vpx/vp9/common/vp9_pred_common.c
Dmitry Kovalev 863138a2ad Rewriting vp9_set_pred_flag_{seg_id, mbskip}.
Making implementation of vp9_set_pred_flag_{seg_id, mbskip} consistent
with vp9_get_segment_id without using confusing sub(a, b) macro. Passing
mi_row and mi_col to functions explicitly instead of replying on
mb_to_right_edge and mb_to_bottom_edge.

Change-Id: I54c1087dd2ba9036f8ba7eb165b073e807d00435
2013-07-16 10:44:48 -07:00

456 lines
20 KiB
C

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <limits.h>
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_treecoder.h"
// Returns a context number for the given MB prediction signal
unsigned char vp9_get_pred_context_switchable_interp(const VP9_COMMON *cm,
const MACROBLOCKD *xd) {
const MODE_INFO *const mi = xd->mode_info_context;
const MB_MODE_INFO *const above_mbmi = &mi[-cm->mode_info_stride].mbmi;
const MB_MODE_INFO *const left_mbmi = &mi[-1].mbmi;
const int left_in_image = xd->left_available && left_mbmi->mb_in_image;
const int above_in_image = xd->up_available && above_mbmi->mb_in_image;
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries correpsonding to real macroblocks.
// The prediction flags in these dummy entries are initialised to 0.
// left
const int left_mv_pred = is_inter_mode(left_mbmi->mode);
const int left_interp = left_in_image && left_mv_pred ?
vp9_switchable_interp_map[left_mbmi->interp_filter] :
VP9_SWITCHABLE_FILTERS;
// above
const int above_mv_pred = is_inter_mode(above_mbmi->mode);
const int above_interp = above_in_image && above_mv_pred ?
vp9_switchable_interp_map[above_mbmi->interp_filter] :
VP9_SWITCHABLE_FILTERS;
assert(left_interp != -1);
assert(above_interp != -1);
if (left_interp == above_interp)
return left_interp;
else if (left_interp == VP9_SWITCHABLE_FILTERS &&
above_interp != VP9_SWITCHABLE_FILTERS)
return above_interp;
else if (left_interp != VP9_SWITCHABLE_FILTERS &&
above_interp == VP9_SWITCHABLE_FILTERS)
return left_interp;
else
return VP9_SWITCHABLE_FILTERS;
}
// Returns a context number for the given MB prediction signal
unsigned char vp9_get_pred_context_intra_inter(const VP9_COMMON *cm,
const MACROBLOCKD *xd) {
int pred_context;
const MODE_INFO *const mi = xd->mode_info_context;
const MB_MODE_INFO *const above_mbmi = &mi[-cm->mode_info_stride].mbmi;
const MB_MODE_INFO *const left_mbmi = &mi[-1].mbmi;
const int left_in_image = xd->left_available && left_mbmi->mb_in_image;
const int above_in_image = xd->up_available && above_mbmi->mb_in_image;
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries correpsonding to real macroblocks.
// The prediction flags in these dummy entries are initialised to 0.
if (above_in_image && left_in_image) { // both edges available
if (left_mbmi->ref_frame[0] == INTRA_FRAME &&
above_mbmi->ref_frame[0] == INTRA_FRAME) { // intra/intra (3)
pred_context = 3;
} else { // intra/inter (1) or inter/inter (0)
pred_context = left_mbmi->ref_frame[0] == INTRA_FRAME ||
above_mbmi->ref_frame[0] == INTRA_FRAME;
}
} else if (above_in_image || left_in_image) { // one edge available
const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi;
// inter: 0, intra: 2
pred_context = 2 * (edge_mbmi->ref_frame[0] == INTRA_FRAME);
} else {
pred_context = 0;
}
assert(pred_context >= 0 && pred_context < INTRA_INTER_CONTEXTS);
return pred_context;
}
// Returns a context number for the given MB prediction signal
unsigned char vp9_get_pred_context_comp_inter_inter(const VP9_COMMON *cm,
const MACROBLOCKD *xd) {
int pred_context;
const MODE_INFO *const mi = xd->mode_info_context;
const MB_MODE_INFO *const above_mbmi = &mi[-cm->mode_info_stride].mbmi;
const MB_MODE_INFO *const left_mbmi = &mi[-1].mbmi;
const int left_in_image = xd->left_available && left_mbmi->mb_in_image;
const int above_in_image = xd->up_available && above_mbmi->mb_in_image;
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries correpsonding to real macroblocks.
// The prediction flags in these dummy entries are initialised to 0.
if (above_in_image && left_in_image) { // both edges available
if (above_mbmi->ref_frame[1] <= INTRA_FRAME &&
left_mbmi->ref_frame[1] <= INTRA_FRAME)
// neither edge uses comp pred (0/1)
pred_context = (above_mbmi->ref_frame[0] == cm->comp_fixed_ref) ^
(left_mbmi->ref_frame[0] == cm->comp_fixed_ref);
else if (above_mbmi->ref_frame[1] <= INTRA_FRAME)
// one of two edges uses comp pred (2/3)
pred_context = 2 + (above_mbmi->ref_frame[0] == cm->comp_fixed_ref ||
above_mbmi->ref_frame[0] == INTRA_FRAME);
else if (left_mbmi->ref_frame[1] <= INTRA_FRAME)
// one of two edges uses comp pred (2/3)
pred_context = 2 + (left_mbmi->ref_frame[0] == cm->comp_fixed_ref ||
left_mbmi->ref_frame[0] == INTRA_FRAME);
else // both edges use comp pred (4)
pred_context = 4;
} else if (above_in_image || left_in_image) { // one edge available
const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi;
if (edge_mbmi->ref_frame[1] <= INTRA_FRAME)
// edge does not use comp pred (0/1)
pred_context = edge_mbmi->ref_frame[0] == cm->comp_fixed_ref;
else
// edge uses comp pred (3)
pred_context = 3;
} else { // no edges available (1)
pred_context = 1;
}
assert(pred_context >= 0 && pred_context < COMP_INTER_CONTEXTS);
return pred_context;
}
// Returns a context number for the given MB prediction signal
unsigned char vp9_get_pred_context_comp_ref_p(const VP9_COMMON *cm,
const MACROBLOCKD *xd) {
int pred_context;
const MODE_INFO *const mi = xd->mode_info_context;
const MB_MODE_INFO *const above_mbmi = &mi[-cm->mode_info_stride].mbmi;
const MB_MODE_INFO *const left_mbmi = &mi[-1].mbmi;
const int left_in_image = xd->left_available && left_mbmi->mb_in_image;
const int above_in_image = xd->up_available && above_mbmi->mb_in_image;
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries correpsonding to real macroblocks.
// The prediction flags in these dummy entries are initialised to 0.
const int fix_ref_idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref];
const int var_ref_idx = !fix_ref_idx;
if (above_in_image && left_in_image) { // both edges available
if (above_mbmi->ref_frame[0] == INTRA_FRAME &&
left_mbmi->ref_frame[0] == INTRA_FRAME) { // intra/intra (2)
pred_context = 2;
} else if (above_mbmi->ref_frame[0] == INTRA_FRAME ||
left_mbmi->ref_frame[0] == INTRA_FRAME) { // intra/inter
const MB_MODE_INFO *edge_mbmi = above_mbmi->ref_frame[0] == INTRA_FRAME ?
left_mbmi : above_mbmi;
if (edge_mbmi->ref_frame[1] <= INTRA_FRAME) // single pred (1/3)
pred_context = 1 + 2 * (edge_mbmi->ref_frame[0] != cm->comp_var_ref[1]);
else // comp pred (1/3)
pred_context = 1 + 2 * (edge_mbmi->ref_frame[var_ref_idx]
!= cm->comp_var_ref[1]);
} else { // inter/inter
int l_sg = left_mbmi->ref_frame[1] <= INTRA_FRAME;
int a_sg = above_mbmi->ref_frame[1] <= INTRA_FRAME;
MV_REFERENCE_FRAME vrfa = a_sg ? above_mbmi->ref_frame[0]
: above_mbmi->ref_frame[var_ref_idx];
MV_REFERENCE_FRAME vrfl = l_sg ? left_mbmi->ref_frame[0]
: left_mbmi->ref_frame[var_ref_idx];
if (vrfa == vrfl && cm->comp_var_ref[1] == vrfa) {
pred_context = 0;
} else if (l_sg && a_sg) { // single/single
if ((vrfa == cm->comp_fixed_ref && vrfl == cm->comp_var_ref[0]) ||
(vrfl == cm->comp_fixed_ref && vrfa == cm->comp_var_ref[0]))
pred_context = 4;
else if (vrfa == vrfl)
pred_context = 3;
else
pred_context = 1;
} else if (l_sg || a_sg) { // single/comp
MV_REFERENCE_FRAME vrfc = l_sg ? vrfa : vrfl;
MV_REFERENCE_FRAME rfs = a_sg ? vrfa : vrfl;
if (vrfc == cm->comp_var_ref[1] && rfs != cm->comp_var_ref[1])
pred_context = 1;
else if (rfs == cm->comp_var_ref[1] && vrfc != cm->comp_var_ref[1])
pred_context = 2;
else
pred_context = 4;
} else if (vrfa == vrfl) { // comp/comp
pred_context = 4;
} else {
pred_context = 2;
}
}
} else if (above_in_image || left_in_image) { // one edge available
const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi;
if (edge_mbmi->ref_frame[0] == INTRA_FRAME)
pred_context = 2;
else if (edge_mbmi->ref_frame[1] > INTRA_FRAME)
pred_context = 4 * (edge_mbmi->ref_frame[var_ref_idx]
!= cm->comp_var_ref[1]);
else
pred_context = 3 * (edge_mbmi->ref_frame[0] != cm->comp_var_ref[1]);
} else { // no edges available (2)
pred_context = 2;
}
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
return pred_context;
}
unsigned char vp9_get_pred_context_single_ref_p1(const VP9_COMMON *cm,
const MACROBLOCKD *xd) {
int pred_context;
const MODE_INFO *const mi = xd->mode_info_context;
const MB_MODE_INFO *const above_mbmi = &mi[-cm->mode_info_stride].mbmi;
const MB_MODE_INFO *const left_mbmi = &mi[-1].mbmi;
const int left_in_image = xd->left_available && left_mbmi->mb_in_image;
const int above_in_image = xd->up_available && above_mbmi->mb_in_image;
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries correpsonding to real macroblocks.
// The prediction flags in these dummy entries are initialised to 0.
if (above_in_image && left_in_image) { // both edges available
if (above_mbmi->ref_frame[0] == INTRA_FRAME &&
left_mbmi->ref_frame[0] == INTRA_FRAME) {
pred_context = 2;
} else if (above_mbmi->ref_frame[0] == INTRA_FRAME ||
left_mbmi->ref_frame[0] == INTRA_FRAME) {
const MB_MODE_INFO *edge_mbmi = above_mbmi->ref_frame[0] == INTRA_FRAME ?
left_mbmi : above_mbmi;
if (edge_mbmi->ref_frame[1] <= INTRA_FRAME)
pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST_FRAME);
else
pred_context = 1 + (edge_mbmi->ref_frame[0] == LAST_FRAME ||
edge_mbmi->ref_frame[1] == LAST_FRAME);
} else if (above_mbmi->ref_frame[1] <= INTRA_FRAME &&
left_mbmi->ref_frame[1] <= INTRA_FRAME) {
pred_context = 2 * (above_mbmi->ref_frame[0] == LAST_FRAME) +
2 * (left_mbmi->ref_frame[0] == LAST_FRAME);
} else if (above_mbmi->ref_frame[1] > INTRA_FRAME &&
left_mbmi->ref_frame[1] > INTRA_FRAME) {
pred_context = 1 + (above_mbmi->ref_frame[0] == LAST_FRAME ||
above_mbmi->ref_frame[1] == LAST_FRAME ||
left_mbmi->ref_frame[0] == LAST_FRAME ||
left_mbmi->ref_frame[1] == LAST_FRAME);
} else {
MV_REFERENCE_FRAME rfs = above_mbmi->ref_frame[1] <= INTRA_FRAME ?
above_mbmi->ref_frame[0] : left_mbmi->ref_frame[0];
MV_REFERENCE_FRAME crf1 = above_mbmi->ref_frame[1] > INTRA_FRAME ?
above_mbmi->ref_frame[0] : left_mbmi->ref_frame[0];
MV_REFERENCE_FRAME crf2 = above_mbmi->ref_frame[1] > INTRA_FRAME ?
above_mbmi->ref_frame[1] : left_mbmi->ref_frame[1];
if (rfs == LAST_FRAME)
pred_context = 3 + (crf1 == LAST_FRAME || crf2 == LAST_FRAME);
else
pred_context = crf1 == LAST_FRAME || crf2 == LAST_FRAME;
}
} else if (above_in_image || left_in_image) { // one edge available
const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi;
if (edge_mbmi->ref_frame[0] == INTRA_FRAME)
pred_context = 2;
else if (edge_mbmi->ref_frame[1] <= INTRA_FRAME)
pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST_FRAME);
else
pred_context = 1 + (edge_mbmi->ref_frame[0] == LAST_FRAME ||
edge_mbmi->ref_frame[1] == LAST_FRAME);
} else { // no edges available (2)
pred_context = 2;
}
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
return pred_context;
}
unsigned char vp9_get_pred_context_single_ref_p2(const VP9_COMMON *cm,
const MACROBLOCKD *xd) {
int pred_context;
const MODE_INFO *const mi = xd->mode_info_context;
const MB_MODE_INFO *const above_mbmi = &mi[-cm->mode_info_stride].mbmi;
const MB_MODE_INFO *const left_mbmi = &mi[-1].mbmi;
const int left_in_image = xd->left_available && left_mbmi->mb_in_image;
const int above_in_image = xd->up_available && above_mbmi->mb_in_image;
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries correpsonding to real macroblocks.
// The prediction flags in these dummy entries are initialised to 0.
if (above_in_image && left_in_image) { // both edges available
if (above_mbmi->ref_frame[0] == INTRA_FRAME &&
left_mbmi->ref_frame[0] == INTRA_FRAME) {
pred_context = 2;
} else if (above_mbmi->ref_frame[0] == INTRA_FRAME ||
left_mbmi->ref_frame[0] == INTRA_FRAME) {
const MB_MODE_INFO *edge_mbmi = above_mbmi->ref_frame[0] == INTRA_FRAME ?
left_mbmi : above_mbmi;
if (edge_mbmi->ref_frame[1] <= INTRA_FRAME) {
if (edge_mbmi->ref_frame[0] == LAST_FRAME)
pred_context = 3;
else
pred_context = 4 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME);
} else {
pred_context = 1 + 2 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME ||
edge_mbmi->ref_frame[1] == GOLDEN_FRAME);
}
} else if (above_mbmi->ref_frame[1] <= INTRA_FRAME &&
left_mbmi->ref_frame[1] <= INTRA_FRAME) {
if (above_mbmi->ref_frame[0] == LAST_FRAME &&
left_mbmi->ref_frame[0] == LAST_FRAME) {
pred_context = 3;
} else if (above_mbmi->ref_frame[0] == LAST_FRAME ||
left_mbmi->ref_frame[0] == LAST_FRAME) {
const MB_MODE_INFO *edge_mbmi = above_mbmi->ref_frame[0] == LAST_FRAME ?
left_mbmi : above_mbmi;
pred_context = 4 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME);
} else {
pred_context = 2 * (above_mbmi->ref_frame[0] == GOLDEN_FRAME) +
2 * (left_mbmi->ref_frame[0] == GOLDEN_FRAME);
}
} else if (above_mbmi->ref_frame[1] > INTRA_FRAME &&
left_mbmi->ref_frame[1] > INTRA_FRAME) {
if (above_mbmi->ref_frame[0] == left_mbmi->ref_frame[0] &&
above_mbmi->ref_frame[1] == left_mbmi->ref_frame[1])
pred_context = 3 * (above_mbmi->ref_frame[0] == GOLDEN_FRAME ||
above_mbmi->ref_frame[1] == GOLDEN_FRAME ||
left_mbmi->ref_frame[0] == GOLDEN_FRAME ||
left_mbmi->ref_frame[1] == GOLDEN_FRAME);
else
pred_context = 2;
} else {
MV_REFERENCE_FRAME rfs = above_mbmi->ref_frame[1] <= INTRA_FRAME ?
above_mbmi->ref_frame[0] : left_mbmi->ref_frame[0];
MV_REFERENCE_FRAME crf1 = above_mbmi->ref_frame[1] > INTRA_FRAME ?
above_mbmi->ref_frame[0] : left_mbmi->ref_frame[0];
MV_REFERENCE_FRAME crf2 = above_mbmi->ref_frame[1] > INTRA_FRAME ?
above_mbmi->ref_frame[1] : left_mbmi->ref_frame[1];
if (rfs == GOLDEN_FRAME)
pred_context = 3 + (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME);
else if (rfs == ALTREF_FRAME)
pred_context = crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME;
else
pred_context = 1 + 2 * (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME);
}
} else if (above_in_image || left_in_image) { // one edge available
const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi;
if (edge_mbmi->ref_frame[0] == INTRA_FRAME ||
(edge_mbmi->ref_frame[0] == LAST_FRAME &&
edge_mbmi->ref_frame[1] <= INTRA_FRAME))
pred_context = 2;
else if (edge_mbmi->ref_frame[1] <= INTRA_FRAME)
pred_context = 4 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME);
else
pred_context = 3 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME ||
edge_mbmi->ref_frame[1] == GOLDEN_FRAME);
} else { // no edges available (2)
pred_context = 2;
}
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
return pred_context;
}
// Returns a context number for the given MB prediction signal
unsigned char vp9_get_pred_context_tx_size(const VP9_COMMON *cm,
const MACROBLOCKD *xd) {
const MODE_INFO *const mi = xd->mode_info_context;
const MODE_INFO *const above_mi = mi - cm->mode_info_stride;
const MODE_INFO *const left_mi = mi - 1;
const int left_in_image = xd->left_available && left_mi->mbmi.mb_in_image;
const int above_in_image = xd->up_available && above_mi->mbmi.mb_in_image;
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries correpsonding to real macroblocks.
// The prediction flags in these dummy entries are initialised to 0.
int above_context, left_context;
int max_tx_size;
if (mi->mbmi.sb_type < BLOCK_SIZE_SB8X8)
max_tx_size = TX_4X4;
else if (mi->mbmi.sb_type < BLOCK_SIZE_MB16X16)
max_tx_size = TX_8X8;
else if (mi->mbmi.sb_type < BLOCK_SIZE_SB32X32)
max_tx_size = TX_16X16;
else
max_tx_size = TX_32X32;
above_context = left_context = max_tx_size;
if (above_in_image)
above_context = above_mi->mbmi.mb_skip_coeff ? max_tx_size
: above_mi->mbmi.txfm_size;
if (left_in_image)
left_context = left_mi->mbmi.mb_skip_coeff ? max_tx_size
: left_mi->mbmi.txfm_size;
if (!left_in_image)
left_context = above_context;
if (!above_in_image)
above_context = left_context;
return above_context + left_context > max_tx_size;
}
void vp9_set_pred_flag_seg_id(VP9_COMMON *cm, BLOCK_SIZE_TYPE bsize,
int mi_row, int mi_col, uint8_t pred_flag) {
MODE_INFO *mi = &cm->mi[mi_row * cm->mode_info_stride + mi_col];
const int bw = 1 << mi_width_log2(bsize);
const int bh = 1 << mi_height_log2(bsize);
const int xmis = MIN(cm->mi_cols - mi_col, bw);
const int ymis = MIN(cm->mi_rows - mi_row, bh);
int x, y;
for (y = 0; y < ymis; y++)
for (x = 0; x < xmis; x++)
mi[y * cm->mode_info_stride + x].mbmi.seg_id_predicted = pred_flag;
}
void vp9_set_pred_flag_mbskip(VP9_COMMON *cm, BLOCK_SIZE_TYPE bsize,
int mi_row, int mi_col, uint8_t pred_flag) {
MODE_INFO *mi = &cm->mi[mi_row * cm->mode_info_stride + mi_col];
const int bw = 1 << mi_width_log2(bsize);
const int bh = 1 << mi_height_log2(bsize);
const int xmis = MIN(cm->mi_cols - mi_col, bw);
const int ymis = MIN(cm->mi_rows - mi_row, bh);
int x, y;
for (y = 0; y < ymis; y++)
for (x = 0; x < xmis; x++)
mi[y * cm->mode_info_stride + x].mbmi.mb_skip_coeff = pred_flag;
}
int vp9_get_segment_id(VP9_COMMON *cm, const uint8_t *segment_ids,
BLOCK_SIZE_TYPE bsize, int mi_row, int mi_col) {
const int mi_offset = mi_row * cm->mi_cols + mi_col;
const int bw = 1 << mi_width_log2(bsize);
const int bh = 1 << mi_height_log2(bsize);
const int xmis = MIN(cm->mi_cols - mi_col, bw);
const int ymis = MIN(cm->mi_rows - mi_row, bh);
int x, y, segment_id = INT_MAX;
for (y = 0; y < ymis; y++)
for (x = 0; x < xmis; x++)
segment_id = MIN(segment_id,
segment_ids[mi_offset + y * cm->mi_cols + x]);
assert(segment_id >= 0 && segment_id < MAX_MB_SEGMENTS);
return segment_id;
}