5f6d143b41
Change-Id: I501597b7c1e0f0c7ae2aea3ee8073f0a641b3487
840 lines
32 KiB
C
840 lines
32 KiB
C
/*
|
|
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
// This is an example demonstrating how to implement a multi-layer VPx
|
|
// encoding scheme based on temporal scalability for video applications
|
|
// that benefit from a scalable bitstream.
|
|
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "./vpx_config.h"
|
|
#include "../vpx_ports/vpx_timer.h"
|
|
#include "vpx/vp8cx.h"
|
|
#include "vpx/vpx_encoder.h"
|
|
|
|
#include "../tools_common.h"
|
|
#include "../video_writer.h"
|
|
|
|
static const char *exec_name;
|
|
|
|
void usage_exit(void) { exit(EXIT_FAILURE); }
|
|
|
|
// Denoiser states, for temporal denoising.
|
|
enum denoiserState {
|
|
kDenoiserOff,
|
|
kDenoiserOnYOnly,
|
|
kDenoiserOnYUV,
|
|
kDenoiserOnYUVAggressive,
|
|
kDenoiserOnAdaptive
|
|
};
|
|
|
|
static int mode_to_num_layers[13] = { 1, 2, 2, 3, 3, 3, 3, 5, 2, 3, 3, 3, 3 };
|
|
|
|
// For rate control encoding stats.
|
|
struct RateControlMetrics {
|
|
// Number of input frames per layer.
|
|
int layer_input_frames[VPX_TS_MAX_LAYERS];
|
|
// Total (cumulative) number of encoded frames per layer.
|
|
int layer_tot_enc_frames[VPX_TS_MAX_LAYERS];
|
|
// Number of encoded non-key frames per layer.
|
|
int layer_enc_frames[VPX_TS_MAX_LAYERS];
|
|
// Framerate per layer layer (cumulative).
|
|
double layer_framerate[VPX_TS_MAX_LAYERS];
|
|
// Target average frame size per layer (per-frame-bandwidth per layer).
|
|
double layer_pfb[VPX_TS_MAX_LAYERS];
|
|
// Actual average frame size per layer.
|
|
double layer_avg_frame_size[VPX_TS_MAX_LAYERS];
|
|
// Average rate mismatch per layer (|target - actual| / target).
|
|
double layer_avg_rate_mismatch[VPX_TS_MAX_LAYERS];
|
|
// Actual encoding bitrate per layer (cumulative).
|
|
double layer_encoding_bitrate[VPX_TS_MAX_LAYERS];
|
|
// Average of the short-time encoder actual bitrate.
|
|
// TODO(marpan): Should we add these short-time stats for each layer?
|
|
double avg_st_encoding_bitrate;
|
|
// Variance of the short-time encoder actual bitrate.
|
|
double variance_st_encoding_bitrate;
|
|
// Window (number of frames) for computing short-timee encoding bitrate.
|
|
int window_size;
|
|
// Number of window measurements.
|
|
int window_count;
|
|
int layer_target_bitrate[VPX_MAX_LAYERS];
|
|
};
|
|
|
|
// Note: these rate control metrics assume only 1 key frame in the
|
|
// sequence (i.e., first frame only). So for temporal pattern# 7
|
|
// (which has key frame for every frame on base layer), the metrics
|
|
// computation will be off/wrong.
|
|
// TODO(marpan): Update these metrics to account for multiple key frames
|
|
// in the stream.
|
|
static void set_rate_control_metrics(struct RateControlMetrics *rc,
|
|
vpx_codec_enc_cfg_t *cfg) {
|
|
unsigned int i = 0;
|
|
// Set the layer (cumulative) framerate and the target layer (non-cumulative)
|
|
// per-frame-bandwidth, for the rate control encoding stats below.
|
|
const double framerate = cfg->g_timebase.den / cfg->g_timebase.num;
|
|
rc->layer_framerate[0] = framerate / cfg->ts_rate_decimator[0];
|
|
rc->layer_pfb[0] =
|
|
1000.0 * rc->layer_target_bitrate[0] / rc->layer_framerate[0];
|
|
for (i = 0; i < cfg->ts_number_layers; ++i) {
|
|
if (i > 0) {
|
|
rc->layer_framerate[i] = framerate / cfg->ts_rate_decimator[i];
|
|
rc->layer_pfb[i] = 1000.0 * (rc->layer_target_bitrate[i] -
|
|
rc->layer_target_bitrate[i - 1]) /
|
|
(rc->layer_framerate[i] - rc->layer_framerate[i - 1]);
|
|
}
|
|
rc->layer_input_frames[i] = 0;
|
|
rc->layer_enc_frames[i] = 0;
|
|
rc->layer_tot_enc_frames[i] = 0;
|
|
rc->layer_encoding_bitrate[i] = 0.0;
|
|
rc->layer_avg_frame_size[i] = 0.0;
|
|
rc->layer_avg_rate_mismatch[i] = 0.0;
|
|
}
|
|
rc->window_count = 0;
|
|
rc->window_size = 15;
|
|
rc->avg_st_encoding_bitrate = 0.0;
|
|
rc->variance_st_encoding_bitrate = 0.0;
|
|
}
|
|
|
|
static void printout_rate_control_summary(struct RateControlMetrics *rc,
|
|
vpx_codec_enc_cfg_t *cfg,
|
|
int frame_cnt) {
|
|
unsigned int i = 0;
|
|
int tot_num_frames = 0;
|
|
double perc_fluctuation = 0.0;
|
|
printf("Total number of processed frames: %d\n\n", frame_cnt - 1);
|
|
printf("Rate control layer stats for %d layer(s):\n\n",
|
|
cfg->ts_number_layers);
|
|
for (i = 0; i < cfg->ts_number_layers; ++i) {
|
|
const int num_dropped =
|
|
(i > 0) ? (rc->layer_input_frames[i] - rc->layer_enc_frames[i])
|
|
: (rc->layer_input_frames[i] - rc->layer_enc_frames[i] - 1);
|
|
tot_num_frames += rc->layer_input_frames[i];
|
|
rc->layer_encoding_bitrate[i] = 0.001 * rc->layer_framerate[i] *
|
|
rc->layer_encoding_bitrate[i] /
|
|
tot_num_frames;
|
|
rc->layer_avg_frame_size[i] =
|
|
rc->layer_avg_frame_size[i] / rc->layer_enc_frames[i];
|
|
rc->layer_avg_rate_mismatch[i] =
|
|
100.0 * rc->layer_avg_rate_mismatch[i] / rc->layer_enc_frames[i];
|
|
printf("For layer#: %d \n", i);
|
|
printf("Bitrate (target vs actual): %d %f \n", rc->layer_target_bitrate[i],
|
|
rc->layer_encoding_bitrate[i]);
|
|
printf("Average frame size (target vs actual): %f %f \n", rc->layer_pfb[i],
|
|
rc->layer_avg_frame_size[i]);
|
|
printf("Average rate_mismatch: %f \n", rc->layer_avg_rate_mismatch[i]);
|
|
printf(
|
|
"Number of input frames, encoded (non-key) frames, "
|
|
"and perc dropped frames: %d %d %f \n",
|
|
rc->layer_input_frames[i], rc->layer_enc_frames[i],
|
|
100.0 * num_dropped / rc->layer_input_frames[i]);
|
|
printf("\n");
|
|
}
|
|
rc->avg_st_encoding_bitrate = rc->avg_st_encoding_bitrate / rc->window_count;
|
|
rc->variance_st_encoding_bitrate =
|
|
rc->variance_st_encoding_bitrate / rc->window_count -
|
|
(rc->avg_st_encoding_bitrate * rc->avg_st_encoding_bitrate);
|
|
perc_fluctuation = 100.0 * sqrt(rc->variance_st_encoding_bitrate) /
|
|
rc->avg_st_encoding_bitrate;
|
|
printf("Short-time stats, for window of %d frames: \n", rc->window_size);
|
|
printf("Average, rms-variance, and percent-fluct: %f %f %f \n",
|
|
rc->avg_st_encoding_bitrate, sqrt(rc->variance_st_encoding_bitrate),
|
|
perc_fluctuation);
|
|
if ((frame_cnt - 1) != tot_num_frames)
|
|
die("Error: Number of input frames not equal to output! \n");
|
|
}
|
|
|
|
// Temporal scaling parameters:
|
|
// NOTE: The 3 prediction frames cannot be used interchangeably due to
|
|
// differences in the way they are handled throughout the code. The
|
|
// frames should be allocated to layers in the order LAST, GF, ARF.
|
|
// Other combinations work, but may produce slightly inferior results.
|
|
static void set_temporal_layer_pattern(int layering_mode,
|
|
vpx_codec_enc_cfg_t *cfg,
|
|
int *layer_flags,
|
|
int *flag_periodicity) {
|
|
switch (layering_mode) {
|
|
case 0: {
|
|
// 1-layer.
|
|
int ids[1] = { 0 };
|
|
cfg->ts_periodicity = 1;
|
|
*flag_periodicity = 1;
|
|
cfg->ts_number_layers = 1;
|
|
cfg->ts_rate_decimator[0] = 1;
|
|
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
|
|
// Update L only.
|
|
layer_flags[0] =
|
|
VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
|
|
break;
|
|
}
|
|
case 1: {
|
|
// 2-layers, 2-frame period.
|
|
int ids[2] = { 0, 1 };
|
|
cfg->ts_periodicity = 2;
|
|
*flag_periodicity = 2;
|
|
cfg->ts_number_layers = 2;
|
|
cfg->ts_rate_decimator[0] = 2;
|
|
cfg->ts_rate_decimator[1] = 1;
|
|
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
|
|
#if 1
|
|
// 0=L, 1=GF, Intra-layer prediction enabled.
|
|
layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_GF |
|
|
VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF |
|
|
VP8_EFLAG_NO_REF_ARF;
|
|
layer_flags[1] =
|
|
VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_REF_ARF;
|
|
#else
|
|
// 0=L, 1=GF, Intra-layer prediction disabled.
|
|
layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_GF |
|
|
VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF |
|
|
VP8_EFLAG_NO_REF_ARF;
|
|
layer_flags[1] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
|
|
VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_REF_LAST;
|
|
#endif
|
|
break;
|
|
}
|
|
case 2: {
|
|
// 2-layers, 3-frame period.
|
|
int ids[3] = { 0, 1, 1 };
|
|
cfg->ts_periodicity = 3;
|
|
*flag_periodicity = 3;
|
|
cfg->ts_number_layers = 2;
|
|
cfg->ts_rate_decimator[0] = 3;
|
|
cfg->ts_rate_decimator[1] = 1;
|
|
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
|
|
// 0=L, 1=GF, Intra-layer prediction enabled.
|
|
layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF |
|
|
VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF |
|
|
VP8_EFLAG_NO_UPD_ARF;
|
|
layer_flags[1] = layer_flags[2] =
|
|
VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_ARF |
|
|
VP8_EFLAG_NO_UPD_LAST;
|
|
break;
|
|
}
|
|
case 3: {
|
|
// 3-layers, 6-frame period.
|
|
int ids[6] = { 0, 2, 2, 1, 2, 2 };
|
|
cfg->ts_periodicity = 6;
|
|
*flag_periodicity = 6;
|
|
cfg->ts_number_layers = 3;
|
|
cfg->ts_rate_decimator[0] = 6;
|
|
cfg->ts_rate_decimator[1] = 3;
|
|
cfg->ts_rate_decimator[2] = 1;
|
|
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
|
|
// 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled.
|
|
layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF |
|
|
VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF |
|
|
VP8_EFLAG_NO_UPD_ARF;
|
|
layer_flags[3] =
|
|
VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
|
|
layer_flags[1] = layer_flags[2] = layer_flags[4] = layer_flags[5] =
|
|
VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_LAST;
|
|
break;
|
|
}
|
|
case 4: {
|
|
// 3-layers, 4-frame period.
|
|
int ids[4] = { 0, 2, 1, 2 };
|
|
cfg->ts_periodicity = 4;
|
|
*flag_periodicity = 4;
|
|
cfg->ts_number_layers = 3;
|
|
cfg->ts_rate_decimator[0] = 4;
|
|
cfg->ts_rate_decimator[1] = 2;
|
|
cfg->ts_rate_decimator[2] = 1;
|
|
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
|
|
// 0=L, 1=GF, 2=ARF, Intra-layer prediction disabled.
|
|
layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF |
|
|
VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF |
|
|
VP8_EFLAG_NO_UPD_ARF;
|
|
layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
|
|
VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
|
|
layer_flags[1] = layer_flags[3] =
|
|
VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
|
|
VP8_EFLAG_NO_UPD_ARF;
|
|
break;
|
|
}
|
|
case 5: {
|
|
// 3-layers, 4-frame period.
|
|
int ids[4] = { 0, 2, 1, 2 };
|
|
cfg->ts_periodicity = 4;
|
|
*flag_periodicity = 4;
|
|
cfg->ts_number_layers = 3;
|
|
cfg->ts_rate_decimator[0] = 4;
|
|
cfg->ts_rate_decimator[1] = 2;
|
|
cfg->ts_rate_decimator[2] = 1;
|
|
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
|
|
// 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled in layer 1, disabled
|
|
// in layer 2.
|
|
layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF |
|
|
VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF |
|
|
VP8_EFLAG_NO_UPD_ARF;
|
|
layer_flags[2] =
|
|
VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF;
|
|
layer_flags[1] = layer_flags[3] =
|
|
VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
|
|
VP8_EFLAG_NO_UPD_ARF;
|
|
break;
|
|
}
|
|
case 6: {
|
|
// 3-layers, 4-frame period.
|
|
int ids[4] = { 0, 2, 1, 2 };
|
|
cfg->ts_periodicity = 4;
|
|
*flag_periodicity = 4;
|
|
cfg->ts_number_layers = 3;
|
|
cfg->ts_rate_decimator[0] = 4;
|
|
cfg->ts_rate_decimator[1] = 2;
|
|
cfg->ts_rate_decimator[2] = 1;
|
|
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
|
|
// 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled.
|
|
layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF |
|
|
VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF |
|
|
VP8_EFLAG_NO_UPD_ARF;
|
|
layer_flags[2] =
|
|
VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF;
|
|
layer_flags[1] = layer_flags[3] =
|
|
VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
|
|
break;
|
|
}
|
|
case 7: {
|
|
// NOTE: Probably of academic interest only.
|
|
// 5-layers, 16-frame period.
|
|
int ids[16] = { 0, 4, 3, 4, 2, 4, 3, 4, 1, 4, 3, 4, 2, 4, 3, 4 };
|
|
cfg->ts_periodicity = 16;
|
|
*flag_periodicity = 16;
|
|
cfg->ts_number_layers = 5;
|
|
cfg->ts_rate_decimator[0] = 16;
|
|
cfg->ts_rate_decimator[1] = 8;
|
|
cfg->ts_rate_decimator[2] = 4;
|
|
cfg->ts_rate_decimator[3] = 2;
|
|
cfg->ts_rate_decimator[4] = 1;
|
|
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
|
|
layer_flags[0] = VPX_EFLAG_FORCE_KF;
|
|
layer_flags[1] = layer_flags[3] = layer_flags[5] = layer_flags[7] =
|
|
layer_flags[9] = layer_flags[11] = layer_flags[13] = layer_flags[15] =
|
|
VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
|
|
VP8_EFLAG_NO_UPD_ARF;
|
|
layer_flags[2] = layer_flags[6] = layer_flags[10] = layer_flags[14] =
|
|
VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_GF;
|
|
layer_flags[4] = layer_flags[12] =
|
|
VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_UPD_ARF;
|
|
layer_flags[8] = VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_GF;
|
|
break;
|
|
}
|
|
case 8: {
|
|
// 2-layers, with sync point at first frame of layer 1.
|
|
int ids[2] = { 0, 1 };
|
|
cfg->ts_periodicity = 2;
|
|
*flag_periodicity = 8;
|
|
cfg->ts_number_layers = 2;
|
|
cfg->ts_rate_decimator[0] = 2;
|
|
cfg->ts_rate_decimator[1] = 1;
|
|
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
|
|
// 0=L, 1=GF.
|
|
// ARF is used as predictor for all frames, and is only updated on
|
|
// key frame. Sync point every 8 frames.
|
|
|
|
// Layer 0: predict from L and ARF, update L and G.
|
|
layer_flags[0] =
|
|
VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_ARF;
|
|
// Layer 1: sync point: predict from L and ARF, and update G.
|
|
layer_flags[1] =
|
|
VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF;
|
|
// Layer 0, predict from L and ARF, update L.
|
|
layer_flags[2] =
|
|
VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
|
|
// Layer 1: predict from L, G and ARF, and update G.
|
|
layer_flags[3] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
|
|
VP8_EFLAG_NO_UPD_ENTROPY;
|
|
// Layer 0.
|
|
layer_flags[4] = layer_flags[2];
|
|
// Layer 1.
|
|
layer_flags[5] = layer_flags[3];
|
|
// Layer 0.
|
|
layer_flags[6] = layer_flags[4];
|
|
// Layer 1.
|
|
layer_flags[7] = layer_flags[5];
|
|
break;
|
|
}
|
|
case 9: {
|
|
// 3-layers: Sync points for layer 1 and 2 every 8 frames.
|
|
int ids[4] = { 0, 2, 1, 2 };
|
|
cfg->ts_periodicity = 4;
|
|
*flag_periodicity = 8;
|
|
cfg->ts_number_layers = 3;
|
|
cfg->ts_rate_decimator[0] = 4;
|
|
cfg->ts_rate_decimator[1] = 2;
|
|
cfg->ts_rate_decimator[2] = 1;
|
|
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
|
|
// 0=L, 1=GF, 2=ARF.
|
|
layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF |
|
|
VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF |
|
|
VP8_EFLAG_NO_UPD_ARF;
|
|
layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
|
|
VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
|
|
layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
|
|
VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF;
|
|
layer_flags[3] = layer_flags[5] =
|
|
VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
|
|
layer_flags[4] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
|
|
VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
|
|
layer_flags[6] =
|
|
VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF;
|
|
layer_flags[7] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
|
|
VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_ENTROPY;
|
|
break;
|
|
}
|
|
case 10: {
|
|
// 3-layers structure where ARF is used as predictor for all frames,
|
|
// and is only updated on key frame.
|
|
// Sync points for layer 1 and 2 every 8 frames.
|
|
|
|
int ids[4] = { 0, 2, 1, 2 };
|
|
cfg->ts_periodicity = 4;
|
|
*flag_periodicity = 8;
|
|
cfg->ts_number_layers = 3;
|
|
cfg->ts_rate_decimator[0] = 4;
|
|
cfg->ts_rate_decimator[1] = 2;
|
|
cfg->ts_rate_decimator[2] = 1;
|
|
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
|
|
// 0=L, 1=GF, 2=ARF.
|
|
// Layer 0: predict from L and ARF; update L and G.
|
|
layer_flags[0] =
|
|
VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF;
|
|
// Layer 2: sync point: predict from L and ARF; update none.
|
|
layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF |
|
|
VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
|
|
VP8_EFLAG_NO_UPD_ENTROPY;
|
|
// Layer 1: sync point: predict from L and ARF; update G.
|
|
layer_flags[2] =
|
|
VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
|
|
// Layer 2: predict from L, G, ARF; update none.
|
|
layer_flags[3] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
|
|
VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY;
|
|
// Layer 0: predict from L and ARF; update L.
|
|
layer_flags[4] =
|
|
VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF;
|
|
// Layer 2: predict from L, G, ARF; update none.
|
|
layer_flags[5] = layer_flags[3];
|
|
// Layer 1: predict from L, G, ARF; update G.
|
|
layer_flags[6] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
|
|
// Layer 2: predict from L, G, ARF; update none.
|
|
layer_flags[7] = layer_flags[3];
|
|
break;
|
|
}
|
|
case 11: {
|
|
// 3-layers structure with one reference frame.
|
|
// This works same as temporal_layering_mode 3.
|
|
// This was added to compare with vp9_spatial_svc_encoder.
|
|
|
|
// 3-layers, 4-frame period.
|
|
int ids[4] = { 0, 2, 1, 2 };
|
|
cfg->ts_periodicity = 4;
|
|
*flag_periodicity = 4;
|
|
cfg->ts_number_layers = 3;
|
|
cfg->ts_rate_decimator[0] = 4;
|
|
cfg->ts_rate_decimator[1] = 2;
|
|
cfg->ts_rate_decimator[2] = 1;
|
|
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
|
|
// 0=L, 1=GF, 2=ARF, Intra-layer prediction disabled.
|
|
layer_flags[0] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
|
|
VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
|
|
layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
|
|
VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
|
|
layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
|
|
VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
|
|
layer_flags[3] = VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_ARF |
|
|
VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
|
|
break;
|
|
}
|
|
case 12:
|
|
default: {
|
|
// 3-layers structure as in case 10, but no sync/refresh points for
|
|
// layer 1 and 2.
|
|
int ids[4] = { 0, 2, 1, 2 };
|
|
cfg->ts_periodicity = 4;
|
|
*flag_periodicity = 8;
|
|
cfg->ts_number_layers = 3;
|
|
cfg->ts_rate_decimator[0] = 4;
|
|
cfg->ts_rate_decimator[1] = 2;
|
|
cfg->ts_rate_decimator[2] = 1;
|
|
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
|
|
// 0=L, 1=GF, 2=ARF.
|
|
// Layer 0: predict from L and ARF; update L.
|
|
layer_flags[0] =
|
|
VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF;
|
|
layer_flags[4] = layer_flags[0];
|
|
// Layer 1: predict from L, G, ARF; update G.
|
|
layer_flags[2] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
|
|
layer_flags[6] = layer_flags[2];
|
|
// Layer 2: predict from L, G, ARF; update none.
|
|
layer_flags[1] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
|
|
VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY;
|
|
layer_flags[3] = layer_flags[1];
|
|
layer_flags[5] = layer_flags[1];
|
|
layer_flags[7] = layer_flags[1];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
int main(int argc, char **argv) {
|
|
VpxVideoWriter *outfile[VPX_TS_MAX_LAYERS] = { NULL };
|
|
vpx_codec_ctx_t codec;
|
|
vpx_codec_enc_cfg_t cfg;
|
|
int frame_cnt = 0;
|
|
vpx_image_t raw;
|
|
vpx_codec_err_t res;
|
|
unsigned int width;
|
|
unsigned int height;
|
|
int speed;
|
|
int frame_avail;
|
|
int got_data;
|
|
int flags = 0;
|
|
unsigned int i;
|
|
int pts = 0; // PTS starts at 0.
|
|
int frame_duration = 1; // 1 timebase tick per frame.
|
|
int layering_mode = 0;
|
|
int layer_flags[VPX_TS_MAX_PERIODICITY] = { 0 };
|
|
int flag_periodicity = 1;
|
|
#if VPX_ENCODER_ABI_VERSION > (4 + VPX_CODEC_ABI_VERSION)
|
|
vpx_svc_layer_id_t layer_id = { 0, 0 };
|
|
#else
|
|
vpx_svc_layer_id_t layer_id = { 0 };
|
|
#endif
|
|
const VpxInterface *encoder = NULL;
|
|
FILE *infile = NULL;
|
|
struct RateControlMetrics rc;
|
|
int64_t cx_time = 0;
|
|
const int min_args_base = 11;
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
vpx_bit_depth_t bit_depth = VPX_BITS_8;
|
|
int input_bit_depth = 8;
|
|
const int min_args = min_args_base + 1;
|
|
#else
|
|
const int min_args = min_args_base;
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
double sum_bitrate = 0.0;
|
|
double sum_bitrate2 = 0.0;
|
|
double framerate = 30.0;
|
|
|
|
exec_name = argv[0];
|
|
// Check usage and arguments.
|
|
if (argc < min_args) {
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
die("Usage: %s <infile> <outfile> <codec_type(vp8/vp9)> <width> <height> "
|
|
"<rate_num> <rate_den> <speed> <frame_drop_threshold> <mode> "
|
|
"<Rate_0> ... <Rate_nlayers-1> <bit-depth> \n",
|
|
argv[0]);
|
|
#else
|
|
die("Usage: %s <infile> <outfile> <codec_type(vp8/vp9)> <width> <height> "
|
|
"<rate_num> <rate_den> <speed> <frame_drop_threshold> <mode> "
|
|
"<Rate_0> ... <Rate_nlayers-1> \n",
|
|
argv[0]);
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
}
|
|
|
|
encoder = get_vpx_encoder_by_name(argv[3]);
|
|
if (!encoder) die("Unsupported codec.");
|
|
|
|
printf("Using %s\n", vpx_codec_iface_name(encoder->codec_interface()));
|
|
|
|
width = strtol(argv[4], NULL, 0);
|
|
height = strtol(argv[5], NULL, 0);
|
|
if (width < 16 || width % 2 || height < 16 || height % 2) {
|
|
die("Invalid resolution: %d x %d", width, height);
|
|
}
|
|
|
|
layering_mode = strtol(argv[10], NULL, 0);
|
|
if (layering_mode < 0 || layering_mode > 13) {
|
|
die("Invalid layering mode (0..12) %s", argv[10]);
|
|
}
|
|
|
|
if (argc != min_args + mode_to_num_layers[layering_mode]) {
|
|
die("Invalid number of arguments");
|
|
}
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
switch (strtol(argv[argc - 1], NULL, 0)) {
|
|
case 8:
|
|
bit_depth = VPX_BITS_8;
|
|
input_bit_depth = 8;
|
|
break;
|
|
case 10:
|
|
bit_depth = VPX_BITS_10;
|
|
input_bit_depth = 10;
|
|
break;
|
|
case 12:
|
|
bit_depth = VPX_BITS_12;
|
|
input_bit_depth = 12;
|
|
break;
|
|
default: die("Invalid bit depth (8, 10, 12) %s", argv[argc - 1]);
|
|
}
|
|
if (!vpx_img_alloc(
|
|
&raw, bit_depth == VPX_BITS_8 ? VPX_IMG_FMT_I420 : VPX_IMG_FMT_I42016,
|
|
width, height, 32)) {
|
|
die("Failed to allocate image", width, height);
|
|
}
|
|
#else
|
|
if (!vpx_img_alloc(&raw, VPX_IMG_FMT_I420, width, height, 32)) {
|
|
die("Failed to allocate image", width, height);
|
|
}
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
// Populate encoder configuration.
|
|
res = vpx_codec_enc_config_default(encoder->codec_interface(), &cfg, 0);
|
|
if (res) {
|
|
printf("Failed to get config: %s\n", vpx_codec_err_to_string(res));
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
// Update the default configuration with our settings.
|
|
cfg.g_w = width;
|
|
cfg.g_h = height;
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (bit_depth != VPX_BITS_8) {
|
|
cfg.g_bit_depth = bit_depth;
|
|
cfg.g_input_bit_depth = input_bit_depth;
|
|
cfg.g_profile = 2;
|
|
}
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
// Timebase format e.g. 30fps: numerator=1, demoninator = 30.
|
|
cfg.g_timebase.num = strtol(argv[6], NULL, 0);
|
|
cfg.g_timebase.den = strtol(argv[7], NULL, 0);
|
|
|
|
speed = strtol(argv[8], NULL, 0);
|
|
if (speed < 0) {
|
|
die("Invalid speed setting: must be positive");
|
|
}
|
|
|
|
for (i = min_args_base;
|
|
(int)i < min_args_base + mode_to_num_layers[layering_mode]; ++i) {
|
|
rc.layer_target_bitrate[i - 11] = strtol(argv[i], NULL, 0);
|
|
if (strncmp(encoder->name, "vp8", 3) == 0)
|
|
cfg.ts_target_bitrate[i - 11] = rc.layer_target_bitrate[i - 11];
|
|
else if (strncmp(encoder->name, "vp9", 3) == 0)
|
|
cfg.layer_target_bitrate[i - 11] = rc.layer_target_bitrate[i - 11];
|
|
}
|
|
|
|
// Real time parameters.
|
|
cfg.rc_dropframe_thresh = strtol(argv[9], NULL, 0);
|
|
cfg.rc_end_usage = VPX_CBR;
|
|
cfg.rc_min_quantizer = 2;
|
|
cfg.rc_max_quantizer = 56;
|
|
if (strncmp(encoder->name, "vp9", 3) == 0) cfg.rc_max_quantizer = 52;
|
|
cfg.rc_undershoot_pct = 50;
|
|
cfg.rc_overshoot_pct = 50;
|
|
cfg.rc_buf_initial_sz = 500;
|
|
cfg.rc_buf_optimal_sz = 600;
|
|
cfg.rc_buf_sz = 1000;
|
|
|
|
// Disable dynamic resizing by default.
|
|
cfg.rc_resize_allowed = 0;
|
|
|
|
// Use 1 thread as default.
|
|
cfg.g_threads = 1;
|
|
|
|
// Enable error resilient mode.
|
|
cfg.g_error_resilient = 1;
|
|
cfg.g_lag_in_frames = 0;
|
|
cfg.kf_mode = VPX_KF_AUTO;
|
|
|
|
// Disable automatic keyframe placement.
|
|
cfg.kf_min_dist = cfg.kf_max_dist = 3000;
|
|
|
|
cfg.temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_BYPASS;
|
|
|
|
set_temporal_layer_pattern(layering_mode, &cfg, layer_flags,
|
|
&flag_periodicity);
|
|
|
|
set_rate_control_metrics(&rc, &cfg);
|
|
|
|
// Target bandwidth for the whole stream.
|
|
// Set to layer_target_bitrate for highest layer (total bitrate).
|
|
cfg.rc_target_bitrate = rc.layer_target_bitrate[cfg.ts_number_layers - 1];
|
|
|
|
// Open input file.
|
|
if (!(infile = fopen(argv[1], "rb"))) {
|
|
die("Failed to open %s for reading", argv[1]);
|
|
}
|
|
|
|
framerate = cfg.g_timebase.den / cfg.g_timebase.num;
|
|
// Open an output file for each stream.
|
|
for (i = 0; i < cfg.ts_number_layers; ++i) {
|
|
char file_name[PATH_MAX];
|
|
VpxVideoInfo info;
|
|
info.codec_fourcc = encoder->fourcc;
|
|
info.frame_width = cfg.g_w;
|
|
info.frame_height = cfg.g_h;
|
|
info.time_base.numerator = cfg.g_timebase.num;
|
|
info.time_base.denominator = cfg.g_timebase.den;
|
|
|
|
snprintf(file_name, sizeof(file_name), "%s_%d.ivf", argv[2], i);
|
|
outfile[i] = vpx_video_writer_open(file_name, kContainerIVF, &info);
|
|
if (!outfile[i]) die("Failed to open %s for writing", file_name);
|
|
|
|
assert(outfile[i] != NULL);
|
|
}
|
|
// No spatial layers in this encoder.
|
|
cfg.ss_number_layers = 1;
|
|
|
|
// Initialize codec.
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (vpx_codec_enc_init(
|
|
&codec, encoder->codec_interface(), &cfg,
|
|
bit_depth == VPX_BITS_8 ? 0 : VPX_CODEC_USE_HIGHBITDEPTH))
|
|
#else
|
|
if (vpx_codec_enc_init(&codec, encoder->codec_interface(), &cfg, 0))
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
die_codec(&codec, "Failed to initialize encoder");
|
|
|
|
if (strncmp(encoder->name, "vp8", 3) == 0) {
|
|
vpx_codec_control(&codec, VP8E_SET_CPUUSED, -speed);
|
|
vpx_codec_control(&codec, VP8E_SET_NOISE_SENSITIVITY, kDenoiserOff);
|
|
vpx_codec_control(&codec, VP8E_SET_STATIC_THRESHOLD, 1);
|
|
} else if (strncmp(encoder->name, "vp9", 3) == 0) {
|
|
vpx_svc_extra_cfg_t svc_params;
|
|
memset(&svc_params, 0, sizeof(svc_params));
|
|
vpx_codec_control(&codec, VP8E_SET_CPUUSED, speed);
|
|
vpx_codec_control(&codec, VP9E_SET_AQ_MODE, 3);
|
|
vpx_codec_control(&codec, VP9E_SET_FRAME_PERIODIC_BOOST, 0);
|
|
vpx_codec_control(&codec, VP9E_SET_NOISE_SENSITIVITY, kDenoiserOff);
|
|
vpx_codec_control(&codec, VP8E_SET_STATIC_THRESHOLD, 1);
|
|
vpx_codec_control(&codec, VP9E_SET_TUNE_CONTENT, 0);
|
|
vpx_codec_control(&codec, VP9E_SET_TILE_COLUMNS, (cfg.g_threads >> 1));
|
|
if (vpx_codec_control(&codec, VP9E_SET_SVC, layering_mode > 0 ? 1 : 0))
|
|
die_codec(&codec, "Failed to set SVC");
|
|
for (i = 0; i < cfg.ts_number_layers; ++i) {
|
|
svc_params.max_quantizers[i] = cfg.rc_max_quantizer;
|
|
svc_params.min_quantizers[i] = cfg.rc_min_quantizer;
|
|
}
|
|
svc_params.scaling_factor_num[0] = cfg.g_h;
|
|
svc_params.scaling_factor_den[0] = cfg.g_h;
|
|
vpx_codec_control(&codec, VP9E_SET_SVC_PARAMETERS, &svc_params);
|
|
}
|
|
if (strncmp(encoder->name, "vp8", 3) == 0) {
|
|
vpx_codec_control(&codec, VP8E_SET_SCREEN_CONTENT_MODE, 0);
|
|
}
|
|
vpx_codec_control(&codec, VP8E_SET_TOKEN_PARTITIONS, 1);
|
|
// This controls the maximum target size of the key frame.
|
|
// For generating smaller key frames, use a smaller max_intra_size_pct
|
|
// value, like 100 or 200.
|
|
{
|
|
const int max_intra_size_pct = 900;
|
|
vpx_codec_control(&codec, VP8E_SET_MAX_INTRA_BITRATE_PCT,
|
|
max_intra_size_pct);
|
|
}
|
|
|
|
frame_avail = 1;
|
|
while (frame_avail || got_data) {
|
|
struct vpx_usec_timer timer;
|
|
vpx_codec_iter_t iter = NULL;
|
|
const vpx_codec_cx_pkt_t *pkt;
|
|
#if VPX_ENCODER_ABI_VERSION > (4 + VPX_CODEC_ABI_VERSION)
|
|
// Update the temporal layer_id. No spatial layers in this test.
|
|
layer_id.spatial_layer_id = 0;
|
|
#endif
|
|
layer_id.temporal_layer_id =
|
|
cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity];
|
|
if (strncmp(encoder->name, "vp9", 3) == 0) {
|
|
vpx_codec_control(&codec, VP9E_SET_SVC_LAYER_ID, &layer_id);
|
|
} else if (strncmp(encoder->name, "vp8", 3) == 0) {
|
|
vpx_codec_control(&codec, VP8E_SET_TEMPORAL_LAYER_ID,
|
|
layer_id.temporal_layer_id);
|
|
}
|
|
flags = layer_flags[frame_cnt % flag_periodicity];
|
|
if (layering_mode == 0) flags = 0;
|
|
frame_avail = vpx_img_read(&raw, infile);
|
|
if (frame_avail) ++rc.layer_input_frames[layer_id.temporal_layer_id];
|
|
vpx_usec_timer_start(&timer);
|
|
if (vpx_codec_encode(&codec, frame_avail ? &raw : NULL, pts, 1, flags,
|
|
VPX_DL_REALTIME)) {
|
|
die_codec(&codec, "Failed to encode frame");
|
|
}
|
|
vpx_usec_timer_mark(&timer);
|
|
cx_time += vpx_usec_timer_elapsed(&timer);
|
|
// Reset KF flag.
|
|
if (layering_mode != 7) {
|
|
layer_flags[0] &= ~VPX_EFLAG_FORCE_KF;
|
|
}
|
|
got_data = 0;
|
|
while ((pkt = vpx_codec_get_cx_data(&codec, &iter))) {
|
|
got_data = 1;
|
|
switch (pkt->kind) {
|
|
case VPX_CODEC_CX_FRAME_PKT:
|
|
for (i = cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity];
|
|
i < cfg.ts_number_layers; ++i) {
|
|
vpx_video_writer_write_frame(outfile[i], pkt->data.frame.buf,
|
|
pkt->data.frame.sz, pts);
|
|
++rc.layer_tot_enc_frames[i];
|
|
rc.layer_encoding_bitrate[i] += 8.0 * pkt->data.frame.sz;
|
|
// Keep count of rate control stats per layer (for non-key frames).
|
|
if (i == cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity] &&
|
|
!(pkt->data.frame.flags & VPX_FRAME_IS_KEY)) {
|
|
rc.layer_avg_frame_size[i] += 8.0 * pkt->data.frame.sz;
|
|
rc.layer_avg_rate_mismatch[i] +=
|
|
fabs(8.0 * pkt->data.frame.sz - rc.layer_pfb[i]) /
|
|
rc.layer_pfb[i];
|
|
++rc.layer_enc_frames[i];
|
|
}
|
|
}
|
|
// Update for short-time encoding bitrate states, for moving window
|
|
// of size rc->window, shifted by rc->window / 2.
|
|
// Ignore first window segment, due to key frame.
|
|
if (frame_cnt > rc.window_size) {
|
|
sum_bitrate += 0.001 * 8.0 * pkt->data.frame.sz * framerate;
|
|
if (frame_cnt % rc.window_size == 0) {
|
|
rc.window_count += 1;
|
|
rc.avg_st_encoding_bitrate += sum_bitrate / rc.window_size;
|
|
rc.variance_st_encoding_bitrate +=
|
|
(sum_bitrate / rc.window_size) *
|
|
(sum_bitrate / rc.window_size);
|
|
sum_bitrate = 0.0;
|
|
}
|
|
}
|
|
// Second shifted window.
|
|
if (frame_cnt > rc.window_size + rc.window_size / 2) {
|
|
sum_bitrate2 += 0.001 * 8.0 * pkt->data.frame.sz * framerate;
|
|
if (frame_cnt > 2 * rc.window_size &&
|
|
frame_cnt % rc.window_size == 0) {
|
|
rc.window_count += 1;
|
|
rc.avg_st_encoding_bitrate += sum_bitrate2 / rc.window_size;
|
|
rc.variance_st_encoding_bitrate +=
|
|
(sum_bitrate2 / rc.window_size) *
|
|
(sum_bitrate2 / rc.window_size);
|
|
sum_bitrate2 = 0.0;
|
|
}
|
|
}
|
|
break;
|
|
default: break;
|
|
}
|
|
}
|
|
++frame_cnt;
|
|
pts += frame_duration;
|
|
}
|
|
fclose(infile);
|
|
printout_rate_control_summary(&rc, &cfg, frame_cnt);
|
|
printf("\n");
|
|
printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f \n",
|
|
frame_cnt, 1000 * (float)cx_time / (double)(frame_cnt * 1000000),
|
|
1000000 * (double)frame_cnt / (double)cx_time);
|
|
|
|
if (vpx_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec");
|
|
|
|
// Try to rewrite the output file headers with the actual frame count.
|
|
for (i = 0; i < cfg.ts_number_layers; ++i) vpx_video_writer_close(outfile[i]);
|
|
|
|
vpx_img_free(&raw);
|
|
return EXIT_SUCCESS;
|
|
}
|