGISTER_STATE_CHECK(quantize_op_(
coeff.TopLeftPixel(), count, skip_block, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, qcoeff.TopLeftPixel(), dqcoeff.TopLeftPixel(),
dequant_ptr, &eob, scan_order->scan, scan_order->iscan));
EXPECT_TRUE(qcoeff.CheckValues(ref_qcoeff));
EXPECT_TRUE(dqcoeff.CheckValues(ref_dqcoeff));
EXPECT_EQ(eob, ref_eob);
if (HasFailure()) {
printf("Failure on iteration %d.\n", i);
qcoeff.PrintDifference(ref_qcoeff);
dqcoeff.PrintDifference(ref_dqcoeff);
return;
}
}
}
TEST_P(VP9Quantize32Test, EOBCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
Buffer<tran_low_t> coeff = Buffer<tran_low_t>(32, 32, 0, 16);
ASSERT_TRUE(coeff.Init());
DECLARE_ALIGNED(16, int16_t, zbin_ptr[8]);
DECLARE_ALIGNED(16, int16_t, round_ptr[8]);
DECLARE_ALIGNED(16, int16_t, quant_ptr[8]);
DECLARE_ALIGNED(16, int16_t, quant_shift_ptr[8]);
DECLARE_ALIGNED(16, int16_t, dequant_ptr[8]);
Buffer<tran_low_t> qcoeff = Buffer<tran_low_t>(32, 32, 0, 32);
ASSERT_TRUE(qcoeff.Init());
Buffer<tran_low_t> dqcoeff = Buffer<tran_low_t>(32, 32, 0, 32);
ASSERT_TRUE(dqcoeff.Init());
Buffer<tran_low_t> ref_qcoeff = Buffer<tran_low_t>(32, 32, 0);
ASSERT_TRUE(ref_qcoeff.Init());
Buffer<tran_low_t> ref_dqcoeff = Buffer<tran_low_t>(32, 32, 0);
ASSERT_TRUE(ref_dqcoeff.Init());
uint16_t eob, ref_eob;
for (int i = 0; i < number_of_iterations; ++i) {
int skip_block = i == 0;
TX_SIZE sz = TX_32X32;
TX_TYPE tx_type = (TX_TYPE)(i % 4);
const scan_order *scan_order = &vp9_scan_orders[sz][tx_type];
int count = (4 << sz) * (4 << sz); // 1024
coeff.Set(0);
// Two random entries
coeff.TopLeftPixel()[rnd(count)] = rnd.RandRange(max_value_);
coeff.TopLeftPixel()[rnd(count)] = rnd.RandRange(max_value_);
for (int j = 0; j < 2; j++) {
zbin_ptr[j] = rnd.RandRange(1200);
round_ptr[j] = rnd.RandRange(914);
quant_ptr[j] = static_cast<int>(rnd.RandRange(32704)) - 32703;
quant_shift_ptr[j] = rnd.RandRange(16384);
dequant_ptr[j] = rnd.RandRange(1828);
}
for (int j = 2; j < 8; j++) {
zbin_ptr[j] = zbin_ptr[1];
round_ptr[j] = round_ptr[1];
quant_ptr[j] = quant_ptr[1];
quant_shift_ptr[j] = quant_shift_ptr[1];
dequant_ptr[j] = dequant_ptr[1];
}
ref_quantize_op_(
coeff.TopLeftPixel(), count, skip_block, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, ref_qcoeff.TopLeftPixel(), ref_dqcoeff.TopLeftPixel(),
dequant_ptr, &ref_eob, scan_order->scan, scan_order->iscan);
ASM_REGISTER_STATE_CHECK(quantize_op_(
coeff.TopLeftPixel(), count, skip_block, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, qcoeff.TopLeftPixel(), dqcoeff.TopLeftPixel(),
dequant_ptr, &eob, scan_order->scan, scan_order->iscan));
EXPECT_TRUE(qcoeff.CheckValues(ref_qcoeff));
EXPECT_TRUE(dqcoeff.CheckValues(ref_dqcoeff));
EXPECT_EQ(eob, ref_eob);
if (HasFailure()) {
printf("Failure on iteration %d.\n", i);
qcoeff.PrintDifference(ref_qcoeff);
dqcoeff.PrintDifference(ref_dqcoeff);
return;
}
}
}
using std::tr1::make_tuple;
#if HAVE_SSE2
#if CONFIG_VP9_HIGHBITDEPTH
// TODO(johannkoenig): Fix vpx_quantize_b_sse2 in highbitdepth builds.
// make_tuple(&vpx_quantize_b_sse2, &vpx_highbd_quantize_b_c, VPX_BITS_8),
INSTANTIATE_TEST_CASE_P(
SSE2, VP9QuantizeTest,
::testing::Values(make_tuple(&vpx_highbd_quantize_b_sse2,
&vpx_highbd_quantize_b_c, VPX_BITS_8),
make_tuple(&vpx_highbd_quantize_b_sse2,
&vpx_highbd_quantize_b_c, VPX_BITS_10),
make_tuple(&vpx_highbd_quantize_b_sse2,
&vpx_highbd_quantize_b_c, VPX_BITS_12)));
INSTANTIATE_TEST_CASE_P(
SSE2, VP9Quantize32Test,
::testing::Values(make_tuple(&vpx_highbd_quantize_b_32x32_sse2,
&vpx_highbd_quantize_b_32x32_c, VPX_BITS_8),
make_tuple(&vpx_highbd_quantize_b_32x32_sse2,
&vpx_highbd_quantize_b_32x32_c, VPX_BITS_10),
make_tuple(&vpx_highbd_quantize_b_32x32_sse2,
&vpx_highbd_quantize_b_32x32_c, VPX_BITS_12)));
#else
INSTANTIATE_TEST_CASE_P(SSE2, VP9QuantizeTest,
::testing::Values(make_tuple(&vpx_quantize_b_sse2,
&vpx_quantize_b_c,
VPX_BITS_8)));
#endif // CONFIG_VP9_HIGHBITDEPTH
#endif // HAVE_SSE2
// TODO(johannkoenig): SSSE3 optimizations do not yet pass these tests.
#if HAVE_SSSE3 && ARCH_X86_64
INSTANTIATE_TEST_CASE_P(DISABLED_SSSE3, VP9QuantizeTest,
::testing::Values(make_tuple(&vpx_quantize_b_ssse3,
&vpx_quantize_b_c,
VPX_BITS_8)));
INSTANTIATE_TEST_CASE_P(
DISABLED_SSSE3, VP9Quantize32Test,
::testing::Values(make_tuple(&vpx_quantize_b_32x32_ssse3,
&vpx_quantize_b_32x32_c, VPX_BITS_8)));
#endif // HAVE_SSSE3 && ARCH_X86_64
// TODO(johannkoenig): AVX optimizations do not yet pass the 32x32 test or
// highbitdepth configurations.
#if HAVE_AVX && ARCH_X86_64 && !CONFIG_VP9_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(AVX, VP9QuantizeTest,
::testing::Values(make_tuple(&vpx_quantize_b_avx,
&vpx_quantize_b_c,
VPX_BITS_8)));
INSTANTIATE_TEST_CASE_P(DISABLED_AVX, VP9Quantize32Test,
::testing::Values(make_tuple(&vpx_quantize_b_32x32_avx,
&vpx_quantize_b_32x32_c,
VPX_BITS_8)));
#endif // HAVE_AVX && ARCH_X86_64 && !CONFIG_VP9_HIGHBITDEPTH
} // namespace