vpx/vp9/common/vp9_reconinter.c
Deb Mukherjee 23144d2345 Implicit weighted prediction experiment
Adds an experiment to use a weighted prediction of two INTER
predictors, where the weight is one of (1/4, 3/4), (3/8, 5/8),
(1/2, 1/2), (5/8, 3/8) or (3/4, 1/4), and is chosen implicitly
based on consistency of the predictors to the already
reconstructed pixels to the top and left of the current macroblock
or superblock.

Currently the weighting is not applied to SPLITMV modes, which
default to the usual (1/2, 1/2) weighting. However the code is in
place controlled by a macro. The same weighting is used for Y and
UV components, where the weight is derived from analyzing the Y
component only.

Results (over compound inter-intra experiment)
derf: +0.18%
yt: +0.34%
hd: +0.49%
stdhd: +0.23%

The experiment suggests bigger benefit for explicitly signaled weights.

Change-Id: I5438539ff4485c5752874cd1eb078ff14bf5235a
2013-03-26 16:58:56 -07:00

1833 lines
69 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include "./vpx_config.h"
#include "vpx/vpx_integer.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_filter.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
void vp9_setup_scale_factors_for_frame(struct scale_factors *scale,
YV12_BUFFER_CONFIG *other,
int this_w, int this_h) {
int other_h = other->y_crop_height;
int other_w = other->y_crop_width;
scale->x_num = other_w;
scale->x_den = this_w;
scale->x_offset_q4 = 0; // calculated per-mb
scale->x_step_q4 = 16 * other_w / this_w;
scale->y_num = other_h;
scale->y_den = this_h;
scale->y_offset_q4 = 0; // calculated per-mb
scale->y_step_q4 = 16 * other_h / this_h;
// TODO(agrange): Investigate the best choice of functions to use here
// for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what
// to do at full-pel offsets. The current selection, where the filter is
// applied in one direction only, and not at all for 0,0, seems to give the
// best quality, but it may be worth trying an additional mode that does
// do the filtering on full-pel.
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
if (scale->x_step_q4 == 16) {
if (scale->y_step_q4 == 16) {
// No scaling in either direction.
scale->predict[0][0][0] = vp9_convolve_copy;
scale->predict[0][0][1] = vp9_convolve_1by8;
scale->predict[0][0][2] = vp9_convolve_qtr;
scale->predict[0][0][3] = vp9_convolve_3by8;
scale->predict[0][0][4] = vp9_convolve_avg;
scale->predict[0][0][5] = vp9_convolve_5by8;
scale->predict[0][0][6] = vp9_convolve_3qtr;
scale->predict[0][0][7] = vp9_convolve_7by8;
scale->predict[0][1][0] = vp9_convolve8_vert;
scale->predict[0][1][1] = vp9_convolve8_1by8_vert;
scale->predict[0][1][2] = vp9_convolve8_qtr_vert;
scale->predict[0][1][3] = vp9_convolve8_3by8_vert;
scale->predict[0][1][4] = vp9_convolve8_avg_vert;
scale->predict[0][1][5] = vp9_convolve8_5by8_vert;
scale->predict[0][1][6] = vp9_convolve8_3qtr_vert;
scale->predict[0][1][7] = vp9_convolve8_7by8_vert;
scale->predict[1][0][0] = vp9_convolve8_horiz;
scale->predict[1][0][1] = vp9_convolve8_1by8_horiz;
scale->predict[1][0][2] = vp9_convolve8_qtr_horiz;
scale->predict[1][0][3] = vp9_convolve8_3by8_horiz;
scale->predict[1][0][4] = vp9_convolve8_avg_horiz;
scale->predict[1][0][5] = vp9_convolve8_5by8_horiz;
scale->predict[1][0][6] = vp9_convolve8_3qtr_horiz;
scale->predict[1][0][7] = vp9_convolve8_7by8_horiz;
} else {
// No scaling in x direction. Must always scale in the y direction.
scale->predict[0][0][0] = vp9_convolve8_vert;
scale->predict[0][0][1] = vp9_convolve8_1by8_vert;
scale->predict[0][0][2] = vp9_convolve8_qtr_vert;
scale->predict[0][0][3] = vp9_convolve8_3by8_vert;
scale->predict[0][0][4] = vp9_convolve8_avg_vert;
scale->predict[0][0][5] = vp9_convolve8_5by8_vert;
scale->predict[0][0][6] = vp9_convolve8_3qtr_vert;
scale->predict[0][0][7] = vp9_convolve8_7by8_vert;
scale->predict[0][1][0] = vp9_convolve8_vert;
scale->predict[0][1][1] = vp9_convolve8_1by8_vert;
scale->predict[0][1][2] = vp9_convolve8_qtr_vert;
scale->predict[0][1][3] = vp9_convolve8_3by8_vert;
scale->predict[0][1][4] = vp9_convolve8_avg_vert;
scale->predict[0][1][5] = vp9_convolve8_5by8_vert;
scale->predict[0][1][6] = vp9_convolve8_3qtr_vert;
scale->predict[0][1][7] = vp9_convolve8_7by8_vert;
scale->predict[1][0][0] = vp9_convolve8;
scale->predict[1][0][1] = vp9_convolve8_1by8;
scale->predict[1][0][2] = vp9_convolve8_qtr;
scale->predict[1][0][3] = vp9_convolve8_3by8;
scale->predict[1][0][4] = vp9_convolve8_avg;
scale->predict[1][0][5] = vp9_convolve8_5by8;
scale->predict[1][0][6] = vp9_convolve8_3qtr;
scale->predict[1][0][7] = vp9_convolve8_7by8;
}
} else {
if (scale->y_step_q4 == 16) {
// No scaling in the y direction. Must always scale in the x direction.
scale->predict[0][0][0] = vp9_convolve8_horiz;
scale->predict[0][0][1] = vp9_convolve8_1by8_horiz;
scale->predict[0][0][2] = vp9_convolve8_qtr_horiz;
scale->predict[0][0][3] = vp9_convolve8_3by8_horiz;
scale->predict[0][0][4] = vp9_convolve8_avg_horiz;
scale->predict[0][0][5] = vp9_convolve8_5by8_horiz;
scale->predict[0][0][6] = vp9_convolve8_3qtr_horiz;
scale->predict[0][0][7] = vp9_convolve8_7by8_horiz;
scale->predict[0][1][0] = vp9_convolve8;
scale->predict[0][1][1] = vp9_convolve8_1by8;
scale->predict[0][1][2] = vp9_convolve8_qtr;
scale->predict[0][1][3] = vp9_convolve8_3by8;
scale->predict[0][1][4] = vp9_convolve8_avg;
scale->predict[0][1][5] = vp9_convolve8_5by8;
scale->predict[0][1][6] = vp9_convolve8_3qtr;
scale->predict[0][1][7] = vp9_convolve8_7by8;
scale->predict[1][0][0] = vp9_convolve8_horiz;
scale->predict[1][0][1] = vp9_convolve8_1by8_horiz;
scale->predict[1][0][2] = vp9_convolve8_qtr_horiz;
scale->predict[1][0][3] = vp9_convolve8_3by8_horiz;
scale->predict[1][0][4] = vp9_convolve8_avg_horiz;
scale->predict[1][0][5] = vp9_convolve8_5by8_horiz;
scale->predict[1][0][6] = vp9_convolve8_3qtr_horiz;
scale->predict[1][0][7] = vp9_convolve8_7by8_horiz;
} else {
// Must always scale in both directions.
scale->predict[0][0][0] = vp9_convolve8;
scale->predict[0][0][1] = vp9_convolve8_1by8;
scale->predict[0][0][2] = vp9_convolve8_qtr;
scale->predict[0][0][3] = vp9_convolve8_3by8;
scale->predict[0][0][4] = vp9_convolve8_avg;
scale->predict[0][0][5] = vp9_convolve8_5by8;
scale->predict[0][0][6] = vp9_convolve8_3qtr;
scale->predict[0][0][7] = vp9_convolve8_7by8;
scale->predict[0][1][0] = vp9_convolve8;
scale->predict[0][1][1] = vp9_convolve8_1by8;
scale->predict[0][1][2] = vp9_convolve8_qtr;
scale->predict[0][1][3] = vp9_convolve8_3by8;
scale->predict[0][1][4] = vp9_convolve8_avg;
scale->predict[0][1][5] = vp9_convolve8_5by8;
scale->predict[0][1][6] = vp9_convolve8_3qtr;
scale->predict[0][1][7] = vp9_convolve8_7by8;
scale->predict[1][0][0] = vp9_convolve8;
scale->predict[1][0][1] = vp9_convolve8_1by8;
scale->predict[1][0][2] = vp9_convolve8_qtr;
scale->predict[1][0][3] = vp9_convolve8_3by8;
scale->predict[1][0][4] = vp9_convolve8_avg;
scale->predict[1][0][5] = vp9_convolve8_5by8;
scale->predict[1][0][6] = vp9_convolve8_3qtr;
scale->predict[1][0][7] = vp9_convolve8_7by8;
}
}
// 2D subpel motion always gets filtered in both directions
scale->predict[1][1][0] = vp9_convolve8;
scale->predict[1][1][1] = vp9_convolve8_1by8;
scale->predict[1][1][2] = vp9_convolve8_qtr;
scale->predict[1][1][3] = vp9_convolve8_3by8;
scale->predict[1][1][4] = vp9_convolve8_avg;
scale->predict[1][1][5] = vp9_convolve8_5by8;
scale->predict[1][1][6] = vp9_convolve8_3qtr;
scale->predict[1][1][7] = vp9_convolve8_7by8;
}
#else
if (scale->x_step_q4 == 16) {
if (scale->y_step_q4 == 16) {
// No scaling in either direction.
scale->predict[0][0][0] = vp9_convolve_copy;
scale->predict[0][0][1] = vp9_convolve_avg;
scale->predict[0][1][0] = vp9_convolve8_vert;
scale->predict[0][1][1] = vp9_convolve8_avg_vert;
scale->predict[1][0][0] = vp9_convolve8_horiz;
scale->predict[1][0][1] = vp9_convolve8_avg_horiz;
} else {
// No scaling in x direction. Must always scale in the y direction.
scale->predict[0][0][0] = vp9_convolve8_vert;
scale->predict[0][0][1] = vp9_convolve8_avg_vert;
scale->predict[0][1][0] = vp9_convolve8_vert;
scale->predict[0][1][1] = vp9_convolve8_avg_vert;
scale->predict[1][0][0] = vp9_convolve8;
scale->predict[1][0][1] = vp9_convolve8_avg;
}
} else {
if (scale->y_step_q4 == 16) {
// No scaling in the y direction. Must always scale in the x direction.
scale->predict[0][0][0] = vp9_convolve8_horiz;
scale->predict[0][0][1] = vp9_convolve8_avg_horiz;
scale->predict[0][1][0] = vp9_convolve8;
scale->predict[0][1][1] = vp9_convolve8_avg;
scale->predict[1][0][0] = vp9_convolve8_horiz;
scale->predict[1][0][1] = vp9_convolve8_avg_horiz;
} else {
// Must always scale in both directions.
scale->predict[0][0][0] = vp9_convolve8;
scale->predict[0][0][1] = vp9_convolve8_avg;
scale->predict[0][1][0] = vp9_convolve8;
scale->predict[0][1][1] = vp9_convolve8_avg;
scale->predict[1][0][0] = vp9_convolve8;
scale->predict[1][0][1] = vp9_convolve8_avg;
}
}
// 2D subpel motion always gets filtered in both directions
scale->predict[1][1][0] = vp9_convolve8;
scale->predict[1][1][1] = vp9_convolve8_avg;
}
#endif
void vp9_setup_interp_filters(MACROBLOCKD *xd,
INTERPOLATIONFILTERTYPE mcomp_filter_type,
VP9_COMMON *cm) {
int i;
/* Calculate scaling factors for each of the 3 available references */
for (i = 0; i < 3; ++i) {
if (cm->active_ref_idx[i] >= NUM_YV12_BUFFERS) {
memset(&cm->active_ref_scale[i], 0, sizeof(cm->active_ref_scale[i]));
continue;
}
vp9_setup_scale_factors_for_frame(&cm->active_ref_scale[i],
&cm->yv12_fb[cm->active_ref_idx[i]],
cm->width, cm->height);
}
if (xd->mode_info_context) {
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
set_scale_factors(xd,
mbmi->ref_frame - 1,
mbmi->second_ref_frame - 1,
cm->active_ref_scale);
}
switch (mcomp_filter_type) {
case EIGHTTAP:
case SWITCHABLE:
xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8;
break;
case EIGHTTAP_SMOOTH:
xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8lp;
break;
case EIGHTTAP_SHARP:
xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8s;
break;
case BILINEAR:
xd->subpix.filter_x = xd->subpix.filter_y = vp9_bilinear_filters;
break;
#if CONFIG_ENABLE_6TAP
case SIXTAP:
xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_6;
break;
#endif
}
assert(((intptr_t)xd->subpix.filter_x & 0xff) == 0);
}
void vp9_copy_mem16x16_c(const uint8_t *src,
int src_stride,
uint8_t *dst,
int dst_stride) {
int r;
for (r = 0; r < 16; r++) {
#if !(CONFIG_FAST_UNALIGNED)
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
dst[8] = src[8];
dst[9] = src[9];
dst[10] = src[10];
dst[11] = src[11];
dst[12] = src[12];
dst[13] = src[13];
dst[14] = src[14];
dst[15] = src[15];
#else
((uint32_t *)dst)[0] = ((const uint32_t *)src)[0];
((uint32_t *)dst)[1] = ((const uint32_t *)src)[1];
((uint32_t *)dst)[2] = ((const uint32_t *)src)[2];
((uint32_t *)dst)[3] = ((const uint32_t *)src)[3];
#endif
src += src_stride;
dst += dst_stride;
}
}
void vp9_copy_mem8x8_c(const uint8_t *src,
int src_stride,
uint8_t *dst,
int dst_stride) {
int r;
for (r = 0; r < 8; r++) {
#if !(CONFIG_FAST_UNALIGNED)
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
#else
((uint32_t *)dst)[0] = ((const uint32_t *)src)[0];
((uint32_t *)dst)[1] = ((const uint32_t *)src)[1];
#endif
src += src_stride;
dst += dst_stride;
}
}
void vp9_copy_mem8x4_c(const uint8_t *src,
int src_stride,
uint8_t *dst,
int dst_stride) {
int r;
for (r = 0; r < 4; r++) {
#if !(CONFIG_FAST_UNALIGNED)
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
#else
((uint32_t *)dst)[0] = ((const uint32_t *)src)[0];
((uint32_t *)dst)[1] = ((const uint32_t *)src)[1];
#endif
src += src_stride;
dst += dst_stride;
}
}
static void set_scaled_offsets(struct scale_factors *scale,
int row, int col) {
const int x_q4 = 16 * col;
const int y_q4 = 16 * row;
scale->x_offset_q4 = (x_q4 * scale->x_num / scale->x_den) & 0xf;
scale->y_offset_q4 = (y_q4 * scale->y_num / scale->y_den) & 0xf;
}
static int32_t scale_motion_vector_component_q3(int mv_q3,
int num,
int den,
int offset_q4) {
// returns the scaled and offset value of the mv component.
const int32_t mv_q4 = mv_q3 << 1;
/* TODO(jkoleszar): make fixed point, or as a second multiply? */
return mv_q4 * num / den + offset_q4;
}
static int32_t scale_motion_vector_component_q4(int mv_q4,
int num,
int den,
int offset_q4) {
// returns the scaled and offset value of the mv component.
/* TODO(jkoleszar): make fixed point, or as a second multiply? */
return mv_q4 * num / den + offset_q4;
}
static int_mv32 scale_motion_vector_q3_to_q4(
const int_mv *src_mv,
const struct scale_factors *scale) {
// returns mv * scale + offset
int_mv32 result;
result.as_mv.row = scale_motion_vector_component_q3(src_mv->as_mv.row,
scale->y_num,
scale->y_den,
scale->y_offset_q4);
result.as_mv.col = scale_motion_vector_component_q3(src_mv->as_mv.col,
scale->x_num,
scale->x_den,
scale->x_offset_q4);
return result;
}
void vp9_build_inter_predictor(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
const int_mv *mv_q3,
const struct scale_factors *scale,
int w, int h, int weight,
const struct subpix_fn_table *subpix) {
int_mv32 mv = scale_motion_vector_q3_to_q4(mv_q3, scale);
src += (mv.as_mv.row >> 4) * src_stride + (mv.as_mv.col >> 4);
scale->predict[!!(mv.as_mv.col & 15)][!!(mv.as_mv.row & 15)][weight](
src, src_stride, dst, dst_stride,
subpix->filter_x[mv.as_mv.col & 15], scale->x_step_q4,
subpix->filter_y[mv.as_mv.row & 15], scale->y_step_q4,
w, h);
}
/* Like vp9_build_inter_predictor, but takes the full-pel part of the
* mv separately, and the fractional part as a q4.
*/
void vp9_build_inter_predictor_q4(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
const int_mv *fullpel_mv_q3,
const int_mv *frac_mv_q4,
const struct scale_factors *scale,
int w, int h, int weight,
const struct subpix_fn_table *subpix) {
const int mv_row_q4 = ((fullpel_mv_q3->as_mv.row >> 3) << 4)
+ (frac_mv_q4->as_mv.row & 0xf);
const int mv_col_q4 = ((fullpel_mv_q3->as_mv.col >> 3) << 4)
+ (frac_mv_q4->as_mv.col & 0xf);
const int scaled_mv_row_q4 =
scale_motion_vector_component_q4(mv_row_q4, scale->y_num, scale->y_den,
scale->y_offset_q4);
const int scaled_mv_col_q4 =
scale_motion_vector_component_q4(mv_col_q4, scale->x_num, scale->x_den,
scale->x_offset_q4);
const int subpel_x = scaled_mv_col_q4 & 15;
const int subpel_y = scaled_mv_row_q4 & 15;
src += (scaled_mv_row_q4 >> 4) * src_stride + (scaled_mv_col_q4 >> 4);
scale->predict[!!subpel_x][!!subpel_y][weight](
src, src_stride, dst, dst_stride,
subpix->filter_x[subpel_x], scale->x_step_q4,
subpix->filter_y[subpel_y], scale->y_step_q4,
w, h);
}
static void build_2x1_inter_predictor_wh(const BLOCKD *d0, const BLOCKD *d1,
struct scale_factors *scale,
uint8_t *predictor,
int block_size, int stride,
int which_mv, int weight,
int width, int height,
const struct subpix_fn_table *subpix,
int row, int col) {
assert(d1->predictor - d0->predictor == block_size);
assert(d1->pre == d0->pre + block_size);
set_scaled_offsets(&scale[which_mv], row, col);
if (d0->bmi.as_mv[which_mv].as_int == d1->bmi.as_mv[which_mv].as_int) {
uint8_t **base_pre = which_mv ? d0->base_second_pre : d0->base_pre;
vp9_build_inter_predictor(*base_pre + d0->pre,
d0->pre_stride,
predictor, stride,
&d0->bmi.as_mv[which_mv],
&scale[which_mv],
width, height,
weight, subpix);
} else {
uint8_t **base_pre0 = which_mv ? d0->base_second_pre : d0->base_pre;
uint8_t **base_pre1 = which_mv ? d1->base_second_pre : d1->base_pre;
vp9_build_inter_predictor(*base_pre0 + d0->pre,
d0->pre_stride,
predictor, stride,
&d0->bmi.as_mv[which_mv],
&scale[which_mv],
width > block_size ? block_size : width, height,
weight, subpix);
if (width <= block_size) return;
set_scaled_offsets(&scale[which_mv], row, col + block_size);
vp9_build_inter_predictor(*base_pre1 + d1->pre,
d1->pre_stride,
predictor + block_size, stride,
&d1->bmi.as_mv[which_mv],
&scale[which_mv],
width - block_size, height,
weight, subpix);
}
}
static void build_2x1_inter_predictor(const BLOCKD *d0, const BLOCKD *d1,
struct scale_factors *scale,
int block_size, int stride,
int which_mv, int weight,
const struct subpix_fn_table *subpix,
int row, int col) {
assert(d1->predictor - d0->predictor == block_size);
assert(d1->pre == d0->pre + block_size);
set_scaled_offsets(&scale[which_mv], row, col);
if (d0->bmi.as_mv[which_mv].as_int == d1->bmi.as_mv[which_mv].as_int) {
uint8_t **base_pre = which_mv ? d0->base_second_pre : d0->base_pre;
vp9_build_inter_predictor(*base_pre + d0->pre,
d0->pre_stride,
d0->predictor, stride,
&d0->bmi.as_mv[which_mv],
&scale[which_mv],
2 * block_size, block_size,
weight, subpix);
} else {
uint8_t **base_pre0 = which_mv ? d0->base_second_pre : d0->base_pre;
uint8_t **base_pre1 = which_mv ? d1->base_second_pre : d1->base_pre;
vp9_build_inter_predictor(*base_pre0 + d0->pre,
d0->pre_stride,
d0->predictor, stride,
&d0->bmi.as_mv[which_mv],
&scale[which_mv],
block_size, block_size,
weight, subpix);
set_scaled_offsets(&scale[which_mv], row, col + block_size);
vp9_build_inter_predictor(*base_pre1 + d1->pre,
d1->pre_stride,
d1->predictor, stride,
&d1->bmi.as_mv[which_mv],
&scale[which_mv],
block_size, block_size,
weight, subpix);
}
}
static void clamp_mv_to_umv_border(MV *mv, const MACROBLOCKD *xd) {
/* If the MV points so far into the UMV border that no visible pixels
* are used for reconstruction, the subpel part of the MV can be
* discarded and the MV limited to 16 pixels with equivalent results.
*
* This limit kicks in at 19 pixels for the top and left edges, for
* the 16 pixels plus 3 taps right of the central pixel when subpel
* filtering. The bottom and right edges use 16 pixels plus 2 pixels
* left of the central pixel when filtering.
*/
if (mv->col < (xd->mb_to_left_edge - ((16 + VP9_INTERP_EXTEND) << 3)))
mv->col = xd->mb_to_left_edge - (16 << 3);
else if (mv->col > xd->mb_to_right_edge + ((15 + VP9_INTERP_EXTEND) << 3))
mv->col = xd->mb_to_right_edge + (16 << 3);
if (mv->row < (xd->mb_to_top_edge - ((16 + VP9_INTERP_EXTEND) << 3)))
mv->row = xd->mb_to_top_edge - (16 << 3);
else if (mv->row > xd->mb_to_bottom_edge + ((15 + VP9_INTERP_EXTEND) << 3))
mv->row = xd->mb_to_bottom_edge + (16 << 3);
}
/* A version of the above function for chroma block MVs.*/
static void clamp_uvmv_to_umv_border(MV *mv, const MACROBLOCKD *xd) {
const int extend = VP9_INTERP_EXTEND;
mv->col = (2 * mv->col < (xd->mb_to_left_edge - ((16 + extend) << 3))) ?
(xd->mb_to_left_edge - (16 << 3)) >> 1 : mv->col;
mv->col = (2 * mv->col > xd->mb_to_right_edge + ((15 + extend) << 3)) ?
(xd->mb_to_right_edge + (16 << 3)) >> 1 : mv->col;
mv->row = (2 * mv->row < (xd->mb_to_top_edge - ((16 + extend) << 3))) ?
(xd->mb_to_top_edge - (16 << 3)) >> 1 : mv->row;
mv->row = (2 * mv->row > xd->mb_to_bottom_edge + ((15 + extend) << 3)) ?
(xd->mb_to_bottom_edge + (16 << 3)) >> 1 : mv->row;
}
#define AVERAGE_WEIGHT (1 << (2 * CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT))
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
// Whether to use implicit weighting for UV
#define USE_IMPLICIT_WEIGHT_UV
// Whether to use implicit weighting for SplitMV
// #define USE_IMPLICIT_WEIGHT_SPLITMV
// #define SEARCH_MIN3
static int64_t get_consistency_metric(MACROBLOCKD *xd,
uint8_t *tmp_y, int tmp_ystride) {
int block_size = 16 << xd->mode_info_context->mbmi.sb_type;
uint8_t *rec_y = xd->dst.y_buffer;
int rec_ystride = xd->dst.y_stride;
int64_t metric = 0;
int i;
if (xd->up_available) {
for (i = 0; i < block_size; ++i) {
int diff = abs(*(rec_y - rec_ystride + i) -
*(tmp_y + i));
#ifdef SEARCH_MIN3
// Searches for the min abs diff among 3 pixel neighbors in the border
int diff1 = xd->left_available ?
abs(*(rec_y - rec_ystride + i - 1) - *(tmp_y + i)) : diff;
int diff2 = i < block_size - 1 ?
abs(*(rec_y - rec_ystride + i + 1) - *(tmp_y + i)) : diff;
diff = diff <= diff1 ? diff : diff1;
diff = diff <= diff2 ? diff : diff2;
#endif
metric += diff;
}
}
if (xd->left_available) {
for (i = 0; i < block_size; ++i) {
int diff = abs(*(rec_y - 1 + i * rec_ystride) -
*(tmp_y + i * tmp_ystride));
#ifdef SEARCH_MIN3
// Searches for the min abs diff among 3 pixel neighbors in the border
int diff1 = xd->up_available ?
abs(*(rec_y - 1 + (i - 1) * rec_ystride) -
*(tmp_y + i * tmp_ystride)) : diff;
int diff2 = i < block_size - 1 ?
abs(*(rec_y - 1 + (i + 1) * rec_ystride) -
*(tmp_y + i * tmp_ystride)) : diff;
diff = diff <= diff1 ? diff : diff1;
diff = diff <= diff2 ? diff : diff2;
#endif
metric += diff;
}
}
return metric;
}
static int get_weight(MACROBLOCKD *xd, int64_t metric_1, int64_t metric_2) {
int weight = AVERAGE_WEIGHT;
if (2 * metric_1 < metric_2)
weight = 6;
else if (4 * metric_1 < 3 * metric_2)
weight = 5;
else if (2 * metric_2 < metric_1)
weight = 2;
else if (4 * metric_2 < 3 * metric_1)
weight = 3;
return weight;
}
#ifdef USE_IMPLICIT_WEIGHT_SPLITMV
static int get_implicit_compoundinter_weight_splitmv(
MACROBLOCKD *xd, int mb_row, int mb_col) {
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
BLOCKD *blockd = xd->block;
const int use_second_ref = mbmi->second_ref_frame > 0;
int64_t metric_2 = 0, metric_1 = 0;
int i, which_mv, weight;
uint8_t tmp_y[256];
const int tmp_ystride = 16;
if (!use_second_ref) return 0;
if (!(xd->up_available || xd->left_available))
return AVERAGE_WEIGHT;
assert(xd->mode_info_context->mbmi.mode == SPLITMV);
which_mv = 1; // second predictor
if (xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4) {
for (i = 0; i < 16; i += 8) {
BLOCKD *d0 = &blockd[i];
BLOCKD *d1 = &blockd[i + 2];
const int y = i & 8;
blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0];
blockd[i + 2].bmi = xd->mode_info_context->bmi[i + 2];
if (mbmi->need_to_clamp_mvs) {
clamp_mv_to_umv_border(&blockd[i + 0].bmi.as_mv[which_mv].as_mv, xd);
clamp_mv_to_umv_border(&blockd[i + 2].bmi.as_mv[which_mv].as_mv, xd);
}
if (i == 0) {
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 8, 16,
which_mv, 0, 16, 1,
&xd->subpix, mb_row * 16 + y, mb_col * 16);
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 8, 16,
which_mv, 0, 1, 8,
&xd->subpix, mb_row * 16 + y, mb_col * 16);
} else {
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y + 8 * 16,
8, 16, which_mv, 0, 1, 8,
&xd->subpix, mb_row * 16 + y, mb_col * 16);
}
}
} else {
for (i = 0; i < 16; i += 2) {
BLOCKD *d0 = &blockd[i];
BLOCKD *d1 = &blockd[i + 1];
const int x = (i & 3) * 4;
const int y = (i >> 2) * 4;
blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0];
blockd[i + 1].bmi = xd->mode_info_context->bmi[i + 1];
if (i >= 4 && (i & 3) != 0) continue;
if (i == 0) {
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 4, 16,
which_mv, 0, 8, 1, &xd->subpix,
mb_row * 16 + y, mb_col * 16 + x);
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 4, 16,
which_mv, 0, 1, 4, &xd->subpix,
mb_row * 16 + y, mb_col * 16 + x);
} else if (i < 4) {
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y + x, 4, 16,
which_mv, 0, 8, 1, &xd->subpix,
mb_row * 16 + y, mb_col * 16 + x);
} else {
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y + y * 16,
4, 16, which_mv, 0, 1, 4, &xd->subpix,
mb_row * 16 + y, mb_col * 16 + x);
}
}
}
metric_2 = get_consistency_metric(xd, tmp_y, tmp_ystride);
which_mv = 0; // first predictor
if (xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4) {
for (i = 0; i < 16; i += 8) {
BLOCKD *d0 = &blockd[i];
BLOCKD *d1 = &blockd[i + 2];
const int y = i & 8;
blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0];
blockd[i + 2].bmi = xd->mode_info_context->bmi[i + 2];
if (mbmi->need_to_clamp_mvs) {
clamp_mv_to_umv_border(&blockd[i + 0].bmi.as_mv[which_mv].as_mv, xd);
clamp_mv_to_umv_border(&blockd[i + 2].bmi.as_mv[which_mv].as_mv, xd);
}
if (i == 0) {
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 8, 16,
which_mv, 0, 16, 1,
&xd->subpix, mb_row * 16 + y, mb_col * 16);
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 8, 16,
which_mv, 0, 1, 8,
&xd->subpix, mb_row * 16 + y, mb_col * 16);
} else {
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y + 8 * 16,
8, 16, which_mv, 0, 1, 8,
&xd->subpix, mb_row * 16 + y, mb_col * 16);
}
}
} else {
for (i = 0; i < 16; i += 2) {
BLOCKD *d0 = &blockd[i];
BLOCKD *d1 = &blockd[i + 1];
const int x = (i & 3) * 4;
const int y = (i >> 2) * 4;
blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0];
blockd[i + 1].bmi = xd->mode_info_context->bmi[i + 1];
if (i >= 4 && (i & 3) != 0) continue;
if (i == 0) {
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 4, 16,
which_mv, 0, 8, 1, &xd->subpix,
mb_row * 16 + y, mb_col * 16 + x);
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 4, 16,
which_mv, 0, 1, 4, &xd->subpix,
mb_row * 16 + y, mb_col * 16 + x);
} else if (i < 4) {
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y + x, 4, 16,
which_mv, 0, 8, 1, &xd->subpix,
mb_row * 16 + y, mb_col * 16 + x);
} else {
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y + y * 16,
4, 16, which_mv, 0, 1, 4, &xd->subpix,
mb_row * 16 + y, mb_col * 16 + x);
}
}
}
metric_1 = get_consistency_metric(xd, tmp_y, tmp_ystride);
// Choose final weight for averaging
weight = get_weight(xd, metric_1, metric_2);
return weight;
}
#endif
static int get_implicit_compoundinter_weight(MACROBLOCKD *xd,
int mb_row,
int mb_col) {
const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0;
int64_t metric_2 = 0, metric_1 = 0;
int n, clamp_mvs, pre_stride;
uint8_t *base_pre;
int_mv ymv;
uint8_t tmp_y[4096];
const int tmp_ystride = 64;
int weight;
int edge[4];
int block_size = 16 << xd->mode_info_context->mbmi.sb_type;
if (!use_second_ref) return 0;
if (!(xd->up_available || xd->left_available))
return AVERAGE_WEIGHT;
edge[0] = xd->mb_to_top_edge;
edge[1] = xd->mb_to_bottom_edge;
edge[2] = xd->mb_to_left_edge;
edge[3] = xd->mb_to_right_edge;
clamp_mvs = xd->mode_info_context->mbmi.need_to_clamp_secondmv;
base_pre = xd->second_pre.y_buffer;
pre_stride = xd->second_pre.y_stride;
ymv.as_int = xd->mode_info_context->mbmi.mv[1].as_int;
// First generate the second predictor
for (n = 0; n < block_size; n += 16) {
xd->mb_to_left_edge = edge[2] - (n << 3);
xd->mb_to_right_edge = edge[3] + ((16 - n) << 3);
if (clamp_mvs)
clamp_mv_to_umv_border(&ymv.as_mv, xd);
set_scaled_offsets(&xd->scale_factor[1], mb_row * 16, mb_col * 16 + n);
// predict a single row of pixels
vp9_build_inter_predictor(
base_pre + scaled_buffer_offset(n, 0, pre_stride, &xd->scale_factor[1]),
pre_stride, tmp_y + n, tmp_ystride, &ymv, &xd->scale_factor[1],
16, 1, 0, &xd->subpix);
}
xd->mb_to_left_edge = edge[2];
xd->mb_to_right_edge = edge[3];
for (n = 0; n < block_size; n += 16) {
xd->mb_to_top_edge = edge[0] - (n << 3);
xd->mb_to_bottom_edge = edge[1] + ((16 - n) << 3);
if (clamp_mvs)
clamp_mv_to_umv_border(&ymv.as_mv, xd);
set_scaled_offsets(&xd->scale_factor[1], mb_row * 16 + n, mb_col * 16);
// predict a single col of pixels
vp9_build_inter_predictor(
base_pre + scaled_buffer_offset(0, n, pre_stride, &xd->scale_factor[1]),
pre_stride, tmp_y + n * tmp_ystride, tmp_ystride, &ymv,
&xd->scale_factor[1], 1, 16, 0, &xd->subpix);
}
xd->mb_to_top_edge = edge[0];
xd->mb_to_bottom_edge = edge[1];
// Compute consistency metric
metric_2 = get_consistency_metric(xd, tmp_y, tmp_ystride);
clamp_mvs = xd->mode_info_context->mbmi.need_to_clamp_mvs;
base_pre = xd->pre.y_buffer;
pre_stride = xd->pre.y_stride;
ymv.as_int = xd->mode_info_context->mbmi.mv[0].as_int;
// Now generate the first predictor
for (n = 0; n < block_size; n += 16) {
xd->mb_to_left_edge = edge[2] - (n << 3);
xd->mb_to_right_edge = edge[3] + ((16 - n) << 3);
if (clamp_mvs)
clamp_mv_to_umv_border(&ymv.as_mv, xd);
set_scaled_offsets(&xd->scale_factor[0], mb_row * 16, mb_col * 16 + n);
// predict a single row of pixels
vp9_build_inter_predictor(
base_pre + scaled_buffer_offset(n, 0, pre_stride, &xd->scale_factor[0]),
pre_stride, tmp_y + n, tmp_ystride, &ymv, &xd->scale_factor[0],
16, 1, 0, &xd->subpix);
}
xd->mb_to_left_edge = edge[2];
xd->mb_to_right_edge = edge[3];
for (n = 0; n < block_size; n += 16) {
xd->mb_to_top_edge = edge[0] - (n << 3);
xd->mb_to_bottom_edge = edge[1] + ((16 - n) << 3);
if (clamp_mvs)
clamp_mv_to_umv_border(&ymv.as_mv, xd);
set_scaled_offsets(&xd->scale_factor[0], mb_row * 16 + n, mb_col * 16);
// predict a single col of pixels
vp9_build_inter_predictor(
base_pre + scaled_buffer_offset(0, n, pre_stride, &xd->scale_factor[0]),
pre_stride, tmp_y + n * tmp_ystride, tmp_ystride, &ymv,
&xd->scale_factor[0], 1, 16, 0, &xd->subpix);
}
xd->mb_to_top_edge = edge[0];
xd->mb_to_bottom_edge = edge[1];
metric_1 = get_consistency_metric(xd, tmp_y, tmp_ystride);
// Choose final weight for averaging
weight = get_weight(xd, metric_1, metric_2);
return weight;
}
static void build_inter16x16_predictors_mby_w(MACROBLOCKD *xd,
uint8_t *dst_y,
int dst_ystride,
int weight,
int mb_row,
int mb_col) {
const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0;
int which_mv;
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
const int clamp_mvs = which_mv ?
xd->mode_info_context->mbmi.need_to_clamp_secondmv :
xd->mode_info_context->mbmi.need_to_clamp_mvs;
uint8_t *base_pre = which_mv ? xd->second_pre.y_buffer : xd->pre.y_buffer;
int pre_stride = which_mv ? xd->second_pre.y_stride : xd->pre.y_stride;
int_mv ymv;
ymv.as_int = xd->mode_info_context->mbmi.mv[which_mv].as_int;
if (clamp_mvs)
clamp_mv_to_umv_border(&ymv.as_mv, xd);
set_scaled_offsets(&xd->scale_factor[which_mv], mb_row * 16, mb_col * 16);
vp9_build_inter_predictor(base_pre, pre_stride,
dst_y, dst_ystride,
&ymv, &xd->scale_factor[which_mv],
16, 16, which_mv ? weight : 0, &xd->subpix);
}
}
void vp9_build_inter16x16_predictors_mby(MACROBLOCKD *xd,
uint8_t *dst_y,
int dst_ystride,
int mb_row,
int mb_col) {
int weight = get_implicit_compoundinter_weight(xd, mb_row, mb_col);
build_inter16x16_predictors_mby_w(xd, dst_y, dst_ystride, weight,
mb_row, mb_col);
}
#else
void vp9_build_inter16x16_predictors_mby(MACROBLOCKD *xd,
uint8_t *dst_y,
int dst_ystride,
int mb_row,
int mb_col) {
const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0;
int which_mv;
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
const int clamp_mvs = which_mv ?
xd->mode_info_context->mbmi.need_to_clamp_secondmv :
xd->mode_info_context->mbmi.need_to_clamp_mvs;
uint8_t *base_pre = which_mv ? xd->second_pre.y_buffer : xd->pre.y_buffer;
int pre_stride = which_mv ? xd->second_pre.y_stride : xd->pre.y_stride;
int_mv ymv;
ymv.as_int = xd->mode_info_context->mbmi.mv[which_mv].as_int;
if (clamp_mvs)
clamp_mv_to_umv_border(&ymv.as_mv, xd);
set_scaled_offsets(&xd->scale_factor[which_mv], mb_row * 16, mb_col * 16);
vp9_build_inter_predictor(base_pre, pre_stride,
dst_y, dst_ystride,
&ymv, &xd->scale_factor[which_mv],
16, 16, which_mv, &xd->subpix);
}
}
#endif
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
static void build_inter16x16_predictors_mbuv_w(MACROBLOCKD *xd,
uint8_t *dst_u,
uint8_t *dst_v,
int dst_uvstride,
int weight,
int mb_row,
int mb_col) {
const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0;
int which_mv;
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
const int clamp_mvs =
which_mv ? xd->mode_info_context->mbmi.need_to_clamp_secondmv
: xd->mode_info_context->mbmi.need_to_clamp_mvs;
uint8_t *uptr, *vptr;
int pre_stride = which_mv ? xd->second_pre.uv_stride
: xd->pre.uv_stride;
int_mv _o16x16mv;
int_mv _16x16mv;
_16x16mv.as_int = xd->mode_info_context->mbmi.mv[which_mv].as_int;
if (clamp_mvs)
clamp_mv_to_umv_border(&_16x16mv.as_mv, xd);
_o16x16mv = _16x16mv;
/* calc uv motion vectors */
if (_16x16mv.as_mv.row < 0)
_16x16mv.as_mv.row -= 1;
else
_16x16mv.as_mv.row += 1;
if (_16x16mv.as_mv.col < 0)
_16x16mv.as_mv.col -= 1;
else
_16x16mv.as_mv.col += 1;
_16x16mv.as_mv.row /= 2;
_16x16mv.as_mv.col /= 2;
_16x16mv.as_mv.row &= xd->fullpixel_mask;
_16x16mv.as_mv.col &= xd->fullpixel_mask;
uptr = (which_mv ? xd->second_pre.u_buffer : xd->pre.u_buffer);
vptr = (which_mv ? xd->second_pre.v_buffer : xd->pre.v_buffer);
set_scaled_offsets(&xd->scale_factor_uv[which_mv],
mb_row * 16, mb_col * 16);
vp9_build_inter_predictor_q4(
uptr, pre_stride, dst_u, dst_uvstride, &_16x16mv, &_o16x16mv,
&xd->scale_factor_uv[which_mv], 8, 8,
which_mv ? weight : 0, &xd->subpix);
vp9_build_inter_predictor_q4(
vptr, pre_stride, dst_v, dst_uvstride, &_16x16mv, &_o16x16mv,
&xd->scale_factor_uv[which_mv], 8, 8,
which_mv ? weight : 0, &xd->subpix);
}
}
void vp9_build_inter16x16_predictors_mbuv(MACROBLOCKD *xd,
uint8_t *dst_u,
uint8_t *dst_v,
int dst_uvstride,
int mb_row,
int mb_col) {
#ifdef USE_IMPLICIT_WEIGHT_UV
int weight = get_implicit_compoundinter_weight(xd, mb_row, mb_col);
#else
int weight = AVERAGE_WEIGHT;
#endif
build_inter16x16_predictors_mbuv_w(xd, dst_u, dst_v, dst_uvstride,
weight, mb_row, mb_col);
}
#else
void vp9_build_inter16x16_predictors_mbuv(MACROBLOCKD *xd,
uint8_t *dst_u,
uint8_t *dst_v,
int dst_uvstride,
int mb_row,
int mb_col) {
const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0;
int which_mv;
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
const int clamp_mvs =
which_mv ? xd->mode_info_context->mbmi.need_to_clamp_secondmv
: xd->mode_info_context->mbmi.need_to_clamp_mvs;
uint8_t *uptr, *vptr;
int pre_stride = which_mv ? xd->second_pre.uv_stride
: xd->pre.uv_stride;
int_mv _o16x16mv;
int_mv _16x16mv;
_16x16mv.as_int = xd->mode_info_context->mbmi.mv[which_mv].as_int;
if (clamp_mvs)
clamp_mv_to_umv_border(&_16x16mv.as_mv, xd);
_o16x16mv = _16x16mv;
/* calc uv motion vectors */
if (_16x16mv.as_mv.row < 0)
_16x16mv.as_mv.row -= 1;
else
_16x16mv.as_mv.row += 1;
if (_16x16mv.as_mv.col < 0)
_16x16mv.as_mv.col -= 1;
else
_16x16mv.as_mv.col += 1;
_16x16mv.as_mv.row /= 2;
_16x16mv.as_mv.col /= 2;
_16x16mv.as_mv.row &= xd->fullpixel_mask;
_16x16mv.as_mv.col &= xd->fullpixel_mask;
uptr = (which_mv ? xd->second_pre.u_buffer : xd->pre.u_buffer);
vptr = (which_mv ? xd->second_pre.v_buffer : xd->pre.v_buffer);
set_scaled_offsets(&xd->scale_factor_uv[which_mv],
mb_row * 16, mb_col * 16);
vp9_build_inter_predictor_q4(
uptr, pre_stride, dst_u, dst_uvstride, &_16x16mv, &_o16x16mv,
&xd->scale_factor_uv[which_mv], 8, 8,
which_mv << (2 * CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT), &xd->subpix);
vp9_build_inter_predictor_q4(
vptr, pre_stride, dst_v, dst_uvstride, &_16x16mv, &_o16x16mv,
&xd->scale_factor_uv[which_mv], 8, 8,
which_mv << (2 * CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT), &xd->subpix);
}
}
#endif
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
static void build_inter32x32_predictors_sby_w(MACROBLOCKD *x,
uint8_t *dst_y,
int dst_ystride,
int weight,
int mb_row,
int mb_col) {
uint8_t *y1 = x->pre.y_buffer;
uint8_t *y2 = x->second_pre.y_buffer;
int edge[4], n;
edge[0] = x->mb_to_top_edge;
edge[1] = x->mb_to_bottom_edge;
edge[2] = x->mb_to_left_edge;
edge[3] = x->mb_to_right_edge;
for (n = 0; n < 4; n++) {
const int x_idx = n & 1, y_idx = n >> 1;
x->mb_to_top_edge = edge[0] - ((y_idx * 16) << 3);
x->mb_to_bottom_edge = edge[1] + (((1 - y_idx) * 16) << 3);
x->mb_to_left_edge = edge[2] - ((x_idx * 16) << 3);
x->mb_to_right_edge = edge[3] + (((1 - x_idx) * 16) << 3);
x->pre.y_buffer = y1 + scaled_buffer_offset(x_idx * 16,
y_idx * 16,
x->pre.y_stride,
&x->scale_factor[0]);
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
x->second_pre.y_buffer = y2 +
scaled_buffer_offset(x_idx * 16,
y_idx * 16,
x->second_pre.y_stride,
&x->scale_factor[1]);
}
build_inter16x16_predictors_mby_w(x,
dst_y + y_idx * 16 * dst_ystride + x_idx * 16,
dst_ystride, weight, mb_row + y_idx, mb_col + x_idx);
}
x->mb_to_top_edge = edge[0];
x->mb_to_bottom_edge = edge[1];
x->mb_to_left_edge = edge[2];
x->mb_to_right_edge = edge[3];
x->pre.y_buffer = y1;
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
x->second_pre.y_buffer = y2;
}
}
void vp9_build_inter32x32_predictors_sby(MACROBLOCKD *x,
uint8_t *dst_y,
int dst_ystride,
int mb_row,
int mb_col) {
int weight = get_implicit_compoundinter_weight(x, mb_row, mb_col);
build_inter32x32_predictors_sby_w(x, dst_y, dst_ystride, weight,
mb_row, mb_col);
}
#else
// TODO(all): Can we use 32x32 specific implementations of this rather than
// using 16x16 implementations ?
void vp9_build_inter32x32_predictors_sby(MACROBLOCKD *x,
uint8_t *dst_y,
int dst_ystride,
int mb_row,
int mb_col) {
uint8_t *y1 = x->pre.y_buffer;
uint8_t *y2 = x->second_pre.y_buffer;
int edge[4], n;
edge[0] = x->mb_to_top_edge;
edge[1] = x->mb_to_bottom_edge;
edge[2] = x->mb_to_left_edge;
edge[3] = x->mb_to_right_edge;
for (n = 0; n < 4; n++) {
const int x_idx = n & 1, y_idx = n >> 1;
x->mb_to_top_edge = edge[0] - ((y_idx * 16) << 3);
x->mb_to_bottom_edge = edge[1] + (((1 - y_idx) * 16) << 3);
x->mb_to_left_edge = edge[2] - ((x_idx * 16) << 3);
x->mb_to_right_edge = edge[3] + (((1 - x_idx) * 16) << 3);
x->pre.y_buffer = y1 + scaled_buffer_offset(x_idx * 16,
y_idx * 16,
x->pre.y_stride,
&x->scale_factor[0]);
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
x->second_pre.y_buffer = y2 +
scaled_buffer_offset(x_idx * 16,
y_idx * 16,
x->second_pre.y_stride,
&x->scale_factor[1]);
}
vp9_build_inter16x16_predictors_mby(x,
dst_y + y_idx * 16 * dst_ystride + x_idx * 16,
dst_ystride, mb_row + y_idx, mb_col + x_idx);
}
x->mb_to_top_edge = edge[0];
x->mb_to_bottom_edge = edge[1];
x->mb_to_left_edge = edge[2];
x->mb_to_right_edge = edge[3];
x->pre.y_buffer = y1;
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
x->second_pre.y_buffer = y2;
}
}
#endif
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
static void build_inter32x32_predictors_sbuv_w(MACROBLOCKD *x,
uint8_t *dst_u,
uint8_t *dst_v,
int dst_uvstride,
int weight,
int mb_row,
int mb_col) {
uint8_t *u1 = x->pre.u_buffer, *v1 = x->pre.v_buffer;
uint8_t *u2 = x->second_pre.u_buffer, *v2 = x->second_pre.v_buffer;
int edge[4], n;
edge[0] = x->mb_to_top_edge;
edge[1] = x->mb_to_bottom_edge;
edge[2] = x->mb_to_left_edge;
edge[3] = x->mb_to_right_edge;
for (n = 0; n < 4; n++) {
int scaled_uv_offset;
const int x_idx = n & 1, y_idx = n >> 1;
x->mb_to_top_edge = edge[0] - ((y_idx * 16) << 3);
x->mb_to_bottom_edge = edge[1] + (((1 - y_idx) * 16) << 3);
x->mb_to_left_edge = edge[2] - ((x_idx * 16) << 3);
x->mb_to_right_edge = edge[3] + (((1 - x_idx) * 16) << 3);
scaled_uv_offset = scaled_buffer_offset(x_idx * 8,
y_idx * 8,
x->pre.uv_stride,
&x->scale_factor_uv[0]);
x->pre.u_buffer = u1 + scaled_uv_offset;
x->pre.v_buffer = v1 + scaled_uv_offset;
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
scaled_uv_offset = scaled_buffer_offset(x_idx * 8,
y_idx * 8,
x->second_pre.uv_stride,
&x->scale_factor_uv[1]);
x->second_pre.u_buffer = u2 + scaled_uv_offset;
x->second_pre.v_buffer = v2 + scaled_uv_offset;
}
build_inter16x16_predictors_mbuv_w(x,
dst_u + y_idx * 8 * dst_uvstride + x_idx * 8,
dst_v + y_idx * 8 * dst_uvstride + x_idx * 8,
dst_uvstride, weight, mb_row + y_idx, mb_col + x_idx);
}
x->mb_to_top_edge = edge[0];
x->mb_to_bottom_edge = edge[1];
x->mb_to_left_edge = edge[2];
x->mb_to_right_edge = edge[3];
x->pre.u_buffer = u1;
x->pre.v_buffer = v1;
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
x->second_pre.u_buffer = u2;
x->second_pre.v_buffer = v2;
}
}
void vp9_build_inter32x32_predictors_sbuv(MACROBLOCKD *xd,
uint8_t *dst_u,
uint8_t *dst_v,
int dst_uvstride,
int mb_row,
int mb_col) {
#ifdef USE_IMPLICIT_WEIGHT_UV
int weight = get_implicit_compoundinter_weight(xd, mb_row, mb_col);
#else
int weight = AVERAGE_WEIGHT;
#endif
build_inter32x32_predictors_sbuv_w(xd, dst_u, dst_v, dst_uvstride,
weight, mb_row, mb_col);
}
#else
void vp9_build_inter32x32_predictors_sbuv(MACROBLOCKD *x,
uint8_t *dst_u,
uint8_t *dst_v,
int dst_uvstride,
int mb_row,
int mb_col) {
uint8_t *u1 = x->pre.u_buffer, *v1 = x->pre.v_buffer;
uint8_t *u2 = x->second_pre.u_buffer, *v2 = x->second_pre.v_buffer;
int edge[4], n;
edge[0] = x->mb_to_top_edge;
edge[1] = x->mb_to_bottom_edge;
edge[2] = x->mb_to_left_edge;
edge[3] = x->mb_to_right_edge;
for (n = 0; n < 4; n++) {
int scaled_uv_offset;
const int x_idx = n & 1, y_idx = n >> 1;
x->mb_to_top_edge = edge[0] - ((y_idx * 16) << 3);
x->mb_to_bottom_edge = edge[1] + (((1 - y_idx) * 16) << 3);
x->mb_to_left_edge = edge[2] - ((x_idx * 16) << 3);
x->mb_to_right_edge = edge[3] + (((1 - x_idx) * 16) << 3);
scaled_uv_offset = scaled_buffer_offset(x_idx * 8,
y_idx * 8,
x->pre.uv_stride,
&x->scale_factor_uv[0]);
x->pre.u_buffer = u1 + scaled_uv_offset;
x->pre.v_buffer = v1 + scaled_uv_offset;
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
scaled_uv_offset = scaled_buffer_offset(x_idx * 8,
y_idx * 8,
x->second_pre.uv_stride,
&x->scale_factor_uv[1]);
x->second_pre.u_buffer = u2 + scaled_uv_offset;
x->second_pre.v_buffer = v2 + scaled_uv_offset;
}
vp9_build_inter16x16_predictors_mbuv(x,
dst_u + y_idx * 8 * dst_uvstride + x_idx * 8,
dst_v + y_idx * 8 * dst_uvstride + x_idx * 8,
dst_uvstride, mb_row + y_idx, mb_col + x_idx);
}
x->mb_to_top_edge = edge[0];
x->mb_to_bottom_edge = edge[1];
x->mb_to_left_edge = edge[2];
x->mb_to_right_edge = edge[3];
x->pre.u_buffer = u1;
x->pre.v_buffer = v1;
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
x->second_pre.u_buffer = u2;
x->second_pre.v_buffer = v2;
}
}
#endif
void vp9_build_inter32x32_predictors_sb(MACROBLOCKD *x,
uint8_t *dst_y,
uint8_t *dst_u,
uint8_t *dst_v,
int dst_ystride,
int dst_uvstride,
int mb_row,
int mb_col) {
vp9_build_inter32x32_predictors_sby(x, dst_y, dst_ystride,
mb_row, mb_col);
vp9_build_inter32x32_predictors_sbuv(x, dst_u, dst_v, dst_uvstride,
mb_row, mb_col);
#if CONFIG_COMP_INTERINTRA_PRED
if (x->mode_info_context->mbmi.second_ref_frame == INTRA_FRAME) {
vp9_build_interintra_32x32_predictors_sb(
x, dst_y, dst_u, dst_v, dst_ystride, dst_uvstride);
}
#endif
}
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
static void build_inter64x64_predictors_sby_w(MACROBLOCKD *x,
uint8_t *dst_y,
int dst_ystride,
int weight,
int mb_row,
int mb_col) {
uint8_t *y1 = x->pre.y_buffer;
uint8_t *y2 = x->second_pre.y_buffer;
int edge[4], n;
edge[0] = x->mb_to_top_edge;
edge[1] = x->mb_to_bottom_edge;
edge[2] = x->mb_to_left_edge;
edge[3] = x->mb_to_right_edge;
for (n = 0; n < 4; n++) {
const int x_idx = n & 1, y_idx = n >> 1;
x->mb_to_top_edge = edge[0] - ((y_idx * 32) << 3);
x->mb_to_bottom_edge = edge[1] + (((1 - y_idx) * 32) << 3);
x->mb_to_left_edge = edge[2] - ((x_idx * 32) << 3);
x->mb_to_right_edge = edge[3] + (((1 - x_idx) * 32) << 3);
x->pre.y_buffer = y1 + scaled_buffer_offset(x_idx * 32,
y_idx * 32,
x->pre.y_stride,
&x->scale_factor[0]);
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
x->second_pre.y_buffer = y2 +
scaled_buffer_offset(x_idx * 32,
y_idx * 32,
x->second_pre.y_stride,
&x->scale_factor[1]);
}
build_inter32x32_predictors_sby_w(x,
dst_y + y_idx * 32 * dst_ystride + x_idx * 32,
dst_ystride, weight, mb_row + y_idx * 2, mb_col + x_idx * 2);
}
x->mb_to_top_edge = edge[0];
x->mb_to_bottom_edge = edge[1];
x->mb_to_left_edge = edge[2];
x->mb_to_right_edge = edge[3];
x->pre.y_buffer = y1;
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
x->second_pre.y_buffer = y2;
}
}
void vp9_build_inter64x64_predictors_sby(MACROBLOCKD *x,
uint8_t *dst_y,
int dst_ystride,
int mb_row,
int mb_col) {
int weight = get_implicit_compoundinter_weight(x, mb_row, mb_col);
build_inter64x64_predictors_sby_w(x, dst_y, dst_ystride, weight,
mb_row, mb_col);
}
#else
void vp9_build_inter64x64_predictors_sby(MACROBLOCKD *x,
uint8_t *dst_y,
int dst_ystride,
int mb_row,
int mb_col) {
uint8_t *y1 = x->pre.y_buffer;
uint8_t *y2 = x->second_pre.y_buffer;
int edge[4], n;
edge[0] = x->mb_to_top_edge;
edge[1] = x->mb_to_bottom_edge;
edge[2] = x->mb_to_left_edge;
edge[3] = x->mb_to_right_edge;
for (n = 0; n < 4; n++) {
const int x_idx = n & 1, y_idx = n >> 1;
x->mb_to_top_edge = edge[0] - ((y_idx * 32) << 3);
x->mb_to_bottom_edge = edge[1] + (((1 - y_idx) * 32) << 3);
x->mb_to_left_edge = edge[2] - ((x_idx * 32) << 3);
x->mb_to_right_edge = edge[3] + (((1 - x_idx) * 32) << 3);
x->pre.y_buffer = y1 + scaled_buffer_offset(x_idx * 32,
y_idx * 32,
x->pre.y_stride,
&x->scale_factor[0]);
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
x->second_pre.y_buffer = y2 +
scaled_buffer_offset(x_idx * 32,
y_idx * 32,
x->second_pre.y_stride,
&x->scale_factor[1]);
}
vp9_build_inter32x32_predictors_sby(x,
dst_y + y_idx * 32 * dst_ystride + x_idx * 32,
dst_ystride, mb_row + y_idx * 2, mb_col + x_idx * 2);
}
x->mb_to_top_edge = edge[0];
x->mb_to_bottom_edge = edge[1];
x->mb_to_left_edge = edge[2];
x->mb_to_right_edge = edge[3];
x->pre.y_buffer = y1;
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
x->second_pre.y_buffer = y2;
}
}
#endif
void vp9_build_inter64x64_predictors_sbuv(MACROBLOCKD *x,
uint8_t *dst_u,
uint8_t *dst_v,
int dst_uvstride,
int mb_row,
int mb_col) {
uint8_t *u1 = x->pre.u_buffer, *v1 = x->pre.v_buffer;
uint8_t *u2 = x->second_pre.u_buffer, *v2 = x->second_pre.v_buffer;
int edge[4], n;
edge[0] = x->mb_to_top_edge;
edge[1] = x->mb_to_bottom_edge;
edge[2] = x->mb_to_left_edge;
edge[3] = x->mb_to_right_edge;
for (n = 0; n < 4; n++) {
const int x_idx = n & 1, y_idx = n >> 1;
int scaled_uv_offset;
x->mb_to_top_edge = edge[0] - ((y_idx * 32) << 3);
x->mb_to_bottom_edge = edge[1] + (((1 - y_idx) * 32) << 3);
x->mb_to_left_edge = edge[2] - ((x_idx * 32) << 3);
x->mb_to_right_edge = edge[3] + (((1 - x_idx) * 32) << 3);
scaled_uv_offset = scaled_buffer_offset(x_idx * 16,
y_idx * 16,
x->pre.uv_stride,
&x->scale_factor_uv[0]);
x->pre.u_buffer = u1 + scaled_uv_offset;
x->pre.v_buffer = v1 + scaled_uv_offset;
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
scaled_uv_offset = scaled_buffer_offset(x_idx * 16,
y_idx * 16,
x->second_pre.uv_stride,
&x->scale_factor_uv[1]);
x->second_pre.u_buffer = u2 + scaled_uv_offset;
x->second_pre.v_buffer = v2 + scaled_uv_offset;
}
vp9_build_inter32x32_predictors_sbuv(x,
dst_u + y_idx * 16 * dst_uvstride + x_idx * 16,
dst_v + y_idx * 16 * dst_uvstride + x_idx * 16,
dst_uvstride, mb_row + y_idx * 2, mb_col + x_idx * 2);
}
x->mb_to_top_edge = edge[0];
x->mb_to_bottom_edge = edge[1];
x->mb_to_left_edge = edge[2];
x->mb_to_right_edge = edge[3];
x->pre.u_buffer = u1;
x->pre.v_buffer = v1;
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
x->second_pre.u_buffer = u2;
x->second_pre.v_buffer = v2;
}
}
void vp9_build_inter64x64_predictors_sb(MACROBLOCKD *x,
uint8_t *dst_y,
uint8_t *dst_u,
uint8_t *dst_v,
int dst_ystride,
int dst_uvstride,
int mb_row,
int mb_col) {
vp9_build_inter64x64_predictors_sby(x, dst_y, dst_ystride,
mb_row, mb_col);
vp9_build_inter64x64_predictors_sbuv(x, dst_u, dst_v, dst_uvstride,
mb_row, mb_col);
#if CONFIG_COMP_INTERINTRA_PRED
if (x->mode_info_context->mbmi.second_ref_frame == INTRA_FRAME) {
vp9_build_interintra_64x64_predictors_sb(x, dst_y, dst_u, dst_v,
dst_ystride, dst_uvstride);
}
#endif
}
static void build_inter4x4_predictors_mb(MACROBLOCKD *xd,
int mb_row, int mb_col) {
int i;
MB_MODE_INFO * mbmi = &xd->mode_info_context->mbmi;
BLOCKD *blockd = xd->block;
int which_mv = 0;
const int use_second_ref = mbmi->second_ref_frame > 0;
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT && defined(USE_IMPLICIT_WEIGHT_SPLITMV)
int weight = get_implicit_compoundinter_weight_splitmv(xd, mb_row, mb_col);
#else
int weight = AVERAGE_WEIGHT;
#endif
if (xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4) {
for (i = 0; i < 16; i += 8) {
BLOCKD *d0 = &blockd[i];
BLOCKD *d1 = &blockd[i + 2];
const int y = i & 8;
blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0];
blockd[i + 2].bmi = xd->mode_info_context->bmi[i + 2];
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
if (mbmi->need_to_clamp_mvs) {
clamp_mv_to_umv_border(&blockd[i + 0].bmi.as_mv[which_mv].as_mv, xd);
clamp_mv_to_umv_border(&blockd[i + 2].bmi.as_mv[which_mv].as_mv, xd);
}
build_2x1_inter_predictor(d0, d1, xd->scale_factor, 8, 16, which_mv,
which_mv ? weight : 0,
&xd->subpix, mb_row * 16 + y, mb_col * 16);
}
}
} else {
for (i = 0; i < 16; i += 2) {
BLOCKD *d0 = &blockd[i];
BLOCKD *d1 = &blockd[i + 1];
const int x = (i & 3) * 4;
const int y = (i >> 2) * 4;
blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0];
blockd[i + 1].bmi = xd->mode_info_context->bmi[i + 1];
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
build_2x1_inter_predictor(d0, d1, xd->scale_factor, 4, 16, which_mv,
which_mv ? weight : 0,
&xd->subpix,
mb_row * 16 + y, mb_col * 16 + x);
}
}
}
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
#if !defined(USE_IMPLICIT_WEIGHT_UV)
weight = AVERAGE_WEIGHT;
#endif
#endif
for (i = 16; i < 24; i += 2) {
BLOCKD *d0 = &blockd[i];
BLOCKD *d1 = &blockd[i + 1];
const int x = 4 * (i & 1);
const int y = ((i - 16) >> 1) * 4;
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
build_2x1_inter_predictor(d0, d1, xd->scale_factor_uv, 4, 8, which_mv,
which_mv ? weight : 0, &xd->subpix,
mb_row * 8 + y, mb_col * 8 + x);
}
}
}
static int mv_pred_row(MACROBLOCKD *mb, int off, int idx) {
int temp = mb->mode_info_context->bmi[off + 0].as_mv[idx].as_mv.row +
mb->mode_info_context->bmi[off + 1].as_mv[idx].as_mv.row +
mb->mode_info_context->bmi[off + 4].as_mv[idx].as_mv.row +
mb->mode_info_context->bmi[off + 5].as_mv[idx].as_mv.row;
return (temp < 0 ? temp - 4 : temp + 4) / 8;
}
static int mv_pred_col(MACROBLOCKD *mb, int off, int idx) {
int temp = mb->mode_info_context->bmi[off + 0].as_mv[idx].as_mv.col +
mb->mode_info_context->bmi[off + 1].as_mv[idx].as_mv.col +
mb->mode_info_context->bmi[off + 4].as_mv[idx].as_mv.col +
mb->mode_info_context->bmi[off + 5].as_mv[idx].as_mv.col;
return (temp < 0 ? temp - 4 : temp + 4) / 8;
}
static void build_4x4uvmvs(MACROBLOCKD *xd) {
int i, j;
BLOCKD *blockd = xd->block;
const int mask = xd->fullpixel_mask;
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++) {
const int yoffset = i * 8 + j * 2;
const int uoffset = 16 + i * 2 + j;
const int voffset = 20 + i * 2 + j;
MV *u = &blockd[uoffset].bmi.as_mv[0].as_mv;
MV *v = &blockd[voffset].bmi.as_mv[0].as_mv;
u->row = mv_pred_row(xd, yoffset, 0) & mask;
u->col = mv_pred_col(xd, yoffset, 0) & mask;
// if (x->mode_info_context->mbmi.need_to_clamp_mvs)
clamp_uvmv_to_umv_border(u, xd);
// if (x->mode_info_context->mbmi.need_to_clamp_mvs)
clamp_uvmv_to_umv_border(u, xd);
v->row = u->row;
v->col = u->col;
if (xd->mode_info_context->mbmi.second_ref_frame > 0) {
u = &blockd[uoffset].bmi.as_mv[1].as_mv;
v = &blockd[voffset].bmi.as_mv[1].as_mv;
u->row = mv_pred_row(xd, yoffset, 1) & mask;
u->col = mv_pred_col(xd, yoffset, 1) & mask;
// if (mbmi->need_to_clamp_mvs)
clamp_uvmv_to_umv_border(u, xd);
// if (mbmi->need_to_clamp_mvs)
clamp_uvmv_to_umv_border(u, xd);
v->row = u->row;
v->col = u->col;
}
}
}
}
void vp9_build_inter16x16_predictors_mb(MACROBLOCKD *xd,
uint8_t *dst_y,
uint8_t *dst_u,
uint8_t *dst_v,
int dst_ystride,
int dst_uvstride,
int mb_row,
int mb_col) {
vp9_build_inter16x16_predictors_mby(xd, dst_y, dst_ystride, mb_row, mb_col);
vp9_build_inter16x16_predictors_mbuv(xd, dst_u, dst_v, dst_uvstride,
mb_row, mb_col);
#if CONFIG_COMP_INTERINTRA_PRED
if (xd->mode_info_context->mbmi.second_ref_frame == INTRA_FRAME) {
vp9_build_interintra_16x16_predictors_mb(xd, dst_y, dst_u, dst_v,
dst_ystride, dst_uvstride);
}
#endif
}
void vp9_build_inter_predictors_mb(MACROBLOCKD *xd,
int mb_row,
int mb_col) {
if (xd->mode_info_context->mbmi.mode != SPLITMV) {
vp9_build_inter16x16_predictors_mb(xd, xd->predictor,
&xd->predictor[256],
&xd->predictor[320], 16, 8,
mb_row, mb_col);
} else {
build_4x4uvmvs(xd);
build_inter4x4_predictors_mb(xd, mb_row, mb_col);
}
}
/*encoder only*/
void vp9_build_inter4x4_predictors_mbuv(MACROBLOCKD *xd,
int mb_row,
int mb_col) {
int i, j;
int weight;
BLOCKD *blockd = xd->block;
/* build uv mvs */
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++) {
int yoffset = i * 8 + j * 2;
int uoffset = 16 + i * 2 + j;
int voffset = 20 + i * 2 + j;
int temp;
temp = blockd[yoffset ].bmi.as_mv[0].as_mv.row
+ blockd[yoffset + 1].bmi.as_mv[0].as_mv.row
+ blockd[yoffset + 4].bmi.as_mv[0].as_mv.row
+ blockd[yoffset + 5].bmi.as_mv[0].as_mv.row;
if (temp < 0)
temp -= 4;
else
temp += 4;
xd->block[uoffset].bmi.as_mv[0].as_mv.row = (temp / 8) &
xd->fullpixel_mask;
temp = blockd[yoffset ].bmi.as_mv[0].as_mv.col
+ blockd[yoffset + 1].bmi.as_mv[0].as_mv.col
+ blockd[yoffset + 4].bmi.as_mv[0].as_mv.col
+ blockd[yoffset + 5].bmi.as_mv[0].as_mv.col;
if (temp < 0)
temp -= 4;
else
temp += 4;
blockd[uoffset].bmi.as_mv[0].as_mv.col = (temp / 8) &
xd->fullpixel_mask;
blockd[voffset].bmi.as_mv[0].as_mv.row =
blockd[uoffset].bmi.as_mv[0].as_mv.row;
blockd[voffset].bmi.as_mv[0].as_mv.col =
blockd[uoffset].bmi.as_mv[0].as_mv.col;
if (xd->mode_info_context->mbmi.second_ref_frame > 0) {
temp = blockd[yoffset ].bmi.as_mv[1].as_mv.row
+ blockd[yoffset + 1].bmi.as_mv[1].as_mv.row
+ blockd[yoffset + 4].bmi.as_mv[1].as_mv.row
+ blockd[yoffset + 5].bmi.as_mv[1].as_mv.row;
if (temp < 0) {
temp -= 4;
} else {
temp += 4;
}
blockd[uoffset].bmi.as_mv[1].as_mv.row = (temp / 8) &
xd->fullpixel_mask;
temp = blockd[yoffset ].bmi.as_mv[1].as_mv.col
+ blockd[yoffset + 1].bmi.as_mv[1].as_mv.col
+ blockd[yoffset + 4].bmi.as_mv[1].as_mv.col
+ blockd[yoffset + 5].bmi.as_mv[1].as_mv.col;
if (temp < 0) {
temp -= 4;
} else {
temp += 4;
}
blockd[uoffset].bmi.as_mv[1].as_mv.col = (temp / 8) &
xd->fullpixel_mask;
blockd[voffset].bmi.as_mv[1].as_mv.row =
blockd[uoffset].bmi.as_mv[1].as_mv.row;
blockd[voffset].bmi.as_mv[1].as_mv.col =
blockd[uoffset].bmi.as_mv[1].as_mv.col;
}
}
}
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT && \
defined(USE_IMPLICIT_WEIGHT_SPLITMV) && \
defined(USE_IMPLICIT_WEIGHT_UV)
weight = get_implicit_compoundinter_weight_splitmv(xd, mb_row, mb_col);
#else
weight = AVERAGE_WEIGHT;
#endif
for (i = 16; i < 24; i += 2) {
const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0;
const int x = 4 * (i & 1);
const int y = ((i - 16) >> 1) * 4;
int which_mv;
BLOCKD *d0 = &blockd[i];
BLOCKD *d1 = &blockd[i + 1];
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
build_2x1_inter_predictor(d0, d1, xd->scale_factor_uv, 4, 8, which_mv,
which_mv ? weight : 0,
&xd->subpix, mb_row * 8 + y, mb_col * 8 + x);
}
}
}