vpx/vp9/decoder/vp9_decodemv.c

939 lines
32 KiB
C

/*
Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp9/decoder/vp9_treereader.h"
#include "vp9/common/vp9_entropymv.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/decoder/vp9_onyxd_int.h"
#include "vp9/common/vp9_findnearmv.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/decoder/vp9_decodemv.h"
#include "vp9/common/vp9_mvref_common.h"
#if CONFIG_DEBUG
#include <assert.h>
#endif
// #define DEBUG_DEC_MV
#ifdef DEBUG_DEC_MV
int dec_mvcount = 0;
#endif
// #define DEC_DEBUG
#ifdef DEC_DEBUG
extern int dec_debug;
#endif
static B_PREDICTION_MODE read_bmode(vp9_reader *r, const vp9_prob *p) {
B_PREDICTION_MODE m = treed_read(r, vp9_bmode_tree, p);
return m;
}
static B_PREDICTION_MODE read_kf_bmode(vp9_reader *r, const vp9_prob *p) {
return (B_PREDICTION_MODE)treed_read(r, vp9_kf_bmode_tree, p);
}
static MB_PREDICTION_MODE read_ymode(vp9_reader *r, const vp9_prob *p) {
return (MB_PREDICTION_MODE)treed_read(r, vp9_ymode_tree, p);
}
static MB_PREDICTION_MODE read_sb_ymode(vp9_reader *r, const vp9_prob *p) {
return (MB_PREDICTION_MODE)treed_read(r, vp9_sb_ymode_tree, p);
}
static MB_PREDICTION_MODE read_kf_sb_ymode(vp9_reader *r, const vp9_prob *p) {
return (MB_PREDICTION_MODE)treed_read(r, vp9_uv_mode_tree, p);
}
static MB_PREDICTION_MODE read_kf_mb_ymode(vp9_reader *r, const vp9_prob *p) {
return (MB_PREDICTION_MODE)treed_read(r, vp9_kf_ymode_tree, p);
}
static MB_PREDICTION_MODE read_uv_mode(vp9_reader *r, const vp9_prob *p) {
return (MB_PREDICTION_MODE)treed_read(r, vp9_uv_mode_tree, p);
}
static int read_mb_segid(vp9_reader *r, MACROBLOCKD *xd) {
return treed_read(r, vp9_segment_tree, xd->mb_segment_tree_probs);
}
static void set_segment_id(VP9_COMMON *cm, MB_MODE_INFO *mbmi,
int mi_row, int mi_col, int segment_id) {
const int mi_index = mi_row * cm->mi_cols + mi_col;
const BLOCK_SIZE_TYPE sb_type = mbmi->sb_type;
const int bw = 1 << mi_width_log2(sb_type);
const int bh = 1 << mi_height_log2(sb_type);
const int ymis = MIN(cm->mi_rows - mi_row, bh);
const int xmis = MIN(cm->mi_cols - mi_col, bw);
int x, y;
for (y = 0; y < ymis; y++) {
for (x = 0; x < xmis; x++) {
const int index = mi_index + (y * cm->mi_cols + x);
cm->last_frame_seg_map[index] = segment_id;
}
}
}
static TX_SIZE select_txfm_size(VP9_COMMON *cm, vp9_reader *r,
int allow_16x16, int allow_32x32) {
TX_SIZE txfm_size = vp9_read(r, cm->prob_tx[0]); // TX_4X4 or >TX_4X4
if (txfm_size != TX_4X4 && allow_16x16) {
txfm_size += vp9_read(r, cm->prob_tx[1]); // TX_8X8 or >TX_8X8
if (txfm_size != TX_8X8 && allow_32x32)
txfm_size += vp9_read(r, cm->prob_tx[2]); // TX_16X16 or >TX_16X16
}
return txfm_size;
}
static void kfread_modes(VP9D_COMP *pbi, MODE_INFO *m,
int mi_row, int mi_col,
vp9_reader *r) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
const int mis = cm->mode_info_stride;
m->mbmi.ref_frame = INTRA_FRAME;
// Read segmentation map if it is being updated explicitly this frame
m->mbmi.segment_id = 0;
if (xd->segmentation_enabled && xd->update_mb_segmentation_map) {
m->mbmi.segment_id = read_mb_segid(r, xd);
set_segment_id(cm, &m->mbmi, mi_row, mi_col, m->mbmi.segment_id);
}
m->mbmi.mb_skip_coeff = vp9_segfeature_active(xd, m->mbmi.segment_id,
SEG_LVL_SKIP);
if (!m->mbmi.mb_skip_coeff)
m->mbmi.mb_skip_coeff = vp9_read(r, vp9_get_pred_prob(cm, xd, PRED_MBSKIP));
// luma mode
#if CONFIG_AB4X4
if (m->mbmi.sb_type >= BLOCK_SIZE_SB8X8)
m->mbmi.mode = read_kf_sb_ymode(r,
cm->sb_kf_ymode_prob[cm->kf_ymode_probs_index]);
else
m->mbmi.mode = I4X4_PRED;
#else
m->mbmi.mode = m->mbmi.sb_type > BLOCK_SIZE_SB8X8 ?
read_kf_sb_ymode(r, cm->sb_kf_ymode_prob[cm->kf_ymode_probs_index]):
read_kf_mb_ymode(r, cm->kf_ymode_prob[cm->kf_ymode_probs_index]);
#endif
m->mbmi.ref_frame = INTRA_FRAME;
#if CONFIG_AB4X4
if (m->mbmi.sb_type < BLOCK_SIZE_SB8X8) {
#else
if (m->mbmi.mode == I4X4_PRED) {
#endif
int i;
for (i = 0; i < 4; ++i) {
const B_PREDICTION_MODE a = above_block_mode(m, i, mis);
const B_PREDICTION_MODE l = xd->left_available ||
(i & 1) ?
left_block_mode(m, i) : B_DC_PRED;
m->bmi[i].as_mode.first = read_kf_bmode(r, cm->kf_bmode_prob[a][l]);
}
}
m->mbmi.uv_mode = read_uv_mode(r, cm->kf_uv_mode_prob[m->mbmi.mode]);
if (cm->txfm_mode == TX_MODE_SELECT &&
!m->mbmi.mb_skip_coeff &&
#if CONFIG_AB4X4
m->mbmi.sb_type >= BLOCK_SIZE_SB8X8
#else
m->mbmi.mode != I4X4_PRED
#endif
) {
const int allow_16x16 = m->mbmi.sb_type >= BLOCK_SIZE_MB16X16;
const int allow_32x32 = m->mbmi.sb_type >= BLOCK_SIZE_SB32X32;
m->mbmi.txfm_size = select_txfm_size(cm, r, allow_16x16, allow_32x32);
} else if (cm->txfm_mode >= ALLOW_32X32 &&
m->mbmi.sb_type >= BLOCK_SIZE_SB32X32) {
m->mbmi.txfm_size = TX_32X32;
} else if (cm->txfm_mode >= ALLOW_16X16 &&
m->mbmi.sb_type >= BLOCK_SIZE_MB16X16 &&
m->mbmi.mode <= TM_PRED) {
m->mbmi.txfm_size = TX_16X16;
} else if (cm->txfm_mode >= ALLOW_8X8 &&
#if CONFIG_AB4X4
m->mbmi.sb_type >= BLOCK_SIZE_SB8X8
#else
m->mbmi.mode != I4X4_PRED
#endif
) {
m->mbmi.txfm_size = TX_8X8;
} else {
m->mbmi.txfm_size = TX_4X4;
}
}
static int read_mv_component(vp9_reader *r,
const nmv_component *mvcomp, int usehp) {
int mag, d, fr, hp;
const int sign = vp9_read(r, mvcomp->sign);
const int mv_class = treed_read(r, vp9_mv_class_tree, mvcomp->classes);
// Integer part
if (mv_class == MV_CLASS_0) {
d = treed_read(r, vp9_mv_class0_tree, mvcomp->class0);
} else {
int i;
const int n = mv_class + CLASS0_BITS - 1; // number of bits
d = 0;
for (i = 0; i < n; ++i)
d |= vp9_read(r, mvcomp->bits[i]) << i;
}
// Fractional part
fr = treed_read(r, vp9_mv_fp_tree,
mv_class == MV_CLASS_0 ? mvcomp->class0_fp[d] : mvcomp->fp);
// High precision part (if hp is not used, the default value of the hp is 1)
hp = usehp ? vp9_read(r,
mv_class == MV_CLASS_0 ? mvcomp->class0_hp : mvcomp->hp)
: 1;
// result
mag = vp9_get_mv_mag(mv_class, (d << 3) | (fr << 1) | hp) + 1;
return sign ? -mag : mag;
}
static void update_nmv(vp9_reader *r, vp9_prob *const p,
const vp9_prob upd_p) {
if (vp9_read(r, upd_p)) {
#ifdef LOW_PRECISION_MV_UPDATE
*p = (vp9_read_literal(r, 7) << 1) | 1;
#else
*p = (vp9_read_literal(r, 8));
#endif
}
}
static void read_nmvprobs(vp9_reader *r, nmv_context *mvctx,
int usehp) {
int i, j, k;
#ifdef MV_GROUP_UPDATE
if (!vp9_read_bit(r))
return;
#endif
for (j = 0; j < MV_JOINTS - 1; ++j)
update_nmv(r, &mvctx->joints[j], VP9_NMV_UPDATE_PROB);
for (i = 0; i < 2; ++i) {
update_nmv(r, &mvctx->comps[i].sign, VP9_NMV_UPDATE_PROB);
for (j = 0; j < MV_CLASSES - 1; ++j)
update_nmv(r, &mvctx->comps[i].classes[j], VP9_NMV_UPDATE_PROB);
for (j = 0; j < CLASS0_SIZE - 1; ++j)
update_nmv(r, &mvctx->comps[i].class0[j], VP9_NMV_UPDATE_PROB);
for (j = 0; j < MV_OFFSET_BITS; ++j)
update_nmv(r, &mvctx->comps[i].bits[j], VP9_NMV_UPDATE_PROB);
}
for (i = 0; i < 2; ++i) {
for (j = 0; j < CLASS0_SIZE; ++j)
for (k = 0; k < 3; ++k)
update_nmv(r, &mvctx->comps[i].class0_fp[j][k], VP9_NMV_UPDATE_PROB);
for (j = 0; j < 3; ++j)
update_nmv(r, &mvctx->comps[i].fp[j], VP9_NMV_UPDATE_PROB);
}
if (usehp) {
for (i = 0; i < 2; ++i) {
update_nmv(r, &mvctx->comps[i].class0_hp, VP9_NMV_UPDATE_PROB);
update_nmv(r, &mvctx->comps[i].hp, VP9_NMV_UPDATE_PROB);
}
}
}
// Read the referncence frame
static MV_REFERENCE_FRAME read_ref_frame(VP9D_COMP *pbi,
vp9_reader *r,
int segment_id) {
MV_REFERENCE_FRAME ref_frame;
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
int seg_ref_count = 0;
const int seg_ref_active = vp9_segfeature_active(xd, segment_id,
SEG_LVL_REF_FRAME);
const int intra = vp9_check_segref(xd, segment_id, INTRA_FRAME);
const int last = vp9_check_segref(xd, segment_id, LAST_FRAME);
const int golden = vp9_check_segref(xd, segment_id, GOLDEN_FRAME);
const int altref = vp9_check_segref(xd, segment_id, ALTREF_FRAME);
// If segment coding enabled does the segment allow for more than one
// possible reference frame
if (seg_ref_active)
seg_ref_count = intra + last + golden + altref;
// Segment reference frame features not available or allows for
// multiple reference frame options
if (!seg_ref_active || seg_ref_count > 1) {
// Values used in prediction model coding
MV_REFERENCE_FRAME pred_ref;
// Get the context probability the prediction flag
vp9_prob pred_prob = vp9_get_pred_prob(cm, xd, PRED_REF);
// Read the prediction status flag
unsigned char prediction_flag = vp9_read(r, pred_prob);
// Store the prediction flag.
vp9_set_pred_flag(xd, PRED_REF, prediction_flag);
// Get the predicted reference frame.
pred_ref = vp9_get_pred_ref(cm, xd);
// If correctly predicted then use the predicted value
if (prediction_flag) {
ref_frame = pred_ref;
} else {
// decode the explicitly coded value
vp9_prob mod_refprobs[PREDICTION_PROBS];
vpx_memcpy(mod_refprobs, cm->mod_refprobs[pred_ref],
sizeof(mod_refprobs));
// If segment coding enabled blank out options that cant occur by
// setting the branch probability to 0.
if (seg_ref_active) {
mod_refprobs[INTRA_FRAME] *= intra;
mod_refprobs[LAST_FRAME] *= last;
mod_refprobs[GOLDEN_FRAME] *= golden * altref;
}
// Default to INTRA_FRAME (value 0)
ref_frame = INTRA_FRAME;
// Do we need to decode the Intra/Inter branch
if (mod_refprobs[0])
ref_frame = vp9_read(r, mod_refprobs[0]);
else
ref_frame++;
if (ref_frame) {
// Do we need to decode the Last/Gf_Arf branch
if (mod_refprobs[1])
ref_frame += vp9_read(r, mod_refprobs[1]);
else
ref_frame++;
if (ref_frame > 1) {
// Do we need to decode the GF/Arf branch
if (mod_refprobs[2]) {
ref_frame += vp9_read(r, mod_refprobs[2]);
} else {
if (seg_ref_active)
ref_frame = pred_ref == GOLDEN_FRAME || !golden ? ALTREF_FRAME
: GOLDEN_FRAME;
else
ref_frame = pred_ref == GOLDEN_FRAME ? ALTREF_FRAME
: GOLDEN_FRAME;
}
}
}
}
} else {
// Segment reference frame features are enabled
// The reference frame for the mb is considered as correclty predicted
// if it is signaled at the segment level for the purposes of the
// common prediction model
vp9_set_pred_flag(xd, PRED_REF, 1);
ref_frame = vp9_get_pred_ref(cm, xd);
}
return ref_frame;
}
static MB_PREDICTION_MODE read_sb_mv_ref(vp9_reader *r, const vp9_prob *p) {
return (MB_PREDICTION_MODE) treed_read(r, vp9_sb_mv_ref_tree, p);
}
static MB_PREDICTION_MODE read_mv_ref(vp9_reader *r, const vp9_prob *p) {
return (MB_PREDICTION_MODE) treed_read(r, vp9_mv_ref_tree, p);
}
static B_PREDICTION_MODE read_sub_mv_ref(vp9_reader *r, const vp9_prob *p) {
return (B_PREDICTION_MODE) treed_read(r, vp9_sub_mv_ref_tree, p);
}
#ifdef VPX_MODE_COUNT
unsigned int vp9_mv_cont_count[5][4] = {
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 }
};
#endif
static void read_switchable_interp_probs(VP9D_COMP* const pbi, vp9_reader *r) {
VP9_COMMON *const cm = &pbi->common;
int i, j;
for (j = 0; j < VP9_SWITCHABLE_FILTERS + 1; ++j)
for (i = 0; i < VP9_SWITCHABLE_FILTERS - 1; ++i)
cm->fc.switchable_interp_prob[j][i] = vp9_read_prob(r);
}
static INLINE COMPPREDMODE_TYPE read_comp_pred_mode(vp9_reader *r) {
COMPPREDMODE_TYPE mode = vp9_read_bit(r);
if (mode)
mode += vp9_read_bit(r);
return mode;
}
static void mb_mode_mv_init(VP9D_COMP *pbi, vp9_reader *r) {
VP9_COMMON *const cm = &pbi->common;
if (cm->frame_type == KEY_FRAME) {
if (!cm->kf_ymode_probs_update)
cm->kf_ymode_probs_index = vp9_read_literal(r, 3);
} else {
nmv_context *const nmvc = &pbi->common.fc.nmvc;
MACROBLOCKD *const xd = &pbi->mb;
int i, j;
if (cm->mcomp_filter_type == SWITCHABLE)
read_switchable_interp_probs(pbi, r);
// Baseline probabilities for decoding reference frame
cm->prob_intra_coded = vp9_read_prob(r);
cm->prob_last_coded = vp9_read_prob(r);
cm->prob_gf_coded = vp9_read_prob(r);
// Computes a modified set of probabilities for use when reference
// frame prediction fails.
vp9_compute_mod_refprobs(cm);
cm->comp_pred_mode = read_comp_pred_mode(r);
if (cm->comp_pred_mode == HYBRID_PREDICTION)
for (i = 0; i < COMP_PRED_CONTEXTS; i++)
cm->prob_comppred[i] = vp9_read_prob(r);
// VP9_YMODES
if (vp9_read_bit(r))
for (i = 0; i < VP9_YMODES - 1; ++i)
cm->fc.ymode_prob[i] = vp9_read_prob(r);
// VP9_I32X32_MODES
if (vp9_read_bit(r))
for (i = 0; i < VP9_I32X32_MODES - 1; ++i)
cm->fc.sb_ymode_prob[i] = vp9_read_prob(r);
for (j = 0; j < NUM_PARTITION_CONTEXTS; ++j)
if (vp9_read_bit(r))
for (i = 0; i < PARTITION_TYPES - 1; ++i)
cm->fc.partition_prob[j][i] = vp9_read_prob(r);
read_nmvprobs(r, nmvc, xd->allow_high_precision_mv);
}
}
// This function either reads the segment id for the current macroblock from
// the bitstream or if the value is temporally predicted asserts the predicted
// value
static int read_mb_segment_id(VP9D_COMP *pbi, int mi_row, int mi_col,
vp9_reader *r) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
MODE_INFO *const mi = xd->mode_info_context;
MB_MODE_INFO *const mbmi = &mi->mbmi;
if (!xd->segmentation_enabled)
return 0; // Default for disabled segmentation
if (xd->update_mb_segmentation_map) {
int segment_id;
if (cm->temporal_update) {
// Temporal coding of the segment id for this mb is enabled.
// Get the context based probability for reading the
// prediction status flag
const vp9_prob pred_prob = vp9_get_pred_prob(cm, xd, PRED_SEG_ID);
const int pred_flag = vp9_read(r, pred_prob);
vp9_set_pred_flag(xd, PRED_SEG_ID, pred_flag);
// If the value is flagged as correctly predicted
// then use the predicted value, otherwise decode it explicitly
segment_id = pred_flag ? vp9_get_pred_mi_segid(cm, mbmi->sb_type,
mi_row, mi_col)
: read_mb_segid(r, xd);
} else {
segment_id = read_mb_segid(r, xd); // Normal unpredicted coding mode
}
set_segment_id(cm, mbmi, mi_row, mi_col, segment_id); // Side effect
return segment_id;
} else {
return vp9_get_pred_mi_segid(cm, mbmi->sb_type, mi_row, mi_col);
}
}
static INLINE void assign_and_clamp_mv(int_mv *dst, const int_mv *src,
int mb_to_left_edge,
int mb_to_right_edge,
int mb_to_top_edge,
int mb_to_bottom_edge) {
dst->as_int = src->as_int;
clamp_mv(dst, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge,
mb_to_bottom_edge);
}
static INLINE void decode_mv(vp9_reader *r, MV *mv, const MV *ref,
const nmv_context *ctx,
nmv_context_counts *counts,
int usehp) {
const MV_JOINT_TYPE j = treed_read(r, vp9_mv_joint_tree, ctx->joints);
MV diff = {0, 0};
usehp = usehp && vp9_use_nmv_hp(ref);
if (mv_joint_vertical(j))
diff.row = read_mv_component(r, &ctx->comps[0], usehp);
if (mv_joint_horizontal(j))
diff.col = read_mv_component(r, &ctx->comps[1], usehp);
vp9_increment_nmv(&diff, ref, counts, usehp);
mv->row = diff.row + ref->row;
mv->col = diff.col + ref->col;
}
static INLINE INTERPOLATIONFILTERTYPE read_switchable_filter_type(
VP9D_COMP *pbi, vp9_reader *r) {
const int index = treed_read(r, vp9_switchable_interp_tree,
vp9_get_pred_probs(&pbi->common, &pbi->mb,
PRED_SWITCHABLE_INTERP));
return vp9_switchable_interp[index];
}
static void read_mb_modes_mv(VP9D_COMP *pbi, MODE_INFO *mi, MB_MODE_INFO *mbmi,
MODE_INFO *prev_mi,
int mi_row, int mi_col,
vp9_reader *r) {
VP9_COMMON *const cm = &pbi->common;
nmv_context *const nmvc = &cm->fc.nmvc;
const int mis = cm->mode_info_stride;
MACROBLOCKD *const xd = &pbi->mb;
int_mv *const mv0 = &mbmi->mv[0];
int_mv *const mv1 = &mbmi->mv[1];
const int bw = 1 << mi_width_log2(mi->mbmi.sb_type);
const int bh = 1 << mi_height_log2(mi->mbmi.sb_type);
const int use_prev_in_find_mv_refs = cm->width == cm->last_width &&
cm->height == cm->last_height &&
!cm->error_resilient_mode &&
cm->last_show_frame;
int mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge;
mbmi->need_to_clamp_mvs = 0;
mbmi->need_to_clamp_secondmv = 0;
mbmi->second_ref_frame = NONE;
// Make sure the MACROBLOCKD mode info pointer is pointed at the
// correct entry for the current macroblock.
xd->mode_info_context = mi;
xd->prev_mode_info_context = prev_mi;
// Distance of Mb to the various image edges.
// These specified to 8th pel as they are always compared to MV values
// that are in 1/8th pel units
set_mi_row_col(cm, xd, mi_row, bh, mi_col, bw);
mb_to_top_edge = xd->mb_to_top_edge - LEFT_TOP_MARGIN;
mb_to_bottom_edge = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN;
mb_to_left_edge = xd->mb_to_left_edge - LEFT_TOP_MARGIN;
mb_to_right_edge = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN;
// Read the macroblock segment id.
mbmi->segment_id = read_mb_segment_id(pbi, mi_row, mi_col, r);
mbmi->mb_skip_coeff = vp9_segfeature_active(xd, mbmi->segment_id,
SEG_LVL_SKIP);
if (!mbmi->mb_skip_coeff)
mbmi->mb_skip_coeff = vp9_read(r, vp9_get_pred_prob(cm, xd, PRED_MBSKIP));
// Read the reference frame
mbmi->ref_frame = read_ref_frame(pbi, r, mbmi->segment_id);
// If reference frame is an Inter frame
if (mbmi->ref_frame) {
int_mv nearest, nearby, best_mv;
int_mv nearest_second, nearby_second, best_mv_second;
vp9_prob mv_ref_p[VP9_MVREFS - 1];
const MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame;
struct scale_factors *sf0 = &xd->scale_factor[0];
*sf0 = cm->active_ref_scale[mbmi->ref_frame - 1];
{
// Select the appropriate reference frame for this MB
const int ref_fb_idx = cm->active_ref_idx[ref_frame - 1];
setup_pre_planes(xd, &cm->yv12_fb[ref_fb_idx], NULL,
mi_row, mi_col, xd->scale_factor, xd->scale_factor_uv);
#ifdef DEC_DEBUG
if (dec_debug)
printf("%d %d\n", xd->mode_info_context->mbmi.mv[0].as_mv.row,
xd->mode_info_context->mbmi.mv[0].as_mv.col);
#endif
vp9_find_mv_refs(cm, xd, mi, use_prev_in_find_mv_refs ? prev_mi : NULL,
ref_frame, mbmi->ref_mvs[ref_frame],
cm->ref_frame_sign_bias);
vp9_mv_ref_probs(cm, mv_ref_p, mbmi->mb_mode_context[ref_frame]);
// If the segment level skip mode enabled
if (vp9_segfeature_active(xd, mbmi->segment_id, SEG_LVL_SKIP)) {
mbmi->mode = ZEROMV;
} else {
#if CONFIG_AB4X4
if (mbmi->sb_type >= BLOCK_SIZE_SB8X8)
mbmi->mode = read_sb_mv_ref(r, mv_ref_p);
else
mbmi->mode = SPLITMV;
#else
mbmi->mode = mbmi->sb_type > BLOCK_SIZE_SB8X8 ?
read_sb_mv_ref(r, mv_ref_p)
: read_mv_ref(r, mv_ref_p);
#endif
vp9_accum_mv_refs(cm, mbmi->mode, mbmi->mb_mode_context[ref_frame]);
}
if (mbmi->mode != ZEROMV) {
vp9_find_best_ref_mvs(xd,
mbmi->ref_mvs[ref_frame],
&nearest, &nearby);
best_mv.as_int = mbmi->ref_mvs[ref_frame][0].as_int;
}
#ifdef DEC_DEBUG
if (dec_debug)
printf("[D %d %d] %d %d %d %d\n", ref_frame,
mbmi->mb_mode_context[ref_frame],
mv_ref_p[0], mv_ref_p[1], mv_ref_p[2], mv_ref_p[3]);
#endif
}
mbmi->interp_filter = cm->mcomp_filter_type == SWITCHABLE
? read_switchable_filter_type(pbi, r)
: cm->mcomp_filter_type;
if (cm->comp_pred_mode == COMP_PREDICTION_ONLY ||
(cm->comp_pred_mode == HYBRID_PREDICTION &&
vp9_read(r, vp9_get_pred_prob(cm, xd, PRED_COMP)))) {
/* Since we have 3 reference frames, we can only have 3 unique
* combinations of combinations of 2 different reference frames
* (A-G, G-L or A-L). In the bitstream, we use this to simply
* derive the second reference frame from the first reference
* frame, by saying it's the next one in the enumerator, and
* if that's > n_refs, then the second reference frame is the
* first one in the enumerator. */
mbmi->second_ref_frame = mbmi->ref_frame + 1;
if (mbmi->second_ref_frame == 4)
mbmi->second_ref_frame = 1;
if (mbmi->second_ref_frame > 0) {
const MV_REFERENCE_FRAME second_ref_frame = mbmi->second_ref_frame;
struct scale_factors *sf1 = &xd->scale_factor[1];
const int second_ref_fb_idx = cm->active_ref_idx[second_ref_frame - 1];
*sf1 = cm->active_ref_scale[second_ref_frame - 1];
setup_pre_planes(xd, NULL, &cm->yv12_fb[second_ref_fb_idx],
mi_row, mi_col, xd->scale_factor, xd->scale_factor_uv);
vp9_find_mv_refs(cm, xd, mi,
use_prev_in_find_mv_refs ? prev_mi : NULL,
second_ref_frame, mbmi->ref_mvs[second_ref_frame],
cm->ref_frame_sign_bias);
if (mbmi->mode != ZEROMV) {
vp9_find_best_ref_mvs(xd,
mbmi->ref_mvs[second_ref_frame],
&nearest_second,
&nearby_second);
best_mv_second.as_int = mbmi->ref_mvs[second_ref_frame][0].as_int;
}
}
}
mbmi->uv_mode = DC_PRED;
switch (mbmi->mode) {
case SPLITMV: {
const int num_p = 4;
int j = 0;
mbmi->need_to_clamp_mvs = 0;
do { // for each subset j
int_mv leftmv, abovemv, second_leftmv, second_abovemv;
int_mv blockmv, secondmv;
int mv_contz;
int blockmode;
int k = j;
leftmv.as_int = left_block_mv(xd, mi, k);
abovemv.as_int = above_block_mv(mi, k, mis);
second_leftmv.as_int = 0;
second_abovemv.as_int = 0;
if (mbmi->second_ref_frame > 0) {
second_leftmv.as_int = left_block_second_mv(xd, mi, k);
second_abovemv.as_int = above_block_second_mv(mi, k, mis);
}
mv_contz = vp9_mv_cont(&leftmv, &abovemv);
blockmode = read_sub_mv_ref(r, cm->fc.sub_mv_ref_prob[mv_contz]);
cm->fc.sub_mv_ref_counts[mv_contz][blockmode - LEFT4X4]++;
switch (blockmode) {
case NEW4X4:
decode_mv(r, &blockmv.as_mv, &best_mv.as_mv, nmvc,
&cm->fc.NMVcount, xd->allow_high_precision_mv);
if (mbmi->second_ref_frame > 0)
decode_mv(r, &secondmv.as_mv, &best_mv_second.as_mv, nmvc,
&cm->fc.NMVcount, xd->allow_high_precision_mv);
#ifdef VPX_MODE_COUNT
vp9_mv_cont_count[mv_contz][3]++;
#endif
break;
case LEFT4X4:
blockmv.as_int = leftmv.as_int;
if (mbmi->second_ref_frame > 0)
secondmv.as_int = second_leftmv.as_int;
#ifdef VPX_MODE_COUNT
vp9_mv_cont_count[mv_contz][0]++;
#endif
break;
case ABOVE4X4:
blockmv.as_int = abovemv.as_int;
if (mbmi->second_ref_frame > 0)
secondmv.as_int = second_abovemv.as_int;
#ifdef VPX_MODE_COUNT
vp9_mv_cont_count[mv_contz][1]++;
#endif
break;
case ZERO4X4:
blockmv.as_int = 0;
if (mbmi->second_ref_frame > 0)
secondmv.as_int = 0;
#ifdef VPX_MODE_COUNT
vp9_mv_cont_count[mv_contz][2]++;
#endif
break;
default:
break;
}
mi->bmi[j].as_mv[0].as_int = blockmv.as_int;
if (mbmi->second_ref_frame > 0)
mi->bmi[j].as_mv[1].as_int = secondmv.as_int;
} while (++j < num_p);
}
mv0->as_int = mi->bmi[3].as_mv[0].as_int;
mv1->as_int = mi->bmi[3].as_mv[1].as_int;
break; /* done with SPLITMV */
case NEARMV:
// Clip "next_nearest" so that it does not extend to far out of image
assign_and_clamp_mv(mv0, &nearby, mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
if (mbmi->second_ref_frame > 0)
assign_and_clamp_mv(mv1, &nearby_second, mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
break;
case NEARESTMV:
// Clip "next_nearest" so that it does not extend to far out of image
assign_and_clamp_mv(mv0, &nearest, mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
if (mbmi->second_ref_frame > 0)
assign_and_clamp_mv(mv1, &nearest_second, mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
break;
case ZEROMV:
mv0->as_int = 0;
if (mbmi->second_ref_frame > 0)
mv1->as_int = 0;
break;
case NEWMV:
decode_mv(r, &mv0->as_mv, &best_mv.as_mv, nmvc, &cm->fc.NMVcount,
xd->allow_high_precision_mv);
mbmi->need_to_clamp_mvs = check_mv_bounds(mv0,
mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
if (mbmi->second_ref_frame > 0) {
decode_mv(r, &mv1->as_mv, &best_mv_second.as_mv, nmvc,
&cm->fc.NMVcount, xd->allow_high_precision_mv);
mbmi->need_to_clamp_secondmv = check_mv_bounds(mv1,
mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
}
break;
default:
;
#if CONFIG_DEBUG
assert(0);
#endif
}
} else {
// required for left and above block mv
mv0->as_int = 0;
#if CONFIG_AB4X4
if (mbmi->sb_type >= BLOCK_SIZE_SB8X8) {
mbmi->mode = read_sb_ymode(r, cm->fc.sb_ymode_prob);
cm->fc.sb_ymode_counts[mbmi->mode]++;
} else {
mbmi->mode = I4X4_PRED;
}
#else
if (mbmi->sb_type > BLOCK_SIZE_SB8X8) {
mbmi->mode = read_sb_ymode(r, cm->fc.sb_ymode_prob);
cm->fc.sb_ymode_counts[mbmi->mode]++;
} else {
mbmi->mode = read_ymode(r, cm->fc.ymode_prob);
cm->fc.ymode_counts[mbmi->mode]++;
}
#endif
// If MB mode is I4X4_PRED read the block modes
#if CONFIG_AB4X4
if (mbmi->sb_type < BLOCK_SIZE_SB8X8) {
#else
if (mbmi->mode == I4X4_PRED) {
#endif
int j = 0;
do {
int m = read_bmode(r, cm->fc.bmode_prob);
mi->bmi[j].as_mode.first = m;
cm->fc.bmode_counts[m]++;
} while (++j < 4);
}
mbmi->uv_mode = read_uv_mode(r, cm->fc.uv_mode_prob[mbmi->mode]);
cm->fc.uv_mode_counts[mbmi->mode][mbmi->uv_mode]++;
}
#if CONFIG_AB4X4
if (cm->txfm_mode == TX_MODE_SELECT && mbmi->mb_skip_coeff == 0 &&
mbmi->sb_type >= BLOCK_SIZE_SB8X8) {
#else
if (cm->txfm_mode == TX_MODE_SELECT && mbmi->mb_skip_coeff == 0 &&
((mbmi->ref_frame == INTRA_FRAME && mbmi->mode != I4X4_PRED) ||
(mbmi->ref_frame != INTRA_FRAME && mbmi->mode != SPLITMV))) {
#endif
const int allow_16x16 = mbmi->sb_type >= BLOCK_SIZE_MB16X16;
const int allow_32x32 = mbmi->sb_type >= BLOCK_SIZE_SB32X32;
mbmi->txfm_size = select_txfm_size(cm, r, allow_16x16, allow_32x32);
} else if (mbmi->sb_type >= BLOCK_SIZE_SB32X32 &&
cm->txfm_mode >= ALLOW_32X32) {
mbmi->txfm_size = TX_32X32;
} else if (cm->txfm_mode >= ALLOW_16X16 &&
mbmi->sb_type >= BLOCK_SIZE_MB16X16
#if !CONFIG_AB4X4
&& ((mbmi->ref_frame == INTRA_FRAME && mbmi->mode <= TM_PRED) ||
(mbmi->ref_frame != INTRA_FRAME && mbmi->mode != SPLITMV))
#endif
) {
mbmi->txfm_size = TX_16X16;
} else if (cm->txfm_mode >= ALLOW_8X8 &&
#if CONFIG_AB4X4
(mbmi->sb_type >= BLOCK_SIZE_SB8X8))
#else
(!(mbmi->ref_frame == INTRA_FRAME && mbmi->mode == I4X4_PRED) &&
!(mbmi->ref_frame != INTRA_FRAME && mbmi->mode == SPLITMV)))
#endif
{
mbmi->txfm_size = TX_8X8;
} else {
mbmi->txfm_size = TX_4X4;
}
}
void vp9_decode_mode_mvs_init(VP9D_COMP* const pbi, vp9_reader *r) {
VP9_COMMON *cm = &pbi->common;
int k;
// TODO(jkoleszar): does this clear more than MBSKIP_CONTEXTS? Maybe remove.
vpx_memset(cm->mbskip_pred_probs, 0, sizeof(cm->mbskip_pred_probs));
for (k = 0; k < MBSKIP_CONTEXTS; ++k)
cm->mbskip_pred_probs[k] = vp9_read_prob(r);
mb_mode_mv_init(pbi, r);
}
void vp9_decode_mb_mode_mv(VP9D_COMP* const pbi,
MACROBLOCKD* const xd,
int mi_row,
int mi_col,
vp9_reader *r) {
VP9_COMMON *const cm = &pbi->common;
MODE_INFO *mi = xd->mode_info_context;
MODE_INFO *prev_mi = xd->prev_mode_info_context;
MB_MODE_INFO *const mbmi = &mi->mbmi;
if (cm->frame_type == KEY_FRAME) {
kfread_modes(pbi, mi, mi_row, mi_col, r);
} else {
read_mb_modes_mv(pbi, mi, &mi->mbmi, prev_mi, mi_row, mi_col, r);
set_scale_factors(xd,
mi->mbmi.ref_frame - 1, mi->mbmi.second_ref_frame - 1,
cm->active_ref_scale);
}
if (1) {
const int bw = 1 << mi_width_log2(mbmi->sb_type);
const int bh = 1 << mi_height_log2(mbmi->sb_type);
const int y_mis = MIN(bh, cm->mi_rows - mi_row);
const int x_mis = MIN(bw, cm->mi_cols - mi_col);
const int mis = cm->mode_info_stride;
int x, y;
for (y = 0; y < y_mis; y++)
for (x = !y; x < x_mis; x++)
mi[y * mis + x] = *mi;
}
}