83a91e789c
This commit continues the process of converting to the new RTCD system. Change-Id: Ie5c1aa480637e98dc3918fb562ff45c37a66c538
3178 lines
116 KiB
C
3178 lines
116 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "math.h"
|
|
#include "limits.h"
|
|
#include "block.h"
|
|
#include "onyx_int.h"
|
|
#include "variance.h"
|
|
#include "encodeintra.h"
|
|
#include "vp8/common/setupintrarecon.h"
|
|
#include "mcomp.h"
|
|
#include "firstpass.h"
|
|
#include "vpx_scale/vpxscale.h"
|
|
#include "encodemb.h"
|
|
#include "vp8/common/extend.h"
|
|
#include "vp8/common/systemdependent.h"
|
|
#include "vpx_scale/yv12extend.h"
|
|
#include "vpx_mem/vpx_mem.h"
|
|
#include "vp8/common/swapyv12buffer.h"
|
|
#include <stdio.h>
|
|
#include "rdopt.h"
|
|
#include "vp8/common/quant_common.h"
|
|
#include "encodemv.h"
|
|
|
|
//#define OUTPUT_FPF 1
|
|
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
#define IF_RTCD(x) (x)
|
|
#else
|
|
#define IF_RTCD(x) NULL
|
|
#endif
|
|
|
|
extern void vp8_build_block_offsets(MACROBLOCK *x);
|
|
extern void vp8_setup_block_ptrs(MACROBLOCK *x);
|
|
extern void vp8cx_frame_init_quantizer(VP8_COMP *cpi);
|
|
extern void vp8_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, int_mv *mv);
|
|
extern void vp8_alloc_compressor_data(VP8_COMP *cpi);
|
|
|
|
//#define GFQ_ADJUSTMENT (40 + ((15*Q)/10))
|
|
//#define GFQ_ADJUSTMENT (80 + ((15*Q)/10))
|
|
#define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q]
|
|
extern int vp8_kf_boost_qadjustment[QINDEX_RANGE];
|
|
|
|
extern const int vp8_gf_boost_qadjustment[QINDEX_RANGE];
|
|
|
|
#define IIFACTOR 1.5
|
|
#define IIKFACTOR1 1.40
|
|
#define IIKFACTOR2 1.5
|
|
#define RMAX 14.0
|
|
#define GF_RMAX 48.0
|
|
|
|
#define KF_MB_INTRA_MIN 300
|
|
#define GF_MB_INTRA_MIN 200
|
|
|
|
#define DOUBLE_DIVIDE_CHECK(X) ((X)<0?(X)-.000001:(X)+.000001)
|
|
|
|
#define POW1 (double)cpi->oxcf.two_pass_vbrbias/100.0
|
|
#define POW2 (double)cpi->oxcf.two_pass_vbrbias/100.0
|
|
|
|
#define NEW_BOOST 1
|
|
|
|
static int vscale_lookup[7] = {0, 1, 1, 2, 2, 3, 3};
|
|
static int hscale_lookup[7] = {0, 0, 1, 1, 2, 2, 3};
|
|
|
|
|
|
static const int cq_level[QINDEX_RANGE] =
|
|
{
|
|
0,0,1,1,2,3,3,4,4,5,6,6,7,8,8,9,
|
|
9,10,11,11,12,13,13,14,15,15,16,17,17,18,19,20,
|
|
20,21,22,22,23,24,24,25,26,27,27,28,29,30,30,31,
|
|
32,33,33,34,35,36,36,37,38,39,39,40,41,42,42,43,
|
|
44,45,46,46,47,48,49,50,50,51,52,53,54,55,55,56,
|
|
57,58,59,60,60,61,62,63,64,65,66,67,67,68,69,70,
|
|
71,72,73,74,75,75,76,77,78,79,80,81,82,83,84,85,
|
|
86,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100
|
|
};
|
|
|
|
static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame);
|
|
|
|
// Resets the first pass file to the given position using a relative seek from the current position
|
|
static void reset_fpf_position(VP8_COMP *cpi, FIRSTPASS_STATS *Position)
|
|
{
|
|
cpi->twopass.stats_in = Position;
|
|
}
|
|
|
|
static int lookup_next_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame)
|
|
{
|
|
if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end)
|
|
return EOF;
|
|
|
|
*next_frame = *cpi->twopass.stats_in;
|
|
return 1;
|
|
}
|
|
|
|
// Read frame stats at an offset from the current position
|
|
static int read_frame_stats( VP8_COMP *cpi,
|
|
FIRSTPASS_STATS *frame_stats,
|
|
int offset )
|
|
{
|
|
FIRSTPASS_STATS * fps_ptr = cpi->twopass.stats_in;
|
|
|
|
// Check legality of offset
|
|
if ( offset >= 0 )
|
|
{
|
|
if ( &fps_ptr[offset] >= cpi->twopass.stats_in_end )
|
|
return EOF;
|
|
}
|
|
else if ( offset < 0 )
|
|
{
|
|
if ( &fps_ptr[offset] < cpi->twopass.stats_in_start )
|
|
return EOF;
|
|
}
|
|
|
|
*frame_stats = fps_ptr[offset];
|
|
return 1;
|
|
}
|
|
|
|
static int input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps)
|
|
{
|
|
if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end)
|
|
return EOF;
|
|
|
|
*fps = *cpi->twopass.stats_in;
|
|
cpi->twopass.stats_in =
|
|
(void*)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS));
|
|
return 1;
|
|
}
|
|
|
|
static void output_stats(const VP8_COMP *cpi,
|
|
struct vpx_codec_pkt_list *pktlist,
|
|
FIRSTPASS_STATS *stats)
|
|
{
|
|
struct vpx_codec_cx_pkt pkt;
|
|
pkt.kind = VPX_CODEC_STATS_PKT;
|
|
pkt.data.twopass_stats.buf = stats;
|
|
pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS);
|
|
vpx_codec_pkt_list_add(pktlist, &pkt);
|
|
|
|
// TEMP debug code
|
|
#if OUTPUT_FPF
|
|
|
|
{
|
|
FILE *fpfile;
|
|
fpfile = fopen("firstpass.stt", "a");
|
|
|
|
fprintf(fpfile, "%12.0f %12.0f %12.0f %12.4f %12.4f %12.4f %12.4f"
|
|
" %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f"
|
|
" %12.0f %12.0f %12.4f\n",
|
|
stats->frame,
|
|
stats->intra_error,
|
|
stats->coded_error,
|
|
stats->ssim_weighted_pred_err,
|
|
stats->pcnt_inter,
|
|
stats->pcnt_motion,
|
|
stats->pcnt_second_ref,
|
|
stats->pcnt_neutral,
|
|
stats->MVr,
|
|
stats->mvr_abs,
|
|
stats->MVc,
|
|
stats->mvc_abs,
|
|
stats->MVrv,
|
|
stats->MVcv,
|
|
stats->mv_in_out_count,
|
|
stats->new_mv_count,
|
|
stats->count,
|
|
stats->duration);
|
|
fclose(fpfile);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void zero_stats(FIRSTPASS_STATS *section)
|
|
{
|
|
section->frame = 0.0;
|
|
section->intra_error = 0.0;
|
|
section->coded_error = 0.0;
|
|
section->ssim_weighted_pred_err = 0.0;
|
|
section->pcnt_inter = 0.0;
|
|
section->pcnt_motion = 0.0;
|
|
section->pcnt_second_ref = 0.0;
|
|
section->pcnt_neutral = 0.0;
|
|
section->MVr = 0.0;
|
|
section->mvr_abs = 0.0;
|
|
section->MVc = 0.0;
|
|
section->mvc_abs = 0.0;
|
|
section->MVrv = 0.0;
|
|
section->MVcv = 0.0;
|
|
section->mv_in_out_count = 0.0;
|
|
section->new_mv_count = 0.0;
|
|
section->count = 0.0;
|
|
section->duration = 1.0;
|
|
}
|
|
|
|
static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame)
|
|
{
|
|
section->frame += frame->frame;
|
|
section->intra_error += frame->intra_error;
|
|
section->coded_error += frame->coded_error;
|
|
section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err;
|
|
section->pcnt_inter += frame->pcnt_inter;
|
|
section->pcnt_motion += frame->pcnt_motion;
|
|
section->pcnt_second_ref += frame->pcnt_second_ref;
|
|
section->pcnt_neutral += frame->pcnt_neutral;
|
|
section->MVr += frame->MVr;
|
|
section->mvr_abs += frame->mvr_abs;
|
|
section->MVc += frame->MVc;
|
|
section->mvc_abs += frame->mvc_abs;
|
|
section->MVrv += frame->MVrv;
|
|
section->MVcv += frame->MVcv;
|
|
section->mv_in_out_count += frame->mv_in_out_count;
|
|
section->new_mv_count += frame->new_mv_count;
|
|
section->count += frame->count;
|
|
section->duration += frame->duration;
|
|
}
|
|
|
|
static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame)
|
|
{
|
|
section->frame -= frame->frame;
|
|
section->intra_error -= frame->intra_error;
|
|
section->coded_error -= frame->coded_error;
|
|
section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err;
|
|
section->pcnt_inter -= frame->pcnt_inter;
|
|
section->pcnt_motion -= frame->pcnt_motion;
|
|
section->pcnt_second_ref -= frame->pcnt_second_ref;
|
|
section->pcnt_neutral -= frame->pcnt_neutral;
|
|
section->MVr -= frame->MVr;
|
|
section->mvr_abs -= frame->mvr_abs;
|
|
section->MVc -= frame->MVc;
|
|
section->mvc_abs -= frame->mvc_abs;
|
|
section->MVrv -= frame->MVrv;
|
|
section->MVcv -= frame->MVcv;
|
|
section->mv_in_out_count -= frame->mv_in_out_count;
|
|
section->new_mv_count -= frame->new_mv_count;
|
|
section->count -= frame->count;
|
|
section->duration -= frame->duration;
|
|
}
|
|
|
|
static void avg_stats(FIRSTPASS_STATS *section)
|
|
{
|
|
if (section->count < 1.0)
|
|
return;
|
|
|
|
section->intra_error /= section->count;
|
|
section->coded_error /= section->count;
|
|
section->ssim_weighted_pred_err /= section->count;
|
|
section->pcnt_inter /= section->count;
|
|
section->pcnt_second_ref /= section->count;
|
|
section->pcnt_neutral /= section->count;
|
|
section->pcnt_motion /= section->count;
|
|
section->MVr /= section->count;
|
|
section->mvr_abs /= section->count;
|
|
section->MVc /= section->count;
|
|
section->mvc_abs /= section->count;
|
|
section->MVrv /= section->count;
|
|
section->MVcv /= section->count;
|
|
section->mv_in_out_count /= section->count;
|
|
section->duration /= section->count;
|
|
}
|
|
|
|
// Calculate a modified Error used in distributing bits between easier and harder frames
|
|
static double calculate_modified_err(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
|
|
{
|
|
double av_err = ( cpi->twopass.total_stats.ssim_weighted_pred_err /
|
|
cpi->twopass.total_stats.count );
|
|
double this_err = this_frame->ssim_weighted_pred_err;
|
|
double modified_err;
|
|
|
|
if (this_err > av_err)
|
|
modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1);
|
|
else
|
|
modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2);
|
|
|
|
return modified_err;
|
|
}
|
|
|
|
static const double weight_table[256] = {
|
|
0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
|
|
0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
|
|
0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
|
|
0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
|
|
0.020000, 0.031250, 0.062500, 0.093750, 0.125000, 0.156250, 0.187500, 0.218750,
|
|
0.250000, 0.281250, 0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750,
|
|
0.500000, 0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750,
|
|
0.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500, 0.968750,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000
|
|
};
|
|
|
|
static double simple_weight(YV12_BUFFER_CONFIG *source)
|
|
{
|
|
int i, j;
|
|
|
|
unsigned char *src = source->y_buffer;
|
|
double sum_weights = 0.0;
|
|
|
|
// Loop throught the Y plane raw examining levels and creating a weight for the image
|
|
i = source->y_height;
|
|
do
|
|
{
|
|
j = source->y_width;
|
|
do
|
|
{
|
|
sum_weights += weight_table[ *src];
|
|
src++;
|
|
}while(--j);
|
|
src -= source->y_width;
|
|
src += source->y_stride;
|
|
}while(--i);
|
|
|
|
sum_weights /= (source->y_height * source->y_width);
|
|
|
|
return sum_weights;
|
|
}
|
|
|
|
|
|
// This function returns the current per frame maximum bitrate target
|
|
static int frame_max_bits(VP8_COMP *cpi)
|
|
{
|
|
// Max allocation for a single frame based on the max section guidelines passed in and how many bits are left
|
|
int max_bits;
|
|
|
|
// For CBR we need to also consider buffer fullness.
|
|
// If we are running below the optimal level then we need to gradually tighten up on max_bits.
|
|
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
|
{
|
|
double buffer_fullness_ratio = (double)cpi->buffer_level / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.optimal_buffer_level);
|
|
|
|
// For CBR base this on the target average bits per frame plus the maximum sedction rate passed in by the user
|
|
max_bits = (int)(cpi->av_per_frame_bandwidth * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));
|
|
|
|
// If our buffer is below the optimum level
|
|
if (buffer_fullness_ratio < 1.0)
|
|
{
|
|
// The lower of max_bits / 4 or cpi->av_per_frame_bandwidth / 4.
|
|
int min_max_bits = ((cpi->av_per_frame_bandwidth >> 2) < (max_bits >> 2)) ? cpi->av_per_frame_bandwidth >> 2 : max_bits >> 2;
|
|
|
|
max_bits = (int)(max_bits * buffer_fullness_ratio);
|
|
|
|
if (max_bits < min_max_bits)
|
|
max_bits = min_max_bits; // Lowest value we will set ... which should allow the buffer to refil.
|
|
}
|
|
}
|
|
// VBR
|
|
else
|
|
{
|
|
// For VBR base this on the bits and frames left plus the two_pass_vbrmax_section rate passed in by the user
|
|
max_bits = (int)(((double)cpi->twopass.bits_left / (cpi->twopass.total_stats.count - (double)cpi->common.current_video_frame)) * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));
|
|
}
|
|
|
|
// Trap case where we are out of bits
|
|
if (max_bits < 0)
|
|
max_bits = 0;
|
|
|
|
return max_bits;
|
|
}
|
|
|
|
void vp8_init_first_pass(VP8_COMP *cpi)
|
|
{
|
|
zero_stats(&cpi->twopass.total_stats);
|
|
}
|
|
|
|
void vp8_end_first_pass(VP8_COMP *cpi)
|
|
{
|
|
output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.total_stats);
|
|
}
|
|
|
|
static void zz_motion_search( VP8_COMP *cpi, MACROBLOCK * x, YV12_BUFFER_CONFIG * recon_buffer, int * best_motion_err, int recon_yoffset )
|
|
{
|
|
MACROBLOCKD * const xd = & x->e_mbd;
|
|
BLOCK *b = &x->block[0];
|
|
BLOCKD *d = &x->e_mbd.block[0];
|
|
|
|
unsigned char *src_ptr = (*(b->base_src) + b->src);
|
|
int src_stride = b->src_stride;
|
|
unsigned char *ref_ptr;
|
|
int ref_stride=d->pre_stride;
|
|
|
|
// Set up pointers for this macro block recon buffer
|
|
xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset;
|
|
|
|
ref_ptr = (unsigned char *)(*(d->base_pre) + d->pre );
|
|
|
|
vp8_mse16x16 ( src_ptr, src_stride, ref_ptr, ref_stride, (unsigned int *)(best_motion_err));
|
|
}
|
|
|
|
static void first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x,
|
|
int_mv *ref_mv, MV *best_mv,
|
|
YV12_BUFFER_CONFIG *recon_buffer,
|
|
int *best_motion_err, int recon_yoffset )
|
|
{
|
|
MACROBLOCKD *const xd = & x->e_mbd;
|
|
BLOCK *b = &x->block[0];
|
|
BLOCKD *d = &x->e_mbd.block[0];
|
|
int num00;
|
|
|
|
int_mv tmp_mv;
|
|
int_mv ref_mv_full;
|
|
|
|
int tmp_err;
|
|
int step_param = 3; //3; // Dont search over full range for first pass
|
|
int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; //3;
|
|
int n;
|
|
vp8_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16];
|
|
int new_mv_mode_penalty = 256;
|
|
|
|
// override the default variance function to use MSE
|
|
v_fn_ptr.vf = vp8_mse16x16;
|
|
|
|
// Set up pointers for this macro block recon buffer
|
|
xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset;
|
|
|
|
// Initial step/diamond search centred on best mv
|
|
tmp_mv.as_int = 0;
|
|
ref_mv_full.as_mv.col = ref_mv->as_mv.col>>3;
|
|
ref_mv_full.as_mv.row = ref_mv->as_mv.row>>3;
|
|
tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param,
|
|
x->sadperbit16, &num00, &v_fn_ptr,
|
|
x->mvcost, ref_mv);
|
|
if ( tmp_err < INT_MAX-new_mv_mode_penalty )
|
|
tmp_err += new_mv_mode_penalty;
|
|
|
|
if (tmp_err < *best_motion_err)
|
|
{
|
|
*best_motion_err = tmp_err;
|
|
best_mv->row = tmp_mv.as_mv.row;
|
|
best_mv->col = tmp_mv.as_mv.col;
|
|
}
|
|
|
|
// Further step/diamond searches as necessary
|
|
n = num00;
|
|
num00 = 0;
|
|
|
|
while (n < further_steps)
|
|
{
|
|
n++;
|
|
|
|
if (num00)
|
|
num00--;
|
|
else
|
|
{
|
|
tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv,
|
|
step_param + n, x->sadperbit16,
|
|
&num00, &v_fn_ptr, x->mvcost,
|
|
ref_mv);
|
|
if ( tmp_err < INT_MAX-new_mv_mode_penalty )
|
|
tmp_err += new_mv_mode_penalty;
|
|
|
|
if (tmp_err < *best_motion_err)
|
|
{
|
|
*best_motion_err = tmp_err;
|
|
best_mv->row = tmp_mv.as_mv.row;
|
|
best_mv->col = tmp_mv.as_mv.col;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void vp8_first_pass(VP8_COMP *cpi)
|
|
{
|
|
int mb_row, mb_col;
|
|
MACROBLOCK *const x = & cpi->mb;
|
|
VP8_COMMON *const cm = & cpi->common;
|
|
MACROBLOCKD *const xd = & x->e_mbd;
|
|
|
|
int recon_yoffset, recon_uvoffset;
|
|
YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx];
|
|
YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
|
|
YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx];
|
|
int recon_y_stride = lst_yv12->y_stride;
|
|
int recon_uv_stride = lst_yv12->uv_stride;
|
|
int64_t intra_error = 0;
|
|
int64_t coded_error = 0;
|
|
|
|
int sum_mvr = 0, sum_mvc = 0;
|
|
int sum_mvr_abs = 0, sum_mvc_abs = 0;
|
|
int sum_mvrs = 0, sum_mvcs = 0;
|
|
int mvcount = 0;
|
|
int intercount = 0;
|
|
int second_ref_count = 0;
|
|
int intrapenalty = 256;
|
|
int neutral_count = 0;
|
|
int new_mv_count = 0;
|
|
int sum_in_vectors = 0;
|
|
uint32_t lastmv_as_int = 0;
|
|
|
|
int_mv zero_ref_mv;
|
|
|
|
zero_ref_mv.as_int = 0;
|
|
|
|
vp8_clear_system_state(); //__asm emms;
|
|
|
|
x->src = * cpi->Source;
|
|
xd->pre = *lst_yv12;
|
|
xd->dst = *new_yv12;
|
|
|
|
x->partition_info = x->pi;
|
|
|
|
xd->mode_info_context = cm->mi;
|
|
|
|
vp8_build_block_offsets(x);
|
|
|
|
vp8_setup_block_dptrs(&x->e_mbd);
|
|
|
|
vp8_setup_block_ptrs(x);
|
|
|
|
// set up frame new frame for intra coded blocks
|
|
vp8_setup_intra_recon(new_yv12);
|
|
vp8cx_frame_init_quantizer(cpi);
|
|
|
|
// Initialise the MV cost table to the defaults
|
|
//if( cm->current_video_frame == 0)
|
|
//if ( 0 )
|
|
{
|
|
int flag[2] = {1, 1};
|
|
vp8_initialize_rd_consts(cpi, vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q));
|
|
vpx_memcpy(cm->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context));
|
|
vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *) cm->fc.mvc, flag);
|
|
}
|
|
|
|
// for each macroblock row in image
|
|
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++)
|
|
{
|
|
int_mv best_ref_mv;
|
|
|
|
best_ref_mv.as_int = 0;
|
|
|
|
// reset above block coeffs
|
|
xd->up_available = (mb_row != 0);
|
|
recon_yoffset = (mb_row * recon_y_stride * 16);
|
|
recon_uvoffset = (mb_row * recon_uv_stride * 8);
|
|
|
|
// Set up limit values for motion vectors to prevent them extending outside the UMV borders
|
|
x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16));
|
|
x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16);
|
|
|
|
|
|
// for each macroblock col in image
|
|
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++)
|
|
{
|
|
int this_error;
|
|
int gf_motion_error = INT_MAX;
|
|
int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
|
|
|
|
xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset;
|
|
xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset;
|
|
xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset;
|
|
xd->left_available = (mb_col != 0);
|
|
|
|
//Copy current mb to a buffer
|
|
vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16);
|
|
|
|
// do intra 16x16 prediction
|
|
this_error = vp8_encode_intra(cpi, x, use_dc_pred);
|
|
|
|
// "intrapenalty" below deals with situations where the intra and inter error scores are very low (eg a plain black frame)
|
|
// We do not have special cases in first pass for 0,0 and nearest etc so all inter modes carry an overhead cost estimate fot the mv.
|
|
// When the error score is very low this causes us to pick all or lots of INTRA modes and throw lots of key frames.
|
|
// This penalty adds a cost matching that of a 0,0 mv to the intra case.
|
|
this_error += intrapenalty;
|
|
|
|
// Cumulative intra error total
|
|
intra_error += (int64_t)this_error;
|
|
|
|
// Set up limit values for motion vectors to prevent them extending outside the UMV borders
|
|
x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16));
|
|
x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16);
|
|
|
|
// Other than for the first frame do a motion search
|
|
if (cm->current_video_frame > 0)
|
|
{
|
|
BLOCKD *d = &x->e_mbd.block[0];
|
|
MV tmp_mv = {0, 0};
|
|
int tmp_err;
|
|
int motion_error = INT_MAX;
|
|
|
|
// Simple 0,0 motion with no mv overhead
|
|
zz_motion_search( cpi, x, lst_yv12, &motion_error, recon_yoffset );
|
|
d->bmi.mv.as_mv.row = 0;
|
|
d->bmi.mv.as_mv.col = 0;
|
|
|
|
// Test last reference frame using the previous best mv as the
|
|
// starting point (best reference) for the search
|
|
first_pass_motion_search(cpi, x, &best_ref_mv,
|
|
&d->bmi.mv.as_mv, lst_yv12,
|
|
&motion_error, recon_yoffset);
|
|
|
|
// If the current best reference mv is not centred on 0,0 then do a 0,0 based search as well
|
|
if (best_ref_mv.as_int)
|
|
{
|
|
tmp_err = INT_MAX;
|
|
first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv,
|
|
lst_yv12, &tmp_err, recon_yoffset);
|
|
|
|
if ( tmp_err < motion_error )
|
|
{
|
|
motion_error = tmp_err;
|
|
d->bmi.mv.as_mv.row = tmp_mv.row;
|
|
d->bmi.mv.as_mv.col = tmp_mv.col;
|
|
}
|
|
}
|
|
|
|
// Experimental search in a second reference frame ((0,0) based only)
|
|
if (cm->current_video_frame > 1)
|
|
{
|
|
first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, gld_yv12, &gf_motion_error, recon_yoffset);
|
|
|
|
if ((gf_motion_error < motion_error) && (gf_motion_error < this_error))
|
|
{
|
|
second_ref_count++;
|
|
//motion_error = gf_motion_error;
|
|
//d->bmi.mv.as_mv.row = tmp_mv.row;
|
|
//d->bmi.mv.as_mv.col = tmp_mv.col;
|
|
}
|
|
/*else
|
|
{
|
|
xd->pre.y_buffer = cm->last_frame.y_buffer + recon_yoffset;
|
|
xd->pre.u_buffer = cm->last_frame.u_buffer + recon_uvoffset;
|
|
xd->pre.v_buffer = cm->last_frame.v_buffer + recon_uvoffset;
|
|
}*/
|
|
|
|
|
|
// Reset to last frame as reference buffer
|
|
xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset;
|
|
xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset;
|
|
xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset;
|
|
}
|
|
|
|
/* Intra assumed best */
|
|
best_ref_mv.as_int = 0;
|
|
|
|
if (motion_error <= this_error)
|
|
{
|
|
// Keep a count of cases where the inter and intra were
|
|
// very close and very low. This helps with scene cut
|
|
// detection for example in cropped clips with black bars
|
|
// at the sides or top and bottom.
|
|
if( (((this_error-intrapenalty) * 9) <=
|
|
(motion_error*10)) &&
|
|
(this_error < (2*intrapenalty)) )
|
|
{
|
|
neutral_count++;
|
|
}
|
|
|
|
d->bmi.mv.as_mv.row <<= 3;
|
|
d->bmi.mv.as_mv.col <<= 3;
|
|
this_error = motion_error;
|
|
vp8_set_mbmode_and_mvs(x, NEWMV, &d->bmi.mv);
|
|
vp8_encode_inter16x16y(IF_RTCD(&cpi->rtcd), x);
|
|
sum_mvr += d->bmi.mv.as_mv.row;
|
|
sum_mvr_abs += abs(d->bmi.mv.as_mv.row);
|
|
sum_mvc += d->bmi.mv.as_mv.col;
|
|
sum_mvc_abs += abs(d->bmi.mv.as_mv.col);
|
|
sum_mvrs += d->bmi.mv.as_mv.row * d->bmi.mv.as_mv.row;
|
|
sum_mvcs += d->bmi.mv.as_mv.col * d->bmi.mv.as_mv.col;
|
|
intercount++;
|
|
|
|
best_ref_mv.as_int = d->bmi.mv.as_int;
|
|
|
|
// Was the vector non-zero
|
|
if (d->bmi.mv.as_int)
|
|
{
|
|
mvcount++;
|
|
|
|
// Was it different from the last non zero vector
|
|
if ( d->bmi.mv.as_int != lastmv_as_int )
|
|
new_mv_count++;
|
|
lastmv_as_int = d->bmi.mv.as_int;
|
|
|
|
// Does the Row vector point inwards or outwards
|
|
if (mb_row < cm->mb_rows / 2)
|
|
{
|
|
if (d->bmi.mv.as_mv.row > 0)
|
|
sum_in_vectors--;
|
|
else if (d->bmi.mv.as_mv.row < 0)
|
|
sum_in_vectors++;
|
|
}
|
|
else if (mb_row > cm->mb_rows / 2)
|
|
{
|
|
if (d->bmi.mv.as_mv.row > 0)
|
|
sum_in_vectors++;
|
|
else if (d->bmi.mv.as_mv.row < 0)
|
|
sum_in_vectors--;
|
|
}
|
|
|
|
// Does the Row vector point inwards or outwards
|
|
if (mb_col < cm->mb_cols / 2)
|
|
{
|
|
if (d->bmi.mv.as_mv.col > 0)
|
|
sum_in_vectors--;
|
|
else if (d->bmi.mv.as_mv.col < 0)
|
|
sum_in_vectors++;
|
|
}
|
|
else if (mb_col > cm->mb_cols / 2)
|
|
{
|
|
if (d->bmi.mv.as_mv.col > 0)
|
|
sum_in_vectors++;
|
|
else if (d->bmi.mv.as_mv.col < 0)
|
|
sum_in_vectors--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
coded_error += (int64_t)this_error;
|
|
|
|
// adjust to the next column of macroblocks
|
|
x->src.y_buffer += 16;
|
|
x->src.u_buffer += 8;
|
|
x->src.v_buffer += 8;
|
|
|
|
recon_yoffset += 16;
|
|
recon_uvoffset += 8;
|
|
}
|
|
|
|
// adjust to the next row of mbs
|
|
x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
|
|
x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
|
|
x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
|
|
|
|
//extend the recon for intra prediction
|
|
vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8);
|
|
vp8_clear_system_state(); //__asm emms;
|
|
}
|
|
|
|
vp8_clear_system_state(); //__asm emms;
|
|
{
|
|
double weight = 0.0;
|
|
|
|
FIRSTPASS_STATS fps;
|
|
|
|
fps.frame = cm->current_video_frame ;
|
|
fps.intra_error = intra_error >> 8;
|
|
fps.coded_error = coded_error >> 8;
|
|
weight = simple_weight(cpi->Source);
|
|
|
|
|
|
if (weight < 0.1)
|
|
weight = 0.1;
|
|
|
|
fps.ssim_weighted_pred_err = fps.coded_error * weight;
|
|
|
|
fps.pcnt_inter = 0.0;
|
|
fps.pcnt_motion = 0.0;
|
|
fps.MVr = 0.0;
|
|
fps.mvr_abs = 0.0;
|
|
fps.MVc = 0.0;
|
|
fps.mvc_abs = 0.0;
|
|
fps.MVrv = 0.0;
|
|
fps.MVcv = 0.0;
|
|
fps.mv_in_out_count = 0.0;
|
|
fps.new_mv_count = 0.0;
|
|
fps.count = 1.0;
|
|
|
|
fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs;
|
|
fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs;
|
|
fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs;
|
|
|
|
if (mvcount > 0)
|
|
{
|
|
fps.MVr = (double)sum_mvr / (double)mvcount;
|
|
fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount;
|
|
fps.MVc = (double)sum_mvc / (double)mvcount;
|
|
fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount;
|
|
fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / (double)mvcount;
|
|
fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / (double)mvcount;
|
|
fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2);
|
|
fps.new_mv_count = new_mv_count;
|
|
|
|
fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs;
|
|
}
|
|
|
|
// TODO: handle the case when duration is set to 0, or something less
|
|
// than the full time between subsequent cpi->source_time_stamp s .
|
|
fps.duration = cpi->source->ts_end
|
|
- cpi->source->ts_start;
|
|
|
|
// don't want to do output stats with a stack variable!
|
|
memcpy(&cpi->twopass.this_frame_stats,
|
|
&fps,
|
|
sizeof(FIRSTPASS_STATS));
|
|
output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.this_frame_stats);
|
|
accumulate_stats(&cpi->twopass.total_stats, &fps);
|
|
}
|
|
|
|
// Copy the previous Last Frame into the GF buffer if specific conditions for doing so are met
|
|
if ((cm->current_video_frame > 0) &&
|
|
(cpi->twopass.this_frame_stats.pcnt_inter > 0.20) &&
|
|
((cpi->twopass.this_frame_stats.intra_error / cpi->twopass.this_frame_stats.coded_error) > 2.0))
|
|
{
|
|
vp8_yv12_copy_frame_ptr(lst_yv12, gld_yv12);
|
|
}
|
|
|
|
// swap frame pointers so last frame refers to the frame we just compressed
|
|
vp8_swap_yv12_buffer(lst_yv12, new_yv12);
|
|
vp8_yv12_extend_frame_borders(lst_yv12);
|
|
|
|
// Special case for the first frame. Copy into the GF buffer as a second reference.
|
|
if (cm->current_video_frame == 0)
|
|
{
|
|
vp8_yv12_copy_frame_ptr(lst_yv12, gld_yv12);
|
|
}
|
|
|
|
|
|
// use this to see what the first pass reconstruction looks like
|
|
if (0)
|
|
{
|
|
char filename[512];
|
|
FILE *recon_file;
|
|
sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame);
|
|
|
|
if (cm->current_video_frame == 0)
|
|
recon_file = fopen(filename, "wb");
|
|
else
|
|
recon_file = fopen(filename, "ab");
|
|
|
|
if(fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file));
|
|
fclose(recon_file);
|
|
}
|
|
|
|
cm->current_video_frame++;
|
|
|
|
}
|
|
extern const int vp8_bits_per_mb[2][QINDEX_RANGE];
|
|
|
|
// Estimate a cost per mb attributable to overheads such as the coding of
|
|
// modes and motion vectors.
|
|
// Currently simplistic in its assumptions for testing.
|
|
//
|
|
|
|
|
|
double bitcost( double prob )
|
|
{
|
|
return -(log( prob ) / log( 2.0 ));
|
|
}
|
|
static int64_t estimate_modemvcost(VP8_COMP *cpi,
|
|
FIRSTPASS_STATS * fpstats)
|
|
{
|
|
int mv_cost;
|
|
int mode_cost;
|
|
|
|
double av_pct_inter = fpstats->pcnt_inter / fpstats->count;
|
|
double av_pct_motion = fpstats->pcnt_motion / fpstats->count;
|
|
double av_intra = (1.0 - av_pct_inter);
|
|
|
|
double zz_cost;
|
|
double motion_cost;
|
|
double intra_cost;
|
|
|
|
zz_cost = bitcost(av_pct_inter - av_pct_motion);
|
|
motion_cost = bitcost(av_pct_motion);
|
|
intra_cost = bitcost(av_intra);
|
|
|
|
// Estimate of extra bits per mv overhead for mbs
|
|
// << 9 is the normalization to the (bits * 512) used in vp8_bits_per_mb
|
|
mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9;
|
|
|
|
// Crude estimate of overhead cost from modes
|
|
// << 9 is the normalization to (bits * 512) used in vp8_bits_per_mb
|
|
mode_cost =
|
|
(int)( ( ((av_pct_inter - av_pct_motion) * zz_cost) +
|
|
(av_pct_motion * motion_cost) +
|
|
(av_intra * intra_cost) ) * cpi->common.MBs ) << 9;
|
|
|
|
return mv_cost + mode_cost;
|
|
}
|
|
|
|
static double calc_correction_factor( double err_per_mb,
|
|
double err_devisor,
|
|
double pt_low,
|
|
double pt_high,
|
|
int Q )
|
|
{
|
|
double power_term;
|
|
double error_term = err_per_mb / err_devisor;
|
|
double correction_factor;
|
|
|
|
// Adjustment based on Q to power term.
|
|
power_term = pt_low + (Q * 0.01);
|
|
power_term = (power_term > pt_high) ? pt_high : power_term;
|
|
|
|
// Adjustments to error term
|
|
// TBD
|
|
|
|
// Calculate correction factor
|
|
correction_factor = pow(error_term, power_term);
|
|
|
|
// Clip range
|
|
correction_factor =
|
|
(correction_factor < 0.05)
|
|
? 0.05 : (correction_factor > 5.0) ? 5.0 : correction_factor;
|
|
|
|
return correction_factor;
|
|
}
|
|
|
|
static int estimate_max_q(VP8_COMP *cpi,
|
|
FIRSTPASS_STATS * fpstats,
|
|
int section_target_bandwitdh,
|
|
int overhead_bits )
|
|
{
|
|
int Q;
|
|
int num_mbs = cpi->common.MBs;
|
|
int target_norm_bits_per_mb;
|
|
|
|
double section_err = (fpstats->coded_error / fpstats->count);
|
|
double err_per_mb = section_err / num_mbs;
|
|
double err_correction_factor;
|
|
double speed_correction = 1.0;
|
|
int overhead_bits_per_mb;
|
|
|
|
if (section_target_bandwitdh <= 0)
|
|
return cpi->twopass.maxq_max_limit; // Highest value allowed
|
|
|
|
target_norm_bits_per_mb =
|
|
(section_target_bandwitdh < (1 << 20))
|
|
? (512 * section_target_bandwitdh) / num_mbs
|
|
: 512 * (section_target_bandwitdh / num_mbs);
|
|
|
|
// Calculate a corrective factor based on a rolling ratio of bits spent
|
|
// vs target bits
|
|
if ((cpi->rolling_target_bits > 0) &&
|
|
(cpi->active_worst_quality < cpi->worst_quality))
|
|
{
|
|
double rolling_ratio;
|
|
|
|
rolling_ratio = (double)cpi->rolling_actual_bits /
|
|
(double)cpi->rolling_target_bits;
|
|
|
|
if (rolling_ratio < 0.95)
|
|
cpi->twopass.est_max_qcorrection_factor -= 0.005;
|
|
else if (rolling_ratio > 1.05)
|
|
cpi->twopass.est_max_qcorrection_factor += 0.005;
|
|
|
|
cpi->twopass.est_max_qcorrection_factor =
|
|
(cpi->twopass.est_max_qcorrection_factor < 0.1)
|
|
? 0.1
|
|
: (cpi->twopass.est_max_qcorrection_factor > 10.0)
|
|
? 10.0 : cpi->twopass.est_max_qcorrection_factor;
|
|
}
|
|
|
|
// Corrections for higher compression speed settings
|
|
// (reduced compression expected)
|
|
if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1))
|
|
{
|
|
if (cpi->oxcf.cpu_used <= 5)
|
|
speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
|
|
else
|
|
speed_correction = 1.25;
|
|
}
|
|
|
|
// Estimate of overhead bits per mb
|
|
// Correction to overhead bits for min allowed Q.
|
|
overhead_bits_per_mb = overhead_bits / num_mbs;
|
|
overhead_bits_per_mb *= pow( 0.98, (double)cpi->twopass.maxq_min_limit );
|
|
|
|
// Try and pick a max Q that will be high enough to encode the
|
|
// content at the given rate.
|
|
for (Q = cpi->twopass.maxq_min_limit; Q < cpi->twopass.maxq_max_limit; Q++)
|
|
{
|
|
int bits_per_mb_at_this_q;
|
|
|
|
// Error per MB based correction factor
|
|
err_correction_factor =
|
|
calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q);
|
|
|
|
bits_per_mb_at_this_q =
|
|
vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb;
|
|
|
|
bits_per_mb_at_this_q = (int)(.5 + err_correction_factor
|
|
* speed_correction * cpi->twopass.est_max_qcorrection_factor
|
|
* cpi->twopass.section_max_qfactor
|
|
* (double)bits_per_mb_at_this_q);
|
|
|
|
// Mode and motion overhead
|
|
// As Q rises in real encode loop rd code will force overhead down
|
|
// We make a crude adjustment for this here as *.98 per Q step.
|
|
overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98);
|
|
|
|
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
|
|
break;
|
|
}
|
|
|
|
// Restriction on active max q for constrained quality mode.
|
|
if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
|
|
(Q < cpi->cq_target_quality) )
|
|
{
|
|
Q = cpi->cq_target_quality;
|
|
}
|
|
|
|
// Adjust maxq_min_limit and maxq_max_limit limits based on
|
|
// averaga q observed in clip for non kf/gf.arf frames
|
|
// Give average a chance to settle though.
|
|
if ( (cpi->ni_frames >
|
|
((unsigned int)cpi->twopass.total_stats.count >> 8)) &&
|
|
(cpi->ni_frames > 150) )
|
|
{
|
|
cpi->twopass.maxq_max_limit = ((cpi->ni_av_qi + 32) < cpi->worst_quality)
|
|
? (cpi->ni_av_qi + 32) : cpi->worst_quality;
|
|
cpi->twopass.maxq_min_limit = ((cpi->ni_av_qi - 32) > cpi->best_quality)
|
|
? (cpi->ni_av_qi - 32) : cpi->best_quality;
|
|
}
|
|
|
|
return Q;
|
|
}
|
|
|
|
// For cq mode estimate a cq level that matches the observed
|
|
// complexity and data rate.
|
|
static int estimate_cq( VP8_COMP *cpi,
|
|
FIRSTPASS_STATS * fpstats,
|
|
int section_target_bandwitdh,
|
|
int overhead_bits )
|
|
{
|
|
int Q;
|
|
int num_mbs = cpi->common.MBs;
|
|
int target_norm_bits_per_mb;
|
|
|
|
double section_err = (fpstats->coded_error / fpstats->count);
|
|
double err_per_mb = section_err / num_mbs;
|
|
double err_correction_factor;
|
|
double speed_correction = 1.0;
|
|
double clip_iiratio;
|
|
double clip_iifactor;
|
|
int overhead_bits_per_mb;
|
|
|
|
if (0)
|
|
{
|
|
FILE *f = fopen("epmp.stt", "a");
|
|
fprintf(f, "%10.2f\n", err_per_mb );
|
|
fclose(f);
|
|
}
|
|
|
|
target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20))
|
|
? (512 * section_target_bandwitdh) / num_mbs
|
|
: 512 * (section_target_bandwitdh / num_mbs);
|
|
|
|
// Estimate of overhead bits per mb
|
|
overhead_bits_per_mb = overhead_bits / num_mbs;
|
|
|
|
// Corrections for higher compression speed settings
|
|
// (reduced compression expected)
|
|
if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1))
|
|
{
|
|
if (cpi->oxcf.cpu_used <= 5)
|
|
speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
|
|
else
|
|
speed_correction = 1.25;
|
|
}
|
|
|
|
// II ratio correction factor for clip as a whole
|
|
clip_iiratio = cpi->twopass.total_stats.intra_error /
|
|
DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats.coded_error);
|
|
clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025);
|
|
if (clip_iifactor < 0.80)
|
|
clip_iifactor = 0.80;
|
|
|
|
// Try and pick a Q that can encode the content at the given rate.
|
|
for (Q = 0; Q < MAXQ; Q++)
|
|
{
|
|
int bits_per_mb_at_this_q;
|
|
|
|
// Error per MB based correction factor
|
|
err_correction_factor =
|
|
calc_correction_factor(err_per_mb, 100.0, 0.40, 0.90, Q);
|
|
|
|
bits_per_mb_at_this_q =
|
|
vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb;
|
|
|
|
bits_per_mb_at_this_q =
|
|
(int)( .5 + err_correction_factor *
|
|
speed_correction *
|
|
clip_iifactor *
|
|
(double)bits_per_mb_at_this_q);
|
|
|
|
// Mode and motion overhead
|
|
// As Q rises in real encode loop rd code will force overhead down
|
|
// We make a crude adjustment for this here as *.98 per Q step.
|
|
overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98);
|
|
|
|
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
|
|
break;
|
|
}
|
|
|
|
// Clip value to range "best allowed to (worst allowed - 1)"
|
|
Q = cq_level[Q];
|
|
if ( Q >= cpi->worst_quality )
|
|
Q = cpi->worst_quality - 1;
|
|
if ( Q < cpi->best_quality )
|
|
Q = cpi->best_quality;
|
|
|
|
return Q;
|
|
}
|
|
|
|
static int estimate_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh)
|
|
{
|
|
int Q;
|
|
int num_mbs = cpi->common.MBs;
|
|
int target_norm_bits_per_mb;
|
|
|
|
double err_per_mb = section_err / num_mbs;
|
|
double err_correction_factor;
|
|
double speed_correction = 1.0;
|
|
|
|
target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs);
|
|
|
|
// Corrections for higher compression speed settings (reduced compression expected)
|
|
if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1))
|
|
{
|
|
if (cpi->oxcf.cpu_used <= 5)
|
|
speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
|
|
else
|
|
speed_correction = 1.25;
|
|
}
|
|
|
|
// Try and pick a Q that can encode the content at the given rate.
|
|
for (Q = 0; Q < MAXQ; Q++)
|
|
{
|
|
int bits_per_mb_at_this_q;
|
|
|
|
// Error per MB based correction factor
|
|
err_correction_factor =
|
|
calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q);
|
|
|
|
bits_per_mb_at_this_q =
|
|
(int)( .5 + ( err_correction_factor *
|
|
speed_correction *
|
|
cpi->twopass.est_max_qcorrection_factor *
|
|
(double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0 ) );
|
|
|
|
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
|
|
break;
|
|
}
|
|
|
|
return Q;
|
|
}
|
|
|
|
// Estimate a worst case Q for a KF group
|
|
static int estimate_kf_group_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh, double group_iiratio)
|
|
{
|
|
int Q;
|
|
int num_mbs = cpi->common.MBs;
|
|
int target_norm_bits_per_mb = (512 * section_target_bandwitdh) / num_mbs;
|
|
int bits_per_mb_at_this_q;
|
|
|
|
double err_per_mb = section_err / num_mbs;
|
|
double err_correction_factor;
|
|
double speed_correction = 1.0;
|
|
double current_spend_ratio = 1.0;
|
|
|
|
double pow_highq = (POW1 < 0.6) ? POW1 + 0.3 : 0.90;
|
|
double pow_lowq = (POW1 < 0.7) ? POW1 + 0.1 : 0.80;
|
|
|
|
double iiratio_correction_factor = 1.0;
|
|
|
|
double combined_correction_factor;
|
|
|
|
// Trap special case where the target is <= 0
|
|
if (target_norm_bits_per_mb <= 0)
|
|
return MAXQ * 2;
|
|
|
|
// Calculate a corrective factor based on a rolling ratio of bits spent vs target bits
|
|
// This is clamped to the range 0.1 to 10.0
|
|
if (cpi->long_rolling_target_bits <= 0)
|
|
current_spend_ratio = 10.0;
|
|
else
|
|
{
|
|
current_spend_ratio = (double)cpi->long_rolling_actual_bits / (double)cpi->long_rolling_target_bits;
|
|
current_spend_ratio = (current_spend_ratio > 10.0) ? 10.0 : (current_spend_ratio < 0.1) ? 0.1 : current_spend_ratio;
|
|
}
|
|
|
|
// Calculate a correction factor based on the quality of prediction in the sequence as indicated by intra_inter error score ratio (IIRatio)
|
|
// The idea here is to favour subsampling in the hardest sections vs the easyest.
|
|
iiratio_correction_factor = 1.0 - ((group_iiratio - 6.0) * 0.1);
|
|
|
|
if (iiratio_correction_factor < 0.5)
|
|
iiratio_correction_factor = 0.5;
|
|
|
|
// Corrections for higher compression speed settings (reduced compression expected)
|
|
if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1))
|
|
{
|
|
if (cpi->oxcf.cpu_used <= 5)
|
|
speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
|
|
else
|
|
speed_correction = 1.25;
|
|
}
|
|
|
|
// Combine the various factors calculated above
|
|
combined_correction_factor = speed_correction * iiratio_correction_factor * current_spend_ratio;
|
|
|
|
// Try and pick a Q that should be high enough to encode the content at the given rate.
|
|
for (Q = 0; Q < MAXQ; Q++)
|
|
{
|
|
// Error per MB based correction factor
|
|
err_correction_factor =
|
|
calc_correction_factor(err_per_mb, 150.0, pow_lowq, pow_highq, Q);
|
|
|
|
bits_per_mb_at_this_q =
|
|
(int)(.5 + ( err_correction_factor *
|
|
combined_correction_factor *
|
|
(double)vp8_bits_per_mb[INTER_FRAME][Q]) );
|
|
|
|
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
|
|
break;
|
|
}
|
|
|
|
// If we could not hit the target even at Max Q then estimate what Q would have bee required
|
|
while ((bits_per_mb_at_this_q > target_norm_bits_per_mb) && (Q < (MAXQ * 2)))
|
|
{
|
|
|
|
bits_per_mb_at_this_q = (int)(0.96 * bits_per_mb_at_this_q);
|
|
Q++;
|
|
}
|
|
|
|
if (0)
|
|
{
|
|
FILE *f = fopen("estkf_q.stt", "a");
|
|
fprintf(f, "%8d %8d %8d %8.2f %8.3f %8.2f %8.3f %8.3f %8.3f %8d\n", cpi->common.current_video_frame, bits_per_mb_at_this_q,
|
|
target_norm_bits_per_mb, err_per_mb, err_correction_factor,
|
|
current_spend_ratio, group_iiratio, iiratio_correction_factor,
|
|
(double)cpi->buffer_level / (double)cpi->oxcf.optimal_buffer_level, Q);
|
|
fclose(f);
|
|
}
|
|
|
|
return Q;
|
|
}
|
|
|
|
extern void vp8_new_frame_rate(VP8_COMP *cpi, double framerate);
|
|
|
|
void vp8_init_second_pass(VP8_COMP *cpi)
|
|
{
|
|
FIRSTPASS_STATS this_frame;
|
|
FIRSTPASS_STATS *start_pos;
|
|
|
|
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100);
|
|
|
|
zero_stats(&cpi->twopass.total_stats);
|
|
zero_stats(&cpi->twopass.total_left_stats);
|
|
|
|
if (!cpi->twopass.stats_in_end)
|
|
return;
|
|
|
|
cpi->twopass.total_stats = *cpi->twopass.stats_in_end;
|
|
cpi->twopass.total_left_stats = cpi->twopass.total_stats;
|
|
|
|
// each frame can have a different duration, as the frame rate in the source
|
|
// isn't guaranteed to be constant. The frame rate prior to the first frame
|
|
// encoded in the second pass is a guess. However the sum duration is not.
|
|
// Its calculated based on the actual durations of all frames from the first
|
|
// pass.
|
|
vp8_new_frame_rate(cpi, 10000000.0 * cpi->twopass.total_stats.count / cpi->twopass.total_stats.duration);
|
|
|
|
cpi->output_frame_rate = cpi->frame_rate;
|
|
cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats.duration * cpi->oxcf.target_bandwidth / 10000000.0) ;
|
|
cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats.duration * two_pass_min_rate / 10000000.0);
|
|
|
|
// Calculate a minimum intra value to be used in determining the IIratio
|
|
// scores used in the second pass. We have this minimum to make sure
|
|
// that clips that are static but "low complexity" in the intra domain
|
|
// are still boosted appropriately for KF/GF/ARF
|
|
cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs;
|
|
cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs;
|
|
|
|
// Scan the first pass file and calculate an average Intra / Inter error score ratio for the sequence
|
|
{
|
|
double sum_iiratio = 0.0;
|
|
double IIRatio;
|
|
|
|
start_pos = cpi->twopass.stats_in; // Note starting "file" position
|
|
|
|
while (input_stats(cpi, &this_frame) != EOF)
|
|
{
|
|
IIRatio = this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error);
|
|
IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio;
|
|
sum_iiratio += IIRatio;
|
|
}
|
|
|
|
cpi->twopass.avg_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats.count);
|
|
|
|
// Reset file position
|
|
reset_fpf_position(cpi, start_pos);
|
|
}
|
|
|
|
// Scan the first pass file and calculate a modified total error based upon the bias/power function
|
|
// used to allocate bits
|
|
{
|
|
start_pos = cpi->twopass.stats_in; // Note starting "file" position
|
|
|
|
cpi->twopass.modified_error_total = 0.0;
|
|
cpi->twopass.modified_error_used = 0.0;
|
|
|
|
while (input_stats(cpi, &this_frame) != EOF)
|
|
{
|
|
cpi->twopass.modified_error_total += calculate_modified_err(cpi, &this_frame);
|
|
}
|
|
cpi->twopass.modified_error_left = cpi->twopass.modified_error_total;
|
|
|
|
reset_fpf_position(cpi, start_pos); // Reset file position
|
|
|
|
}
|
|
}
|
|
|
|
void vp8_end_second_pass(VP8_COMP *cpi)
|
|
{
|
|
}
|
|
|
|
// This function gives and estimate of how badly we believe
|
|
// the prediction quality is decaying from frame to frame.
|
|
static double get_prediction_decay_rate(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame)
|
|
{
|
|
double prediction_decay_rate;
|
|
double motion_decay;
|
|
double motion_pct = next_frame->pcnt_motion;
|
|
|
|
// Initial basis is the % mbs inter coded
|
|
prediction_decay_rate = next_frame->pcnt_inter;
|
|
|
|
// High % motion -> somewhat higher decay rate
|
|
motion_decay = (1.0 - (motion_pct / 20.0));
|
|
if (motion_decay < prediction_decay_rate)
|
|
prediction_decay_rate = motion_decay;
|
|
|
|
// Adjustment to decay rate based on speed of motion
|
|
{
|
|
double this_mv_rabs;
|
|
double this_mv_cabs;
|
|
double distance_factor;
|
|
|
|
this_mv_rabs = fabs(next_frame->mvr_abs * motion_pct);
|
|
this_mv_cabs = fabs(next_frame->mvc_abs * motion_pct);
|
|
|
|
distance_factor = sqrt((this_mv_rabs * this_mv_rabs) +
|
|
(this_mv_cabs * this_mv_cabs)) / 250.0;
|
|
distance_factor = ((distance_factor > 1.0)
|
|
? 0.0 : (1.0 - distance_factor));
|
|
if (distance_factor < prediction_decay_rate)
|
|
prediction_decay_rate = distance_factor;
|
|
}
|
|
|
|
return prediction_decay_rate;
|
|
}
|
|
|
|
// Function to test for a condition where a complex transition is followed
|
|
// by a static section. For example in slide shows where there is a fade
|
|
// between slides. This is to help with more optimal kf and gf positioning.
|
|
static int detect_transition_to_still(
|
|
VP8_COMP *cpi,
|
|
int frame_interval,
|
|
int still_interval,
|
|
double loop_decay_rate,
|
|
double decay_accumulator )
|
|
{
|
|
int trans_to_still = 0;
|
|
|
|
// Break clause to detect very still sections after motion
|
|
// For example a static image after a fade or other transition
|
|
// instead of a clean scene cut.
|
|
if ( (frame_interval > MIN_GF_INTERVAL) &&
|
|
(loop_decay_rate >= 0.999) &&
|
|
(decay_accumulator < 0.9) )
|
|
{
|
|
int j;
|
|
FIRSTPASS_STATS * position = cpi->twopass.stats_in;
|
|
FIRSTPASS_STATS tmp_next_frame;
|
|
double decay_rate;
|
|
|
|
// Look ahead a few frames to see if static condition
|
|
// persists...
|
|
for ( j = 0; j < still_interval; j++ )
|
|
{
|
|
if (EOF == input_stats(cpi, &tmp_next_frame))
|
|
break;
|
|
|
|
decay_rate = get_prediction_decay_rate(cpi, &tmp_next_frame);
|
|
if ( decay_rate < 0.999 )
|
|
break;
|
|
}
|
|
// Reset file position
|
|
reset_fpf_position(cpi, position);
|
|
|
|
// Only if it does do we signal a transition to still
|
|
if ( j == still_interval )
|
|
trans_to_still = 1;
|
|
}
|
|
|
|
return trans_to_still;
|
|
}
|
|
|
|
// This function detects a flash through the high relative pcnt_second_ref
|
|
// score in the frame following a flash frame. The offset passed in should
|
|
// reflect this
|
|
static int detect_flash( VP8_COMP *cpi, int offset )
|
|
{
|
|
FIRSTPASS_STATS next_frame;
|
|
|
|
int flash_detected = 0;
|
|
|
|
// Read the frame data.
|
|
// The return is 0 (no flash detected) if not a valid frame
|
|
if ( read_frame_stats(cpi, &next_frame, offset) != EOF )
|
|
{
|
|
// What we are looking for here is a situation where there is a
|
|
// brief break in prediction (such as a flash) but subsequent frames
|
|
// are reasonably well predicted by an earlier (pre flash) frame.
|
|
// The recovery after a flash is indicated by a high pcnt_second_ref
|
|
// comapred to pcnt_inter.
|
|
if ( (next_frame.pcnt_second_ref > next_frame.pcnt_inter) &&
|
|
(next_frame.pcnt_second_ref >= 0.5 ) )
|
|
{
|
|
flash_detected = 1;
|
|
|
|
/*if (1)
|
|
{
|
|
FILE *f = fopen("flash.stt", "a");
|
|
fprintf(f, "%8.0f %6.2f %6.2f\n",
|
|
next_frame.frame,
|
|
next_frame.pcnt_inter,
|
|
next_frame.pcnt_second_ref);
|
|
fclose(f);
|
|
}*/
|
|
}
|
|
}
|
|
|
|
return flash_detected;
|
|
}
|
|
|
|
// Update the motion related elements to the GF arf boost calculation
|
|
static void accumulate_frame_motion_stats(
|
|
VP8_COMP *cpi,
|
|
FIRSTPASS_STATS * this_frame,
|
|
double * this_frame_mv_in_out,
|
|
double * mv_in_out_accumulator,
|
|
double * abs_mv_in_out_accumulator,
|
|
double * mv_ratio_accumulator )
|
|
{
|
|
//double this_frame_mv_in_out;
|
|
double this_frame_mvr_ratio;
|
|
double this_frame_mvc_ratio;
|
|
double motion_pct;
|
|
|
|
// Accumulate motion stats.
|
|
motion_pct = this_frame->pcnt_motion;
|
|
|
|
// Accumulate Motion In/Out of frame stats
|
|
*this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct;
|
|
*mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct;
|
|
*abs_mv_in_out_accumulator +=
|
|
fabs(this_frame->mv_in_out_count * motion_pct);
|
|
|
|
// Accumulate a measure of how uniform (or conversely how random)
|
|
// the motion field is. (A ratio of absmv / mv)
|
|
if (motion_pct > 0.05)
|
|
{
|
|
this_frame_mvr_ratio = fabs(this_frame->mvr_abs) /
|
|
DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr));
|
|
|
|
this_frame_mvc_ratio = fabs(this_frame->mvc_abs) /
|
|
DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc));
|
|
|
|
*mv_ratio_accumulator +=
|
|
(this_frame_mvr_ratio < this_frame->mvr_abs)
|
|
? (this_frame_mvr_ratio * motion_pct)
|
|
: this_frame->mvr_abs * motion_pct;
|
|
|
|
*mv_ratio_accumulator +=
|
|
(this_frame_mvc_ratio < this_frame->mvc_abs)
|
|
? (this_frame_mvc_ratio * motion_pct)
|
|
: this_frame->mvc_abs * motion_pct;
|
|
|
|
}
|
|
}
|
|
|
|
// Calculate a baseline boost number for the current frame.
|
|
static double calc_frame_boost(
|
|
VP8_COMP *cpi,
|
|
FIRSTPASS_STATS * this_frame,
|
|
double this_frame_mv_in_out )
|
|
{
|
|
double frame_boost;
|
|
|
|
// Underlying boost factor is based on inter intra error ratio
|
|
if (this_frame->intra_error > cpi->twopass.gf_intra_err_min)
|
|
frame_boost = (IIFACTOR * this_frame->intra_error /
|
|
DOUBLE_DIVIDE_CHECK(this_frame->coded_error));
|
|
else
|
|
frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min /
|
|
DOUBLE_DIVIDE_CHECK(this_frame->coded_error));
|
|
|
|
// Increase boost for frames where new data coming into frame
|
|
// (eg zoom out). Slightly reduce boost if there is a net balance
|
|
// of motion out of the frame (zoom in).
|
|
// The range for this_frame_mv_in_out is -1.0 to +1.0
|
|
if (this_frame_mv_in_out > 0.0)
|
|
frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
|
|
// In extreme case boost is halved
|
|
else
|
|
frame_boost += frame_boost * (this_frame_mv_in_out / 2.0);
|
|
|
|
// Clip to maximum
|
|
if (frame_boost > GF_RMAX)
|
|
frame_boost = GF_RMAX;
|
|
|
|
return frame_boost;
|
|
}
|
|
|
|
#if NEW_BOOST
|
|
static int calc_arf_boost(
|
|
VP8_COMP *cpi,
|
|
int offset,
|
|
int f_frames,
|
|
int b_frames,
|
|
int *f_boost,
|
|
int *b_boost )
|
|
{
|
|
FIRSTPASS_STATS this_frame;
|
|
|
|
int i;
|
|
double boost_score = 0.0;
|
|
double mv_ratio_accumulator = 0.0;
|
|
double decay_accumulator = 1.0;
|
|
double this_frame_mv_in_out = 0.0;
|
|
double mv_in_out_accumulator = 0.0;
|
|
double abs_mv_in_out_accumulator = 0.0;
|
|
double r;
|
|
int flash_detected = 0;
|
|
|
|
// Search forward from the proposed arf/next gf position
|
|
for ( i = 0; i < f_frames; i++ )
|
|
{
|
|
if ( read_frame_stats(cpi, &this_frame, (i+offset)) == EOF )
|
|
break;
|
|
|
|
// Update the motion related elements to the boost calculation
|
|
accumulate_frame_motion_stats( cpi, &this_frame,
|
|
&this_frame_mv_in_out, &mv_in_out_accumulator,
|
|
&abs_mv_in_out_accumulator, &mv_ratio_accumulator );
|
|
|
|
// Calculate the baseline boost number for this frame
|
|
r = calc_frame_boost( cpi, &this_frame, this_frame_mv_in_out );
|
|
|
|
// We want to discount the the flash frame itself and the recovery
|
|
// frame that follows as both will have poor scores.
|
|
flash_detected = detect_flash(cpi, (i+offset)) ||
|
|
detect_flash(cpi, (i+offset+1));
|
|
|
|
// Cumulative effect of prediction quality decay
|
|
if ( !flash_detected )
|
|
{
|
|
decay_accumulator =
|
|
decay_accumulator *
|
|
get_prediction_decay_rate(cpi, &this_frame);
|
|
decay_accumulator =
|
|
decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
|
|
}
|
|
boost_score += (decay_accumulator * r);
|
|
|
|
// Break out conditions.
|
|
if ( (!flash_detected) &&
|
|
((mv_ratio_accumulator > 100.0) ||
|
|
(abs_mv_in_out_accumulator > 3.0) ||
|
|
(mv_in_out_accumulator < -2.0) ) )
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
*f_boost = (int)(boost_score * 100.0) >> 4;
|
|
|
|
// Reset for backward looking loop
|
|
boost_score = 0.0;
|
|
mv_ratio_accumulator = 0.0;
|
|
decay_accumulator = 1.0;
|
|
this_frame_mv_in_out = 0.0;
|
|
mv_in_out_accumulator = 0.0;
|
|
abs_mv_in_out_accumulator = 0.0;
|
|
|
|
// Search forward from the proposed arf/next gf position
|
|
for ( i = -1; i >= -b_frames; i-- )
|
|
{
|
|
if ( read_frame_stats(cpi, &this_frame, (i+offset)) == EOF )
|
|
break;
|
|
|
|
// Update the motion related elements to the boost calculation
|
|
accumulate_frame_motion_stats( cpi, &this_frame,
|
|
&this_frame_mv_in_out, &mv_in_out_accumulator,
|
|
&abs_mv_in_out_accumulator, &mv_ratio_accumulator );
|
|
|
|
// Calculate the baseline boost number for this frame
|
|
r = calc_frame_boost( cpi, &this_frame, this_frame_mv_in_out );
|
|
|
|
// We want to discount the the flash frame itself and the recovery
|
|
// frame that follows as both will have poor scores.
|
|
flash_detected = detect_flash(cpi, (i+offset)) ||
|
|
detect_flash(cpi, (i+offset+1));
|
|
|
|
// Cumulative effect of prediction quality decay
|
|
if ( !flash_detected )
|
|
{
|
|
decay_accumulator =
|
|
decay_accumulator *
|
|
get_prediction_decay_rate(cpi, &this_frame);
|
|
decay_accumulator =
|
|
decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
|
|
}
|
|
|
|
boost_score += (decay_accumulator * r);
|
|
|
|
// Break out conditions.
|
|
if ( (!flash_detected) &&
|
|
((mv_ratio_accumulator > 100.0) ||
|
|
(abs_mv_in_out_accumulator > 3.0) ||
|
|
(mv_in_out_accumulator < -2.0) ) )
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
*b_boost = (int)(boost_score * 100.0) >> 4;
|
|
|
|
return (*f_boost + *b_boost);
|
|
}
|
|
#endif
|
|
|
|
// Analyse and define a gf/arf group .
|
|
static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
|
|
{
|
|
FIRSTPASS_STATS next_frame;
|
|
FIRSTPASS_STATS *start_pos;
|
|
int i;
|
|
double r;
|
|
double boost_score = 0.0;
|
|
double old_boost_score = 0.0;
|
|
double gf_group_err = 0.0;
|
|
double gf_first_frame_err = 0.0;
|
|
double mod_frame_err = 0.0;
|
|
|
|
double mv_ratio_accumulator = 0.0;
|
|
double decay_accumulator = 1.0;
|
|
|
|
double loop_decay_rate = 1.00; // Starting decay rate
|
|
|
|
double this_frame_mv_in_out = 0.0;
|
|
double mv_in_out_accumulator = 0.0;
|
|
double abs_mv_in_out_accumulator = 0.0;
|
|
double mod_err_per_mb_accumulator = 0.0;
|
|
|
|
int max_bits = frame_max_bits(cpi); // Max for a single frame
|
|
|
|
unsigned int allow_alt_ref =
|
|
cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames;
|
|
|
|
int alt_boost = 0;
|
|
int f_boost = 0;
|
|
int b_boost = 0;
|
|
int flash_detected;
|
|
|
|
cpi->twopass.gf_group_bits = 0;
|
|
cpi->twopass.gf_decay_rate = 0;
|
|
|
|
vp8_clear_system_state(); //__asm emms;
|
|
|
|
start_pos = cpi->twopass.stats_in;
|
|
|
|
vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean
|
|
|
|
// Load stats for the current frame.
|
|
mod_frame_err = calculate_modified_err(cpi, this_frame);
|
|
|
|
// Note the error of the frame at the start of the group (this will be
|
|
// the GF frame error if we code a normal gf
|
|
gf_first_frame_err = mod_frame_err;
|
|
|
|
// Special treatment if the current frame is a key frame (which is also
|
|
// a gf). If it is then its error score (and hence bit allocation) need
|
|
// to be subtracted out from the calculation for the GF group
|
|
if (cpi->common.frame_type == KEY_FRAME)
|
|
gf_group_err -= gf_first_frame_err;
|
|
|
|
// Scan forward to try and work out how many frames the next gf group
|
|
// should contain and what level of boost is appropriate for the GF
|
|
// or ARF that will be coded with the group
|
|
i = 0;
|
|
|
|
while (((i < cpi->twopass.static_scene_max_gf_interval) ||
|
|
((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) &&
|
|
(i < cpi->twopass.frames_to_key))
|
|
{
|
|
i++; // Increment the loop counter
|
|
|
|
// Accumulate error score of frames in this gf group
|
|
mod_frame_err = calculate_modified_err(cpi, this_frame);
|
|
|
|
gf_group_err += mod_frame_err;
|
|
|
|
mod_err_per_mb_accumulator +=
|
|
mod_frame_err / DOUBLE_DIVIDE_CHECK((double)cpi->common.MBs);
|
|
|
|
if (EOF == input_stats(cpi, &next_frame))
|
|
break;
|
|
|
|
// Test for the case where there is a brief flash but the prediction
|
|
// quality back to an earlier frame is then restored.
|
|
flash_detected = detect_flash(cpi, 0);
|
|
|
|
// Update the motion related elements to the boost calculation
|
|
accumulate_frame_motion_stats( cpi, &next_frame,
|
|
&this_frame_mv_in_out, &mv_in_out_accumulator,
|
|
&abs_mv_in_out_accumulator, &mv_ratio_accumulator );
|
|
|
|
// Calculate a baseline boost number for this frame
|
|
r = calc_frame_boost( cpi, &next_frame, this_frame_mv_in_out );
|
|
|
|
// Cumulative effect of prediction quality decay
|
|
if ( !flash_detected )
|
|
{
|
|
loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
|
|
decay_accumulator = decay_accumulator * loop_decay_rate;
|
|
decay_accumulator =
|
|
decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
|
|
}
|
|
boost_score += (decay_accumulator * r);
|
|
|
|
// Break clause to detect very still sections after motion
|
|
// For example a staic image after a fade or other transition.
|
|
if ( detect_transition_to_still( cpi, i, 5,
|
|
loop_decay_rate,
|
|
decay_accumulator ) )
|
|
{
|
|
allow_alt_ref = 0;
|
|
boost_score = old_boost_score;
|
|
break;
|
|
}
|
|
|
|
// Break out conditions.
|
|
if (
|
|
// Break at cpi->max_gf_interval unless almost totally static
|
|
(i >= cpi->max_gf_interval && (decay_accumulator < 0.995)) ||
|
|
(
|
|
// Dont break out with a very short interval
|
|
(i > MIN_GF_INTERVAL) &&
|
|
// Dont break out very close to a key frame
|
|
((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) &&
|
|
((boost_score > 20.0) || (next_frame.pcnt_inter < 0.75)) &&
|
|
(!flash_detected) &&
|
|
((mv_ratio_accumulator > 100.0) ||
|
|
(abs_mv_in_out_accumulator > 3.0) ||
|
|
(mv_in_out_accumulator < -2.0) ||
|
|
((boost_score - old_boost_score) < 2.0))
|
|
) )
|
|
{
|
|
boost_score = old_boost_score;
|
|
break;
|
|
}
|
|
|
|
vpx_memcpy(this_frame, &next_frame, sizeof(*this_frame));
|
|
|
|
old_boost_score = boost_score;
|
|
}
|
|
|
|
cpi->twopass.gf_decay_rate =
|
|
(i > 0) ? (int)(100.0 * (1.0 - decay_accumulator)) / i : 0;
|
|
|
|
// When using CBR apply additional buffer related upper limits
|
|
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
|
{
|
|
double max_boost;
|
|
|
|
// For cbr apply buffer related limits
|
|
if (cpi->drop_frames_allowed)
|
|
{
|
|
int df_buffer_level = cpi->oxcf.drop_frames_water_mark *
|
|
(cpi->oxcf.optimal_buffer_level / 100);
|
|
|
|
if (cpi->buffer_level > df_buffer_level)
|
|
max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
|
|
else
|
|
max_boost = 0.0;
|
|
}
|
|
else if (cpi->buffer_level > 0)
|
|
{
|
|
max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
|
|
}
|
|
else
|
|
{
|
|
max_boost = 0.0;
|
|
}
|
|
|
|
if (boost_score > max_boost)
|
|
boost_score = max_boost;
|
|
}
|
|
|
|
// Dont allow conventional gf too near the next kf
|
|
if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)
|
|
{
|
|
while (i < cpi->twopass.frames_to_key)
|
|
{
|
|
i++;
|
|
|
|
if (EOF == input_stats(cpi, this_frame))
|
|
break;
|
|
|
|
if (i < cpi->twopass.frames_to_key)
|
|
{
|
|
mod_frame_err = calculate_modified_err(cpi, this_frame);
|
|
gf_group_err += mod_frame_err;
|
|
}
|
|
}
|
|
}
|
|
|
|
cpi->gfu_boost = (int)(boost_score * 100.0) >> 4;
|
|
|
|
#if NEW_BOOST
|
|
// Alterrnative boost calculation for alt ref
|
|
alt_boost = calc_arf_boost( cpi, 0, (i-1), (i-1), &f_boost, &b_boost );
|
|
#endif
|
|
|
|
// Should we use the alternate refernce frame
|
|
if (allow_alt_ref &&
|
|
(i >= MIN_GF_INTERVAL) &&
|
|
// dont use ARF very near next kf
|
|
(i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) &&
|
|
#if NEW_BOOST
|
|
((next_frame.pcnt_inter > 0.75) ||
|
|
(next_frame.pcnt_second_ref > 0.5)) &&
|
|
((mv_in_out_accumulator / (double)i > -0.2) ||
|
|
(mv_in_out_accumulator > -2.0)) &&
|
|
(b_boost > 100) &&
|
|
(f_boost > 100) )
|
|
#else
|
|
(next_frame.pcnt_inter > 0.75) &&
|
|
((mv_in_out_accumulator / (double)i > -0.2) ||
|
|
(mv_in_out_accumulator > -2.0)) &&
|
|
(cpi->gfu_boost > 100) &&
|
|
(cpi->twopass.gf_decay_rate <=
|
|
(ARF_DECAY_THRESH + (cpi->gfu_boost / 200))) )
|
|
#endif
|
|
{
|
|
int Boost;
|
|
int allocation_chunks;
|
|
int Q = (cpi->oxcf.fixed_q < 0)
|
|
? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
|
|
int tmp_q;
|
|
int arf_frame_bits = 0;
|
|
int group_bits;
|
|
|
|
#if NEW_BOOST
|
|
cpi->gfu_boost = alt_boost;
|
|
#endif
|
|
|
|
// Estimate the bits to be allocated to the group as a whole
|
|
if ((cpi->twopass.kf_group_bits > 0) &&
|
|
(cpi->twopass.kf_group_error_left > 0))
|
|
{
|
|
group_bits = (int)((double)cpi->twopass.kf_group_bits *
|
|
(gf_group_err / (double)cpi->twopass.kf_group_error_left));
|
|
}
|
|
else
|
|
group_bits = 0;
|
|
|
|
// Boost for arf frame
|
|
#if NEW_BOOST
|
|
Boost = (alt_boost * GFQ_ADJUSTMENT) / 100;
|
|
#else
|
|
Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100);
|
|
#endif
|
|
Boost += (i * 50);
|
|
|
|
// Set max and minimum boost and hence minimum allocation
|
|
if (Boost > ((cpi->baseline_gf_interval + 1) * 200))
|
|
Boost = ((cpi->baseline_gf_interval + 1) * 200);
|
|
else if (Boost < 125)
|
|
Boost = 125;
|
|
|
|
allocation_chunks = (i * 100) + Boost;
|
|
|
|
// Normalize Altboost and allocations chunck down to prevent overflow
|
|
while (Boost > 1000)
|
|
{
|
|
Boost /= 2;
|
|
allocation_chunks /= 2;
|
|
}
|
|
|
|
// Calculate the number of bits to be spent on the arf based on the
|
|
// boost number
|
|
arf_frame_bits = (int)((double)Boost * (group_bits /
|
|
(double)allocation_chunks));
|
|
|
|
// Estimate if there are enough bits available to make worthwhile use
|
|
// of an arf.
|
|
tmp_q = estimate_q(cpi, mod_frame_err, (int)arf_frame_bits);
|
|
|
|
// Only use an arf if it is likely we will be able to code
|
|
// it at a lower Q than the surrounding frames.
|
|
if (tmp_q < cpi->worst_quality)
|
|
{
|
|
int half_gf_int;
|
|
int frames_after_arf;
|
|
int frames_bwd = cpi->oxcf.arnr_max_frames - 1;
|
|
int frames_fwd = cpi->oxcf.arnr_max_frames - 1;
|
|
|
|
cpi->source_alt_ref_pending = 1;
|
|
|
|
// For alt ref frames the error score for the end frame of the
|
|
// group (the alt ref frame) should not contribute to the group
|
|
// total and hence the number of bit allocated to the group.
|
|
// Rather it forms part of the next group (it is the GF at the
|
|
// start of the next group)
|
|
// gf_group_err -= mod_frame_err;
|
|
|
|
// For alt ref frames alt ref frame is technically part of the
|
|
// GF frame for the next group but we always base the error
|
|
// calculation and bit allocation on the current group of frames.
|
|
|
|
// Set the interval till the next gf or arf.
|
|
// For ARFs this is the number of frames to be coded before the
|
|
// future frame that is coded as an ARF.
|
|
// The future frame itself is part of the next group
|
|
cpi->baseline_gf_interval = i;
|
|
|
|
// Define the arnr filter width for this group of frames:
|
|
// We only filter frames that lie within a distance of half
|
|
// the GF interval from the ARF frame. We also have to trap
|
|
// cases where the filter extends beyond the end of clip.
|
|
// Note: this_frame->frame has been updated in the loop
|
|
// so it now points at the ARF frame.
|
|
half_gf_int = cpi->baseline_gf_interval >> 1;
|
|
frames_after_arf = cpi->twopass.total_stats.count -
|
|
this_frame->frame - 1;
|
|
|
|
switch (cpi->oxcf.arnr_type)
|
|
{
|
|
case 1: // Backward filter
|
|
frames_fwd = 0;
|
|
if (frames_bwd > half_gf_int)
|
|
frames_bwd = half_gf_int;
|
|
break;
|
|
|
|
case 2: // Forward filter
|
|
if (frames_fwd > half_gf_int)
|
|
frames_fwd = half_gf_int;
|
|
if (frames_fwd > frames_after_arf)
|
|
frames_fwd = frames_after_arf;
|
|
frames_bwd = 0;
|
|
break;
|
|
|
|
case 3: // Centered filter
|
|
default:
|
|
frames_fwd >>= 1;
|
|
if (frames_fwd > frames_after_arf)
|
|
frames_fwd = frames_after_arf;
|
|
if (frames_fwd > half_gf_int)
|
|
frames_fwd = half_gf_int;
|
|
|
|
frames_bwd = frames_fwd;
|
|
|
|
// For even length filter there is one more frame backward
|
|
// than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff.
|
|
if (frames_bwd < half_gf_int)
|
|
frames_bwd += (cpi->oxcf.arnr_max_frames+1) & 0x1;
|
|
break;
|
|
}
|
|
|
|
cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd;
|
|
}
|
|
else
|
|
{
|
|
cpi->source_alt_ref_pending = 0;
|
|
cpi->baseline_gf_interval = i;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
cpi->source_alt_ref_pending = 0;
|
|
cpi->baseline_gf_interval = i;
|
|
}
|
|
|
|
// Now decide how many bits should be allocated to the GF group as a
|
|
// proportion of those remaining in the kf group.
|
|
// The final key frame group in the clip is treated as a special case
|
|
// where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left.
|
|
// This is also important for short clips where there may only be one
|
|
// key frame.
|
|
if (cpi->twopass.frames_to_key >= (int)(cpi->twopass.total_stats.count -
|
|
cpi->common.current_video_frame))
|
|
{
|
|
cpi->twopass.kf_group_bits =
|
|
(cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0;
|
|
}
|
|
|
|
// Calculate the bits to be allocated to the group as a whole
|
|
if ((cpi->twopass.kf_group_bits > 0) &&
|
|
(cpi->twopass.kf_group_error_left > 0))
|
|
{
|
|
cpi->twopass.gf_group_bits =
|
|
(int)((double)cpi->twopass.kf_group_bits *
|
|
(gf_group_err / (double)cpi->twopass.kf_group_error_left));
|
|
}
|
|
else
|
|
cpi->twopass.gf_group_bits = 0;
|
|
|
|
cpi->twopass.gf_group_bits =
|
|
(cpi->twopass.gf_group_bits < 0)
|
|
? 0
|
|
: (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits)
|
|
? cpi->twopass.kf_group_bits : cpi->twopass.gf_group_bits;
|
|
|
|
// Clip cpi->twopass.gf_group_bits based on user supplied data rate
|
|
// variability limit (cpi->oxcf.two_pass_vbrmax_section)
|
|
if (cpi->twopass.gf_group_bits > max_bits * cpi->baseline_gf_interval)
|
|
cpi->twopass.gf_group_bits = max_bits * cpi->baseline_gf_interval;
|
|
|
|
// Reset the file position
|
|
reset_fpf_position(cpi, start_pos);
|
|
|
|
// Update the record of error used so far (only done once per gf group)
|
|
cpi->twopass.modified_error_used += gf_group_err;
|
|
|
|
// Assign bits to the arf or gf.
|
|
for (i = 0; i <= (cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME); i++) {
|
|
int Boost;
|
|
int allocation_chunks;
|
|
int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
|
|
int gf_bits;
|
|
|
|
// For ARF frames
|
|
if (cpi->source_alt_ref_pending && i == 0)
|
|
{
|
|
#if NEW_BOOST
|
|
Boost = (alt_boost * GFQ_ADJUSTMENT) / 100;
|
|
#else
|
|
Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100);
|
|
#endif
|
|
Boost += (cpi->baseline_gf_interval * 50);
|
|
|
|
// Set max and minimum boost and hence minimum allocation
|
|
if (Boost > ((cpi->baseline_gf_interval + 1) * 200))
|
|
Boost = ((cpi->baseline_gf_interval + 1) * 200);
|
|
else if (Boost < 125)
|
|
Boost = 125;
|
|
|
|
allocation_chunks =
|
|
((cpi->baseline_gf_interval + 1) * 100) + Boost;
|
|
}
|
|
// Else for standard golden frames
|
|
else
|
|
{
|
|
// boost based on inter / intra ratio of subsequent frames
|
|
Boost = (cpi->gfu_boost * GFQ_ADJUSTMENT) / 100;
|
|
|
|
// Set max and minimum boost and hence minimum allocation
|
|
if (Boost > (cpi->baseline_gf_interval * 150))
|
|
Boost = (cpi->baseline_gf_interval * 150);
|
|
else if (Boost < 125)
|
|
Boost = 125;
|
|
|
|
allocation_chunks =
|
|
(cpi->baseline_gf_interval * 100) + (Boost - 100);
|
|
}
|
|
|
|
// Normalize Altboost and allocations chunck down to prevent overflow
|
|
while (Boost > 1000)
|
|
{
|
|
Boost /= 2;
|
|
allocation_chunks /= 2;
|
|
}
|
|
|
|
// Calculate the number of bits to be spent on the gf or arf based on
|
|
// the boost number
|
|
gf_bits = (int)((double)Boost *
|
|
(cpi->twopass.gf_group_bits /
|
|
(double)allocation_chunks));
|
|
|
|
// If the frame that is to be boosted is simpler than the average for
|
|
// the gf/arf group then use an alternative calculation
|
|
// based on the error score of the frame itself
|
|
if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval)
|
|
{
|
|
double alt_gf_grp_bits;
|
|
int alt_gf_bits;
|
|
|
|
alt_gf_grp_bits =
|
|
(double)cpi->twopass.kf_group_bits *
|
|
(mod_frame_err * (double)cpi->baseline_gf_interval) /
|
|
DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left);
|
|
|
|
alt_gf_bits = (int)((double)Boost * (alt_gf_grp_bits /
|
|
(double)allocation_chunks));
|
|
|
|
if (gf_bits > alt_gf_bits)
|
|
{
|
|
gf_bits = alt_gf_bits;
|
|
}
|
|
}
|
|
// Else if it is harder than other frames in the group make sure it at
|
|
// least receives an allocation in keeping with its relative error
|
|
// score, otherwise it may be worse off than an "un-boosted" frame
|
|
else
|
|
{
|
|
int alt_gf_bits =
|
|
(int)((double)cpi->twopass.kf_group_bits *
|
|
mod_frame_err /
|
|
DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left));
|
|
|
|
if (alt_gf_bits > gf_bits)
|
|
{
|
|
gf_bits = alt_gf_bits;
|
|
}
|
|
}
|
|
|
|
// Apply an additional limit for CBR
|
|
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
|
{
|
|
if (cpi->twopass.gf_bits > (cpi->buffer_level >> 1))
|
|
cpi->twopass.gf_bits = cpi->buffer_level >> 1;
|
|
}
|
|
|
|
// Dont allow a negative value for gf_bits
|
|
if (gf_bits < 0)
|
|
gf_bits = 0;
|
|
|
|
gf_bits += cpi->min_frame_bandwidth; // Add in minimum for a frame
|
|
|
|
if (i == 0)
|
|
{
|
|
cpi->twopass.gf_bits = gf_bits;
|
|
}
|
|
if (i == 1 || (!cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)))
|
|
{
|
|
cpi->per_frame_bandwidth = gf_bits; // Per frame bit target for this frame
|
|
}
|
|
}
|
|
|
|
{
|
|
// Adjust KF group bits and error remainin
|
|
cpi->twopass.kf_group_error_left -= gf_group_err;
|
|
cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits;
|
|
|
|
if (cpi->twopass.kf_group_bits < 0)
|
|
cpi->twopass.kf_group_bits = 0;
|
|
|
|
// Note the error score left in the remaining frames of the group.
|
|
// For normal GFs we want to remove the error score for the first frame of the group (except in Key frame case where this has already happened)
|
|
if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME)
|
|
cpi->twopass.gf_group_error_left = gf_group_err - gf_first_frame_err;
|
|
else
|
|
cpi->twopass.gf_group_error_left = gf_group_err;
|
|
|
|
cpi->twopass.gf_group_bits -= cpi->twopass.gf_bits - cpi->min_frame_bandwidth;
|
|
|
|
if (cpi->twopass.gf_group_bits < 0)
|
|
cpi->twopass.gf_group_bits = 0;
|
|
|
|
// This condition could fail if there are two kfs very close together
|
|
// despite (MIN_GF_INTERVAL) and would cause a devide by 0 in the
|
|
// calculation of cpi->twopass.alt_extra_bits.
|
|
if ( cpi->baseline_gf_interval >= 3 )
|
|
{
|
|
#if NEW_BOOST
|
|
int boost = (cpi->source_alt_ref_pending)
|
|
? b_boost : cpi->gfu_boost;
|
|
#else
|
|
int boost = cpi->gfu_boost;
|
|
#endif
|
|
if ( boost >= 150 )
|
|
{
|
|
int pct_extra;
|
|
|
|
pct_extra = (boost - 100) / 50;
|
|
pct_extra = (pct_extra > 20) ? 20 : pct_extra;
|
|
|
|
cpi->twopass.alt_extra_bits =
|
|
(cpi->twopass.gf_group_bits * pct_extra) / 100;
|
|
cpi->twopass.gf_group_bits -= cpi->twopass.alt_extra_bits;
|
|
cpi->twopass.alt_extra_bits /=
|
|
((cpi->baseline_gf_interval-1)>>1);
|
|
}
|
|
else
|
|
cpi->twopass.alt_extra_bits = 0;
|
|
}
|
|
else
|
|
cpi->twopass.alt_extra_bits = 0;
|
|
}
|
|
|
|
// Adjustments based on a measure of complexity of the section
|
|
if (cpi->common.frame_type != KEY_FRAME)
|
|
{
|
|
FIRSTPASS_STATS sectionstats;
|
|
double Ratio;
|
|
|
|
zero_stats(§ionstats);
|
|
reset_fpf_position(cpi, start_pos);
|
|
|
|
for (i = 0 ; i < cpi->baseline_gf_interval ; i++)
|
|
{
|
|
input_stats(cpi, &next_frame);
|
|
accumulate_stats(§ionstats, &next_frame);
|
|
}
|
|
|
|
avg_stats(§ionstats);
|
|
|
|
cpi->twopass.section_intra_rating =
|
|
sectionstats.intra_error /
|
|
DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
|
|
|
|
Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
|
|
//if( (Ratio > 11) ) //&& (sectionstats.pcnt_second_ref < .20) )
|
|
//{
|
|
cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025);
|
|
|
|
if (cpi->twopass.section_max_qfactor < 0.80)
|
|
cpi->twopass.section_max_qfactor = 0.80;
|
|
|
|
//}
|
|
//else
|
|
// cpi->twopass.section_max_qfactor = 1.0;
|
|
|
|
reset_fpf_position(cpi, start_pos);
|
|
}
|
|
}
|
|
|
|
// Allocate bits to a normal frame that is neither a gf an arf or a key frame.
|
|
static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
|
|
{
|
|
int target_frame_size; // gf_group_error_left
|
|
|
|
double modified_err;
|
|
double err_fraction; // What portion of the remaining GF group error is used by this frame
|
|
|
|
int max_bits = frame_max_bits(cpi); // Max for a single frame
|
|
|
|
// Calculate modified prediction error used in bit allocation
|
|
modified_err = calculate_modified_err(cpi, this_frame);
|
|
|
|
if (cpi->twopass.gf_group_error_left > 0)
|
|
err_fraction = modified_err / cpi->twopass.gf_group_error_left; // What portion of the remaining GF group error is used by this frame
|
|
else
|
|
err_fraction = 0.0;
|
|
|
|
target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction); // How many of those bits available for allocation should we give it?
|
|
|
|
// Clip to target size to 0 - max_bits (or cpi->twopass.gf_group_bits) at the top end.
|
|
if (target_frame_size < 0)
|
|
target_frame_size = 0;
|
|
else
|
|
{
|
|
if (target_frame_size > max_bits)
|
|
target_frame_size = max_bits;
|
|
|
|
if (target_frame_size > cpi->twopass.gf_group_bits)
|
|
target_frame_size = cpi->twopass.gf_group_bits;
|
|
}
|
|
|
|
cpi->twopass.gf_group_error_left -= modified_err; // Adjust error remaining
|
|
cpi->twopass.gf_group_bits -= target_frame_size; // Adjust bits remaining
|
|
|
|
if (cpi->twopass.gf_group_bits < 0)
|
|
cpi->twopass.gf_group_bits = 0;
|
|
|
|
target_frame_size += cpi->min_frame_bandwidth; // Add in the minimum number of bits that is set aside for every frame.
|
|
|
|
// Every other frame gets a few extra bits
|
|
if ( (cpi->common.frames_since_golden & 0x01) &&
|
|
(cpi->frames_till_gf_update_due > 0) )
|
|
{
|
|
target_frame_size += cpi->twopass.alt_extra_bits;
|
|
}
|
|
|
|
cpi->per_frame_bandwidth = target_frame_size; // Per frame bit target for this frame
|
|
}
|
|
|
|
void vp8_second_pass(VP8_COMP *cpi)
|
|
{
|
|
int tmp_q;
|
|
int frames_left = (int)(cpi->twopass.total_stats.count - cpi->common.current_video_frame);
|
|
|
|
FIRSTPASS_STATS this_frame = {0};
|
|
FIRSTPASS_STATS this_frame_copy;
|
|
|
|
double this_frame_error;
|
|
double this_frame_intra_error;
|
|
double this_frame_coded_error;
|
|
|
|
FIRSTPASS_STATS *start_pos;
|
|
|
|
int overhead_bits;
|
|
|
|
if (!cpi->twopass.stats_in)
|
|
{
|
|
return ;
|
|
}
|
|
|
|
vp8_clear_system_state();
|
|
|
|
if (EOF == input_stats(cpi, &this_frame))
|
|
return;
|
|
|
|
this_frame_error = this_frame.ssim_weighted_pred_err;
|
|
this_frame_intra_error = this_frame.intra_error;
|
|
this_frame_coded_error = this_frame.coded_error;
|
|
|
|
start_pos = cpi->twopass.stats_in;
|
|
|
|
// keyframe and section processing !
|
|
if (cpi->twopass.frames_to_key == 0)
|
|
{
|
|
// Define next KF group and assign bits to it
|
|
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
|
|
find_next_key_frame(cpi, &this_frame_copy);
|
|
|
|
// Special case: Error error_resilient_mode mode does not make much sense for two pass but with its current meaning but this code is designed to stop
|
|
// outlandish behaviour if someone does set it when using two pass. It effectively disables GF groups.
|
|
// This is temporary code till we decide what should really happen in this case.
|
|
if (cpi->oxcf.error_resilient_mode)
|
|
{
|
|
cpi->twopass.gf_group_bits = cpi->twopass.kf_group_bits;
|
|
cpi->twopass.gf_group_error_left = cpi->twopass.kf_group_error_left;
|
|
cpi->baseline_gf_interval = cpi->twopass.frames_to_key;
|
|
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
|
|
cpi->source_alt_ref_pending = 0;
|
|
}
|
|
|
|
}
|
|
|
|
// Is this a GF / ARF (Note that a KF is always also a GF)
|
|
if (cpi->frames_till_gf_update_due == 0)
|
|
{
|
|
// Define next gf group and assign bits to it
|
|
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
|
|
define_gf_group(cpi, &this_frame_copy);
|
|
|
|
// If we are going to code an altref frame at the end of the group and the current frame is not a key frame....
|
|
// If the previous group used an arf this frame has already benefited from that arf boost and it should not be given extra bits
|
|
// If the previous group was NOT coded using arf we may want to apply some boost to this GF as well
|
|
if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME))
|
|
{
|
|
// Assign a standard frames worth of bits from those allocated to the GF group
|
|
int bak = cpi->per_frame_bandwidth;
|
|
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
|
|
assign_std_frame_bits(cpi, &this_frame_copy);
|
|
cpi->per_frame_bandwidth = bak;
|
|
}
|
|
}
|
|
|
|
// Otherwise this is an ordinary frame
|
|
else
|
|
{
|
|
// Special case: Error error_resilient_mode mode does not make much sense for two pass but with its current meaning but this code is designed to stop
|
|
// outlandish behaviour if someone does set it when using two pass. It effectively disables GF groups.
|
|
// This is temporary code till we decide what should really happen in this case.
|
|
if (cpi->oxcf.error_resilient_mode)
|
|
{
|
|
cpi->frames_till_gf_update_due = cpi->twopass.frames_to_key;
|
|
|
|
if (cpi->common.frame_type != KEY_FRAME)
|
|
{
|
|
// Assign bits from those allocated to the GF group
|
|
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
|
|
assign_std_frame_bits(cpi, &this_frame_copy);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Assign bits from those allocated to the GF group
|
|
vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
|
|
assign_std_frame_bits(cpi, &this_frame_copy);
|
|
}
|
|
}
|
|
|
|
// Keep a globally available copy of this and the next frame's iiratio.
|
|
cpi->twopass.this_iiratio = this_frame_intra_error /
|
|
DOUBLE_DIVIDE_CHECK(this_frame_coded_error);
|
|
{
|
|
FIRSTPASS_STATS next_frame;
|
|
if ( lookup_next_frame_stats(cpi, &next_frame) != EOF )
|
|
{
|
|
cpi->twopass.next_iiratio = next_frame.intra_error /
|
|
DOUBLE_DIVIDE_CHECK(next_frame.coded_error);
|
|
}
|
|
}
|
|
|
|
// Set nominal per second bandwidth for this frame
|
|
cpi->target_bandwidth = cpi->per_frame_bandwidth * cpi->output_frame_rate;
|
|
if (cpi->target_bandwidth < 0)
|
|
cpi->target_bandwidth = 0;
|
|
|
|
|
|
// Account for mv, mode and other overheads.
|
|
overhead_bits = estimate_modemvcost(
|
|
cpi, &cpi->twopass.total_left_stats );
|
|
|
|
// Special case code for first frame.
|
|
if (cpi->common.current_video_frame == 0)
|
|
{
|
|
cpi->twopass.est_max_qcorrection_factor = 1.0;
|
|
|
|
// Set a cq_level in constrained quality mode.
|
|
if ( cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY )
|
|
{
|
|
int est_cq;
|
|
|
|
est_cq =
|
|
estimate_cq( cpi,
|
|
&cpi->twopass.total_left_stats,
|
|
(int)(cpi->twopass.bits_left / frames_left),
|
|
overhead_bits );
|
|
|
|
cpi->cq_target_quality = cpi->oxcf.cq_level;
|
|
if ( est_cq > cpi->cq_target_quality )
|
|
cpi->cq_target_quality = est_cq;
|
|
}
|
|
|
|
// guess at maxq needed in 2nd pass
|
|
cpi->twopass.maxq_max_limit = cpi->worst_quality;
|
|
cpi->twopass.maxq_min_limit = cpi->best_quality;
|
|
|
|
tmp_q = estimate_max_q(
|
|
cpi,
|
|
&cpi->twopass.total_left_stats,
|
|
(int)(cpi->twopass.bits_left / frames_left),
|
|
overhead_bits );
|
|
|
|
// Limit the maxq value returned subsequently.
|
|
// This increases the risk of overspend or underspend if the initial
|
|
// estimate for the clip is bad, but helps prevent excessive
|
|
// variation in Q, especially near the end of a clip
|
|
// where for example a small overspend may cause Q to crash
|
|
cpi->twopass.maxq_max_limit = ((tmp_q + 32) < cpi->worst_quality)
|
|
? (tmp_q + 32) : cpi->worst_quality;
|
|
cpi->twopass.maxq_min_limit = ((tmp_q - 32) > cpi->best_quality)
|
|
? (tmp_q - 32) : cpi->best_quality;
|
|
|
|
cpi->active_worst_quality = tmp_q;
|
|
cpi->ni_av_qi = tmp_q;
|
|
}
|
|
|
|
// The last few frames of a clip almost always have to few or too many
|
|
// bits and for the sake of over exact rate control we dont want to make
|
|
// radical adjustments to the allowed quantizer range just to use up a
|
|
// few surplus bits or get beneath the target rate.
|
|
else if ( (cpi->common.current_video_frame <
|
|
(((unsigned int)cpi->twopass.total_stats.count * 255)>>8)) &&
|
|
((cpi->common.current_video_frame + cpi->baseline_gf_interval) <
|
|
(unsigned int)cpi->twopass.total_stats.count) )
|
|
{
|
|
if (frames_left < 1)
|
|
frames_left = 1;
|
|
|
|
tmp_q = estimate_max_q(
|
|
cpi,
|
|
&cpi->twopass.total_left_stats,
|
|
(int)(cpi->twopass.bits_left / frames_left),
|
|
overhead_bits );
|
|
|
|
// Move active_worst_quality but in a damped way
|
|
if (tmp_q > cpi->active_worst_quality)
|
|
cpi->active_worst_quality ++;
|
|
else if (tmp_q < cpi->active_worst_quality)
|
|
cpi->active_worst_quality --;
|
|
|
|
cpi->active_worst_quality =
|
|
((cpi->active_worst_quality * 3) + tmp_q + 2) / 4;
|
|
}
|
|
|
|
cpi->twopass.frames_to_key --;
|
|
|
|
// Update the total stats remaining sturcture
|
|
subtract_stats(&cpi->twopass.total_left_stats, &this_frame );
|
|
}
|
|
|
|
|
|
static int test_candidate_kf(VP8_COMP *cpi, FIRSTPASS_STATS *last_frame, FIRSTPASS_STATS *this_frame, FIRSTPASS_STATS *next_frame)
|
|
{
|
|
int is_viable_kf = 0;
|
|
|
|
// Does the frame satisfy the primary criteria of a key frame
|
|
// If so, then examine how well it predicts subsequent frames
|
|
if ((this_frame->pcnt_second_ref < 0.10) &&
|
|
(next_frame->pcnt_second_ref < 0.10) &&
|
|
((this_frame->pcnt_inter < 0.05) ||
|
|
(
|
|
((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .25) &&
|
|
((this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) &&
|
|
((fabs(last_frame->coded_error - this_frame->coded_error) / DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > .40) ||
|
|
(fabs(last_frame->intra_error - this_frame->intra_error) / DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > .40) ||
|
|
((next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5)
|
|
)
|
|
)
|
|
)
|
|
)
|
|
{
|
|
int i;
|
|
FIRSTPASS_STATS *start_pos;
|
|
|
|
FIRSTPASS_STATS local_next_frame;
|
|
|
|
double boost_score = 0.0;
|
|
double old_boost_score = 0.0;
|
|
double decay_accumulator = 1.0;
|
|
double next_iiratio;
|
|
|
|
vpx_memcpy(&local_next_frame, next_frame, sizeof(*next_frame));
|
|
|
|
// Note the starting file position so we can reset to it
|
|
start_pos = cpi->twopass.stats_in;
|
|
|
|
// Examine how well the key frame predicts subsequent frames
|
|
for (i = 0 ; i < 16; i++)
|
|
{
|
|
next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)) ;
|
|
|
|
if (next_iiratio > RMAX)
|
|
next_iiratio = RMAX;
|
|
|
|
// Cumulative effect of decay in prediction quality
|
|
if (local_next_frame.pcnt_inter > 0.85)
|
|
decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;
|
|
else
|
|
decay_accumulator = decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0);
|
|
|
|
//decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;
|
|
|
|
// Keep a running total
|
|
boost_score += (decay_accumulator * next_iiratio);
|
|
|
|
// Test various breakout clauses
|
|
if ((local_next_frame.pcnt_inter < 0.05) ||
|
|
(next_iiratio < 1.5) ||
|
|
(((local_next_frame.pcnt_inter -
|
|
local_next_frame.pcnt_neutral) < 0.20) &&
|
|
(next_iiratio < 3.0)) ||
|
|
((boost_score - old_boost_score) < 0.5) ||
|
|
(local_next_frame.intra_error < 200)
|
|
)
|
|
{
|
|
break;
|
|
}
|
|
|
|
old_boost_score = boost_score;
|
|
|
|
// Get the next frame details
|
|
if (EOF == input_stats(cpi, &local_next_frame))
|
|
break;
|
|
}
|
|
|
|
// If there is tolerable prediction for at least the next 3 frames then break out else discard this pottential key frame and move on
|
|
if (boost_score > 5.0 && (i > 3))
|
|
is_viable_kf = 1;
|
|
else
|
|
{
|
|
// Reset the file position
|
|
reset_fpf_position(cpi, start_pos);
|
|
|
|
is_viable_kf = 0;
|
|
}
|
|
}
|
|
|
|
return is_viable_kf;
|
|
}
|
|
static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
|
|
{
|
|
int i,j;
|
|
FIRSTPASS_STATS last_frame;
|
|
FIRSTPASS_STATS first_frame;
|
|
FIRSTPASS_STATS next_frame;
|
|
FIRSTPASS_STATS *start_position;
|
|
|
|
double decay_accumulator = 1.0;
|
|
double boost_score = 0;
|
|
double old_boost_score = 0.0;
|
|
double loop_decay_rate;
|
|
|
|
double kf_mod_err = 0.0;
|
|
double kf_group_err = 0.0;
|
|
double kf_group_intra_err = 0.0;
|
|
double kf_group_coded_err = 0.0;
|
|
double recent_loop_decay[8] = {1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0};
|
|
|
|
vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean
|
|
|
|
vp8_clear_system_state(); //__asm emms;
|
|
start_position = cpi->twopass.stats_in;
|
|
|
|
cpi->common.frame_type = KEY_FRAME;
|
|
|
|
// is this a forced key frame by interval
|
|
cpi->this_key_frame_forced = cpi->next_key_frame_forced;
|
|
|
|
// Clear the alt ref active flag as this can never be active on a key frame
|
|
cpi->source_alt_ref_active = 0;
|
|
|
|
// Kf is always a gf so clear frames till next gf counter
|
|
cpi->frames_till_gf_update_due = 0;
|
|
|
|
cpi->twopass.frames_to_key = 1;
|
|
|
|
// Take a copy of the initial frame details
|
|
vpx_memcpy(&first_frame, this_frame, sizeof(*this_frame));
|
|
|
|
cpi->twopass.kf_group_bits = 0; // Total bits avaialable to kf group
|
|
cpi->twopass.kf_group_error_left = 0; // Group modified error score.
|
|
|
|
kf_mod_err = calculate_modified_err(cpi, this_frame);
|
|
|
|
// find the next keyframe
|
|
i = 0;
|
|
while (cpi->twopass.stats_in < cpi->twopass.stats_in_end)
|
|
{
|
|
// Accumulate kf group error
|
|
kf_group_err += calculate_modified_err(cpi, this_frame);
|
|
|
|
// These figures keep intra and coded error counts for all frames including key frames in the group.
|
|
// The effect of the key frame itself can be subtracted out using the first_frame data collected above
|
|
kf_group_intra_err += this_frame->intra_error;
|
|
kf_group_coded_err += this_frame->coded_error;
|
|
|
|
// load a the next frame's stats
|
|
vpx_memcpy(&last_frame, this_frame, sizeof(*this_frame));
|
|
input_stats(cpi, this_frame);
|
|
|
|
// Provided that we are not at the end of the file...
|
|
if (cpi->oxcf.auto_key
|
|
&& lookup_next_frame_stats(cpi, &next_frame) != EOF)
|
|
{
|
|
// Normal scene cut check
|
|
if ( ( i >= MIN_GF_INTERVAL ) &&
|
|
test_candidate_kf(cpi, &last_frame, this_frame, &next_frame) )
|
|
{
|
|
break;
|
|
}
|
|
|
|
// How fast is prediction quality decaying
|
|
loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
|
|
|
|
// We want to know something about the recent past... rather than
|
|
// as used elsewhere where we are concened with decay in prediction
|
|
// quality since the last GF or KF.
|
|
recent_loop_decay[i%8] = loop_decay_rate;
|
|
decay_accumulator = 1.0;
|
|
for (j = 0; j < 8; j++)
|
|
{
|
|
decay_accumulator = decay_accumulator * recent_loop_decay[j];
|
|
}
|
|
|
|
// Special check for transition or high motion followed by a
|
|
// to a static scene.
|
|
if ( detect_transition_to_still( cpi, i,
|
|
(cpi->key_frame_frequency-i),
|
|
loop_decay_rate,
|
|
decay_accumulator ) )
|
|
{
|
|
break;
|
|
}
|
|
|
|
|
|
// Step on to the next frame
|
|
cpi->twopass.frames_to_key ++;
|
|
|
|
// If we don't have a real key frame within the next two
|
|
// forcekeyframeevery intervals then break out of the loop.
|
|
if (cpi->twopass.frames_to_key >= 2 *(int)cpi->key_frame_frequency)
|
|
break;
|
|
} else
|
|
cpi->twopass.frames_to_key ++;
|
|
|
|
i++;
|
|
}
|
|
|
|
// If there is a max kf interval set by the user we must obey it.
|
|
// We already breakout of the loop above at 2x max.
|
|
// This code centers the extra kf if the actual natural
|
|
// interval is between 1x and 2x
|
|
if (cpi->oxcf.auto_key
|
|
&& cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency )
|
|
{
|
|
FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in;
|
|
FIRSTPASS_STATS tmp_frame;
|
|
|
|
cpi->twopass.frames_to_key /= 2;
|
|
|
|
// Copy first frame details
|
|
vpx_memcpy(&tmp_frame, &first_frame, sizeof(first_frame));
|
|
|
|
// Reset to the start of the group
|
|
reset_fpf_position(cpi, start_position);
|
|
|
|
kf_group_err = 0;
|
|
kf_group_intra_err = 0;
|
|
kf_group_coded_err = 0;
|
|
|
|
// Rescan to get the correct error data for the forced kf group
|
|
for( i = 0; i < cpi->twopass.frames_to_key; i++ )
|
|
{
|
|
// Accumulate kf group errors
|
|
kf_group_err += calculate_modified_err(cpi, &tmp_frame);
|
|
kf_group_intra_err += tmp_frame.intra_error;
|
|
kf_group_coded_err += tmp_frame.coded_error;
|
|
|
|
// Load a the next frame's stats
|
|
input_stats(cpi, &tmp_frame);
|
|
}
|
|
|
|
// Reset to the start of the group
|
|
reset_fpf_position(cpi, current_pos);
|
|
|
|
cpi->next_key_frame_forced = 1;
|
|
}
|
|
else
|
|
cpi->next_key_frame_forced = 0;
|
|
|
|
// Special case for the last frame of the file
|
|
if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end)
|
|
{
|
|
// Accumulate kf group error
|
|
kf_group_err += calculate_modified_err(cpi, this_frame);
|
|
|
|
// These figures keep intra and coded error counts for all frames including key frames in the group.
|
|
// The effect of the key frame itself can be subtracted out using the first_frame data collected above
|
|
kf_group_intra_err += this_frame->intra_error;
|
|
kf_group_coded_err += this_frame->coded_error;
|
|
}
|
|
|
|
// Calculate the number of bits that should be assigned to the kf group.
|
|
if ((cpi->twopass.bits_left > 0) && (cpi->twopass.modified_error_left > 0.0))
|
|
{
|
|
// Max for a single normal frame (not key frame)
|
|
int max_bits = frame_max_bits(cpi);
|
|
|
|
// Maximum bits for the kf group
|
|
int64_t max_grp_bits;
|
|
|
|
// Default allocation based on bits left and relative
|
|
// complexity of the section
|
|
cpi->twopass.kf_group_bits = (int64_t)( cpi->twopass.bits_left *
|
|
( kf_group_err /
|
|
cpi->twopass.modified_error_left ));
|
|
|
|
// Clip based on maximum per frame rate defined by the user.
|
|
max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key;
|
|
if (cpi->twopass.kf_group_bits > max_grp_bits)
|
|
cpi->twopass.kf_group_bits = max_grp_bits;
|
|
|
|
// Additional special case for CBR if buffer is getting full.
|
|
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
|
{
|
|
int opt_buffer_lvl = cpi->oxcf.optimal_buffer_level;
|
|
int buffer_lvl = cpi->buffer_level;
|
|
|
|
// If the buffer is near or above the optimal and this kf group is
|
|
// not being allocated much then increase the allocation a bit.
|
|
if (buffer_lvl >= opt_buffer_lvl)
|
|
{
|
|
int high_water_mark = (opt_buffer_lvl +
|
|
cpi->oxcf.maximum_buffer_size) >> 1;
|
|
|
|
int64_t av_group_bits;
|
|
|
|
// Av bits per frame * number of frames
|
|
av_group_bits = (int64_t)cpi->av_per_frame_bandwidth *
|
|
(int64_t)cpi->twopass.frames_to_key;
|
|
|
|
// We are at or above the maximum.
|
|
if (cpi->buffer_level >= high_water_mark)
|
|
{
|
|
int64_t min_group_bits;
|
|
|
|
min_group_bits = av_group_bits +
|
|
(int64_t)(buffer_lvl -
|
|
high_water_mark);
|
|
|
|
if (cpi->twopass.kf_group_bits < min_group_bits)
|
|
cpi->twopass.kf_group_bits = min_group_bits;
|
|
}
|
|
// We are above optimal but below the maximum
|
|
else if (cpi->twopass.kf_group_bits < av_group_bits)
|
|
{
|
|
int64_t bits_below_av = av_group_bits -
|
|
cpi->twopass.kf_group_bits;
|
|
|
|
cpi->twopass.kf_group_bits +=
|
|
(int64_t)((double)bits_below_av *
|
|
(double)(buffer_lvl - opt_buffer_lvl) /
|
|
(double)(high_water_mark - opt_buffer_lvl));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
cpi->twopass.kf_group_bits = 0;
|
|
|
|
// Reset the first pass file position
|
|
reset_fpf_position(cpi, start_position);
|
|
|
|
// determine how big to make this keyframe based on how well the subsequent frames use inter blocks
|
|
decay_accumulator = 1.0;
|
|
boost_score = 0.0;
|
|
loop_decay_rate = 1.00; // Starting decay rate
|
|
|
|
for (i = 0 ; i < cpi->twopass.frames_to_key ; i++)
|
|
{
|
|
double r;
|
|
|
|
if (EOF == input_stats(cpi, &next_frame))
|
|
break;
|
|
|
|
if (next_frame.intra_error > cpi->twopass.kf_intra_err_min)
|
|
r = (IIKFACTOR2 * next_frame.intra_error /
|
|
DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
|
|
else
|
|
r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min /
|
|
DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
|
|
|
|
if (r > RMAX)
|
|
r = RMAX;
|
|
|
|
// How fast is prediction quality decaying
|
|
loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
|
|
|
|
decay_accumulator = decay_accumulator * loop_decay_rate;
|
|
decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
|
|
|
|
boost_score += (decay_accumulator * r);
|
|
|
|
if ((i > MIN_GF_INTERVAL) &&
|
|
((boost_score - old_boost_score) < 1.0))
|
|
{
|
|
break;
|
|
}
|
|
|
|
old_boost_score = boost_score;
|
|
}
|
|
|
|
if (1)
|
|
{
|
|
FIRSTPASS_STATS sectionstats;
|
|
double Ratio;
|
|
|
|
zero_stats(§ionstats);
|
|
reset_fpf_position(cpi, start_position);
|
|
|
|
for (i = 0 ; i < cpi->twopass.frames_to_key ; i++)
|
|
{
|
|
input_stats(cpi, &next_frame);
|
|
accumulate_stats(§ionstats, &next_frame);
|
|
}
|
|
|
|
avg_stats(§ionstats);
|
|
|
|
cpi->twopass.section_intra_rating =
|
|
sectionstats.intra_error
|
|
/ DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
|
|
|
|
Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
|
|
// if( (Ratio > 11) ) //&& (sectionstats.pcnt_second_ref < .20) )
|
|
//{
|
|
cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025);
|
|
|
|
if (cpi->twopass.section_max_qfactor < 0.80)
|
|
cpi->twopass.section_max_qfactor = 0.80;
|
|
|
|
//}
|
|
//else
|
|
// cpi->twopass.section_max_qfactor = 1.0;
|
|
}
|
|
|
|
// When using CBR apply additional buffer fullness related upper limits
|
|
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
|
{
|
|
double max_boost;
|
|
|
|
if (cpi->drop_frames_allowed)
|
|
{
|
|
int df_buffer_level = cpi->oxcf.drop_frames_water_mark * (cpi->oxcf.optimal_buffer_level / 100);
|
|
|
|
if (cpi->buffer_level > df_buffer_level)
|
|
max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
|
|
else
|
|
max_boost = 0.0;
|
|
}
|
|
else if (cpi->buffer_level > 0)
|
|
{
|
|
max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
|
|
}
|
|
else
|
|
{
|
|
max_boost = 0.0;
|
|
}
|
|
|
|
if (boost_score > max_boost)
|
|
boost_score = max_boost;
|
|
}
|
|
|
|
// Reset the first pass file position
|
|
reset_fpf_position(cpi, start_position);
|
|
|
|
// Work out how many bits to allocate for the key frame itself
|
|
if (1)
|
|
{
|
|
int kf_boost = boost_score;
|
|
int allocation_chunks;
|
|
int Counter = cpi->twopass.frames_to_key;
|
|
int alt_kf_bits;
|
|
YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx];
|
|
// Min boost based on kf interval
|
|
#if 0
|
|
|
|
while ((kf_boost < 48) && (Counter > 0))
|
|
{
|
|
Counter -= 2;
|
|
kf_boost ++;
|
|
}
|
|
|
|
#endif
|
|
|
|
if (kf_boost < 48)
|
|
{
|
|
kf_boost += ((Counter + 1) >> 1);
|
|
|
|
if (kf_boost > 48) kf_boost = 48;
|
|
}
|
|
|
|
// bigger frame sizes need larger kf boosts, smaller frames smaller boosts...
|
|
if ((lst_yv12->y_width * lst_yv12->y_height) > (320 * 240))
|
|
kf_boost += 2 * (lst_yv12->y_width * lst_yv12->y_height) / (320 * 240);
|
|
else if ((lst_yv12->y_width * lst_yv12->y_height) < (320 * 240))
|
|
kf_boost -= 4 * (320 * 240) / (lst_yv12->y_width * lst_yv12->y_height);
|
|
|
|
kf_boost = (int)((double)kf_boost * 100.0) >> 4; // Scale 16 to 100
|
|
|
|
// Adjustment to boost based on recent average q
|
|
//kf_boost = kf_boost * vp8_kf_boost_qadjustment[cpi->ni_av_qi] / 100;
|
|
|
|
if (kf_boost < 250) // Min KF boost
|
|
kf_boost = 250;
|
|
|
|
// We do three calculations for kf size.
|
|
// The first is based on the error score for the whole kf group.
|
|
// The second (optionaly) on the key frames own error if this is smaller than the average for the group.
|
|
// The final one insures that the frame receives at least the allocation it would have received based on its own error score vs the error score remaining
|
|
|
|
allocation_chunks = ((cpi->twopass.frames_to_key - 1) * 100) + kf_boost; // cpi->twopass.frames_to_key-1 because key frame itself is taken care of by kf_boost
|
|
|
|
// Normalize Altboost and allocations chunck down to prevent overflow
|
|
while (kf_boost > 1000)
|
|
{
|
|
kf_boost /= 2;
|
|
allocation_chunks /= 2;
|
|
}
|
|
|
|
cpi->twopass.kf_group_bits = (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits;
|
|
|
|
// Calculate the number of bits to be spent on the key frame
|
|
cpi->twopass.kf_bits = (int)((double)kf_boost * ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks));
|
|
|
|
// Apply an additional limit for CBR
|
|
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
|
{
|
|
if (cpi->twopass.kf_bits > ((3 * cpi->buffer_level) >> 2))
|
|
cpi->twopass.kf_bits = (3 * cpi->buffer_level) >> 2;
|
|
}
|
|
|
|
// If the key frame is actually easier than the average for the
|
|
// kf group (which does sometimes happen... eg a blank intro frame)
|
|
// Then use an alternate calculation based on the kf error score
|
|
// which should give a smaller key frame.
|
|
if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key)
|
|
{
|
|
double alt_kf_grp_bits =
|
|
((double)cpi->twopass.bits_left *
|
|
(kf_mod_err * (double)cpi->twopass.frames_to_key) /
|
|
DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left));
|
|
|
|
alt_kf_bits = (int)((double)kf_boost *
|
|
(alt_kf_grp_bits / (double)allocation_chunks));
|
|
|
|
if (cpi->twopass.kf_bits > alt_kf_bits)
|
|
{
|
|
cpi->twopass.kf_bits = alt_kf_bits;
|
|
}
|
|
}
|
|
// Else if it is much harder than other frames in the group make sure
|
|
// it at least receives an allocation in keeping with its relative
|
|
// error score
|
|
else
|
|
{
|
|
alt_kf_bits =
|
|
(int)((double)cpi->twopass.bits_left *
|
|
(kf_mod_err /
|
|
DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)));
|
|
|
|
if (alt_kf_bits > cpi->twopass.kf_bits)
|
|
{
|
|
cpi->twopass.kf_bits = alt_kf_bits;
|
|
}
|
|
}
|
|
|
|
cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits;
|
|
cpi->twopass.kf_bits += cpi->min_frame_bandwidth; // Add in the minimum frame allowance
|
|
|
|
cpi->per_frame_bandwidth = cpi->twopass.kf_bits; // Peer frame bit target for this frame
|
|
cpi->target_bandwidth = cpi->twopass.kf_bits * cpi->output_frame_rate; // Convert to a per second bitrate
|
|
}
|
|
|
|
// Note the total error score of the kf group minus the key frame itself
|
|
cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err);
|
|
|
|
// Adjust the count of total modified error left.
|
|
// The count of bits left is adjusted elsewhere based on real coded frame sizes
|
|
cpi->twopass.modified_error_left -= kf_group_err;
|
|
|
|
if (cpi->oxcf.allow_spatial_resampling)
|
|
{
|
|
int resample_trigger = 0;
|
|
int last_kf_resampled = 0;
|
|
int kf_q;
|
|
int scale_val = 0;
|
|
int hr, hs, vr, vs;
|
|
int new_width = cpi->oxcf.Width;
|
|
int new_height = cpi->oxcf.Height;
|
|
|
|
int projected_buffer_level = cpi->buffer_level;
|
|
int tmp_q;
|
|
|
|
double projected_bits_perframe;
|
|
double group_iiratio = (kf_group_intra_err - first_frame.intra_error) / (kf_group_coded_err - first_frame.coded_error);
|
|
double err_per_frame = kf_group_err / cpi->twopass.frames_to_key;
|
|
double bits_per_frame;
|
|
double av_bits_per_frame;
|
|
double effective_size_ratio;
|
|
|
|
if ((cpi->common.Width != cpi->oxcf.Width) || (cpi->common.Height != cpi->oxcf.Height))
|
|
last_kf_resampled = 1;
|
|
|
|
// Set back to unscaled by defaults
|
|
cpi->common.horiz_scale = NORMAL;
|
|
cpi->common.vert_scale = NORMAL;
|
|
|
|
// Calculate Average bits per frame.
|
|
//av_bits_per_frame = cpi->twopass.bits_left/(double)(cpi->twopass.total_stats.count - cpi->common.current_video_frame);
|
|
av_bits_per_frame = cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->frame_rate);
|
|
//if ( av_bits_per_frame < 0.0 )
|
|
// av_bits_per_frame = 0.0
|
|
|
|
// CBR... Use the clip average as the target for deciding resample
|
|
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
|
{
|
|
bits_per_frame = av_bits_per_frame;
|
|
}
|
|
|
|
// In VBR we want to avoid downsampling in easy section unless we are under extreme pressure
|
|
// So use the larger of target bitrate for this sectoion or average bitrate for sequence
|
|
else
|
|
{
|
|
bits_per_frame = cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key; // This accounts for how hard the section is...
|
|
|
|
if (bits_per_frame < av_bits_per_frame) // Dont turn to resampling in easy sections just because they have been assigned a small number of bits
|
|
bits_per_frame = av_bits_per_frame;
|
|
}
|
|
|
|
// bits_per_frame should comply with our minimum
|
|
if (bits_per_frame < (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100))
|
|
bits_per_frame = (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100);
|
|
|
|
// Work out if spatial resampling is necessary
|
|
kf_q = estimate_kf_group_q(cpi, err_per_frame, bits_per_frame, group_iiratio);
|
|
|
|
// If we project a required Q higher than the maximum allowed Q then make a guess at the actual size of frames in this section
|
|
projected_bits_perframe = bits_per_frame;
|
|
tmp_q = kf_q;
|
|
|
|
while (tmp_q > cpi->worst_quality)
|
|
{
|
|
projected_bits_perframe *= 1.04;
|
|
tmp_q--;
|
|
}
|
|
|
|
// Guess at buffer level at the end of the section
|
|
projected_buffer_level = cpi->buffer_level - (int)((projected_bits_perframe - av_bits_per_frame) * cpi->twopass.frames_to_key);
|
|
|
|
if (0)
|
|
{
|
|
FILE *f = fopen("Subsamle.stt", "a");
|
|
fprintf(f, " %8d %8d %8d %8d %12.0f %8d %8d %8d\n", cpi->common.current_video_frame, kf_q, cpi->common.horiz_scale, cpi->common.vert_scale, kf_group_err / cpi->twopass.frames_to_key, (int)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key), new_height, new_width);
|
|
fclose(f);
|
|
}
|
|
|
|
// The trigger for spatial resampling depends on the various parameters such as whether we are streaming (CBR) or VBR.
|
|
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
|
{
|
|
// Trigger resample if we are projected to fall below down sample level or
|
|
// resampled last time and are projected to remain below the up sample level
|
|
if ((projected_buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100)) ||
|
|
(last_kf_resampled && (projected_buffer_level < (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100))))
|
|
//( ((cpi->buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100))) &&
|
|
// ((projected_buffer_level < (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100))) ))
|
|
resample_trigger = 1;
|
|
else
|
|
resample_trigger = 0;
|
|
}
|
|
else
|
|
{
|
|
int64_t clip_bits = (int64_t)(cpi->twopass.total_stats.count * cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->frame_rate));
|
|
int64_t over_spend = cpi->oxcf.starting_buffer_level - cpi->buffer_level;
|
|
|
|
if ((last_kf_resampled && (kf_q > cpi->worst_quality)) || // If triggered last time the threshold for triggering again is reduced
|
|
((kf_q > cpi->worst_quality) && // Projected Q higher than allowed and ...
|
|
(over_spend > clip_bits / 20))) // ... Overspend > 5% of total bits
|
|
resample_trigger = 1;
|
|
else
|
|
resample_trigger = 0;
|
|
|
|
}
|
|
|
|
if (resample_trigger)
|
|
{
|
|
while ((kf_q >= cpi->worst_quality) && (scale_val < 6))
|
|
{
|
|
scale_val ++;
|
|
|
|
cpi->common.vert_scale = vscale_lookup[scale_val];
|
|
cpi->common.horiz_scale = hscale_lookup[scale_val];
|
|
|
|
Scale2Ratio(cpi->common.horiz_scale, &hr, &hs);
|
|
Scale2Ratio(cpi->common.vert_scale, &vr, &vs);
|
|
|
|
new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs;
|
|
new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs;
|
|
|
|
// Reducing the area to 1/4 does not reduce the complexity (err_per_frame) to 1/4...
|
|
// effective_sizeratio attempts to provide a crude correction for this
|
|
effective_size_ratio = (double)(new_width * new_height) / (double)(cpi->oxcf.Width * cpi->oxcf.Height);
|
|
effective_size_ratio = (1.0 + (3.0 * effective_size_ratio)) / 4.0;
|
|
|
|
// Now try again and see what Q we get with the smaller image size
|
|
kf_q = estimate_kf_group_q(cpi, err_per_frame * effective_size_ratio, bits_per_frame, group_iiratio);
|
|
|
|
if (0)
|
|
{
|
|
FILE *f = fopen("Subsamle.stt", "a");
|
|
fprintf(f, "******** %8d %8d %8d %12.0f %8d %8d %8d\n", kf_q, cpi->common.horiz_scale, cpi->common.vert_scale, kf_group_err / cpi->twopass.frames_to_key, (int)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key), new_height, new_width);
|
|
fclose(f);
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((cpi->common.Width != new_width) || (cpi->common.Height != new_height))
|
|
{
|
|
cpi->common.Width = new_width;
|
|
cpi->common.Height = new_height;
|
|
vp8_alloc_compressor_data(cpi);
|
|
}
|
|
}
|
|
}
|