Paul Wilkins 661b2c2dcf Further work on Segmentation Experiment:
This check in includes quite a lot of clean up and refactoring.

Most of the analysis and set up for the different coding options for the
segment map (currently simple distribution based coding or temporaly
predicted coding), has been moved to one location (the function
choose_segmap_coding_method() in segmenation.c). This code was previously
scattered around in various locations making integration with other
experiments and modification / debug more difficult.

Currently the functionality is as it was with the exception that the
prediction probabilities are now only transmitted when the temporal
prediction mode is selected.

There is still quite a bit more clean up work that will be possible
when the #ifdef is removed. Also at that time I may rename and alter
the sense of macroblock based variable "segment_flag" which indicates
(1 that the segmnet id is not predicted vs 0 that it is predicted).

I also intend to experiment with a spatial prediction mode that can be
used when coding a key frame segment map or in cases where temporal
prediction does not work well but there is spatial correlation.

In a later check in when the ifdefs have gone I may also move the call
to choose_segmap_coding_method() to just before where the bitsream is
packed (currently it is in vp8_encode_frame()) to further reduce the
possibility of clashes with other experiments and prevent it being called
on each itteration of the recode loop.

Change-Id: I3d4aba2a2826ec21f367678d5b07c1d1c36db168
2011-11-15 11:13:33 +00:00
2010-10-25 22:01:40 -04:00
2011-08-19 15:44:45 -04:00
2011-07-12 16:29:15 -07:00
2010-05-18 11:58:33 -04:00
2010-09-28 10:09:01 -04:00
2011-08-02 10:09:36 -04:00
2010-12-17 10:01:05 -05:00
2010-12-17 10:01:05 -05:00
2011-08-02 10:09:59 -04:00
2011-08-15 17:02:45 -04:00
2010-05-18 11:58:33 -04:00
2010-06-04 16:19:40 -04:00
2011-02-16 17:59:33 -08:00
2011-01-28 12:47:39 +02:00
2010-06-04 16:19:40 -04:00
2011-02-22 14:42:00 -05:00
2011-03-10 18:49:54 -05:00
2010-11-02 09:14:24 -04:00
2010-11-02 09:14:24 -04:00
2010-05-18 11:58:33 -04:00
2010-05-18 11:58:33 -04:00
2011-02-16 17:59:33 -08:00
2010-05-18 11:58:33 -04:00
2011-05-09 12:56:20 -04:00

vpx Multi-Format Codec SDK
README - 19 May 2010

Welcome to the WebM VP8 Codec SDK!

COMPILING THE APPLICATIONS/LIBRARIES:
  The build system used is similar to autotools. Building generally consists of
  "configuring" with your desired build options, then using GNU make to build
  the application.

  1. Prerequisites

    * All x86 targets require the Yasm[1] assembler be installed.
    * All Windows builds require that Cygwin[2] be installed.
    * Building the documentation requires PHP[3] and Doxygen[4]. If you do not
      have these packages, you must pass --disable-install-docs to the
      configure script.

    [1]: http://www.tortall.net/projects/yasm
    [2]: http://www.cygwin.com
    [3]: http://php.net
    [4]: http://www.doxygen.org

  2. Out-of-tree builds
  Out of tree builds are a supported method of building the application. For
  an out of tree build, the source tree is kept separate from the object
  files produced during compilation. For instance:

    $ mkdir build
    $ cd build
    $ ../libvpx/configure <options>
    $ make

  3. Configuration options
  The 'configure' script supports a number of options. The --help option can be
  used to get a list of supported options:
    $ ../libvpx/configure --help

  4. Cross development
  For cross development, the most notable option is the --target option. The
  most up-to-date list of supported targets can be found at the bottom of the
  --help output of the configure script. As of this writing, the list of
  available targets is:

    armv5te-linux-rvct
    armv5te-linux-gcc
    armv5te-symbian-gcc
    armv6-darwin-gcc
    armv6-linux-rvct
    armv6-linux-gcc
    armv6-symbian-gcc
    iwmmxt-linux-rvct
    iwmmxt-linux-gcc
    iwmmxt2-linux-rvct
    iwmmxt2-linux-gcc
    armv7-linux-rvct
    armv7-linux-gcc
    mips32-linux-gcc
    ppc32-darwin8-gcc
    ppc32-darwin9-gcc
    ppc64-darwin8-gcc
    ppc64-darwin9-gcc
    ppc64-linux-gcc
    x86-darwin8-gcc
    x86-darwin8-icc
    x86-darwin9-gcc
    x86-darwin9-icc
    x86-linux-gcc
    x86-linux-icc
    x86-solaris-gcc
    x86-win32-vs7
    x86-win32-vs8
    x86_64-darwin9-gcc
    x86_64-linux-gcc
    x86_64-solaris-gcc
    x86_64-win64-vs8
    universal-darwin8-gcc
    universal-darwin9-gcc
    generic-gnu

  The generic-gnu target, in conjunction with the CROSS environment variable,
  can be used to cross compile architectures that aren't explicitly listed, if
  the toolchain is a cross GNU (gcc/binutils) toolchain. Other POSIX toolchains
  will likely work as well. For instance, to build using the mipsel-linux-uclibc
  toolchain, the following command could be used (note, POSIX SH syntax, adapt
  to your shell as necessary):

    $ CROSS=mipsel-linux-uclibc- ../libvpx/configure

  In addition, the executables to be invoked can be overridden by specifying the
  environment variables: CC, AR, LD, AS, STRIP, NM. Additional flags can be
  passed to these executables with CFLAGS, LDFLAGS, and ASFLAGS.

  5. Configuration errors
  If the configuration step fails, the first step is to look in the error log.
  This defaults to config.err. This should give a good indication of what went
  wrong. If not, contact us for support.

SUPPORT
  This library is an open source project supported by its community. Please
  please email webm-users@webmproject.org for help.

Description
No description provided
Readme 63 MiB
Languages
C 80%
C++ 9%
Assembly 6.7%
Makefile 1.5%
Shell 1.3%
Other 1.5%