vpx/vp9/decoder/vp9_decodframe.c
Deb Mukherjee 5fa64bdef0 Bugfix from reordering frame probs patch
This fixes an intermittent mismatch issue cause by moving
the lossless mode decoding bit to after the loop filter
setup information. We need to ensure that the lossless bit
is decoded prior to loop filter setup.

Change-Id: I3faa3fff8e1013b7405dac91268350e059ed121e
2013-04-22 12:43:12 -07:00

1809 lines
60 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp9/decoder/vp9_onyxd_int.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_header.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/decoder/vp9_decodframe.h"
#include "vp9/decoder/vp9_detokenize.h"
#include "vp9/common/vp9_invtrans.h"
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_quant_common.h"
#include "vpx_scale/vpx_scale.h"
#include "vp9/common/vp9_setupintrarecon.h"
#include "vp9/decoder/vp9_decodemv.h"
#include "vp9/common/vp9_extend.h"
#include "vp9/common/vp9_modecont.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/decoder/vp9_dboolhuff.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9_rtcd.h"
#include <assert.h>
#include <stdio.h>
#define COEFCOUNT_TESTING
// #define DEC_DEBUG
#ifdef DEC_DEBUG
int dec_debug = 0;
#endif
static int read_le16(const uint8_t *p) {
return (p[1] << 8) | p[0];
}
static int read_le32(const uint8_t *p) {
return (p[3] << 24) | (p[2] << 16) | (p[1] << 8) | p[0];
}
// len == 0 is not allowed
static int read_is_valid(const uint8_t *start, size_t len,
const uint8_t *end) {
return start + len > start && start + len <= end;
}
static TXFM_MODE read_txfm_mode(vp9_reader *r) {
TXFM_MODE mode = vp9_read_literal(r, 2);
if (mode == ALLOW_32X32)
mode += vp9_read_bit(r);
return mode;
}
static int get_unsigned_bits(unsigned int num_values) {
int cat = 0;
if (num_values <= 1)
return 0;
num_values--;
while (num_values > 0) {
cat++;
num_values >>= 1;
}
return cat;
}
static int inv_recenter_nonneg(int v, int m) {
if (v > (m << 1))
return v;
else if ((v & 1) == 0)
return (v >> 1) + m;
else
return m - ((v + 1) >> 1);
}
static int decode_uniform(vp9_reader *r, int n) {
int v;
const int l = get_unsigned_bits(n);
const int m = (1 << l) - n;
if (!l)
return 0;
v = vp9_read_literal(r, l - 1);
return v < m ? v : (v << 1) - m + vp9_read_bit(r);
}
static int decode_term_subexp(vp9_reader *r, int k, int num_syms) {
int i = 0, mk = 0, word;
while (1) {
const int b = i ? k + i - 1 : k;
const int a = 1 << b;
if (num_syms <= mk + 3 * a) {
word = decode_uniform(r, num_syms - mk) + mk;
break;
} else {
if (vp9_read_bit(r)) {
i++;
mk += a;
} else {
word = vp9_read_literal(r, b) + mk;
break;
}
}
}
return word;
}
static int decode_unsigned_max(vp9_reader *r, int max) {
int data = 0, bit = 0, lmax = max;
while (lmax) {
data |= vp9_read_bit(r) << bit++;
lmax >>= 1;
}
return data > max ? max : data;
}
static int merge_index(int v, int n, int modulus) {
int max1 = (n - 1 - modulus / 2) / modulus + 1;
if (v < max1) v = v * modulus + modulus / 2;
else {
int w;
v -= max1;
w = v;
v += (v + modulus - modulus / 2) / modulus;
while (v % modulus == modulus / 2 ||
w != v - (v + modulus - modulus / 2) / modulus) v++;
}
return v;
}
static int inv_remap_prob(int v, int m) {
const int n = 256;
const int modulus = MODULUS_PARAM;
v = merge_index(v, n - 1, modulus);
if ((m << 1) <= n) {
return inv_recenter_nonneg(v + 1, m);
} else {
return n - 1 - inv_recenter_nonneg(v + 1, n - 1 - m);
}
}
static vp9_prob read_prob_diff_update(vp9_reader *r, int oldp) {
int delp = decode_term_subexp(r, SUBEXP_PARAM, 255);
return (vp9_prob)inv_remap_prob(delp, oldp);
}
void vp9_init_de_quantizer(VP9D_COMP *pbi) {
int i;
int q;
VP9_COMMON *const pc = &pbi->common;
for (q = 0; q < QINDEX_RANGE; q++) {
pc->y_dequant[q][0] = (int16_t)vp9_dc_quant(q, pc->y_dc_delta_q);
pc->uv_dequant[q][0] = (int16_t)vp9_dc_uv_quant(q, pc->uv_dc_delta_q);
/* all the ac values =; */
for (i = 1; i < 16; i++) {
const int rc = vp9_default_zig_zag1d_4x4[i];
pc->y_dequant[q][rc] = (int16_t)vp9_ac_yquant(q);
pc->uv_dequant[q][rc] = (int16_t)vp9_ac_uv_quant(q, pc->uv_ac_delta_q);
}
}
}
static int get_qindex(MACROBLOCKD *mb, int segment_id, int base_qindex) {
// Set the Q baseline allowing for any segment level adjustment
if (vp9_segfeature_active(mb, segment_id, SEG_LVL_ALT_Q)) {
const int data = vp9_get_segdata(mb, segment_id, SEG_LVL_ALT_Q);
return mb->mb_segment_abs_delta == SEGMENT_ABSDATA ?
data : // Abs value
clamp(base_qindex + data, 0, MAXQ); // Delta value
} else {
return base_qindex;
}
}
static void mb_init_dequantizer(VP9D_COMP *pbi, MACROBLOCKD *mb) {
int i;
VP9_COMMON *const pc = &pbi->common;
const int segment_id = mb->mode_info_context->mbmi.segment_id;
const int qindex = get_qindex(mb, segment_id, pc->base_qindex);
mb->q_index = qindex;
for (i = 0; i < 16; i++)
mb->block[i].dequant = pc->y_dequant[qindex];
for (i = 16; i < 24; i++)
mb->block[i].dequant = pc->uv_dequant[qindex];
if (mb->lossless) {
assert(qindex == 0);
mb->inv_txm4x4_1 = vp9_short_iwalsh4x4_1;
mb->inv_txm4x4 = vp9_short_iwalsh4x4;
mb->itxm_add = vp9_dequant_idct_add_lossless_c;
mb->itxm_add_y_block = vp9_dequant_idct_add_y_block_lossless_c;
mb->itxm_add_uv_block = vp9_dequant_idct_add_uv_block_lossless_c;
} else {
mb->inv_txm4x4_1 = vp9_short_idct4x4_1;
mb->inv_txm4x4 = vp9_short_idct4x4;
mb->itxm_add = vp9_dequant_idct_add;
mb->itxm_add_y_block = vp9_dequant_idct_add_y_block;
mb->itxm_add_uv_block = vp9_dequant_idct_add_uv_block;
}
}
#if CONFIG_CODE_NONZEROCOUNT
static void propagate_nzcs(VP9_COMMON *cm, MACROBLOCKD *xd) {
MODE_INFO *m = xd->mode_info_context;
BLOCK_SIZE_TYPE sb_type = m->mbmi.sb_type;
const int mis = cm->mode_info_stride;
int n;
if (sb_type == BLOCK_SIZE_SB64X64) {
for (n = 0; n < 16; ++n) {
int i = n >> 2;
int j = n & 3;
if (i == 0 && j == 0) continue;
vpx_memcpy((m + j + mis * i)->mbmi.nzcs, m->mbmi.nzcs,
384 * sizeof(m->mbmi.nzcs[0]));
}
} else if (sb_type == BLOCK_SIZE_SB32X32) {
for (n = 0; n < 4; ++n) {
int i = n >> 1;
int j = n & 1;
if (i == 0 && j == 0) continue;
vpx_memcpy((m + j + mis * i)->mbmi.nzcs, m->mbmi.nzcs,
384 * sizeof(m->mbmi.nzcs[0]));
}
}
}
#endif
static void decode_16x16(MACROBLOCKD *xd) {
const TX_TYPE tx_type = get_tx_type_16x16(xd, 0);
vp9_dequant_iht_add_16x16_c(tx_type, xd->plane[0].qcoeff,
xd->block[0].dequant, xd->plane[0].dst.buf,
xd->plane[0].dst.stride, xd->plane[0].eobs[0]);
vp9_dequant_idct_add_8x8(xd->plane[1].qcoeff, xd->block[16].dequant,
xd->plane[1].dst.buf, xd->plane[1].dst.stride,
xd->plane[1].eobs[0]);
vp9_dequant_idct_add_8x8(xd->plane[2].qcoeff, xd->block[20].dequant,
xd->plane[2].dst.buf, xd->plane[1].dst.stride,
xd->plane[2].eobs[0]);
}
static void decode_8x8(MACROBLOCKD *xd) {
const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode;
// luma
// if the first one is DCT_DCT assume all the rest are as well
TX_TYPE tx_type = get_tx_type_8x8(xd, 0);
if (tx_type != DCT_DCT || mode == I8X8_PRED) {
int i;
for (i = 0; i < 4; i++) {
int ib = vp9_i8x8_block[i];
int idx = (ib & 0x02) ? (ib + 2) : ib;
int16_t *q = BLOCK_OFFSET(xd->plane[0].qcoeff, idx, 16);
int16_t *dq = xd->block[0].dequant;
uint8_t *dst = *(xd->block[ib].base_dst) + xd->block[ib].dst;
int stride = xd->plane[0].dst.stride;
if (mode == I8X8_PRED) {
BLOCKD *b = &xd->block[ib];
int i8x8mode = b->bmi.as_mode.first;
vp9_intra8x8_predict(xd, b, i8x8mode, dst, stride);
}
tx_type = get_tx_type_8x8(xd, ib);
vp9_dequant_iht_add_8x8_c(tx_type, q, dq, dst, stride,
xd->plane[0].eobs[idx]);
}
} else {
vp9_dequant_idct_add_y_block_8x8(xd->plane[0].qcoeff,
xd->block[0].dequant, xd->plane[0].dst.buf,
xd->plane[0].dst.stride, xd);
}
// chroma
if (mode == I8X8_PRED) {
int i;
for (i = 0; i < 4; i++) {
int ib = vp9_i8x8_block[i];
BLOCKD *b = &xd->block[ib];
int i8x8mode = b->bmi.as_mode.first;
b = &xd->block[16 + i];
vp9_intra_uv4x4_predict(xd, b, i8x8mode, *(b->base_dst) + b->dst,
b->dst_stride);
xd->itxm_add(BLOCK_OFFSET(xd->plane[1].qcoeff, i, 16),
b->dequant, *(b->base_dst) + b->dst, b->dst_stride,
xd->plane[1].eobs[i]);
b = &xd->block[20 + i];
vp9_intra_uv4x4_predict(xd, b, i8x8mode, *(b->base_dst) + b->dst,
b->dst_stride);
xd->itxm_add(BLOCK_OFFSET(xd->plane[2].qcoeff, i, 16),
b->dequant, *(b->base_dst) + b->dst, b->dst_stride,
xd->plane[2].eobs[i]);
}
} else if (mode == SPLITMV) {
xd->itxm_add_uv_block(xd->plane[1].qcoeff, xd->block[16].dequant,
xd->plane[1].dst.buf, xd->plane[1].dst.stride, xd->plane[1].eobs);
xd->itxm_add_uv_block(xd->plane[2].qcoeff, xd->block[16].dequant,
xd->plane[2].dst.buf, xd->plane[1].dst.stride, xd->plane[2].eobs);
} else {
vp9_dequant_idct_add_8x8(xd->plane[1].qcoeff, xd->block[16].dequant,
xd->plane[1].dst.buf, xd->plane[1].dst.stride,
xd->plane[1].eobs[0]);
vp9_dequant_idct_add_8x8(xd->plane[2].qcoeff, xd->block[16].dequant,
xd->plane[2].dst.buf, xd->plane[1].dst.stride,
xd->plane[2].eobs[0]);
}
}
static INLINE void dequant_add_y(MACROBLOCKD *xd, TX_TYPE tx_type, int idx) {
BLOCKD *const b = &xd->block[idx];
struct mb_plane *const y = &xd->plane[0];
if (tx_type != DCT_DCT) {
vp9_dequant_iht_add_c(tx_type,
BLOCK_OFFSET(y->qcoeff, idx, 16),
b->dequant, *(b->base_dst) + b->dst,
b->dst_stride, y->eobs[idx]);
} else {
xd->itxm_add(BLOCK_OFFSET(y->qcoeff, idx, 16),
b->dequant, *(b->base_dst) + b->dst,
b->dst_stride, y->eobs[idx]);
}
}
static void decode_4x4(VP9D_COMP *pbi, MACROBLOCKD *xd, vp9_reader *r) {
TX_TYPE tx_type;
int i = 0;
const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode;
if (mode == I8X8_PRED) {
for (i = 0; i < 4; i++) {
int ib = vp9_i8x8_block[i];
const int iblock[4] = {0, 1, 4, 5};
int j;
BLOCKD *b = &xd->block[ib];
int i8x8mode = b->bmi.as_mode.first;
vp9_intra8x8_predict(xd, b, i8x8mode, *(b->base_dst) + b->dst,
b->dst_stride);
for (j = 0; j < 4; j++) {
tx_type = get_tx_type_4x4(xd, ib + iblock[j]);
dequant_add_y(xd, tx_type, ib + iblock[j]);
}
b = &xd->block[16 + i];
vp9_intra_uv4x4_predict(xd, b, i8x8mode, *(b->base_dst) + b->dst,
b->dst_stride);
xd->itxm_add(BLOCK_OFFSET(xd->plane[1].qcoeff, i, 16),
b->dequant, *(b->base_dst) + b->dst, b->dst_stride,
xd->plane[1].eobs[i]);
b = &xd->block[20 + i];
vp9_intra_uv4x4_predict(xd, b, i8x8mode, *(b->base_dst) + b->dst,
b->dst_stride);
xd->itxm_add(BLOCK_OFFSET(xd->plane[2].qcoeff, i, 16),
b->dequant, *(b->base_dst) + b->dst, b->dst_stride,
xd->plane[2].eobs[i]);
}
} else if (mode == I4X4_PRED) {
for (i = 0; i < 16; i++) {
BLOCKD *b = &xd->block[i];
int b_mode = xd->mode_info_context->bmi[i].as_mode.first;
#if CONFIG_NEWBINTRAMODES
xd->mode_info_context->bmi[i].as_mode.context = b->bmi.as_mode.context =
vp9_find_bpred_context(xd, b);
if (!xd->mode_info_context->mbmi.mb_skip_coeff)
vp9_decode_coefs_4x4(pbi, xd, r, PLANE_TYPE_Y_WITH_DC, i);
#endif
vp9_intra4x4_predict(xd, b, b_mode, *(b->base_dst) + b->dst,
b->dst_stride);
tx_type = get_tx_type_4x4(xd, i);
dequant_add_y(xd, tx_type, i);
}
#if CONFIG_NEWBINTRAMODES
if (!xd->mode_info_context->mbmi.mb_skip_coeff)
vp9_decode_mb_tokens_4x4_uv(pbi, xd, r);
#endif
vp9_build_intra_predictors_sbuv_s(xd, BLOCK_SIZE_MB16X16);
xd->itxm_add_uv_block(xd->plane[1].qcoeff, xd->block[16].dequant,
xd->plane[1].dst.buf, xd->plane[1].dst.stride, xd->plane[1].eobs);
xd->itxm_add_uv_block(xd->plane[2].qcoeff, xd->block[16].dequant,
xd->plane[2].dst.buf, xd->plane[1].dst.stride, xd->plane[2].eobs);
} else if (mode == SPLITMV || get_tx_type_4x4(xd, 0) == DCT_DCT) {
xd->itxm_add_y_block(xd->plane[0].qcoeff,
xd->block[0].dequant,
xd->plane[0].dst.buf, xd->plane[0].dst.stride, xd);
xd->itxm_add_uv_block(xd->plane[1].qcoeff, xd->block[16].dequant,
xd->plane[1].dst.buf, xd->plane[1].dst.stride, xd->plane[1].eobs);
xd->itxm_add_uv_block(xd->plane[2].qcoeff, xd->block[16].dequant,
xd->plane[2].dst.buf, xd->plane[1].dst.stride, xd->plane[2].eobs);
} else {
for (i = 0; i < 16; i++) {
tx_type = get_tx_type_4x4(xd, i);
dequant_add_y(xd, tx_type, i);
}
xd->itxm_add_uv_block(xd->plane[1].qcoeff, xd->block[16].dequant,
xd->plane[1].dst.buf, xd->plane[1].dst.stride,
xd->plane[1].eobs);
xd->itxm_add_uv_block(xd->plane[2].qcoeff, xd->block[16].dequant,
xd->plane[2].dst.buf, xd->plane[1].dst.stride,
xd->plane[2].eobs);
}
}
static INLINE void decode_sby_32x32(MACROBLOCKD *mb, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) - 1, bw = 1 << bwl;
const int bhl = mb_height_log2(bsize) - 1, bh = 1 << bhl;
const int y_count = bw * bh;
int n;
for (n = 0; n < y_count; n++) {
const int x_idx = n & (bw - 1);
const int y_idx = n >> bwl;
const int y_offset = (y_idx * 32) * mb->plane[0].dst.stride + (x_idx * 32);
vp9_dequant_idct_add_32x32(BLOCK_OFFSET(mb->plane[0].qcoeff, n, 1024),
mb->block[0].dequant ,
mb->plane[0].dst.buf + y_offset,
mb->plane[0].dst.stride,
mb->plane[0].eobs[n * 64]);
}
}
static INLINE void decode_sbuv_32x32(MACROBLOCKD *mb, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) - 1, bw = (1 << bwl) / 2;
const int bhl = mb_height_log2(bsize) - 1, bh = (1 << bhl) / 2;
const int uv_count = bw * bh;
int n;
for (n = 0; n < uv_count; n++) {
const int x_idx = n & (bw - 1);
const int y_idx = n >> (bwl - 1);
const int uv_offset = (y_idx * 32) * mb->plane[1].dst.stride +
(x_idx * 32);
vp9_dequant_idct_add_32x32(BLOCK_OFFSET(mb->plane[1].qcoeff, n, 1024),
mb->block[16].dequant,
mb->plane[1].dst.buf + uv_offset,
mb->plane[1].dst.stride,
mb->plane[1].eobs[n * 64]);
vp9_dequant_idct_add_32x32(BLOCK_OFFSET(mb->plane[2].qcoeff, n, 1024),
mb->block[20].dequant,
mb->plane[2].dst.buf + uv_offset,
mb->plane[1].dst.stride,
mb->plane[2].eobs[n * 64]);
}
}
static INLINE void decode_sby_16x16(MACROBLOCKD *mb, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize), bw = 1 << bwl;
const int bhl = mb_height_log2(bsize), bh = 1 << bhl;
const int y_count = bw * bh;
int n;
for (n = 0; n < y_count; n++) {
const int x_idx = n & (bw - 1);
const int y_idx = n >> bwl;
const int y_offset = (y_idx * 16) * mb->plane[0].dst.stride + (x_idx * 16);
const TX_TYPE tx_type = get_tx_type_16x16(mb,
(y_idx * (4 * bw) + x_idx) * 4);
vp9_dequant_iht_add_16x16_c(tx_type,
BLOCK_OFFSET(mb->plane[0].qcoeff, n, 256),
mb->block[0].dequant,
mb->plane[0].dst.buf + y_offset,
mb->plane[0].dst.stride,
mb->plane[0].eobs[n * 16]);
}
}
static INLINE void decode_sbuv_16x16(MACROBLOCKD *mb, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize), bw = (1 << bwl) / 2;
const int bhl = mb_height_log2(bsize), bh = (1 << bhl) / 2;
const int uv_count = bw * bh;
int n;
assert(bsize >= BLOCK_SIZE_SB32X32);
for (n = 0; n < uv_count; n++) {
const int x_idx = n & (bw - 1);
const int y_idx = n >> (bwl - 1);
const int uv_offset = (y_idx * 16) * mb->plane[1].dst.stride + (x_idx * 16);
vp9_dequant_idct_add_16x16(BLOCK_OFFSET(mb->plane[1].qcoeff, n, 256),
mb->block[16].dequant,
mb->plane[1].dst.buf + uv_offset,
mb->plane[1].dst.stride,
mb->plane[1].eobs[n * 16]);
vp9_dequant_idct_add_16x16(BLOCK_OFFSET(mb->plane[2].qcoeff, n, 256),
mb->block[20].dequant,
mb->plane[2].dst.buf + uv_offset,
mb->plane[1].dst.stride,
mb->plane[2].eobs[n * 16]);
}
}
static INLINE void decode_sby_8x8(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 1, bw = 1 << bwl;
const int bhl = mb_height_log2(bsize) + 1, bh = 1 << bhl;
const int y_count = bw * bh;
int n;
// luma
for (n = 0; n < y_count; n++) {
const int x_idx = n & (bw - 1);
const int y_idx = n >> bwl;
const int y_offset = (y_idx * 8) * xd->plane[0].dst.stride + (x_idx * 8);
const TX_TYPE tx_type = get_tx_type_8x8(xd,
(y_idx * (2 * bw) + x_idx) * 2);
vp9_dequant_iht_add_8x8_c(tx_type,
BLOCK_OFFSET(xd->plane[0].qcoeff, n, 64),
xd->block[0].dequant,
xd->plane[0].dst.buf + y_offset,
xd->plane[0].dst.stride,
xd->plane[0].eobs[n * 4]);
}
}
static INLINE void decode_sbuv_8x8(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 1, bw = 1 << (bwl - 1);
const int bhl = mb_height_log2(bsize) + 1, bh = 1 << (bhl - 1);
const int uv_count = bw * bh;
int n;
// chroma
for (n = 0; n < uv_count; n++) {
const int x_idx = n & (bw - 1);
const int y_idx = n >> (bwl - 1);
const int uv_offset = (y_idx * 8) * xd->plane[1].dst.stride + (x_idx * 8);
vp9_dequant_idct_add_8x8(BLOCK_OFFSET(xd->plane[1].qcoeff, n, 64),
xd->block[16].dequant,
xd->plane[1].dst.buf + uv_offset,
xd->plane[1].dst.stride,
xd->plane[1].eobs[n * 4]);
vp9_dequant_idct_add_8x8(BLOCK_OFFSET(xd->plane[2].qcoeff, n, 64),
xd->block[20].dequant,
xd->plane[2].dst.buf + uv_offset,
xd->plane[1].dst.stride,
xd->plane[2].eobs[n * 4]);
}
}
static INLINE void decode_sby_4x4(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 2, bw = 1 << bwl;
const int bhl = mb_height_log2(bsize) + 2, bh = 1 << bhl;
const int y_count = bw * bh;
int n;
for (n = 0; n < y_count; n++) {
const int x_idx = n & (bw - 1);
const int y_idx = n >> bwl;
const int y_offset = (y_idx * 4) * xd->plane[0].dst.stride + (x_idx * 4);
const TX_TYPE tx_type = get_tx_type_4x4(xd, n);
if (tx_type == DCT_DCT) {
xd->itxm_add(BLOCK_OFFSET(xd->plane[0].qcoeff, n, 16),
xd->block[0].dequant,
xd->plane[0].dst.buf + y_offset, xd->plane[0].dst.stride,
xd->plane[0].eobs[n]);
} else {
vp9_dequant_iht_add_c(tx_type,
BLOCK_OFFSET(xd->plane[0].qcoeff, n, 16),
xd->block[0].dequant,
xd->plane[0].dst.buf + y_offset,
xd->plane[0].dst.stride, xd->plane[0].eobs[n]);
}
}
}
static INLINE void decode_sbuv_4x4(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 2, bw = 1 << (bwl - 1);
const int bhl = mb_height_log2(bsize) + 2, bh = 1 << (bhl - 1);
const int uv_count = bw * bh;
int n;
for (n = 0; n < uv_count; n++) {
const int x_idx = n & (bw - 1);
const int y_idx = n >> (bwl - 1);
const int uv_offset = (y_idx * 4) * xd->plane[1].dst.stride + (x_idx * 4);
xd->itxm_add(BLOCK_OFFSET(xd->plane[1].qcoeff, n, 16),
xd->block[16].dequant,
xd->plane[1].dst.buf + uv_offset, xd->plane[1].dst.stride,
xd->plane[1].eobs[n]);
xd->itxm_add(BLOCK_OFFSET(xd->plane[2].qcoeff, n, 16),
xd->block[20].dequant,
xd->plane[2].dst.buf + uv_offset, xd->plane[1].dst.stride,
xd->plane[2].eobs[n]);
}
}
// TODO(jingning): combine luma and chroma dequantization and inverse
// transform into a single function looping over planes.
static void decode_sb_32x32(MACROBLOCKD *mb, BLOCK_SIZE_TYPE bsize) {
decode_sby_32x32(mb, bsize);
if (bsize == BLOCK_SIZE_SB64X64)
decode_sbuv_32x32(mb, bsize);
else
decode_sbuv_16x16(mb, bsize);
}
static void decode_sb_16x16(MACROBLOCKD *mb, BLOCK_SIZE_TYPE bsize) {
decode_sby_16x16(mb, bsize);
if (bsize >= BLOCK_SIZE_SB32X32)
decode_sbuv_16x16(mb, bsize);
else
decode_sbuv_8x8(mb, bsize);
}
static void decode_sb(VP9D_COMP *pbi, MACROBLOCKD *xd, int mb_row, int mb_col,
vp9_reader *r, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize), bhl = mb_height_log2(bsize);
const int bw = 1 << bwl, bh = 1 << bhl;
int n, eobtotal;
VP9_COMMON *const pc = &pbi->common;
MODE_INFO *mi = xd->mode_info_context;
const int mis = pc->mode_info_stride;
assert(mi->mbmi.sb_type == bsize);
if (pbi->common.frame_type != KEY_FRAME)
vp9_setup_interp_filters(xd, mi->mbmi.interp_filter, pc);
// generate prediction
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) {
vp9_build_intra_predictors_sby_s(xd, bsize);
vp9_build_intra_predictors_sbuv_s(xd, bsize);
} else {
vp9_build_inter_predictors_sb(xd, mb_row, mb_col, bsize);
}
if (mi->mbmi.mb_skip_coeff) {
vp9_reset_sb_tokens_context(xd, bsize);
#if CONFIG_CODE_NONZEROCOUNT
vpx_memset(mi->mbmi.nzcs, 0, 384 * sizeof(mi->mbmi.nzcs[0]));
#endif
} else {
// re-initialize macroblock dequantizer before detokenization
if (xd->segmentation_enabled)
mb_init_dequantizer(pbi, xd);
// dequantization and idct
eobtotal = vp9_decode_tokens(pbi, xd, r, bsize);
if (eobtotal == 0) { // skip loopfilter
for (n = 0; n < bw * bh; n++) {
const int x_idx = n & (bw - 1), y_idx = n >> bwl;
if (mb_col + x_idx < pc->mb_cols && mb_row + y_idx < pc->mb_rows)
mi[y_idx * mis + x_idx].mbmi.mb_skip_coeff = 1;
}
} else {
switch (xd->mode_info_context->mbmi.txfm_size) {
case TX_32X32:
decode_sb_32x32(xd, bsize);
break;
case TX_16X16:
decode_sb_16x16(xd, bsize);
break;
case TX_8X8:
decode_sby_8x8(xd, bsize);
decode_sbuv_8x8(xd, bsize);
break;
case TX_4X4:
decode_sby_4x4(xd, bsize);
decode_sbuv_4x4(xd, bsize);
break;
default: assert(0);
}
}
}
#if CONFIG_CODE_NONZEROCOUNT
propagate_nzcs(&pbi->common, xd);
#endif
}
// TODO(jingning): Need to merge SB and MB decoding. The MB decoding currently
// couples special handles on I8x8, B_PRED, and splitmv modes.
static void decode_mb(VP9D_COMP *pbi, MACROBLOCKD *xd,
int mb_row, int mb_col,
vp9_reader *r) {
int eobtotal = 0;
const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode;
const int tx_size = xd->mode_info_context->mbmi.txfm_size;
assert(!xd->mode_info_context->mbmi.sb_type);
//mode = xd->mode_info_context->mbmi.mode;
if (pbi->common.frame_type != KEY_FRAME)
vp9_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter,
&pbi->common);
// do prediction
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) {
if (mode != I8X8_PRED) {
vp9_build_intra_predictors_sbuv_s(xd, BLOCK_SIZE_MB16X16);
if (mode != I4X4_PRED)
vp9_build_intra_predictors_sby_s(xd, BLOCK_SIZE_MB16X16);
}
} else {
#if 0 // def DEC_DEBUG
if (dec_debug)
printf("Decoding mb: %d %d interp %d\n",
xd->mode_info_context->mbmi.mode, tx_size,
xd->mode_info_context->mbmi.interp_filter);
#endif
vp9_build_inter_predictors_sb(xd, mb_row, mb_col, BLOCK_SIZE_MB16X16);
}
if (xd->mode_info_context->mbmi.mb_skip_coeff) {
vp9_reset_sb_tokens_context(xd, BLOCK_SIZE_MB16X16);
} else {
// re-initialize macroblock dequantizer before detokenization
if (xd->segmentation_enabled)
mb_init_dequantizer(pbi, xd);
if (!vp9_reader_has_error(r)) {
#if CONFIG_NEWBINTRAMODES
if (mode != I4X4_PRED)
#endif
eobtotal = vp9_decode_tokens(pbi, xd, r, BLOCK_SIZE_MB16X16);
}
}
if (eobtotal == 0 &&
mode != I4X4_PRED &&
mode != SPLITMV &&
mode != I8X8_PRED &&
!vp9_reader_has_error(r)) {
xd->mode_info_context->mbmi.mb_skip_coeff = 1;
} else {
#if 0 // def DEC_DEBUG
if (dec_debug)
printf("Decoding mb: %d %d\n", xd->mode_info_context->mbmi.mode, tx_size);
#endif
if (tx_size == TX_16X16) {
decode_16x16(xd);
} else if (tx_size == TX_8X8) {
decode_8x8(xd);
} else {
decode_4x4(pbi, xd, r);
}
}
#ifdef DEC_DEBUG
if (dec_debug) {
int i, j;
printf("\n");
printf("predictor y\n");
for (i = 0; i < 16; i++) {
for (j = 0; j < 16; j++)
printf("%3d ", xd->predictor[i * 16 + j]);
printf("\n");
}
printf("\n");
printf("final y\n");
for (i = 0; i < 16; i++) {
for (j = 0; j < 16; j++)
printf("%3d ", xd->plane[0].dst.buf[i * xd->plane[0].dst.stride + j]);
printf("\n");
}
printf("\n");
printf("final u\n");
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++)
printf("%3d ", xd->plane[1].dst.buf[i * xd->plane[1].dst.stride + j]);
printf("\n");
}
printf("\n");
printf("final v\n");
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++)
printf("%3d ", xd->plane[2].dst.buf[i * xd->plane[1].dst.stride + j]);
printf("\n");
}
fflush(stdout);
}
#endif
}
static int get_delta_q(vp9_reader *r, int *dq) {
const int old_value = *dq;
if (vp9_read_bit(r)) { // Update bit
const int value = vp9_read_literal(r, 4);
*dq = vp9_read_and_apply_sign(r, value);
}
// Trigger a quantizer update if the delta-q value has changed
return old_value != *dq;
}
#ifdef PACKET_TESTING
#include <stdio.h>
FILE *vpxlog = 0;
#endif
static void set_offsets(VP9D_COMP *pbi, BLOCK_SIZE_TYPE bsize,
int mb_row, int mb_col) {
const int bh = 1 << mb_height_log2(bsize);
const int bw = 1 << mb_width_log2(bsize);
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
const int mb_idx = mb_row * cm->mode_info_stride + mb_col;
const YV12_BUFFER_CONFIG *dst_fb = &cm->yv12_fb[cm->new_fb_idx];
const int recon_yoffset = (16 * mb_row) * dst_fb->y_stride + (16 * mb_col);
const int recon_uvoffset = (8 * mb_row) * dst_fb->uv_stride + (8 * mb_col);
xd->mode_info_context = cm->mi + mb_idx;
xd->mode_info_context->mbmi.sb_type = bsize;
xd->prev_mode_info_context = cm->prev_mi + mb_idx;
xd->above_context = cm->above_context + mb_col;
xd->left_context = cm->left_context + mb_row % 4;
// Distance of Mb to the various image edges. These are specified to 8th pel
// as they are always compared to values that are in 1/8th pel units
set_mb_row(cm, xd, mb_row, bh);
set_mb_col(cm, xd, mb_col, bw);
xd->plane[0].dst.buf = dst_fb->y_buffer + recon_yoffset;
xd->plane[1].dst.buf = dst_fb->u_buffer + recon_uvoffset;
xd->plane[2].dst.buf = dst_fb->v_buffer + recon_uvoffset;
}
static void set_refs(VP9D_COMP *pbi, int mb_row, int mb_col) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
if (mbmi->ref_frame > INTRA_FRAME) {
// Select the appropriate reference frame for this MB
const int fb_idx = cm->active_ref_idx[mbmi->ref_frame - 1];
const YV12_BUFFER_CONFIG *cfg = &cm->yv12_fb[fb_idx];
xd->scale_factor[0] = cm->active_ref_scale[mbmi->ref_frame - 1];
xd->scale_factor_uv[0] = cm->active_ref_scale[mbmi->ref_frame - 1];
setup_pred_block(&xd->pre, cfg, mb_row, mb_col,
&xd->scale_factor[0], &xd->scale_factor_uv[0]);
xd->corrupted |= cfg->corrupted;
if (mbmi->second_ref_frame > INTRA_FRAME) {
// Select the appropriate reference frame for this MB
const int second_fb_idx = cm->active_ref_idx[mbmi->second_ref_frame - 1];
const YV12_BUFFER_CONFIG *second_cfg = &cm->yv12_fb[second_fb_idx];
xd->scale_factor[1] = cm->active_ref_scale[mbmi->second_ref_frame - 1];
xd->scale_factor_uv[1] = cm->active_ref_scale[mbmi->second_ref_frame - 1];
setup_pred_block(&xd->second_pre, second_cfg, mb_row, mb_col,
&xd->scale_factor[1], &xd->scale_factor_uv[1]);
xd->corrupted |= second_cfg->corrupted;
}
}
}
static void decode_modes_b(VP9D_COMP *pbi, int mb_row, int mb_col,
vp9_reader *r, BLOCK_SIZE_TYPE bsize) {
MACROBLOCKD *const xd = &pbi->mb;
set_offsets(pbi, bsize, mb_row, mb_col);
vp9_decode_mb_mode_mv(pbi, xd, mb_row, mb_col, r);
set_refs(pbi, mb_row, mb_col);
// TODO(jingning): merge decode_sb_ and decode_mb_
if (bsize > BLOCK_SIZE_MB16X16)
decode_sb(pbi, xd, mb_row, mb_col, r, bsize);
else
decode_mb(pbi, xd, mb_row, mb_col, r);
xd->corrupted |= vp9_reader_has_error(r);
}
static void decode_modes_sb(VP9D_COMP *pbi, int mb_row, int mb_col,
vp9_reader* r, BLOCK_SIZE_TYPE bsize) {
VP9_COMMON *const pc = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
int bsl = mb_width_log2(bsize), bs = (1 << bsl) / 2;
int n;
PARTITION_TYPE partition = PARTITION_NONE;
BLOCK_SIZE_TYPE subsize;
if (mb_row >= pc->mb_rows || mb_col >= pc->mb_cols)
return;
if (bsize > BLOCK_SIZE_MB16X16) {
// read the partition information
partition = treed_read(r, vp9_partition_tree,
pc->fc.partition_prob[bsl - 1]);
pc->fc.partition_counts[bsl - 1][partition]++;
}
switch (partition) {
case PARTITION_NONE:
subsize = bsize;
decode_modes_b(pbi, mb_row, mb_col, r, subsize);
break;
#if CONFIG_SBSEGMENT
case PARTITION_HORZ:
subsize = (bsize == BLOCK_SIZE_SB64X64) ? BLOCK_SIZE_SB64X32 :
BLOCK_SIZE_SB32X16;
decode_modes_b(pbi, mb_row, mb_col, r, subsize);
if ((mb_row + bs) < pc->mb_rows)
decode_modes_b(pbi, mb_row + bs, mb_col, r, subsize);
break;
case PARTITION_VERT:
subsize = (bsize == BLOCK_SIZE_SB64X64) ? BLOCK_SIZE_SB32X64 :
BLOCK_SIZE_SB16X32;
decode_modes_b(pbi, mb_row, mb_col, r, subsize);
if ((mb_col + bs) < pc->mb_cols)
decode_modes_b(pbi, mb_row, mb_col + bs, r, subsize);
break;
#endif
case PARTITION_SPLIT:
subsize = (bsize == BLOCK_SIZE_SB64X64) ? BLOCK_SIZE_SB32X32 :
BLOCK_SIZE_MB16X16;
for (n = 0; n < 4; n++) {
int j = n >> 1, i = n & 0x01;
if (subsize == BLOCK_SIZE_SB32X32)
xd->sb_index = n;
else
xd->mb_index = n;
decode_modes_sb(pbi, mb_row + j * bs, mb_col + i * bs, r, subsize);
}
break;
default:
assert(0);
}
}
/* Decode a row of Superblocks (4x4 region of MBs) */
static void decode_tile(VP9D_COMP *pbi, vp9_reader* r) {
VP9_COMMON *const pc = &pbi->common;
int mb_row, mb_col;
for (mb_row = pc->cur_tile_mb_row_start;
mb_row < pc->cur_tile_mb_row_end; mb_row += 4) {
// For a SB there are 2 left contexts, each pertaining to a MB row within
vpx_memset(pc->left_context, 0, sizeof(pc->left_context));
for (mb_col = pc->cur_tile_mb_col_start;
mb_col < pc->cur_tile_mb_col_end; mb_col += 4) {
decode_modes_sb(pbi, mb_row, mb_col, r, BLOCK_SIZE_SB64X64);
}
}
}
static void setup_token_decoder(VP9D_COMP *pbi,
const uint8_t *data,
vp9_reader *r) {
VP9_COMMON *pc = &pbi->common;
const uint8_t *data_end = pbi->source + pbi->source_sz;
const size_t partition_size = data_end - data;
// Validate the calculated partition length. If the buffer
// described by the partition can't be fully read, then restrict
// it to the portion that can be (for EC mode) or throw an error.
if (!read_is_valid(data, partition_size, data_end))
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition "
"%d length", 1);
if (vp9_reader_init(r, data, partition_size))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d", 1);
}
static void init_frame(VP9D_COMP *pbi) {
VP9_COMMON *const pc = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
if (pc->frame_type == KEY_FRAME) {
vp9_setup_past_independence(pc, xd);
// All buffers are implicitly updated on key frames.
pbi->refresh_frame_flags = (1 << NUM_REF_FRAMES) - 1;
} else if (pc->error_resilient_mode) {
vp9_setup_past_independence(pc, xd);
}
xd->mode_info_context = pc->mi;
xd->prev_mode_info_context = pc->prev_mi;
xd->frame_type = pc->frame_type;
xd->mode_info_context->mbmi.mode = DC_PRED;
xd->mode_info_stride = pc->mode_info_stride;
xd->corrupted = 0;
}
#if CONFIG_CODE_ZEROGROUP
static void read_zpc_probs_common(VP9_COMMON *cm,
vp9_reader* bc,
TX_SIZE tx_size) {
int r, b, p, n;
vp9_zpc_probs *zpc_probs;
vp9_prob upd = ZPC_UPDATE_PROB;
if (!get_zpc_used(tx_size)) return;
if (!vp9_read_bit(bc)) return;
if (tx_size == TX_32X32) {
zpc_probs = &cm->fc.zpc_probs_32x32;
} else if (tx_size == TX_16X16) {
zpc_probs = &cm->fc.zpc_probs_16x16;
} else if (tx_size == TX_8X8) {
zpc_probs = &cm->fc.zpc_probs_8x8;
} else {
zpc_probs = &cm->fc.zpc_probs_4x4;
}
for (r = 0; r < REF_TYPES; ++r) {
for (b = 0; b < ZPC_BANDS; ++b) {
for (p = 0; p < ZPC_PTOKS; ++p) {
for (n = 0; n < ZPC_NODES; ++n) {
vp9_prob *q = &(*zpc_probs)[r][b][p][n];
#if USE_ZPC_EXTRA == 0
if (n == 1) continue;
#endif
if (vp9_read(bc, upd)) {
*q = read_prob_diff_update(bc, *q);
}
}
}
}
}
}
static void read_zpc_probs(VP9_COMMON *cm,
vp9_reader* bc) {
read_zpc_probs_common(cm, bc, TX_4X4);
if (cm->txfm_mode != ONLY_4X4)
read_zpc_probs_common(cm, bc, TX_8X8);
if (cm->txfm_mode > ALLOW_8X8)
read_zpc_probs_common(cm, bc, TX_16X16);
if (cm->txfm_mode > ALLOW_16X16)
read_zpc_probs_common(cm, bc, TX_32X32);
}
#endif // CONFIG_CODE_ZEROGROUP
#if CONFIG_CODE_NONZEROCOUNT
static void read_nzc_probs_common(VP9_COMMON *cm,
vp9_reader *rd,
TX_SIZE tx_size) {
int c, r, b, t;
int tokens, nodes;
vp9_prob *nzc_probs;
vp9_prob upd;
if (!get_nzc_used(tx_size)) return;
if (!vp9_read_bit(rd)) return;
if (tx_size == TX_32X32) {
tokens = NZC32X32_TOKENS;
nzc_probs = cm->fc.nzc_probs_32x32[0][0][0];
upd = NZC_UPDATE_PROB_32X32;
} else if (tx_size == TX_16X16) {
tokens = NZC16X16_TOKENS;
nzc_probs = cm->fc.nzc_probs_16x16[0][0][0];
upd = NZC_UPDATE_PROB_16X16;
} else if (tx_size == TX_8X8) {
tokens = NZC8X8_TOKENS;
nzc_probs = cm->fc.nzc_probs_8x8[0][0][0];
upd = NZC_UPDATE_PROB_8X8;
} else {
tokens = NZC4X4_TOKENS;
nzc_probs = cm->fc.nzc_probs_4x4[0][0][0];
upd = NZC_UPDATE_PROB_4X4;
}
nodes = tokens - 1;
for (c = 0; c < MAX_NZC_CONTEXTS; ++c) {
for (r = 0; r < REF_TYPES; ++r) {
for (b = 0; b < BLOCK_TYPES; ++b) {
int offset = c * REF_TYPES * BLOCK_TYPES + r * BLOCK_TYPES + b;
int offset_nodes = offset * nodes;
for (t = 0; t < nodes; ++t) {
vp9_prob *p = &nzc_probs[offset_nodes + t];
if (vp9_read(rd, upd)) {
*p = read_prob_diff_update(rd, *p);
}
}
}
}
}
}
static void read_nzc_pcat_probs(VP9_COMMON *cm, vp9_reader *r) {
int c, t, b;
vp9_prob upd = NZC_UPDATE_PROB_PCAT;
if (!(get_nzc_used(TX_4X4) || get_nzc_used(TX_8X8) ||
get_nzc_used(TX_16X16) || get_nzc_used(TX_32X32)))
return;
if (!vp9_read_bit(r)) {
return;
}
for (c = 0; c < MAX_NZC_CONTEXTS; ++c) {
for (t = 0; t < NZC_TOKENS_EXTRA; ++t) {
int bits = vp9_extranzcbits[t + NZC_TOKENS_NOEXTRA];
for (b = 0; b < bits; ++b) {
vp9_prob *p = &cm->fc.nzc_pcat_probs[c][t][b];
if (vp9_read(r, upd)) {
*p = read_prob_diff_update(r, *p);
}
}
}
}
}
static void read_nzc_probs(VP9_COMMON *cm, vp9_reader *r) {
read_nzc_probs_common(cm, r, TX_4X4);
if (cm->txfm_mode != ONLY_4X4)
read_nzc_probs_common(cm, r, TX_8X8);
if (cm->txfm_mode > ALLOW_8X8)
read_nzc_probs_common(cm, r, TX_16X16);
if (cm->txfm_mode > ALLOW_16X16)
read_nzc_probs_common(cm, r, TX_32X32);
#ifdef NZC_PCAT_UPDATE
read_nzc_pcat_probs(cm, r);
#endif
}
#endif // CONFIG_CODE_NONZEROCOUNT
static void read_coef_probs_common(VP9D_COMP *pbi,
vp9_reader *r,
vp9_coeff_probs *coef_probs,
TX_SIZE tx_size) {
#if CONFIG_MODELCOEFPROB && MODEL_BASED_UPDATE
const int entropy_nodes_update = UNCONSTRAINED_UPDATE_NODES;
#else
const int entropy_nodes_update = ENTROPY_NODES;
#endif
int i, j, k, l, m;
if (vp9_read_bit(r)) {
for (i = 0; i < BLOCK_TYPES; i++) {
for (j = 0; j < REF_TYPES; j++) {
for (k = 0; k < COEF_BANDS; k++) {
for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
#if CONFIG_CODE_NONZEROCOUNT
const int mstart = get_nzc_used(tx_size);
#else
const int mstart = 0;
#endif
if (l >= 3 && k == 0)
continue;
for (m = mstart; m < entropy_nodes_update; m++) {
vp9_prob *const p = coef_probs[i][j][k][l] + m;
if (vp9_read(r, vp9_coef_update_prob[m])) {
*p = read_prob_diff_update(r, *p);
#if CONFIG_MODELCOEFPROB && MODEL_BASED_UPDATE
if (m == UNCONSTRAINED_NODES - 1)
vp9_get_model_distribution(*p, coef_probs[i][j][k][l], i, j);
#endif
}
}
}
}
}
}
}
}
static void read_coef_probs(VP9D_COMP *pbi, vp9_reader *r) {
const TXFM_MODE mode = pbi->common.txfm_mode;
FRAME_CONTEXT *const fc = &pbi->common.fc;
read_coef_probs_common(pbi, r, fc->coef_probs_4x4, TX_4X4);
if (mode != ONLY_4X4)
read_coef_probs_common(pbi, r, fc->coef_probs_8x8, TX_8X8);
if (mode > ALLOW_8X8)
read_coef_probs_common(pbi, r, fc->coef_probs_16x16, TX_16X16);
if (mode > ALLOW_16X16)
read_coef_probs_common(pbi, r, fc->coef_probs_32x32, TX_32X32);
}
static void update_frame_size(VP9D_COMP *pbi) {
VP9_COMMON *cm = &pbi->common;
const int width = multiple16(cm->width);
const int height = multiple16(cm->height);
cm->mb_rows = height / 16;
cm->mb_cols = width / 16;
cm->MBs = cm->mb_rows * cm->mb_cols;
cm->mode_info_stride = cm->mb_cols + 1;
memset(cm->mip, 0,
(cm->mb_cols + 1) * (cm->mb_rows + 1) * sizeof(MODE_INFO));
vp9_update_mode_info_border(cm, cm->mip);
cm->mi = cm->mip + cm->mode_info_stride + 1;
cm->prev_mi = cm->prev_mip + cm->mode_info_stride + 1;
vp9_update_mode_info_in_image(cm, cm->mi);
}
static void setup_segmentation(VP9_COMMON *pc, MACROBLOCKD *xd, vp9_reader *r) {
int i, j;
xd->update_mb_segmentation_map = 0;
xd->update_mb_segmentation_data = 0;
xd->segmentation_enabled = vp9_read_bit(r);
if (xd->segmentation_enabled) {
// Segmentation map update
xd->update_mb_segmentation_map = vp9_read_bit(r);
if (xd->update_mb_segmentation_map) {
for (i = 0; i < MB_FEATURE_TREE_PROBS; i++)
xd->mb_segment_tree_probs[i] = vp9_read_bit(r) ? vp9_read_prob(r)
: MAX_PROB;
pc->temporal_update = vp9_read_bit(r);
if (pc->temporal_update) {
const vp9_prob *p = xd->mb_segment_tree_probs;
vp9_prob *mispred_p = xd->mb_segment_mispred_tree_probs;
const int c0 = p[0] * p[1];
const int c1 = p[0] * (256 - p[1]);
const int c2 = (256 - p[0]) * p[2];
const int c3 = (256 - p[0]) * (256 - p[2]);
mispred_p[0] = get_binary_prob(c1, c2 + c3);
mispred_p[1] = get_binary_prob(c0, c2 + c3);
mispred_p[2] = get_binary_prob(c0 + c1, c3);
mispred_p[3] = get_binary_prob(c0 + c1, c2);
for (i = 0; i < PREDICTION_PROBS; i++)
pc->segment_pred_probs[i] = vp9_read_bit(r) ? vp9_read_prob(r)
: MAX_PROB;
} else {
for (i = 0; i < PREDICTION_PROBS; i++)
pc->segment_pred_probs[i] = MAX_PROB;
}
}
// Segmentation data update
xd->update_mb_segmentation_data = vp9_read_bit(r);
if (xd->update_mb_segmentation_data) {
xd->mb_segment_abs_delta = vp9_read_bit(r);
vp9_clearall_segfeatures(xd);
for (i = 0; i < MAX_MB_SEGMENTS; i++) {
for (j = 0; j < SEG_LVL_MAX; j++) {
int data = 0;
const int feature_enabled = vp9_read_bit(r);
if (feature_enabled) {
vp9_enable_segfeature(xd, i, j);
data = decode_unsigned_max(r, vp9_seg_feature_data_max(j));
if (vp9_is_segfeature_signed(j))
data = vp9_read_and_apply_sign(r, data);
}
vp9_set_segdata(xd, i, j, data);
}
}
}
}
}
static void setup_pred_probs(VP9_COMMON *pc, vp9_reader *r) {
// Read common prediction model status flag probability updates for the
// reference frame
if (pc->frame_type == KEY_FRAME) {
// Set the prediction probabilities to defaults
pc->ref_pred_probs[0] = DEFAULT_PRED_PROB_0;
pc->ref_pred_probs[1] = DEFAULT_PRED_PROB_1;
pc->ref_pred_probs[2] = DEFAULT_PRED_PROB_2;
} else {
int i;
for (i = 0; i < PREDICTION_PROBS; ++i)
if (vp9_read_bit(r))
pc->ref_pred_probs[i] = vp9_read_prob(r);
}
}
static void setup_loopfilter(VP9_COMMON *pc, MACROBLOCKD *xd, vp9_reader *r) {
pc->filter_type = (LOOPFILTER_TYPE) vp9_read_bit(r);
pc->filter_level = vp9_read_literal(r, 6);
pc->sharpness_level = vp9_read_literal(r, 3);
#if CONFIG_LOOP_DERING
if (vp9_read_bit(r))
pc->dering_enabled = 1 + vp9_read_literal(r, 4);
else
pc->dering_enabled = 0;
#endif
// Read in loop filter deltas applied at the MB level based on mode or ref
// frame.
xd->mode_ref_lf_delta_update = 0;
xd->mode_ref_lf_delta_enabled = vp9_read_bit(r);
if (xd->mode_ref_lf_delta_enabled) {
xd->mode_ref_lf_delta_update = vp9_read_bit(r);
if (xd->mode_ref_lf_delta_update) {
int i;
for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
if (vp9_read_bit(r)) {
const int value = vp9_read_literal(r, 6);
xd->ref_lf_deltas[i] = vp9_read_and_apply_sign(r, value);
}
}
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
if (vp9_read_bit(r)) {
const int value = vp9_read_literal(r, 6);
xd->mode_lf_deltas[i] = vp9_read_and_apply_sign(r, value);
}
}
}
}
}
static void setup_quantization(VP9D_COMP *pbi, vp9_reader *r) {
// Read the default quantizers
VP9_COMMON *const pc = &pbi->common;
pc->base_qindex = vp9_read_literal(r, QINDEX_BITS);
if (get_delta_q(r, &pc->y_dc_delta_q) |
get_delta_q(r, &pc->uv_dc_delta_q) |
get_delta_q(r, &pc->uv_ac_delta_q))
vp9_init_de_quantizer(pbi);
mb_init_dequantizer(pbi, &pbi->mb); // MB level dequantizer setup
}
static const uint8_t *read_frame_size(VP9_COMMON *const pc, const uint8_t *data,
const uint8_t *data_end,
int *width, int *height) {
if (data + 4 < data_end) {
const int w = read_le16(data);
const int h = read_le16(data + 2);
if (w <= 0)
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame width");
if (h <= 0)
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame height");
*width = w;
*height = h;
data += 4;
} else {
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Failed to read frame size");
}
return data;
}
static const uint8_t *setup_frame_size(VP9D_COMP *pbi, int scaling_active,
const uint8_t *data,
const uint8_t *data_end) {
// If error concealment is enabled we should only parse the new size
// if we have enough data. Otherwise we will end up with the wrong size.
VP9_COMMON *const pc = &pbi->common;
int display_width = pc->display_width;
int display_height = pc->display_height;
int width = pc->width;
int height = pc->height;
if (scaling_active)
data = read_frame_size(pc, data, data_end, &display_width, &display_height);
data = read_frame_size(pc, data, data_end, &width, &height);
if (pc->width != width || pc->height != height) {
if (!pbi->initial_width || !pbi->initial_height) {
if (vp9_alloc_frame_buffers(pc, width, height))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
pbi->initial_width = width;
pbi->initial_height = height;
} else {
if (width > pbi->initial_width)
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Frame width too large");
if (height > pbi->initial_height)
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Frame height too large");
}
pc->width = width;
pc->height = height;
pc->display_width = scaling_active ? display_width : width;
pc->display_height = scaling_active ? display_height : height;
update_frame_size(pbi);
}
return data;
}
static void update_frame_context(VP9D_COMP *pbi) {
FRAME_CONTEXT *const fc = &pbi->common.fc;
vp9_copy(fc->pre_coef_probs_4x4, fc->coef_probs_4x4);
vp9_copy(fc->pre_coef_probs_8x8, fc->coef_probs_8x8);
vp9_copy(fc->pre_coef_probs_16x16, fc->coef_probs_16x16);
vp9_copy(fc->pre_coef_probs_32x32, fc->coef_probs_32x32);
vp9_copy(fc->pre_ymode_prob, fc->ymode_prob);
vp9_copy(fc->pre_sb_ymode_prob, fc->sb_ymode_prob);
vp9_copy(fc->pre_uv_mode_prob, fc->uv_mode_prob);
vp9_copy(fc->pre_bmode_prob, fc->bmode_prob);
vp9_copy(fc->pre_i8x8_mode_prob, fc->i8x8_mode_prob);
vp9_copy(fc->pre_sub_mv_ref_prob, fc->sub_mv_ref_prob);
vp9_copy(fc->pre_mbsplit_prob, fc->mbsplit_prob);
vp9_copy(fc->pre_partition_prob, fc->partition_prob);
fc->pre_nmvc = fc->nmvc;
vp9_zero(fc->coef_counts_4x4);
vp9_zero(fc->coef_counts_8x8);
vp9_zero(fc->coef_counts_16x16);
vp9_zero(fc->coef_counts_32x32);
vp9_zero(fc->eob_branch_counts);
vp9_zero(fc->ymode_counts);
vp9_zero(fc->sb_ymode_counts);
vp9_zero(fc->uv_mode_counts);
vp9_zero(fc->bmode_counts);
vp9_zero(fc->i8x8_mode_counts);
vp9_zero(fc->sub_mv_ref_counts);
vp9_zero(fc->mbsplit_counts);
vp9_zero(fc->NMVcount);
vp9_zero(fc->mv_ref_ct);
vp9_zero(fc->partition_counts);
#if CONFIG_COMP_INTERINTRA_PRED
fc->pre_interintra_prob = fc->interintra_prob;
vp9_zero(fc->interintra_counts);
#endif
#if CONFIG_CODE_NONZEROCOUNT
vp9_copy(fc->pre_nzc_probs_4x4, fc->nzc_probs_4x4);
vp9_copy(fc->pre_nzc_probs_8x8, fc->nzc_probs_8x8);
vp9_copy(fc->pre_nzc_probs_16x16, fc->nzc_probs_16x16);
vp9_copy(fc->pre_nzc_probs_32x32, fc->nzc_probs_32x32);
vp9_copy(fc->pre_nzc_pcat_probs, fc->nzc_pcat_probs);
vp9_zero(fc->nzc_counts_4x4);
vp9_zero(fc->nzc_counts_8x8);
vp9_zero(fc->nzc_counts_16x16);
vp9_zero(fc->nzc_counts_32x32);
vp9_zero(fc->nzc_pcat_counts);
#endif
#if CONFIG_CODE_ZEROGROUP
vp9_copy(fc->pre_zpc_probs_4x4, fc->zpc_probs_4x4);
vp9_copy(fc->pre_zpc_probs_8x8, fc->zpc_probs_8x8);
vp9_copy(fc->pre_zpc_probs_16x16, fc->zpc_probs_16x16);
vp9_copy(fc->pre_zpc_probs_32x32, fc->zpc_probs_32x32);
vp9_zero(fc->zpc_counts_4x4);
vp9_zero(fc->zpc_counts_8x8);
vp9_zero(fc->zpc_counts_16x16);
vp9_zero(fc->zpc_counts_32x32);
#endif
}
static void decode_tiles(VP9D_COMP *pbi,
const uint8_t *data, int first_partition_size,
vp9_reader *header_bc, vp9_reader *residual_bc) {
VP9_COMMON *const pc = &pbi->common;
const uint8_t *data_ptr = data + first_partition_size;
int tile_row, tile_col, delta_log2_tiles;
vp9_get_tile_n_bits(pc, &pc->log2_tile_columns, &delta_log2_tiles);
while (delta_log2_tiles--) {
if (vp9_read_bit(header_bc)) {
pc->log2_tile_columns++;
} else {
break;
}
}
pc->log2_tile_rows = vp9_read_bit(header_bc);
if (pc->log2_tile_rows)
pc->log2_tile_rows += vp9_read_bit(header_bc);
pc->tile_columns = 1 << pc->log2_tile_columns;
pc->tile_rows = 1 << pc->log2_tile_rows;
vpx_memset(pc->above_context, 0,
sizeof(ENTROPY_CONTEXT_PLANES) * pc->mb_cols);
if (pbi->oxcf.inv_tile_order) {
const int n_cols = pc->tile_columns;
const uint8_t *data_ptr2[4][1 << 6];
vp9_reader UNINITIALIZED_IS_SAFE(bc_bak);
// pre-initialize the offsets, we're going to read in inverse order
data_ptr2[0][0] = data_ptr;
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
if (tile_row) {
const int size = read_le32(data_ptr2[tile_row - 1][n_cols - 1]);
data_ptr2[tile_row - 1][n_cols - 1] += 4;
data_ptr2[tile_row][0] = data_ptr2[tile_row - 1][n_cols - 1] + size;
}
for (tile_col = 1; tile_col < n_cols; tile_col++) {
const int size = read_le32(data_ptr2[tile_row][tile_col - 1]);
data_ptr2[tile_row][tile_col - 1] += 4;
data_ptr2[tile_row][tile_col] =
data_ptr2[tile_row][tile_col - 1] + size;
}
}
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
vp9_get_tile_row_offsets(pc, tile_row);
for (tile_col = n_cols - 1; tile_col >= 0; tile_col--) {
vp9_get_tile_col_offsets(pc, tile_col);
setup_token_decoder(pbi, data_ptr2[tile_row][tile_col], residual_bc);
decode_tile(pbi, residual_bc);
if (tile_row == pc->tile_rows - 1 && tile_col == n_cols - 1)
bc_bak = *residual_bc;
}
}
*residual_bc = bc_bak;
} else {
int has_more;
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
vp9_get_tile_row_offsets(pc, tile_row);
for (tile_col = 0; tile_col < pc->tile_columns; tile_col++) {
vp9_get_tile_col_offsets(pc, tile_col);
has_more = tile_col < pc->tile_columns - 1 ||
tile_row < pc->tile_rows - 1;
setup_token_decoder(pbi, data_ptr + (has_more ? 4 : 0), residual_bc);
decode_tile(pbi, residual_bc);
if (has_more) {
const int size = read_le32(data_ptr);
data_ptr += 4 + size;
}
}
}
}
}
int vp9_decode_frame(VP9D_COMP *pbi, const uint8_t **p_data_end) {
vp9_reader header_bc, residual_bc;
VP9_COMMON *const pc = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
const uint8_t *data = pbi->source;
const uint8_t *data_end = data + pbi->source_sz;
size_t first_partition_size = 0;
int i, corrupt_tokens = 0;
// printf("Decoding frame %d\n", pc->current_video_frame);
xd->corrupted = 0; // start with no corruption of current frame
pc->yv12_fb[pc->new_fb_idx].corrupted = 0;
if (data_end - data < 3) {
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet");
} else {
int scaling_active;
pc->last_frame_type = pc->frame_type;
pc->frame_type = (FRAME_TYPE)(data[0] & 1);
pc->version = (data[0] >> 1) & 7;
pc->show_frame = (data[0] >> 4) & 1;
scaling_active = (data[0] >> 5) & 1;
first_partition_size = read_le16(data + 1);
if (!read_is_valid(data, first_partition_size, data_end))
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition 0 length");
data += 3;
vp9_setup_version(pc);
if (pc->frame_type == KEY_FRAME) {
// When error concealment is enabled we should only check the sync
// code if we have enough bits available
if (data + 3 < data_end) {
if (data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a)
vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
}
data += 3;
}
data = setup_frame_size(pbi, scaling_active, data, data_end);
}
if ((!pbi->decoded_key_frame && pc->frame_type != KEY_FRAME) ||
pc->width == 0 || pc->height == 0) {
return -1;
}
init_frame(pbi);
// Reset the frame pointers to the current frame size
vp8_yv12_realloc_frame_buffer(&pc->yv12_fb[pc->new_fb_idx],
pc->width, pc->height,
VP9BORDERINPIXELS);
if (vp9_reader_init(&header_bc, data, first_partition_size))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder 0");
pc->clr_type = (YUV_TYPE)vp9_read_bit(&header_bc);
pc->clamp_type = (CLAMP_TYPE)vp9_read_bit(&header_bc);
pc->error_resilient_mode = vp9_read_bit(&header_bc);
xd->lossless = vp9_read_bit(&header_bc);
setup_loopfilter(pc, xd, &header_bc);
// Dummy read for now
vp9_read_literal(&header_bc, 2);
setup_quantization(pbi, &header_bc);
// Determine if the golden frame or ARF buffer should be updated and how.
// For all non key frames the GF and ARF refresh flags and sign bias
// flags must be set explicitly.
if (pc->frame_type == KEY_FRAME) {
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i)
pc->active_ref_idx[i] = pc->new_fb_idx;
} else {
// Should the GF or ARF be updated from the current frame
pbi->refresh_frame_flags = vp9_read_literal(&header_bc, NUM_REF_FRAMES);
// Select active reference frames
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
int ref_frame_num = vp9_read_literal(&header_bc, NUM_REF_FRAMES_LG2);
pc->active_ref_idx[i] = pc->ref_frame_map[ref_frame_num];
}
pc->ref_frame_sign_bias[GOLDEN_FRAME] = vp9_read_bit(&header_bc);
pc->ref_frame_sign_bias[ALTREF_FRAME] = vp9_read_bit(&header_bc);
// Is high precision mv allowed
xd->allow_high_precision_mv = vp9_read_bit(&header_bc);
// Read the type of subpel filter to use
pc->mcomp_filter_type = vp9_read_bit(&header_bc)
? SWITCHABLE
: vp9_read_literal(&header_bc, 2);
#if CONFIG_COMP_INTERINTRA_PRED
pc->use_interintra = vp9_read_bit(&header_bc);
#endif
// Calculate scaling factors for each of the 3 available references
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
const int idx = pc->active_ref_idx[i];
struct scale_factors *sf = &pc->active_ref_scale[i];
if (idx >= NUM_YV12_BUFFERS)
memset(sf, 0, sizeof(*sf));
else
vp9_setup_scale_factors_for_frame(sf, &pc->yv12_fb[idx],
pc->width, pc->height);
}
// To enable choice of different interpolation filters
vp9_setup_interp_filters(xd, pc->mcomp_filter_type, pc);
}
if (!pc->error_resilient_mode) {
pc->refresh_entropy_probs = vp9_read_bit(&header_bc);
pc->frame_parallel_decoding_mode = vp9_read_bit(&header_bc);
} else {
pc->refresh_entropy_probs = 0;
pc->frame_parallel_decoding_mode = 1;
}
pc->frame_context_idx = vp9_read_literal(&header_bc, NUM_FRAME_CONTEXTS_LG2);
vpx_memcpy(&pc->fc, &pc->frame_contexts[pc->frame_context_idx],
sizeof(pc->fc));
setup_segmentation(pc, xd, &header_bc);
setup_pred_probs(pc, &header_bc);
pc->txfm_mode = xd->lossless ? ONLY_4X4 : read_txfm_mode(&header_bc);
if (pc->txfm_mode == TX_MODE_SELECT) {
pc->prob_tx[0] = vp9_read_prob(&header_bc);
pc->prob_tx[1] = vp9_read_prob(&header_bc);
pc->prob_tx[2] = vp9_read_prob(&header_bc);
}
// Read inter mode probability context updates
if (pc->frame_type != KEY_FRAME) {
int i, j;
for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
for (j = 0; j < 4; ++j)
if (vp9_read(&header_bc, 252))
pc->fc.vp9_mode_contexts[i][j] = vp9_read_prob(&header_bc);
}
#if CONFIG_MODELCOEFPROB
if (pc->frame_type == KEY_FRAME) {
vp9_default_coef_probs(pc);
}
#endif
if (0) {
FILE *z = fopen("decodestats.stt", "a");
fprintf(z, "%6d F:%d,R:%d,Q:%d\n",
pc->current_video_frame,
pc->frame_type,
pbi->refresh_frame_flags,
pc->base_qindex);
fclose(z);
}
update_frame_context(pbi);
read_coef_probs(pbi, &header_bc);
#if CONFIG_CODE_NONZEROCOUNT
read_nzc_probs(&pbi->common, &header_bc);
#endif
#if CONFIG_CODE_ZEROGROUP
read_zpc_probs(&pbi->common, &header_bc);
#endif
// Initialize xd pointers. Any reference should do for xd->pre, so use 0.
vpx_memcpy(&xd->pre, &pc->yv12_fb[pc->active_ref_idx[0]],
sizeof(YV12_BUFFER_CONFIG));
setup_dst_planes(xd, &pc->yv12_fb[pc->new_fb_idx], 0, 0);
// Create the segmentation map structure and set to 0
if (!pc->last_frame_seg_map)
CHECK_MEM_ERROR(pc->last_frame_seg_map,
vpx_calloc((pc->mb_rows * pc->mb_cols), 1));
// set up frame new frame for intra coded blocks
vp9_setup_intra_recon(&pc->yv12_fb[pc->new_fb_idx]);
vp9_setup_block_dptrs(xd);
vp9_build_block_doffsets(xd);
// clear out the coeff buffer
vpx_memset(xd->plane[0].qcoeff, 0, sizeof(xd->plane[0].qcoeff));
vpx_memset(xd->plane[1].qcoeff, 0, sizeof(xd->plane[1].qcoeff));
vpx_memset(xd->plane[2].qcoeff, 0, sizeof(xd->plane[2].qcoeff));
vp9_read_bit(&header_bc); // unused
vp9_decode_mode_mvs_init(pbi, &header_bc);
decode_tiles(pbi, data, first_partition_size, &header_bc, &residual_bc);
corrupt_tokens |= xd->corrupted;
// keep track of the last coded dimensions
pc->last_width = pc->width;
pc->last_height = pc->height;
// Collect information about decoder corruption.
// 1. Check first boolean decoder for errors.
// 2. Check the macroblock information
pc->yv12_fb[pc->new_fb_idx].corrupted = vp9_reader_has_error(&header_bc) |
corrupt_tokens;
if (!pbi->decoded_key_frame) {
if (pc->frame_type == KEY_FRAME && !pc->yv12_fb[pc->new_fb_idx].corrupted)
pbi->decoded_key_frame = 1;
else
vpx_internal_error(&pbi->common.error, VPX_CODEC_CORRUPT_FRAME,
"A stream must start with a complete key frame");
}
if (!pc->error_resilient_mode && !pc->frame_parallel_decoding_mode) {
vp9_adapt_coef_probs(pc);
#if CONFIG_CODE_NONZEROCOUNT
vp9_adapt_nzc_probs(pc);
#endif
#if CONFIG_CODE_ZEROGROUP
vp9_adapt_zpc_probs(pc);
#endif
}
if (pc->frame_type != KEY_FRAME) {
if (!pc->error_resilient_mode && !pc->frame_parallel_decoding_mode) {
vp9_adapt_mode_probs(pc);
vp9_adapt_nmv_probs(pc, xd->allow_high_precision_mv);
vp9_adapt_mode_context(&pbi->common);
}
}
if (pc->refresh_entropy_probs) {
vpx_memcpy(&pc->frame_contexts[pc->frame_context_idx], &pc->fc,
sizeof(pc->fc));
}
#ifdef PACKET_TESTING
{
FILE *f = fopen("decompressor.VP8", "ab");
unsigned int size = residual_bc.pos + header_bc.pos + 8;
fwrite((void *) &size, 4, 1, f);
fwrite((void *) pbi->Source, size, 1, f);
fclose(f);
}
#endif
*p_data_end = vp9_reader_find_end(&residual_bc);
return 0;
}