5180 lines
167 KiB
C
5180 lines
167 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
|
|
#include "vp8/common/onyxc_int.h"
|
|
#include "onyx_int.h"
|
|
#include "vp8/common/systemdependent.h"
|
|
#include "quantize.h"
|
|
#include "vp8/common/alloccommon.h"
|
|
#include "mcomp.h"
|
|
#include "firstpass.h"
|
|
#include "psnr.h"
|
|
#include "vpx_scale/vpxscale.h"
|
|
#include "vp8/common/extend.h"
|
|
#include "ratectrl.h"
|
|
#include "vp8/common/quant_common.h"
|
|
#include "segmentation.h"
|
|
#include "vp8/common/g_common.h"
|
|
#include "vpx_scale/yv12extend.h"
|
|
#include "vp8/common/postproc.h"
|
|
#include "vpx_mem/vpx_mem.h"
|
|
#include "vp8/common/swapyv12buffer.h"
|
|
#include "vp8/common/threading.h"
|
|
#include "vpx_ports/vpx_timer.h"
|
|
#include "temporal_filter.h"
|
|
#if ARCH_ARM
|
|
#include "vpx_ports/arm.h"
|
|
#endif
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <limits.h>
|
|
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
#define IF_RTCD(x) (x)
|
|
#define RTCD(x) &cpi->common.rtcd.x
|
|
#else
|
|
#define IF_RTCD(x) NULL
|
|
#define RTCD(x) NULL
|
|
#endif
|
|
|
|
extern void vp8cx_pick_filter_level_fast(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi);
|
|
extern void vp8cx_set_alt_lf_level(VP8_COMP *cpi, int filt_val);
|
|
extern void vp8cx_pick_filter_level(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi);
|
|
|
|
extern void vp8_init_loop_filter(VP8_COMMON *cm);
|
|
extern void vp8_loop_filter_frame(VP8_COMMON *cm, MACROBLOCKD *mbd, int filt_val);
|
|
extern void vp8_loop_filter_frame_yonly(VP8_COMMON *cm, MACROBLOCKD *mbd, int filt_val, int sharpness_lvl);
|
|
extern void vp8_dmachine_specific_config(VP8_COMP *cpi);
|
|
extern void vp8_cmachine_specific_config(VP8_COMP *cpi);
|
|
extern void vp8_deblock_frame(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *post, int filt_lvl, int low_var_thresh, int flag);
|
|
extern void print_parms(VP8_CONFIG *ocf, char *filenam);
|
|
extern unsigned int vp8_get_processor_freq();
|
|
extern void print_tree_update_probs();
|
|
extern void vp8cx_create_encoder_threads(VP8_COMP *cpi);
|
|
extern void vp8cx_remove_encoder_threads(VP8_COMP *cpi);
|
|
#if HAVE_ARMV7
|
|
extern void vp8_yv12_copy_frame_func_neon(YV12_BUFFER_CONFIG *src_ybc, YV12_BUFFER_CONFIG *dst_ybc);
|
|
extern void vp8_yv12_copy_src_frame_func_neon(YV12_BUFFER_CONFIG *src_ybc, YV12_BUFFER_CONFIG *dst_ybc);
|
|
#endif
|
|
|
|
int vp8_estimate_entropy_savings(VP8_COMP *cpi);
|
|
int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, const vp8_variance_rtcd_vtable_t *rtcd);
|
|
|
|
extern void vp8_temporal_filter_prepare_c(VP8_COMP *cpi, int distance);
|
|
|
|
static void set_default_lf_deltas(VP8_COMP *cpi);
|
|
|
|
extern const int vp8_gf_interval_table[101];
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
#include "math.h"
|
|
|
|
extern double vp8_calc_ssim
|
|
(
|
|
YV12_BUFFER_CONFIG *source,
|
|
YV12_BUFFER_CONFIG *dest,
|
|
int lumamask,
|
|
double *weight,
|
|
const vp8_variance_rtcd_vtable_t *rtcd
|
|
);
|
|
|
|
|
|
extern double vp8_calc_ssimg
|
|
(
|
|
YV12_BUFFER_CONFIG *source,
|
|
YV12_BUFFER_CONFIG *dest,
|
|
double *ssim_y,
|
|
double *ssim_u,
|
|
double *ssim_v,
|
|
const vp8_variance_rtcd_vtable_t *rtcd
|
|
);
|
|
|
|
|
|
#endif
|
|
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
FILE *yuv_file;
|
|
#endif
|
|
|
|
#if 0
|
|
FILE *framepsnr;
|
|
FILE *kf_list;
|
|
FILE *keyfile;
|
|
#endif
|
|
|
|
#if 0
|
|
extern int skip_true_count;
|
|
extern int skip_false_count;
|
|
#endif
|
|
|
|
|
|
#ifdef ENTROPY_STATS
|
|
extern int intra_mode_stats[10][10][10];
|
|
#endif
|
|
|
|
#ifdef SPEEDSTATS
|
|
unsigned int frames_at_speed[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
unsigned int tot_pm = 0;
|
|
unsigned int cnt_pm = 0;
|
|
unsigned int tot_ef = 0;
|
|
unsigned int cnt_ef = 0;
|
|
#endif
|
|
|
|
#ifdef MODE_STATS
|
|
extern unsigned __int64 Sectionbits[50];
|
|
extern int y_modes[5] ;
|
|
extern int uv_modes[4] ;
|
|
extern int b_modes[10] ;
|
|
|
|
extern int inter_y_modes[10] ;
|
|
extern int inter_uv_modes[4] ;
|
|
extern unsigned int inter_b_modes[15];
|
|
#endif
|
|
|
|
extern void (*vp8_short_fdct4x4)(short *input, short *output, int pitch);
|
|
extern void (*vp8_short_fdct8x4)(short *input, short *output, int pitch);
|
|
|
|
extern const int vp8_bits_per_mb[2][QINDEX_RANGE];
|
|
|
|
extern const int qrounding_factors[129];
|
|
extern const int qzbin_factors[129];
|
|
extern void vp8cx_init_quantizer(VP8_COMP *cpi);
|
|
extern const int vp8cx_base_skip_false_prob[128];
|
|
|
|
// Tables relating active max Q to active min Q
|
|
static const int kf_low_motion_minq[QINDEX_RANGE] =
|
|
{
|
|
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
|
|
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
|
|
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
|
|
0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,
|
|
3,3,3,3,3,3,4,4,4,5,5,5,5,5,6,6,
|
|
6,6,7,7,8,8,8,8,9,9,10,10,10,10,11,11,
|
|
11,11,12,12,13,13,13,13,14,14,15,15,15,15,16,16,
|
|
16,16,17,17,18,18,18,18,19,20,20,21,21,22,23,23
|
|
};
|
|
static const int kf_high_motion_minq[QINDEX_RANGE] =
|
|
{
|
|
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
|
|
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
|
|
1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,
|
|
3,3,3,3,4,4,4,4,5,5,5,5,5,5,6,6,
|
|
6,6,7,7,8,8,8,8,9,9,10,10,10,10,11,11,
|
|
11,11,12,12,13,13,13,13,14,14,15,15,15,15,16,16,
|
|
16,16,17,17,18,18,18,18,19,19,20,20,20,20,21,21,
|
|
21,21,22,22,23,23,24,25,25,26,26,27,28,28,29,30
|
|
};
|
|
static const int gf_low_motion_minq[QINDEX_RANGE] =
|
|
{
|
|
0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,
|
|
3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,
|
|
7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,
|
|
11,11,12,12,13,13,14,14,15,15,16,16,17,17,18,18,
|
|
19,19,20,20,21,21,22,22,23,23,24,24,25,25,26,26,
|
|
27,27,28,28,29,29,30,30,31,31,32,32,33,33,34,34,
|
|
35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,
|
|
43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58
|
|
};
|
|
static const int gf_mid_motion_minq[QINDEX_RANGE] =
|
|
{
|
|
0,0,0,0,1,1,1,1,1,1,2,2,3,3,3,4,
|
|
4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,
|
|
9,10,10,10,10,11,11,11,12,12,12,12,13,13,13,14,
|
|
14,14,15,15,16,16,17,17,18,18,19,19,20,20,21,21,
|
|
22,22,23,23,24,24,25,25,26,26,27,27,28,28,29,29,
|
|
30,30,31,31,32,32,33,33,34,34,35,35,36,36,37,37,
|
|
38,39,39,40,40,41,41,42,42,43,43,44,45,46,47,48,
|
|
49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64
|
|
};
|
|
static const int gf_high_motion_minq[QINDEX_RANGE] =
|
|
{
|
|
0,0,0,0,1,1,1,1,1,2,2,2,3,3,3,4,
|
|
4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,
|
|
9,10,10,10,11,11,12,12,13,13,14,14,15,15,16,16,
|
|
17,17,18,18,19,19,20,20,21,21,22,22,23,23,24,24,
|
|
25,25,26,26,27,27,28,28,29,29,30,30,31,31,32,32,
|
|
33,33,34,34,35,35,36,36,37,37,38,38,39,39,40,40,
|
|
41,41,42,42,43,44,45,46,47,48,49,50,51,52,53,54,
|
|
55,56,57,58,59,60,62,64,66,68,70,72,74,76,78,80
|
|
};
|
|
static const int inter_minq[QINDEX_RANGE] =
|
|
{
|
|
0,0,1,1,2,3,3,4,4,5,6,6,7,8,8,9,
|
|
9,10,11,11,12,13,13,14,15,15,16,17,17,18,19,20,
|
|
20,21,22,22,23,24,24,25,26,27,27,28,29,30,30,31,
|
|
32,33,33,34,35,36,36,37,38,39,39,40,41,42,42,43,
|
|
44,45,46,46,47,48,49,50,50,51,52,53,54,55,55,56,
|
|
57,58,59,60,60,61,62,63,64,65,66,67,67,68,69,70,
|
|
71,72,73,74,75,75,76,77,78,79,80,81,82,83,84,85,
|
|
86,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100
|
|
};
|
|
|
|
void vp8_initialize()
|
|
{
|
|
static int init_done = 0;
|
|
|
|
if (!init_done)
|
|
{
|
|
vp8_scale_machine_specific_config();
|
|
vp8_initialize_common();
|
|
//vp8_dmachine_specific_config();
|
|
vp8_tokenize_initialize();
|
|
|
|
init_done = 1;
|
|
}
|
|
}
|
|
#ifdef PACKET_TESTING
|
|
extern FILE *vpxlogc;
|
|
#endif
|
|
|
|
static void setup_features(VP8_COMP *cpi)
|
|
{
|
|
// Set up default state for MB feature flags
|
|
cpi->mb.e_mbd.segmentation_enabled = 0;
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 0;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 0;
|
|
vpx_memset(cpi->mb.e_mbd.mb_segment_tree_probs, 255, sizeof(cpi->mb.e_mbd.mb_segment_tree_probs));
|
|
vpx_memset(cpi->mb.e_mbd.segment_feature_data, 0, sizeof(cpi->mb.e_mbd.segment_feature_data));
|
|
|
|
cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 0;
|
|
cpi->mb.e_mbd.mode_ref_lf_delta_update = 0;
|
|
vpx_memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
|
|
vpx_memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
|
|
vpx_memset(cpi->mb.e_mbd.last_ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
|
|
vpx_memset(cpi->mb.e_mbd.last_mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
|
|
|
|
set_default_lf_deltas(cpi);
|
|
|
|
}
|
|
|
|
|
|
static void dealloc_compressor_data(VP8_COMP *cpi)
|
|
{
|
|
vpx_free(cpi->tplist);
|
|
cpi->tplist = NULL;
|
|
|
|
// Delete last frame MV storage buffers
|
|
vpx_free(cpi->lfmv);
|
|
cpi->lfmv = 0;
|
|
|
|
vpx_free(cpi->lf_ref_frame_sign_bias);
|
|
cpi->lf_ref_frame_sign_bias = 0;
|
|
|
|
vpx_free(cpi->lf_ref_frame);
|
|
cpi->lf_ref_frame = 0;
|
|
|
|
// Delete sementation map
|
|
vpx_free(cpi->segmentation_map);
|
|
cpi->segmentation_map = 0;
|
|
|
|
vpx_free(cpi->active_map);
|
|
cpi->active_map = 0;
|
|
|
|
vp8_de_alloc_frame_buffers(&cpi->common);
|
|
|
|
vp8_yv12_de_alloc_frame_buffer(&cpi->last_frame_uf);
|
|
vp8_yv12_de_alloc_frame_buffer(&cpi->scaled_source);
|
|
#if VP8_TEMPORAL_ALT_REF
|
|
vp8_yv12_de_alloc_frame_buffer(&cpi->alt_ref_buffer);
|
|
#endif
|
|
vp8_lookahead_destroy(cpi->lookahead);
|
|
|
|
vpx_free(cpi->tok);
|
|
cpi->tok = 0;
|
|
|
|
// Structure used to monitor GF usage
|
|
vpx_free(cpi->gf_active_flags);
|
|
cpi->gf_active_flags = 0;
|
|
|
|
// Activity mask based per mb zbin adjustments
|
|
vpx_free(cpi->mb_activity_map);
|
|
cpi->mb_activity_map = 0;
|
|
vpx_free(cpi->mb_norm_activity_map);
|
|
cpi->mb_norm_activity_map = 0;
|
|
|
|
vpx_free(cpi->mb.pip);
|
|
cpi->mb.pip = 0;
|
|
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
vpx_free(cpi->twopass.total_stats);
|
|
cpi->twopass.total_stats = 0;
|
|
|
|
vpx_free(cpi->twopass.this_frame_stats);
|
|
cpi->twopass.this_frame_stats = 0;
|
|
#endif
|
|
}
|
|
|
|
static void enable_segmentation(VP8_PTR ptr)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *)(ptr);
|
|
|
|
// Set the appropriate feature bit
|
|
cpi->mb.e_mbd.segmentation_enabled = 1;
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
|
|
}
|
|
static void disable_segmentation(VP8_PTR ptr)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *)(ptr);
|
|
|
|
// Clear the appropriate feature bit
|
|
cpi->mb.e_mbd.segmentation_enabled = 0;
|
|
}
|
|
|
|
// Valid values for a segment are 0 to 3
|
|
// Segmentation map is arrange as [Rows][Columns]
|
|
static void set_segmentation_map(VP8_PTR ptr, unsigned char *segmentation_map)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *)(ptr);
|
|
|
|
// Copy in the new segmentation map
|
|
vpx_memcpy(cpi->segmentation_map, segmentation_map, (cpi->common.mb_rows * cpi->common.mb_cols));
|
|
|
|
// Signal that the map should be updated.
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
|
|
}
|
|
|
|
// The values given for each segment can be either deltas (from the default value chosen for the frame) or absolute values.
|
|
//
|
|
// Valid range for abs values is (0-127 for MB_LVL_ALT_Q) , (0-63 for SEGMENT_ALT_LF)
|
|
// Valid range for delta values are (+/-127 for MB_LVL_ALT_Q) , (+/-63 for SEGMENT_ALT_LF)
|
|
//
|
|
// abs_delta = SEGMENT_DELTADATA (deltas) abs_delta = SEGMENT_ABSDATA (use the absolute values given).
|
|
//
|
|
//
|
|
static void set_segment_data(VP8_PTR ptr, signed char *feature_data, unsigned char abs_delta)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *)(ptr);
|
|
|
|
cpi->mb.e_mbd.mb_segement_abs_delta = abs_delta;
|
|
vpx_memcpy(cpi->segment_feature_data, feature_data, sizeof(cpi->segment_feature_data));
|
|
}
|
|
|
|
|
|
static void segmentation_test_function(VP8_PTR ptr)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *)(ptr);
|
|
|
|
unsigned char *seg_map;
|
|
signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS];
|
|
|
|
// Create a temporary map for segmentation data.
|
|
CHECK_MEM_ERROR(seg_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1));
|
|
|
|
// MB loop to set local segmentation map
|
|
/*for ( i = 0; i < cpi->common.mb_rows; i++ )
|
|
{
|
|
for ( j = 0; j < cpi->common.mb_cols; j++ )
|
|
{
|
|
//seg_map[(i*cpi->common.mb_cols) + j] = (j % 2) + ((i%2)* 2);
|
|
//if ( j < cpi->common.mb_cols/2 )
|
|
|
|
// Segment 1 around the edge else 0
|
|
if ( (i == 0) || (j == 0) || (i == (cpi->common.mb_rows-1)) || (j == (cpi->common.mb_cols-1)) )
|
|
seg_map[(i*cpi->common.mb_cols) + j] = 1;
|
|
//else if ( (i < 2) || (j < 2) || (i > (cpi->common.mb_rows-3)) || (j > (cpi->common.mb_cols-3)) )
|
|
// seg_map[(i*cpi->common.mb_cols) + j] = 2;
|
|
//else if ( (i < 5) || (j < 5) || (i > (cpi->common.mb_rows-6)) || (j > (cpi->common.mb_cols-6)) )
|
|
// seg_map[(i*cpi->common.mb_cols) + j] = 3;
|
|
else
|
|
seg_map[(i*cpi->common.mb_cols) + j] = 0;
|
|
}
|
|
}*/
|
|
|
|
// Set the segmentation Map
|
|
set_segmentation_map(ptr, seg_map);
|
|
|
|
// Activate segmentation.
|
|
enable_segmentation(ptr);
|
|
|
|
// Set up the quant segment data
|
|
feature_data[MB_LVL_ALT_Q][0] = 0;
|
|
feature_data[MB_LVL_ALT_Q][1] = 4;
|
|
feature_data[MB_LVL_ALT_Q][2] = 0;
|
|
feature_data[MB_LVL_ALT_Q][3] = 0;
|
|
// Set up the loop segment data
|
|
feature_data[MB_LVL_ALT_LF][0] = 0;
|
|
feature_data[MB_LVL_ALT_LF][1] = 0;
|
|
feature_data[MB_LVL_ALT_LF][2] = 0;
|
|
feature_data[MB_LVL_ALT_LF][3] = 0;
|
|
|
|
// Initialise the feature data structure
|
|
// SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1
|
|
set_segment_data(ptr, &feature_data[0][0], SEGMENT_DELTADATA);
|
|
|
|
// Delete sementation map
|
|
vpx_free(seg_map);
|
|
|
|
seg_map = 0;
|
|
|
|
}
|
|
|
|
// A simple function to cyclically refresh the background at a lower Q
|
|
static void cyclic_background_refresh(VP8_COMP *cpi, int Q, int lf_adjustment)
|
|
{
|
|
unsigned char *seg_map;
|
|
signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS];
|
|
int i;
|
|
int block_count = cpi->cyclic_refresh_mode_max_mbs_perframe;
|
|
int mbs_in_frame = cpi->common.mb_rows * cpi->common.mb_cols;
|
|
|
|
// Create a temporary map for segmentation data.
|
|
CHECK_MEM_ERROR(seg_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1));
|
|
|
|
cpi->cyclic_refresh_q = Q;
|
|
|
|
for (i = Q; i > 0; i--)
|
|
{
|
|
if (vp8_bits_per_mb[cpi->common.frame_type][i] >= ((vp8_bits_per_mb[cpi->common.frame_type][Q]*(Q + 128)) / 64))
|
|
//if ( vp8_bits_per_mb[cpi->common.frame_type][i] >= ((vp8_bits_per_mb[cpi->common.frame_type][Q]*((2*Q)+96))/64) )
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
cpi->cyclic_refresh_q = i;
|
|
|
|
// Only update for inter frames
|
|
if (cpi->common.frame_type != KEY_FRAME)
|
|
{
|
|
// Cycle through the macro_block rows
|
|
// MB loop to set local segmentation map
|
|
for (i = cpi->cyclic_refresh_mode_index; i < mbs_in_frame; i++)
|
|
{
|
|
// If the MB is as a candidate for clean up then mark it for possible boost/refresh (segment 1)
|
|
// The segment id may get reset to 0 later if the MB gets coded anything other than last frame 0,0
|
|
// as only (last frame 0,0) MBs are eligable for refresh : that is to say Mbs likely to be background blocks.
|
|
if (cpi->cyclic_refresh_map[i] == 0)
|
|
{
|
|
seg_map[i] = 1;
|
|
}
|
|
else
|
|
{
|
|
seg_map[i] = 0;
|
|
|
|
// Skip blocks that have been refreshed recently anyway.
|
|
if (cpi->cyclic_refresh_map[i] < 0)
|
|
//cpi->cyclic_refresh_map[i] = cpi->cyclic_refresh_map[i] / 16;
|
|
cpi->cyclic_refresh_map[i]++;
|
|
}
|
|
|
|
|
|
if (block_count > 0)
|
|
block_count--;
|
|
else
|
|
break;
|
|
|
|
}
|
|
|
|
// If we have gone through the frame reset to the start
|
|
cpi->cyclic_refresh_mode_index = i;
|
|
|
|
if (cpi->cyclic_refresh_mode_index >= mbs_in_frame)
|
|
cpi->cyclic_refresh_mode_index = 0;
|
|
}
|
|
|
|
// Set the segmentation Map
|
|
set_segmentation_map((VP8_PTR)cpi, seg_map);
|
|
|
|
// Activate segmentation.
|
|
enable_segmentation((VP8_PTR)cpi);
|
|
|
|
// Set up the quant segment data
|
|
feature_data[MB_LVL_ALT_Q][0] = 0;
|
|
feature_data[MB_LVL_ALT_Q][1] = (cpi->cyclic_refresh_q - Q);
|
|
feature_data[MB_LVL_ALT_Q][2] = 0;
|
|
feature_data[MB_LVL_ALT_Q][3] = 0;
|
|
|
|
// Set up the loop segment data
|
|
feature_data[MB_LVL_ALT_LF][0] = 0;
|
|
feature_data[MB_LVL_ALT_LF][1] = lf_adjustment;
|
|
feature_data[MB_LVL_ALT_LF][2] = 0;
|
|
feature_data[MB_LVL_ALT_LF][3] = 0;
|
|
|
|
// Initialise the feature data structure
|
|
// SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1
|
|
set_segment_data((VP8_PTR)cpi, &feature_data[0][0], SEGMENT_DELTADATA);
|
|
|
|
// Delete sementation map
|
|
vpx_free(seg_map);
|
|
|
|
seg_map = 0;
|
|
|
|
}
|
|
|
|
static void set_default_lf_deltas(VP8_COMP *cpi)
|
|
{
|
|
cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 1;
|
|
cpi->mb.e_mbd.mode_ref_lf_delta_update = 1;
|
|
|
|
vpx_memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
|
|
vpx_memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
|
|
|
|
// Test of ref frame deltas
|
|
cpi->mb.e_mbd.ref_lf_deltas[INTRA_FRAME] = 2;
|
|
cpi->mb.e_mbd.ref_lf_deltas[LAST_FRAME] = 0;
|
|
cpi->mb.e_mbd.ref_lf_deltas[GOLDEN_FRAME] = -2;
|
|
cpi->mb.e_mbd.ref_lf_deltas[ALTREF_FRAME] = -2;
|
|
|
|
cpi->mb.e_mbd.mode_lf_deltas[0] = 4; // BPRED
|
|
cpi->mb.e_mbd.mode_lf_deltas[1] = -2; // Zero
|
|
cpi->mb.e_mbd.mode_lf_deltas[2] = 2; // New mv
|
|
cpi->mb.e_mbd.mode_lf_deltas[3] = 4; // Split mv
|
|
}
|
|
|
|
void vp8_set_speed_features(VP8_COMP *cpi)
|
|
{
|
|
SPEED_FEATURES *sf = &cpi->sf;
|
|
int Mode = cpi->compressor_speed;
|
|
int Speed = cpi->Speed;
|
|
int i;
|
|
VP8_COMMON *cm = &cpi->common;
|
|
int last_improved_quant = sf->improved_quant;
|
|
|
|
// Initialise default mode frequency sampling variables
|
|
for (i = 0; i < MAX_MODES; i ++)
|
|
{
|
|
cpi->mode_check_freq[i] = 0;
|
|
cpi->mode_test_hit_counts[i] = 0;
|
|
cpi->mode_chosen_counts[i] = 0;
|
|
}
|
|
|
|
cpi->mbs_tested_so_far = 0;
|
|
|
|
// best quality defaults
|
|
sf->RD = 1;
|
|
sf->search_method = NSTEP;
|
|
sf->improved_quant = 1;
|
|
sf->improved_dct = 1;
|
|
sf->auto_filter = 1;
|
|
sf->recode_loop = 1;
|
|
sf->quarter_pixel_search = 1;
|
|
sf->half_pixel_search = 1;
|
|
sf->full_freq[0] = 7;
|
|
sf->full_freq[1] = 7;
|
|
sf->min_fs_radius = 8;
|
|
sf->max_fs_radius = 32;
|
|
sf->iterative_sub_pixel = 1;
|
|
sf->optimize_coefficients = 1;
|
|
sf->use_fastquant_for_pick = 0;
|
|
sf->no_skip_block4x4_search = 1;
|
|
|
|
sf->first_step = 0;
|
|
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
|
|
sf->improved_mv_pred = 1;
|
|
|
|
// default thresholds to 0
|
|
for (i = 0; i < MAX_MODES; i++)
|
|
sf->thresh_mult[i] = 0;
|
|
|
|
switch (Mode)
|
|
{
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
case 0: // best quality mode
|
|
sf->thresh_mult[THR_ZEROMV ] = 0;
|
|
sf->thresh_mult[THR_ZEROG ] = 0;
|
|
sf->thresh_mult[THR_ZEROA ] = 0;
|
|
sf->thresh_mult[THR_NEARESTMV] = 0;
|
|
sf->thresh_mult[THR_NEARESTG ] = 0;
|
|
sf->thresh_mult[THR_NEARESTA ] = 0;
|
|
sf->thresh_mult[THR_NEARMV ] = 0;
|
|
sf->thresh_mult[THR_NEARG ] = 0;
|
|
sf->thresh_mult[THR_NEARA ] = 0;
|
|
|
|
sf->thresh_mult[THR_DC ] = 0;
|
|
|
|
sf->thresh_mult[THR_V_PRED ] = 1000;
|
|
sf->thresh_mult[THR_H_PRED ] = 1000;
|
|
sf->thresh_mult[THR_B_PRED ] = 2000;
|
|
sf->thresh_mult[THR_TM ] = 1000;
|
|
|
|
sf->thresh_mult[THR_NEWMV ] = 1000;
|
|
sf->thresh_mult[THR_NEWG ] = 1000;
|
|
sf->thresh_mult[THR_NEWA ] = 1000;
|
|
|
|
sf->thresh_mult[THR_SPLITMV ] = 2500;
|
|
sf->thresh_mult[THR_SPLITG ] = 5000;
|
|
sf->thresh_mult[THR_SPLITA ] = 5000;
|
|
|
|
sf->full_freq[0] = 7;
|
|
sf->full_freq[1] = 15;
|
|
|
|
sf->first_step = 0;
|
|
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
|
|
break;
|
|
case 1:
|
|
case 3:
|
|
sf->thresh_mult[THR_NEARESTMV] = 0;
|
|
sf->thresh_mult[THR_ZEROMV ] = 0;
|
|
sf->thresh_mult[THR_DC ] = 0;
|
|
sf->thresh_mult[THR_NEARMV ] = 0;
|
|
sf->thresh_mult[THR_V_PRED ] = 1000;
|
|
sf->thresh_mult[THR_H_PRED ] = 1000;
|
|
sf->thresh_mult[THR_B_PRED ] = 2500;
|
|
sf->thresh_mult[THR_TM ] = 1000;
|
|
|
|
sf->thresh_mult[THR_NEARESTG ] = 1000;
|
|
sf->thresh_mult[THR_NEARESTA ] = 1000;
|
|
|
|
sf->thresh_mult[THR_ZEROG ] = 1000;
|
|
sf->thresh_mult[THR_ZEROA ] = 1000;
|
|
sf->thresh_mult[THR_NEARG ] = 1000;
|
|
sf->thresh_mult[THR_NEARA ] = 1000;
|
|
|
|
#if 1
|
|
sf->thresh_mult[THR_ZEROMV ] = 0;
|
|
sf->thresh_mult[THR_ZEROG ] = 0;
|
|
sf->thresh_mult[THR_ZEROA ] = 0;
|
|
sf->thresh_mult[THR_NEARESTMV] = 0;
|
|
sf->thresh_mult[THR_NEARESTG ] = 0;
|
|
sf->thresh_mult[THR_NEARESTA ] = 0;
|
|
sf->thresh_mult[THR_NEARMV ] = 0;
|
|
sf->thresh_mult[THR_NEARG ] = 0;
|
|
sf->thresh_mult[THR_NEARA ] = 0;
|
|
|
|
// sf->thresh_mult[THR_DC ] = 0;
|
|
|
|
// sf->thresh_mult[THR_V_PRED ] = 1000;
|
|
// sf->thresh_mult[THR_H_PRED ] = 1000;
|
|
// sf->thresh_mult[THR_B_PRED ] = 2000;
|
|
// sf->thresh_mult[THR_TM ] = 1000;
|
|
|
|
sf->thresh_mult[THR_NEWMV ] = 1000;
|
|
sf->thresh_mult[THR_NEWG ] = 1000;
|
|
sf->thresh_mult[THR_NEWA ] = 1000;
|
|
|
|
sf->thresh_mult[THR_SPLITMV ] = 1700;
|
|
sf->thresh_mult[THR_SPLITG ] = 4500;
|
|
sf->thresh_mult[THR_SPLITA ] = 4500;
|
|
#else
|
|
sf->thresh_mult[THR_NEWMV ] = 1500;
|
|
sf->thresh_mult[THR_NEWG ] = 1500;
|
|
sf->thresh_mult[THR_NEWA ] = 1500;
|
|
|
|
sf->thresh_mult[THR_SPLITMV ] = 5000;
|
|
sf->thresh_mult[THR_SPLITG ] = 10000;
|
|
sf->thresh_mult[THR_SPLITA ] = 10000;
|
|
#endif
|
|
sf->full_freq[0] = 15;
|
|
sf->full_freq[1] = 31;
|
|
|
|
if (Speed > 0)
|
|
{
|
|
/* Disable coefficient optimization above speed 0 */
|
|
sf->optimize_coefficients = 0;
|
|
sf->use_fastquant_for_pick = 1;
|
|
sf->no_skip_block4x4_search = 0;
|
|
|
|
sf->first_step = 1;
|
|
|
|
cpi->mode_check_freq[THR_SPLITG] = 2;
|
|
cpi->mode_check_freq[THR_SPLITA] = 2;
|
|
cpi->mode_check_freq[THR_SPLITMV] = 0;
|
|
}
|
|
|
|
if (Speed > 1)
|
|
{
|
|
cpi->mode_check_freq[THR_SPLITG] = 4;
|
|
cpi->mode_check_freq[THR_SPLITA] = 4;
|
|
cpi->mode_check_freq[THR_SPLITMV] = 2;
|
|
|
|
sf->thresh_mult[THR_TM ] = 1500;
|
|
sf->thresh_mult[THR_V_PRED ] = 1500;
|
|
sf->thresh_mult[THR_H_PRED ] = 1500;
|
|
sf->thresh_mult[THR_B_PRED ] = 5000;
|
|
|
|
if (cpi->ref_frame_flags & VP8_LAST_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEWMV ] = 2000;
|
|
sf->thresh_mult[THR_SPLITMV ] = 10000;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTG ] = 1500;
|
|
sf->thresh_mult[THR_ZEROG ] = 1500;
|
|
sf->thresh_mult[THR_NEARG ] = 1500;
|
|
sf->thresh_mult[THR_NEWG ] = 2000;
|
|
sf->thresh_mult[THR_SPLITG ] = 20000;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTA ] = 1500;
|
|
sf->thresh_mult[THR_ZEROA ] = 1500;
|
|
sf->thresh_mult[THR_NEARA ] = 1500;
|
|
sf->thresh_mult[THR_NEWA ] = 2000;
|
|
sf->thresh_mult[THR_SPLITA ] = 20000;
|
|
}
|
|
}
|
|
|
|
if (Speed > 2)
|
|
{
|
|
cpi->mode_check_freq[THR_SPLITG] = 15;
|
|
cpi->mode_check_freq[THR_SPLITA] = 15;
|
|
cpi->mode_check_freq[THR_SPLITMV] = 7;
|
|
|
|
sf->thresh_mult[THR_TM ] = 2000;
|
|
sf->thresh_mult[THR_V_PRED ] = 2000;
|
|
sf->thresh_mult[THR_H_PRED ] = 2000;
|
|
sf->thresh_mult[THR_B_PRED ] = 7500;
|
|
|
|
if (cpi->ref_frame_flags & VP8_LAST_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEWMV ] = 2000;
|
|
sf->thresh_mult[THR_SPLITMV ] = 25000;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTG ] = 2000;
|
|
sf->thresh_mult[THR_ZEROG ] = 2000;
|
|
sf->thresh_mult[THR_NEARG ] = 2000;
|
|
sf->thresh_mult[THR_NEWG ] = 2500;
|
|
sf->thresh_mult[THR_SPLITG ] = 50000;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTA ] = 2000;
|
|
sf->thresh_mult[THR_ZEROA ] = 2000;
|
|
sf->thresh_mult[THR_NEARA ] = 2000;
|
|
sf->thresh_mult[THR_NEWA ] = 2500;
|
|
sf->thresh_mult[THR_SPLITA ] = 50000;
|
|
}
|
|
|
|
sf->improved_quant = 0;
|
|
sf->improved_dct = 0;
|
|
|
|
// Only do recode loop on key frames, golden frames and
|
|
// alt ref frames
|
|
sf->recode_loop = 2;
|
|
|
|
sf->full_freq[0] = 31;
|
|
sf->full_freq[1] = 63;
|
|
}
|
|
|
|
if (Speed > 3)
|
|
{
|
|
sf->thresh_mult[THR_SPLITA ] = INT_MAX;
|
|
sf->thresh_mult[THR_SPLITG ] = INT_MAX;
|
|
sf->thresh_mult[THR_SPLITMV ] = INT_MAX;
|
|
|
|
cpi->mode_check_freq[THR_V_PRED] = 0;
|
|
cpi->mode_check_freq[THR_H_PRED] = 0;
|
|
cpi->mode_check_freq[THR_B_PRED] = 0;
|
|
cpi->mode_check_freq[THR_NEARG] = 0;
|
|
cpi->mode_check_freq[THR_NEWG] = 0;
|
|
cpi->mode_check_freq[THR_NEARA] = 0;
|
|
cpi->mode_check_freq[THR_NEWA] = 0;
|
|
|
|
sf->auto_filter = 1;
|
|
sf->recode_loop = 0; // recode loop off
|
|
sf->RD = 0; // Turn rd off
|
|
|
|
sf->full_freq[0] = 63;
|
|
sf->full_freq[1] = 127;
|
|
}
|
|
|
|
if (Speed > 4)
|
|
{
|
|
sf->auto_filter = 0; // Faster selection of loop filter
|
|
sf->full_freq[0] = INT_MAX;
|
|
sf->full_freq[1] = INT_MAX;
|
|
|
|
cpi->mode_check_freq[THR_V_PRED] = 2;
|
|
cpi->mode_check_freq[THR_H_PRED] = 2;
|
|
cpi->mode_check_freq[THR_B_PRED] = 2;
|
|
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
|
|
{
|
|
cpi->mode_check_freq[THR_NEARG] = 2;
|
|
cpi->mode_check_freq[THR_NEWG] = 4;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
|
|
{
|
|
cpi->mode_check_freq[THR_NEARA] = 2;
|
|
cpi->mode_check_freq[THR_NEWA] = 4;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTG ] = 2000;
|
|
sf->thresh_mult[THR_ZEROG ] = 2000;
|
|
sf->thresh_mult[THR_NEARG ] = 2000;
|
|
sf->thresh_mult[THR_NEWG ] = 4000;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTA ] = 2000;
|
|
sf->thresh_mult[THR_ZEROA ] = 2000;
|
|
sf->thresh_mult[THR_NEARA ] = 2000;
|
|
sf->thresh_mult[THR_NEWA ] = 4000;
|
|
}
|
|
}
|
|
|
|
break;
|
|
#endif
|
|
case 2:
|
|
sf->optimize_coefficients = 0;
|
|
sf->recode_loop = 0;
|
|
sf->auto_filter = 1;
|
|
sf->iterative_sub_pixel = 1;
|
|
sf->thresh_mult[THR_NEARESTMV] = 0;
|
|
sf->thresh_mult[THR_ZEROMV ] = 0;
|
|
sf->thresh_mult[THR_DC ] = 0;
|
|
sf->thresh_mult[THR_TM ] = 0;
|
|
sf->thresh_mult[THR_NEARMV ] = 0;
|
|
sf->thresh_mult[THR_V_PRED ] = 1000;
|
|
sf->thresh_mult[THR_H_PRED ] = 1000;
|
|
sf->thresh_mult[THR_B_PRED ] = 2500;
|
|
sf->thresh_mult[THR_NEARESTG ] = 1000;
|
|
sf->thresh_mult[THR_ZEROG ] = 1000;
|
|
sf->thresh_mult[THR_NEARG ] = 1000;
|
|
sf->thresh_mult[THR_NEARESTA ] = 1000;
|
|
sf->thresh_mult[THR_ZEROA ] = 1000;
|
|
sf->thresh_mult[THR_NEARA ] = 1000;
|
|
sf->thresh_mult[THR_NEWMV ] = 2000;
|
|
sf->thresh_mult[THR_NEWG ] = 2000;
|
|
sf->thresh_mult[THR_NEWA ] = 2000;
|
|
sf->thresh_mult[THR_SPLITMV ] = 5000;
|
|
sf->thresh_mult[THR_SPLITG ] = 10000;
|
|
sf->thresh_mult[THR_SPLITA ] = 10000;
|
|
sf->full_freq[0] = 15;
|
|
sf->full_freq[1] = 31;
|
|
sf->search_method = NSTEP;
|
|
|
|
if (Speed > 0)
|
|
{
|
|
cpi->mode_check_freq[THR_SPLITG] = 4;
|
|
cpi->mode_check_freq[THR_SPLITA] = 4;
|
|
cpi->mode_check_freq[THR_SPLITMV] = 2;
|
|
|
|
sf->thresh_mult[THR_DC ] = 0;
|
|
sf->thresh_mult[THR_TM ] = 1000;
|
|
sf->thresh_mult[THR_V_PRED ] = 2000;
|
|
sf->thresh_mult[THR_H_PRED ] = 2000;
|
|
sf->thresh_mult[THR_B_PRED ] = 5000;
|
|
|
|
if (cpi->ref_frame_flags & VP8_LAST_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTMV] = 0;
|
|
sf->thresh_mult[THR_ZEROMV ] = 0;
|
|
sf->thresh_mult[THR_NEARMV ] = 0;
|
|
sf->thresh_mult[THR_NEWMV ] = 2000;
|
|
sf->thresh_mult[THR_SPLITMV ] = 10000;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTG ] = 1000;
|
|
sf->thresh_mult[THR_ZEROG ] = 1000;
|
|
sf->thresh_mult[THR_NEARG ] = 1000;
|
|
sf->thresh_mult[THR_NEWG ] = 2000;
|
|
sf->thresh_mult[THR_SPLITG ] = 20000;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTA ] = 1000;
|
|
sf->thresh_mult[THR_ZEROA ] = 1000;
|
|
sf->thresh_mult[THR_NEARA ] = 1000;
|
|
sf->thresh_mult[THR_NEWA ] = 2000;
|
|
sf->thresh_mult[THR_SPLITA ] = 20000;
|
|
}
|
|
|
|
sf->improved_quant = 0;
|
|
sf->improved_dct = 0;
|
|
}
|
|
|
|
if (Speed > 1)
|
|
{
|
|
cpi->mode_check_freq[THR_SPLITMV] = 7;
|
|
cpi->mode_check_freq[THR_SPLITG] = 15;
|
|
cpi->mode_check_freq[THR_SPLITA] = 15;
|
|
|
|
sf->thresh_mult[THR_TM ] = 2000;
|
|
sf->thresh_mult[THR_V_PRED ] = 2000;
|
|
sf->thresh_mult[THR_H_PRED ] = 2000;
|
|
sf->thresh_mult[THR_B_PRED ] = 5000;
|
|
|
|
if (cpi->ref_frame_flags & VP8_LAST_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEWMV ] = 2000;
|
|
sf->thresh_mult[THR_SPLITMV ] = 25000;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTG ] = 2000;
|
|
sf->thresh_mult[THR_ZEROG ] = 2000;
|
|
sf->thresh_mult[THR_NEARG ] = 2000;
|
|
sf->thresh_mult[THR_NEWG ] = 2500;
|
|
sf->thresh_mult[THR_SPLITG ] = 50000;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTA ] = 2000;
|
|
sf->thresh_mult[THR_ZEROA ] = 2000;
|
|
sf->thresh_mult[THR_NEARA ] = 2000;
|
|
sf->thresh_mult[THR_NEWA ] = 2500;
|
|
sf->thresh_mult[THR_SPLITA ] = 50000;
|
|
}
|
|
|
|
sf->full_freq[0] = 31;
|
|
sf->full_freq[1] = 63;
|
|
}
|
|
|
|
if (Speed > 2)
|
|
{
|
|
sf->auto_filter = 0; // Faster selection of loop filter
|
|
|
|
cpi->mode_check_freq[THR_V_PRED] = 2;
|
|
cpi->mode_check_freq[THR_H_PRED] = 2;
|
|
cpi->mode_check_freq[THR_B_PRED] = 2;
|
|
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
|
|
{
|
|
cpi->mode_check_freq[THR_NEARG] = 2;
|
|
cpi->mode_check_freq[THR_NEWG] = 4;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
|
|
{
|
|
cpi->mode_check_freq[THR_NEARA] = 2;
|
|
cpi->mode_check_freq[THR_NEWA] = 4;
|
|
}
|
|
|
|
sf->thresh_mult[THR_SPLITMV ] = INT_MAX;
|
|
sf->thresh_mult[THR_SPLITG ] = INT_MAX;
|
|
sf->thresh_mult[THR_SPLITA ] = INT_MAX;
|
|
|
|
sf->full_freq[0] = 63;
|
|
sf->full_freq[1] = 127;
|
|
}
|
|
|
|
if (Speed > 3)
|
|
{
|
|
sf->RD = 0;
|
|
sf->full_freq[0] = INT_MAX;
|
|
sf->full_freq[1] = INT_MAX;
|
|
|
|
sf->auto_filter = 1;
|
|
}
|
|
|
|
if (Speed > 4)
|
|
{
|
|
sf->auto_filter = 0; // Faster selection of loop filter
|
|
|
|
sf->search_method = HEX;
|
|
//sf->search_method = DIAMOND;
|
|
|
|
sf->iterative_sub_pixel = 0;
|
|
|
|
cpi->mode_check_freq[THR_V_PRED] = 4;
|
|
cpi->mode_check_freq[THR_H_PRED] = 4;
|
|
cpi->mode_check_freq[THR_B_PRED] = 4;
|
|
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
|
|
{
|
|
cpi->mode_check_freq[THR_NEARG] = 2;
|
|
cpi->mode_check_freq[THR_NEWG] = 4;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
|
|
{
|
|
cpi->mode_check_freq[THR_NEARA] = 2;
|
|
cpi->mode_check_freq[THR_NEWA] = 4;
|
|
}
|
|
|
|
sf->thresh_mult[THR_TM ] = 2000;
|
|
sf->thresh_mult[THR_B_PRED ] = 5000;
|
|
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTG ] = 2000;
|
|
sf->thresh_mult[THR_ZEROG ] = 2000;
|
|
sf->thresh_mult[THR_NEARG ] = 2000;
|
|
sf->thresh_mult[THR_NEWG ] = 4000;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEARESTA ] = 2000;
|
|
sf->thresh_mult[THR_ZEROA ] = 2000;
|
|
sf->thresh_mult[THR_NEARA ] = 2000;
|
|
sf->thresh_mult[THR_NEWA ] = 4000;
|
|
}
|
|
}
|
|
|
|
if (Speed > 5)
|
|
{
|
|
// Disable split MB intra prediction mode
|
|
sf->thresh_mult[THR_B_PRED] = INT_MAX;
|
|
}
|
|
|
|
if (Speed > 6)
|
|
{
|
|
unsigned int i, sum = 0;
|
|
unsigned int total_mbs = cm->MBs;
|
|
int thresh;
|
|
int total_skip;
|
|
|
|
int min = 2000;
|
|
|
|
if (cpi->oxcf.encode_breakout > 2000)
|
|
min = cpi->oxcf.encode_breakout;
|
|
|
|
min >>= 7;
|
|
|
|
for (i = 0; i < min; i++)
|
|
{
|
|
sum += cpi->error_bins[i];
|
|
}
|
|
|
|
total_skip = sum;
|
|
sum = 0;
|
|
|
|
// i starts from 2 to make sure thresh started from 2048
|
|
for (; i < 1024; i++)
|
|
{
|
|
sum += cpi->error_bins[i];
|
|
|
|
if (10 * sum >= (unsigned int)(cpi->Speed - 6)*(total_mbs - total_skip))
|
|
break;
|
|
}
|
|
|
|
i--;
|
|
thresh = (i << 7);
|
|
|
|
if (thresh < 2000)
|
|
thresh = 2000;
|
|
|
|
if (cpi->ref_frame_flags & VP8_LAST_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEWMV] = thresh;
|
|
sf->thresh_mult[THR_NEARESTMV ] = thresh >> 1;
|
|
sf->thresh_mult[THR_NEARMV ] = thresh >> 1;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEWG] = thresh << 1;
|
|
sf->thresh_mult[THR_NEARESTG ] = thresh;
|
|
sf->thresh_mult[THR_NEARG ] = thresh;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
|
|
{
|
|
sf->thresh_mult[THR_NEWA] = thresh << 1;
|
|
sf->thresh_mult[THR_NEARESTA ] = thresh;
|
|
sf->thresh_mult[THR_NEARA ] = thresh;
|
|
}
|
|
|
|
// Disable other intra prediction modes
|
|
sf->thresh_mult[THR_TM] = INT_MAX;
|
|
sf->thresh_mult[THR_V_PRED] = INT_MAX;
|
|
sf->thresh_mult[THR_H_PRED] = INT_MAX;
|
|
|
|
sf->improved_mv_pred = 0;
|
|
}
|
|
|
|
if (Speed > 8)
|
|
{
|
|
sf->quarter_pixel_search = 0;
|
|
}
|
|
|
|
if (Speed > 9)
|
|
{
|
|
int Tmp = cpi->Speed - 8;
|
|
|
|
if (Tmp > 4)
|
|
Tmp = 4;
|
|
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
|
|
{
|
|
cpi->mode_check_freq[THR_ZEROG] = 1 << (Tmp - 1);
|
|
cpi->mode_check_freq[THR_NEARESTG] = 1 << (Tmp - 1);
|
|
cpi->mode_check_freq[THR_NEARG] = 1 << Tmp;
|
|
cpi->mode_check_freq[THR_NEWG] = 1 << (Tmp + 1);
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
|
|
{
|
|
cpi->mode_check_freq[THR_ZEROA] = 1 << (Tmp - 1);
|
|
cpi->mode_check_freq[THR_NEARESTA] = 1 << (Tmp - 1);
|
|
cpi->mode_check_freq[THR_NEARA] = 1 << Tmp;
|
|
cpi->mode_check_freq[THR_NEWA] = 1 << (Tmp + 1);
|
|
}
|
|
|
|
cpi->mode_check_freq[THR_NEWMV] = 1 << (Tmp - 1);
|
|
}
|
|
|
|
cm->filter_type = NORMAL_LOOPFILTER;
|
|
|
|
if (Speed >= 14)
|
|
cm->filter_type = SIMPLE_LOOPFILTER;
|
|
|
|
if (Speed >= 15)
|
|
{
|
|
sf->half_pixel_search = 0; // This has a big hit on quality. Last resort
|
|
}
|
|
|
|
vpx_memset(cpi->error_bins, 0, sizeof(cpi->error_bins));
|
|
|
|
}; /* switch */
|
|
|
|
/* disable frame modes if flags not set */
|
|
if (!(cpi->ref_frame_flags & VP8_LAST_FLAG))
|
|
{
|
|
sf->thresh_mult[THR_NEWMV ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARESTMV] = INT_MAX;
|
|
sf->thresh_mult[THR_ZEROMV ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARMV ] = INT_MAX;
|
|
sf->thresh_mult[THR_SPLITMV ] = INT_MAX;
|
|
}
|
|
|
|
if (!(cpi->ref_frame_flags & VP8_GOLD_FLAG))
|
|
{
|
|
sf->thresh_mult[THR_NEARESTG ] = INT_MAX;
|
|
sf->thresh_mult[THR_ZEROG ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARG ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEWG ] = INT_MAX;
|
|
sf->thresh_mult[THR_SPLITG ] = INT_MAX;
|
|
}
|
|
|
|
if (!(cpi->ref_frame_flags & VP8_ALT_FLAG))
|
|
{
|
|
sf->thresh_mult[THR_NEARESTA ] = INT_MAX;
|
|
sf->thresh_mult[THR_ZEROA ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARA ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEWA ] = INT_MAX;
|
|
sf->thresh_mult[THR_SPLITA ] = INT_MAX;
|
|
}
|
|
|
|
|
|
// Slow quant, dct and trellis not worthwhile for first pass
|
|
// so make sure they are always turned off.
|
|
if ( cpi->pass == 1 )
|
|
{
|
|
sf->improved_quant = 0;
|
|
sf->optimize_coefficients = 0;
|
|
sf->improved_dct = 0;
|
|
}
|
|
|
|
if (cpi->sf.search_method == NSTEP)
|
|
{
|
|
vp8_init3smotion_compensation(&cpi->mb, cm->yv12_fb[cm->lst_fb_idx].y_stride);
|
|
}
|
|
else if (cpi->sf.search_method == DIAMOND)
|
|
{
|
|
vp8_init_dsmotion_compensation(&cpi->mb, cm->yv12_fb[cm->lst_fb_idx].y_stride);
|
|
}
|
|
|
|
if (cpi->sf.improved_dct)
|
|
{
|
|
cpi->mb.vp8_short_fdct8x4 = FDCT_INVOKE(&cpi->rtcd.fdct, short8x4);
|
|
cpi->mb.vp8_short_fdct4x4 = FDCT_INVOKE(&cpi->rtcd.fdct, short4x4);
|
|
}
|
|
else
|
|
{
|
|
cpi->mb.vp8_short_fdct8x4 = FDCT_INVOKE(&cpi->rtcd.fdct, fast8x4);
|
|
cpi->mb.vp8_short_fdct4x4 = FDCT_INVOKE(&cpi->rtcd.fdct, fast4x4);
|
|
}
|
|
|
|
cpi->mb.short_walsh4x4 = FDCT_INVOKE(&cpi->rtcd.fdct, walsh_short4x4);
|
|
|
|
if (cpi->sf.improved_quant)
|
|
{
|
|
cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize,
|
|
quantb);
|
|
cpi->mb.quantize_b_pair = QUANTIZE_INVOKE(&cpi->rtcd.quantize,
|
|
quantb_pair);
|
|
}
|
|
else
|
|
{
|
|
cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize,
|
|
fastquantb);
|
|
cpi->mb.quantize_b_pair = QUANTIZE_INVOKE(&cpi->rtcd.quantize,
|
|
fastquantb_pair);
|
|
}
|
|
if (cpi->sf.improved_quant != last_improved_quant)
|
|
vp8cx_init_quantizer(cpi);
|
|
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
cpi->mb.e_mbd.rtcd = &cpi->common.rtcd;
|
|
#endif
|
|
|
|
if (cpi->sf.iterative_sub_pixel == 1)
|
|
{
|
|
cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step_iteratively;
|
|
}
|
|
else if (cpi->sf.quarter_pixel_search)
|
|
{
|
|
cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step;
|
|
}
|
|
else if (cpi->sf.half_pixel_search)
|
|
{
|
|
cpi->find_fractional_mv_step = vp8_find_best_half_pixel_step;
|
|
}
|
|
else
|
|
{
|
|
cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step;
|
|
}
|
|
|
|
if (cpi->sf.optimize_coefficients == 1 && cpi->pass!=1)
|
|
cpi->mb.optimize = 1;
|
|
else
|
|
cpi->mb.optimize = 0;
|
|
|
|
if (cpi->common.full_pixel)
|
|
cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step;
|
|
|
|
#ifdef SPEEDSTATS
|
|
frames_at_speed[cpi->Speed]++;
|
|
#endif
|
|
}
|
|
static void alloc_raw_frame_buffers(VP8_COMP *cpi)
|
|
{
|
|
int width = (cpi->oxcf.Width + 15) & ~15;
|
|
int height = (cpi->oxcf.Height + 15) & ~15;
|
|
|
|
cpi->lookahead = vp8_lookahead_init(cpi->oxcf.Width, cpi->oxcf.Height,
|
|
cpi->oxcf.lag_in_frames);
|
|
if(!cpi->lookahead)
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate lag buffers");
|
|
|
|
#if VP8_TEMPORAL_ALT_REF
|
|
|
|
if (vp8_yv12_alloc_frame_buffer(&cpi->alt_ref_buffer,
|
|
width, height, 16))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate altref buffer");
|
|
|
|
#endif
|
|
}
|
|
|
|
static int vp8_alloc_partition_data(VP8_COMP *cpi)
|
|
{
|
|
vpx_free(cpi->mb.pip);
|
|
|
|
cpi->mb.pip = vpx_calloc((cpi->common.mb_cols + 1) *
|
|
(cpi->common.mb_rows + 1),
|
|
sizeof(PARTITION_INFO));
|
|
if(!cpi->mb.pip)
|
|
return 1;
|
|
|
|
cpi->mb.pi = cpi->mb.pip + cpi->common.mode_info_stride + 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void vp8_alloc_compressor_data(VP8_COMP *cpi)
|
|
{
|
|
VP8_COMMON *cm = & cpi->common;
|
|
|
|
int width = cm->Width;
|
|
int height = cm->Height;
|
|
|
|
if (vp8_alloc_frame_buffers(cm, width, height))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate frame buffers");
|
|
|
|
if (vp8_alloc_partition_data(cpi))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate partition data");
|
|
|
|
|
|
if ((width & 0xf) != 0)
|
|
width += 16 - (width & 0xf);
|
|
|
|
if ((height & 0xf) != 0)
|
|
height += 16 - (height & 0xf);
|
|
|
|
|
|
if (vp8_yv12_alloc_frame_buffer(&cpi->last_frame_uf,
|
|
width, height, VP8BORDERINPIXELS))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate last frame buffer");
|
|
|
|
if (vp8_yv12_alloc_frame_buffer(&cpi->scaled_source, width, height, 16))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate scaled source buffer");
|
|
|
|
|
|
vpx_free(cpi->tok);
|
|
|
|
{
|
|
unsigned int tokens = cm->mb_rows * cm->mb_cols * 24 * 16;
|
|
|
|
CHECK_MEM_ERROR(cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok)));
|
|
}
|
|
|
|
// Data used for real time vc mode to see if gf needs refreshing
|
|
cpi->inter_zz_count = 0;
|
|
cpi->gf_bad_count = 0;
|
|
cpi->gf_update_recommended = 0;
|
|
|
|
|
|
// Structures used to minitor GF usage
|
|
vpx_free(cpi->gf_active_flags);
|
|
CHECK_MEM_ERROR(cpi->gf_active_flags,
|
|
vpx_calloc(1, cm->mb_rows * cm->mb_cols));
|
|
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
|
|
|
|
vpx_free(cpi->mb_activity_map);
|
|
CHECK_MEM_ERROR(cpi->mb_activity_map,
|
|
vpx_calloc(sizeof(unsigned int),
|
|
cm->mb_rows * cm->mb_cols));
|
|
|
|
vpx_free(cpi->mb_norm_activity_map);
|
|
CHECK_MEM_ERROR(cpi->mb_norm_activity_map,
|
|
vpx_calloc(sizeof(unsigned int),
|
|
cm->mb_rows * cm->mb_cols));
|
|
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
vpx_free(cpi->twopass.total_stats);
|
|
|
|
cpi->twopass.total_stats = vpx_calloc(1, sizeof(FIRSTPASS_STATS));
|
|
|
|
vpx_free(cpi->twopass.this_frame_stats);
|
|
|
|
cpi->twopass.this_frame_stats = vpx_calloc(1, sizeof(FIRSTPASS_STATS));
|
|
|
|
if(!cpi->twopass.total_stats || !cpi->twopass.this_frame_stats)
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate firstpass stats");
|
|
#endif
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
if (width < 640)
|
|
cpi->mt_sync_range = 1;
|
|
else if (width <= 1280)
|
|
cpi->mt_sync_range = 4;
|
|
else if (width <= 2560)
|
|
cpi->mt_sync_range = 8;
|
|
else
|
|
cpi->mt_sync_range = 16;
|
|
#endif
|
|
|
|
vpx_free(cpi->tplist);
|
|
|
|
CHECK_MEM_ERROR(cpi->tplist, vpx_malloc(sizeof(TOKENLIST) * cpi->common.mb_rows));
|
|
}
|
|
|
|
|
|
// Quant MOD
|
|
static const int q_trans[] =
|
|
{
|
|
0, 1, 2, 3, 4, 5, 7, 8,
|
|
9, 10, 12, 13, 15, 17, 18, 19,
|
|
20, 21, 23, 24, 25, 26, 27, 28,
|
|
29, 30, 31, 33, 35, 37, 39, 41,
|
|
43, 45, 47, 49, 51, 53, 55, 57,
|
|
59, 61, 64, 67, 70, 73, 76, 79,
|
|
82, 85, 88, 91, 94, 97, 100, 103,
|
|
106, 109, 112, 115, 118, 121, 124, 127,
|
|
};
|
|
|
|
int vp8_reverse_trans(int x)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 64; i++)
|
|
if (q_trans[i] >= x)
|
|
return i;
|
|
|
|
return 63;
|
|
};
|
|
void vp8_new_frame_rate(VP8_COMP *cpi, double framerate)
|
|
{
|
|
if(framerate < .1)
|
|
framerate = 30;
|
|
|
|
cpi->oxcf.frame_rate = framerate;
|
|
cpi->output_frame_rate = cpi->oxcf.frame_rate;
|
|
cpi->per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_frame_rate);
|
|
cpi->av_per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_frame_rate);
|
|
cpi->min_frame_bandwidth = (int)(cpi->av_per_frame_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100);
|
|
|
|
// Set Maximum gf/arf interval
|
|
cpi->max_gf_interval = ((int)(cpi->output_frame_rate / 2.0) + 2);
|
|
|
|
if(cpi->max_gf_interval < 12)
|
|
cpi->max_gf_interval = 12;
|
|
|
|
// Extended interval for genuinely static scenes
|
|
cpi->twopass.static_scene_max_gf_interval = cpi->key_frame_frequency >> 1;
|
|
|
|
// Special conditions when altr ref frame enabled in lagged compress mode
|
|
if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames)
|
|
{
|
|
if (cpi->max_gf_interval > cpi->oxcf.lag_in_frames - 1)
|
|
cpi->max_gf_interval = cpi->oxcf.lag_in_frames - 1;
|
|
|
|
if (cpi->twopass.static_scene_max_gf_interval > cpi->oxcf.lag_in_frames - 1)
|
|
cpi->twopass.static_scene_max_gf_interval = cpi->oxcf.lag_in_frames - 1;
|
|
}
|
|
|
|
if ( cpi->max_gf_interval > cpi->twopass.static_scene_max_gf_interval )
|
|
cpi->max_gf_interval = cpi->twopass.static_scene_max_gf_interval;
|
|
}
|
|
|
|
|
|
static int
|
|
rescale(int val, int num, int denom)
|
|
{
|
|
int64_t llnum = num;
|
|
int64_t llden = denom;
|
|
int64_t llval = val;
|
|
|
|
return llval * llnum / llden;
|
|
}
|
|
|
|
|
|
static void init_config(VP8_PTR ptr, VP8_CONFIG *oxcf)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *)(ptr);
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
cpi->oxcf = *oxcf;
|
|
|
|
cpi->auto_gold = 1;
|
|
cpi->auto_adjust_gold_quantizer = 1;
|
|
cpi->goldfreq = 7;
|
|
|
|
cm->version = oxcf->Version;
|
|
vp8_setup_version(cm);
|
|
|
|
// change includes all joint functionality
|
|
vp8_change_config(ptr, oxcf);
|
|
|
|
// Initialize active best and worst q and average q values.
|
|
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
|
|
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
|
|
cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q;
|
|
|
|
// Initialise the starting buffer levels
|
|
cpi->buffer_level = cpi->oxcf.starting_buffer_level;
|
|
cpi->bits_off_target = cpi->oxcf.starting_buffer_level;
|
|
|
|
cpi->rolling_target_bits = cpi->av_per_frame_bandwidth;
|
|
cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth;
|
|
cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth;
|
|
cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth;
|
|
cpi->buffered_av_per_frame_bandwidth = cpi->av_per_frame_bandwidth;
|
|
|
|
cpi->total_actual_bits = 0;
|
|
cpi->total_target_vs_actual = 0;
|
|
|
|
#if VP8_TEMPORAL_ALT_REF
|
|
{
|
|
int i;
|
|
|
|
cpi->fixed_divide[0] = 0;
|
|
|
|
for (i = 1; i < 512; i++)
|
|
cpi->fixed_divide[i] = 0x80000 / i;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
void vp8_change_config(VP8_PTR ptr, VP8_CONFIG *oxcf)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *)(ptr);
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
if (!cpi)
|
|
return;
|
|
|
|
if (!oxcf)
|
|
return;
|
|
|
|
if (cm->version != oxcf->Version)
|
|
{
|
|
cm->version = oxcf->Version;
|
|
vp8_setup_version(cm);
|
|
}
|
|
|
|
cpi->oxcf = *oxcf;
|
|
|
|
switch (cpi->oxcf.Mode)
|
|
{
|
|
|
|
case MODE_REALTIME:
|
|
cpi->pass = 0;
|
|
cpi->compressor_speed = 2;
|
|
|
|
if (cpi->oxcf.cpu_used < -16)
|
|
{
|
|
cpi->oxcf.cpu_used = -16;
|
|
}
|
|
|
|
if (cpi->oxcf.cpu_used > 16)
|
|
cpi->oxcf.cpu_used = 16;
|
|
|
|
break;
|
|
|
|
case MODE_GOODQUALITY:
|
|
cpi->pass = 0;
|
|
cpi->compressor_speed = 1;
|
|
|
|
if (cpi->oxcf.cpu_used < -5)
|
|
{
|
|
cpi->oxcf.cpu_used = -5;
|
|
}
|
|
|
|
if (cpi->oxcf.cpu_used > 5)
|
|
cpi->oxcf.cpu_used = 5;
|
|
|
|
break;
|
|
|
|
case MODE_BESTQUALITY:
|
|
cpi->pass = 0;
|
|
cpi->compressor_speed = 0;
|
|
break;
|
|
|
|
case MODE_FIRSTPASS:
|
|
cpi->pass = 1;
|
|
cpi->compressor_speed = 1;
|
|
break;
|
|
case MODE_SECONDPASS:
|
|
cpi->pass = 2;
|
|
cpi->compressor_speed = 1;
|
|
|
|
if (cpi->oxcf.cpu_used < -5)
|
|
{
|
|
cpi->oxcf.cpu_used = -5;
|
|
}
|
|
|
|
if (cpi->oxcf.cpu_used > 5)
|
|
cpi->oxcf.cpu_used = 5;
|
|
|
|
break;
|
|
case MODE_SECONDPASS_BEST:
|
|
cpi->pass = 2;
|
|
cpi->compressor_speed = 0;
|
|
break;
|
|
}
|
|
|
|
if (cpi->pass == 0 && cpi->oxcf.end_usage != USAGE_STREAM_FROM_SERVER)
|
|
cpi->auto_worst_q = 1;
|
|
|
|
cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q];
|
|
cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q];
|
|
cpi->oxcf.cq_level = q_trans[cpi->oxcf.cq_level];
|
|
|
|
if (oxcf->fixed_q >= 0)
|
|
{
|
|
if (oxcf->worst_allowed_q < 0)
|
|
cpi->oxcf.fixed_q = q_trans[0];
|
|
else
|
|
cpi->oxcf.fixed_q = q_trans[oxcf->worst_allowed_q];
|
|
|
|
if (oxcf->alt_q < 0)
|
|
cpi->oxcf.alt_q = q_trans[0];
|
|
else
|
|
cpi->oxcf.alt_q = q_trans[oxcf->alt_q];
|
|
|
|
if (oxcf->key_q < 0)
|
|
cpi->oxcf.key_q = q_trans[0];
|
|
else
|
|
cpi->oxcf.key_q = q_trans[oxcf->key_q];
|
|
|
|
if (oxcf->gold_q < 0)
|
|
cpi->oxcf.gold_q = q_trans[0];
|
|
else
|
|
cpi->oxcf.gold_q = q_trans[oxcf->gold_q];
|
|
|
|
}
|
|
|
|
cpi->baseline_gf_interval =
|
|
cpi->oxcf.alt_freq ? cpi->oxcf.alt_freq : DEFAULT_GF_INTERVAL;
|
|
|
|
cpi->ref_frame_flags = VP8_ALT_FLAG | VP8_GOLD_FLAG | VP8_LAST_FLAG;
|
|
|
|
//cpi->use_golden_frame_only = 0;
|
|
//cpi->use_last_frame_only = 0;
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 1;
|
|
cm->refresh_entropy_probs = 1;
|
|
|
|
if (cpi->oxcf.token_partitions >= 0 && cpi->oxcf.token_partitions <= 3)
|
|
cm->multi_token_partition =
|
|
(TOKEN_PARTITION) cpi->oxcf.token_partitions;
|
|
|
|
setup_features(cpi);
|
|
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_MB_SEGMENTS; i++)
|
|
cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
|
|
}
|
|
|
|
// At the moment the first order values may not be > MAXQ
|
|
if (cpi->oxcf.fixed_q > MAXQ)
|
|
cpi->oxcf.fixed_q = MAXQ;
|
|
|
|
// local file playback mode == really big buffer
|
|
if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK)
|
|
{
|
|
cpi->oxcf.starting_buffer_level = 60000;
|
|
cpi->oxcf.optimal_buffer_level = 60000;
|
|
cpi->oxcf.maximum_buffer_size = 240000;
|
|
}
|
|
|
|
// Convert target bandwidth from Kbit/s to Bit/s
|
|
cpi->oxcf.target_bandwidth *= 1000;
|
|
|
|
cpi->oxcf.starting_buffer_level =
|
|
rescale(cpi->oxcf.starting_buffer_level,
|
|
cpi->oxcf.target_bandwidth, 1000);
|
|
|
|
// Set or reset optimal and maximum buffer levels.
|
|
if (cpi->oxcf.optimal_buffer_level == 0)
|
|
cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8;
|
|
else
|
|
cpi->oxcf.optimal_buffer_level =
|
|
rescale(cpi->oxcf.optimal_buffer_level,
|
|
cpi->oxcf.target_bandwidth, 1000);
|
|
|
|
if (cpi->oxcf.maximum_buffer_size == 0)
|
|
cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8;
|
|
else
|
|
cpi->oxcf.maximum_buffer_size =
|
|
rescale(cpi->oxcf.maximum_buffer_size,
|
|
cpi->oxcf.target_bandwidth, 1000);
|
|
|
|
// Set up frame rate and related parameters rate control values.
|
|
vp8_new_frame_rate(cpi, cpi->oxcf.frame_rate);
|
|
|
|
// Set absolute upper and lower quality limits
|
|
cpi->worst_quality = cpi->oxcf.worst_allowed_q;
|
|
cpi->best_quality = cpi->oxcf.best_allowed_q;
|
|
|
|
// active values should only be modified if out of new range
|
|
if (cpi->active_worst_quality > cpi->oxcf.worst_allowed_q)
|
|
{
|
|
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
|
|
}
|
|
// less likely
|
|
else if (cpi->active_worst_quality < cpi->oxcf.best_allowed_q)
|
|
{
|
|
cpi->active_worst_quality = cpi->oxcf.best_allowed_q;
|
|
}
|
|
if (cpi->active_best_quality < cpi->oxcf.best_allowed_q)
|
|
{
|
|
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
|
|
}
|
|
// less likely
|
|
else if (cpi->active_best_quality > cpi->oxcf.worst_allowed_q)
|
|
{
|
|
cpi->active_best_quality = cpi->oxcf.worst_allowed_q;
|
|
}
|
|
|
|
cpi->buffered_mode = (cpi->oxcf.optimal_buffer_level > 0) ? TRUE : FALSE;
|
|
|
|
cpi->cq_target_quality = cpi->oxcf.cq_level;
|
|
|
|
// Only allow dropped frames in buffered mode
|
|
cpi->drop_frames_allowed = cpi->oxcf.allow_df && cpi->buffered_mode;
|
|
|
|
if (!cm->use_bilinear_mc_filter)
|
|
cm->mcomp_filter_type = SIXTAP;
|
|
else
|
|
cm->mcomp_filter_type = BILINEAR;
|
|
|
|
cpi->target_bandwidth = cpi->oxcf.target_bandwidth;
|
|
|
|
cm->Width = cpi->oxcf.Width ;
|
|
cm->Height = cpi->oxcf.Height ;
|
|
|
|
cm->horiz_scale = cpi->horiz_scale;
|
|
cm->vert_scale = cpi->vert_scale ;
|
|
|
|
// VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs)
|
|
if (cpi->oxcf.Sharpness > 7)
|
|
cpi->oxcf.Sharpness = 7;
|
|
|
|
cm->sharpness_level = cpi->oxcf.Sharpness;
|
|
|
|
if (cm->horiz_scale != NORMAL || cm->vert_scale != NORMAL)
|
|
{
|
|
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
|
|
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
|
|
|
|
Scale2Ratio(cm->horiz_scale, &hr, &hs);
|
|
Scale2Ratio(cm->vert_scale, &vr, &vs);
|
|
|
|
// always go to the next whole number
|
|
cm->Width = (hs - 1 + cpi->oxcf.Width * hr) / hs;
|
|
cm->Height = (vs - 1 + cpi->oxcf.Height * vr) / vs;
|
|
}
|
|
|
|
if (((cm->Width + 15) & 0xfffffff0) !=
|
|
cm->yv12_fb[cm->lst_fb_idx].y_width ||
|
|
((cm->Height + 15) & 0xfffffff0) !=
|
|
cm->yv12_fb[cm->lst_fb_idx].y_height ||
|
|
cm->yv12_fb[cm->lst_fb_idx].y_width == 0)
|
|
{
|
|
alloc_raw_frame_buffers(cpi);
|
|
vp8_alloc_compressor_data(cpi);
|
|
}
|
|
|
|
if (cpi->oxcf.fixed_q >= 0)
|
|
{
|
|
cpi->last_q[0] = cpi->oxcf.fixed_q;
|
|
cpi->last_q[1] = cpi->oxcf.fixed_q;
|
|
}
|
|
|
|
cpi->Speed = cpi->oxcf.cpu_used;
|
|
|
|
// force to allowlag to 0 if lag_in_frames is 0;
|
|
if (cpi->oxcf.lag_in_frames == 0)
|
|
{
|
|
cpi->oxcf.allow_lag = 0;
|
|
}
|
|
// Limit on lag buffers as these are not currently dynamically allocated
|
|
else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS)
|
|
cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS;
|
|
|
|
// YX Temp
|
|
cpi->alt_ref_source = NULL;
|
|
cpi->is_src_frame_alt_ref = 0;
|
|
|
|
|
|
#if 0
|
|
// Experimental RD Code
|
|
cpi->frame_distortion = 0;
|
|
cpi->last_frame_distortion = 0;
|
|
#endif
|
|
|
|
}
|
|
|
|
#define M_LOG2_E 0.693147180559945309417
|
|
#define log2f(x) (log (x) / (float) M_LOG2_E)
|
|
static void cal_mvsadcosts(int *mvsadcost[2])
|
|
{
|
|
int i = 1;
|
|
|
|
mvsadcost [0] [0] = 300;
|
|
mvsadcost [1] [0] = 300;
|
|
|
|
do
|
|
{
|
|
double z = 256 * (2 * (log2f(8 * i) + .6));
|
|
mvsadcost [0][i] = (int) z;
|
|
mvsadcost [1][i] = (int) z;
|
|
mvsadcost [0][-i] = (int) z;
|
|
mvsadcost [1][-i] = (int) z;
|
|
}
|
|
while (++i <= mvfp_max);
|
|
}
|
|
|
|
VP8_PTR vp8_create_compressor(VP8_CONFIG *oxcf)
|
|
{
|
|
int i;
|
|
volatile union
|
|
{
|
|
VP8_COMP *cpi;
|
|
VP8_PTR ptr;
|
|
} ctx;
|
|
|
|
VP8_COMP *cpi;
|
|
VP8_COMMON *cm;
|
|
|
|
cpi = ctx.cpi = vpx_memalign(32, sizeof(VP8_COMP));
|
|
// Check that the CPI instance is valid
|
|
if (!cpi)
|
|
return 0;
|
|
|
|
cm = &cpi->common;
|
|
|
|
vpx_memset(cpi, 0, sizeof(VP8_COMP));
|
|
|
|
if (setjmp(cm->error.jmp))
|
|
{
|
|
VP8_PTR ptr = ctx.ptr;
|
|
|
|
ctx.cpi->common.error.setjmp = 0;
|
|
vp8_remove_compressor(&ptr);
|
|
return 0;
|
|
}
|
|
|
|
cpi->common.error.setjmp = 1;
|
|
|
|
CHECK_MEM_ERROR(cpi->mb.ss, vpx_calloc(sizeof(search_site), (MAX_MVSEARCH_STEPS * 8) + 1));
|
|
|
|
vp8_create_common(&cpi->common);
|
|
vp8_cmachine_specific_config(cpi);
|
|
|
|
init_config((VP8_PTR)cpi, oxcf);
|
|
|
|
memcpy(cpi->base_skip_false_prob, vp8cx_base_skip_false_prob, sizeof(vp8cx_base_skip_false_prob));
|
|
cpi->common.current_video_frame = 0;
|
|
cpi->kf_overspend_bits = 0;
|
|
cpi->kf_bitrate_adjustment = 0;
|
|
cpi->frames_till_gf_update_due = 0;
|
|
cpi->gf_overspend_bits = 0;
|
|
cpi->non_gf_bitrate_adjustment = 0;
|
|
cpi->prob_last_coded = 128;
|
|
cpi->prob_gf_coded = 128;
|
|
cpi->prob_intra_coded = 63;
|
|
|
|
// Prime the recent reference frame useage counters.
|
|
// Hereafter they will be maintained as a sort of moving average
|
|
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
|
|
|
|
// Set reference frame sign bias for ALTREF frame to 1 (for now)
|
|
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
|
|
|
|
cpi->twopass.gf_decay_rate = 0;
|
|
cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
|
|
|
|
cpi->gold_is_last = 0 ;
|
|
cpi->alt_is_last = 0 ;
|
|
cpi->gold_is_alt = 0 ;
|
|
|
|
// allocate memory for storing last frame's MVs for MV prediction.
|
|
CHECK_MEM_ERROR(cpi->lfmv, vpx_calloc((cpi->common.mb_rows+2) * (cpi->common.mb_cols+2), sizeof(int_mv)));
|
|
CHECK_MEM_ERROR(cpi->lf_ref_frame_sign_bias, vpx_calloc((cpi->common.mb_rows+2) * (cpi->common.mb_cols+2), sizeof(int)));
|
|
CHECK_MEM_ERROR(cpi->lf_ref_frame, vpx_calloc((cpi->common.mb_rows+2) * (cpi->common.mb_cols+2), sizeof(int)));
|
|
|
|
// Create the encoder segmentation map and set all entries to 0
|
|
CHECK_MEM_ERROR(cpi->segmentation_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1));
|
|
CHECK_MEM_ERROR(cpi->active_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1));
|
|
vpx_memset(cpi->active_map , 1, (cpi->common.mb_rows * cpi->common.mb_cols));
|
|
cpi->active_map_enabled = 0;
|
|
|
|
#if 0
|
|
// Experimental code for lagged and one pass
|
|
// Initialise one_pass GF frames stats
|
|
// Update stats used for GF selection
|
|
if (cpi->pass == 0)
|
|
{
|
|
cpi->one_pass_frame_index = 0;
|
|
|
|
for (i = 0; i < MAX_LAG_BUFFERS; i++)
|
|
{
|
|
cpi->one_pass_frame_stats[i].frames_so_far = 0;
|
|
cpi->one_pass_frame_stats[i].frame_intra_error = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_coded_error = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_pcnt_inter = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_pcnt_motion = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_mvr = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_mvr_abs = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_mvc = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_mvc_abs = 0.0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Should we use the cyclic refresh method.
|
|
// Currently this is tied to error resilliant mode
|
|
cpi->cyclic_refresh_mode_enabled = cpi->oxcf.error_resilient_mode;
|
|
cpi->cyclic_refresh_mode_max_mbs_perframe = (cpi->common.mb_rows * cpi->common.mb_cols) / 40;
|
|
cpi->cyclic_refresh_mode_index = 0;
|
|
cpi->cyclic_refresh_q = 32;
|
|
|
|
if (cpi->cyclic_refresh_mode_enabled)
|
|
{
|
|
CHECK_MEM_ERROR(cpi->cyclic_refresh_map, vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
|
|
}
|
|
else
|
|
cpi->cyclic_refresh_map = (signed char *) NULL;
|
|
|
|
// Test function for segmentation
|
|
//segmentation_test_function((VP8_PTR) cpi);
|
|
|
|
#ifdef ENTROPY_STATS
|
|
init_context_counters();
|
|
#endif
|
|
|
|
/*Initialize the feed-forward activity masking.*/
|
|
cpi->activity_avg = 90<<12;
|
|
|
|
cpi->frames_since_key = 8; // Give a sensible default for the first frame.
|
|
cpi->key_frame_frequency = cpi->oxcf.key_freq;
|
|
cpi->this_key_frame_forced = FALSE;
|
|
cpi->next_key_frame_forced = FALSE;
|
|
|
|
cpi->source_alt_ref_pending = FALSE;
|
|
cpi->source_alt_ref_active = FALSE;
|
|
cpi->common.refresh_alt_ref_frame = 0;
|
|
|
|
cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
|
|
#if CONFIG_INTERNAL_STATS
|
|
cpi->b_calculate_ssimg = 0;
|
|
|
|
cpi->count = 0;
|
|
cpi->bytes = 0;
|
|
|
|
if (cpi->b_calculate_psnr)
|
|
{
|
|
cpi->total_sq_error = 0.0;
|
|
cpi->total_sq_error2 = 0.0;
|
|
cpi->total_y = 0.0;
|
|
cpi->total_u = 0.0;
|
|
cpi->total_v = 0.0;
|
|
cpi->total = 0.0;
|
|
cpi->totalp_y = 0.0;
|
|
cpi->totalp_u = 0.0;
|
|
cpi->totalp_v = 0.0;
|
|
cpi->totalp = 0.0;
|
|
cpi->tot_recode_hits = 0;
|
|
cpi->summed_quality = 0;
|
|
cpi->summed_weights = 0;
|
|
}
|
|
|
|
if (cpi->b_calculate_ssimg)
|
|
{
|
|
cpi->total_ssimg_y = 0;
|
|
cpi->total_ssimg_u = 0;
|
|
cpi->total_ssimg_v = 0;
|
|
cpi->total_ssimg_all = 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifndef LLONG_MAX
|
|
#define LLONG_MAX 9223372036854775807LL
|
|
#endif
|
|
cpi->first_time_stamp_ever = LLONG_MAX;
|
|
|
|
cpi->frames_till_gf_update_due = 0;
|
|
cpi->key_frame_count = 1;
|
|
|
|
cpi->ni_av_qi = cpi->oxcf.worst_allowed_q;
|
|
cpi->ni_tot_qi = 0;
|
|
cpi->ni_frames = 0;
|
|
cpi->total_byte_count = 0;
|
|
|
|
cpi->drop_frame = 0;
|
|
cpi->drop_count = 0;
|
|
cpi->max_drop_count = 0;
|
|
cpi->max_consec_dropped_frames = 4;
|
|
|
|
cpi->rate_correction_factor = 1.0;
|
|
cpi->key_frame_rate_correction_factor = 1.0;
|
|
cpi->gf_rate_correction_factor = 1.0;
|
|
cpi->twopass.est_max_qcorrection_factor = 1.0;
|
|
|
|
cpi->mb.mvcost[0] = &cpi->mb.mvcosts[0][mv_max+1];
|
|
cpi->mb.mvcost[1] = &cpi->mb.mvcosts[1][mv_max+1];
|
|
cpi->mb.mvsadcost[0] = &cpi->mb.mvsadcosts[0][mvfp_max+1];
|
|
cpi->mb.mvsadcost[1] = &cpi->mb.mvsadcosts[1][mvfp_max+1];
|
|
|
|
cal_mvsadcosts(cpi->mb.mvsadcost);
|
|
|
|
for (i = 0; i < KEY_FRAME_CONTEXT; i++)
|
|
{
|
|
cpi->prior_key_frame_distance[i] = (int)cpi->output_frame_rate;
|
|
}
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
yuv_file = fopen("bd.yuv", "ab");
|
|
#endif
|
|
|
|
#if 0
|
|
framepsnr = fopen("framepsnr.stt", "a");
|
|
kf_list = fopen("kf_list.stt", "w");
|
|
#endif
|
|
|
|
cpi->output_pkt_list = oxcf->output_pkt_list;
|
|
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
|
|
if (cpi->pass == 1)
|
|
{
|
|
vp8_init_first_pass(cpi);
|
|
}
|
|
else if (cpi->pass == 2)
|
|
{
|
|
size_t packet_sz = sizeof(FIRSTPASS_STATS);
|
|
int packets = oxcf->two_pass_stats_in.sz / packet_sz;
|
|
|
|
cpi->twopass.stats_in = oxcf->two_pass_stats_in.buf;
|
|
cpi->twopass.stats_in_end = (void*)((char *)cpi->twopass.stats_in
|
|
+ (packets - 1) * packet_sz);
|
|
vp8_init_second_pass(cpi);
|
|
}
|
|
|
|
#endif
|
|
|
|
if (cpi->compressor_speed == 2)
|
|
{
|
|
cpi->cpu_freq = 0; //vp8_get_processor_freq();
|
|
cpi->avg_encode_time = 0;
|
|
cpi->avg_pick_mode_time = 0;
|
|
}
|
|
|
|
vp8_set_speed_features(cpi);
|
|
|
|
// Set starting values of RD threshold multipliers (128 = *1)
|
|
for (i = 0; i < MAX_MODES; i++)
|
|
{
|
|
cpi->rd_thresh_mult[i] = 128;
|
|
}
|
|
|
|
#ifdef ENTROPY_STATS
|
|
init_mv_ref_counts();
|
|
#endif
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
vp8cx_create_encoder_threads(cpi);
|
|
#endif
|
|
|
|
cpi->fn_ptr[BLOCK_16X16].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16);
|
|
cpi->fn_ptr[BLOCK_16X16].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var16x16);
|
|
cpi->fn_ptr[BLOCK_16X16].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar16x16);
|
|
cpi->fn_ptr[BLOCK_16X16].svf_halfpix_h = VARIANCE_INVOKE(&cpi->rtcd.variance, halfpixvar16x16_h);
|
|
cpi->fn_ptr[BLOCK_16X16].svf_halfpix_v = VARIANCE_INVOKE(&cpi->rtcd.variance, halfpixvar16x16_v);
|
|
cpi->fn_ptr[BLOCK_16X16].svf_halfpix_hv = VARIANCE_INVOKE(&cpi->rtcd.variance, halfpixvar16x16_hv);
|
|
cpi->fn_ptr[BLOCK_16X16].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16x3);
|
|
cpi->fn_ptr[BLOCK_16X16].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16x8);
|
|
cpi->fn_ptr[BLOCK_16X16].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16x4d);
|
|
|
|
cpi->fn_ptr[BLOCK_16X8].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8);
|
|
cpi->fn_ptr[BLOCK_16X8].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var16x8);
|
|
cpi->fn_ptr[BLOCK_16X8].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar16x8);
|
|
cpi->fn_ptr[BLOCK_16X8].svf_halfpix_h = NULL;
|
|
cpi->fn_ptr[BLOCK_16X8].svf_halfpix_v = NULL;
|
|
cpi->fn_ptr[BLOCK_16X8].svf_halfpix_hv = NULL;
|
|
cpi->fn_ptr[BLOCK_16X8].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8x3);
|
|
cpi->fn_ptr[BLOCK_16X8].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8x8);
|
|
cpi->fn_ptr[BLOCK_16X8].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8x4d);
|
|
|
|
cpi->fn_ptr[BLOCK_8X16].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16);
|
|
cpi->fn_ptr[BLOCK_8X16].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var8x16);
|
|
cpi->fn_ptr[BLOCK_8X16].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar8x16);
|
|
cpi->fn_ptr[BLOCK_8X16].svf_halfpix_h = NULL;
|
|
cpi->fn_ptr[BLOCK_8X16].svf_halfpix_v = NULL;
|
|
cpi->fn_ptr[BLOCK_8X16].svf_halfpix_hv = NULL;
|
|
cpi->fn_ptr[BLOCK_8X16].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16x3);
|
|
cpi->fn_ptr[BLOCK_8X16].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16x8);
|
|
cpi->fn_ptr[BLOCK_8X16].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16x4d);
|
|
|
|
cpi->fn_ptr[BLOCK_8X8].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8);
|
|
cpi->fn_ptr[BLOCK_8X8].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var8x8);
|
|
cpi->fn_ptr[BLOCK_8X8].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar8x8);
|
|
cpi->fn_ptr[BLOCK_8X8].svf_halfpix_h = NULL;
|
|
cpi->fn_ptr[BLOCK_8X8].svf_halfpix_v = NULL;
|
|
cpi->fn_ptr[BLOCK_8X8].svf_halfpix_hv = NULL;
|
|
cpi->fn_ptr[BLOCK_8X8].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8x3);
|
|
cpi->fn_ptr[BLOCK_8X8].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8x8);
|
|
cpi->fn_ptr[BLOCK_8X8].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8x4d);
|
|
|
|
cpi->fn_ptr[BLOCK_4X4].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4);
|
|
cpi->fn_ptr[BLOCK_4X4].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var4x4);
|
|
cpi->fn_ptr[BLOCK_4X4].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar4x4);
|
|
cpi->fn_ptr[BLOCK_4X4].svf_halfpix_h = NULL;
|
|
cpi->fn_ptr[BLOCK_4X4].svf_halfpix_v = NULL;
|
|
cpi->fn_ptr[BLOCK_4X4].svf_halfpix_hv = NULL;
|
|
cpi->fn_ptr[BLOCK_4X4].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4x3);
|
|
cpi->fn_ptr[BLOCK_4X4].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4x8);
|
|
cpi->fn_ptr[BLOCK_4X4].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4x4d);
|
|
|
|
cpi->full_search_sad = SEARCH_INVOKE(&cpi->rtcd.search, full_search);
|
|
cpi->diamond_search_sad = SEARCH_INVOKE(&cpi->rtcd.search, diamond_search);
|
|
cpi->refining_search_sad = SEARCH_INVOKE(&cpi->rtcd.search, refining_search);
|
|
|
|
// make sure frame 1 is okay
|
|
cpi->error_bins[0] = cpi->common.MBs;
|
|
|
|
//vp8cx_init_quantizer() is first called here. Add check in vp8cx_frame_init_quantizer() so that vp8cx_init_quantizer is only called later
|
|
//when needed. This will avoid unnecessary calls of vp8cx_init_quantizer() for every frame.
|
|
vp8cx_init_quantizer(cpi);
|
|
{
|
|
vp8_init_loop_filter(cm);
|
|
cm->last_frame_type = KEY_FRAME;
|
|
cm->last_filter_type = cm->filter_type;
|
|
cm->last_sharpness_level = cm->sharpness_level;
|
|
}
|
|
cpi->common.error.setjmp = 0;
|
|
return (VP8_PTR) cpi;
|
|
|
|
}
|
|
|
|
|
|
void vp8_remove_compressor(VP8_PTR *ptr)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *)(*ptr);
|
|
|
|
if (!cpi)
|
|
return;
|
|
|
|
if (cpi && (cpi->common.current_video_frame > 0))
|
|
{
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
|
|
if (cpi->pass == 2)
|
|
{
|
|
vp8_end_second_pass(cpi);
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef ENTROPY_STATS
|
|
print_context_counters();
|
|
print_tree_update_probs();
|
|
print_mode_context();
|
|
#endif
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
|
|
if (cpi->pass != 1)
|
|
{
|
|
FILE *f = fopen("opsnr.stt", "a");
|
|
double time_encoded = (cpi->last_end_time_stamp_seen
|
|
- cpi->first_time_stamp_ever) / 10000000.000;
|
|
double total_encode_time = (cpi->time_receive_data + cpi->time_compress_data) / 1000.000;
|
|
double dr = (double)cpi->bytes * (double) 8 / (double)1000 / time_encoded;
|
|
|
|
if (cpi->b_calculate_psnr)
|
|
{
|
|
YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx];
|
|
double samples = 3.0 / 2 * cpi->count * lst_yv12->y_width * lst_yv12->y_height;
|
|
double total_psnr = vp8_mse2psnr(samples, 255.0, cpi->total_sq_error);
|
|
double total_psnr2 = vp8_mse2psnr(samples, 255.0, cpi->total_sq_error2);
|
|
double total_ssim = 100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0);
|
|
|
|
fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\tVPXSSIM\t Time(us)\n");
|
|
fprintf(f, "%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f\n",
|
|
dr, cpi->total / cpi->count, total_psnr, cpi->totalp / cpi->count, total_psnr2, total_ssim,
|
|
total_encode_time);
|
|
}
|
|
|
|
if (cpi->b_calculate_ssimg)
|
|
{
|
|
fprintf(f, "BitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t Time(us)\n");
|
|
fprintf(f, "%7.3f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f\n", dr,
|
|
cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count,
|
|
cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time);
|
|
}
|
|
|
|
fclose(f);
|
|
#if 0
|
|
f = fopen("qskip.stt", "a");
|
|
fprintf(f, "minq:%d -maxq:%d skipture:skipfalse = %d:%d\n", cpi->oxcf.best_allowed_q, cpi->oxcf.worst_allowed_q, skiptruecount, skipfalsecount);
|
|
fclose(f);
|
|
#endif
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
#ifdef SPEEDSTATS
|
|
|
|
if (cpi->compressor_speed == 2)
|
|
{
|
|
int i;
|
|
FILE *f = fopen("cxspeed.stt", "a");
|
|
cnt_pm /= cpi->common.MBs;
|
|
|
|
for (i = 0; i < 16; i++)
|
|
fprintf(f, "%5d", frames_at_speed[i]);
|
|
|
|
fprintf(f, "\n");
|
|
//fprintf(f, "%10d PM %10d %10d %10d EF %10d %10d %10d\n", cpi->Speed, cpi->avg_pick_mode_time, (tot_pm/cnt_pm), cnt_pm, cpi->avg_encode_time, 0, 0);
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
#ifdef MODE_STATS
|
|
{
|
|
extern int count_mb_seg[4];
|
|
FILE *f = fopen("modes.stt", "a");
|
|
double dr = (double)cpi->oxcf.frame_rate * (double)bytes * (double)8 / (double)count / (double)1000 ;
|
|
fprintf(f, "intra_mode in Intra Frames:\n");
|
|
fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d\n", y_modes[0], y_modes[1], y_modes[2], y_modes[3], y_modes[4]);
|
|
fprintf(f, "UV:%8d, %8d, %8d, %8d\n", uv_modes[0], uv_modes[1], uv_modes[2], uv_modes[3]);
|
|
fprintf(f, "B: ");
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 10; i++)
|
|
fprintf(f, "%8d, ", b_modes[i]);
|
|
|
|
fprintf(f, "\n");
|
|
|
|
}
|
|
|
|
fprintf(f, "Modes in Inter Frames:\n");
|
|
fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d\n",
|
|
inter_y_modes[0], inter_y_modes[1], inter_y_modes[2], inter_y_modes[3], inter_y_modes[4],
|
|
inter_y_modes[5], inter_y_modes[6], inter_y_modes[7], inter_y_modes[8], inter_y_modes[9]);
|
|
fprintf(f, "UV:%8d, %8d, %8d, %8d\n", inter_uv_modes[0], inter_uv_modes[1], inter_uv_modes[2], inter_uv_modes[3]);
|
|
fprintf(f, "B: ");
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 15; i++)
|
|
fprintf(f, "%8d, ", inter_b_modes[i]);
|
|
|
|
fprintf(f, "\n");
|
|
|
|
}
|
|
fprintf(f, "P:%8d, %8d, %8d, %8d\n", count_mb_seg[0], count_mb_seg[1], count_mb_seg[2], count_mb_seg[3]);
|
|
fprintf(f, "PB:%8d, %8d, %8d, %8d\n", inter_b_modes[LEFT4X4], inter_b_modes[ABOVE4X4], inter_b_modes[ZERO4X4], inter_b_modes[NEW4X4]);
|
|
|
|
|
|
|
|
fclose(f);
|
|
}
|
|
#endif
|
|
|
|
#ifdef ENTROPY_STATS
|
|
{
|
|
int i, j, k;
|
|
FILE *fmode = fopen("modecontext.c", "w");
|
|
|
|
fprintf(fmode, "\n#include \"entropymode.h\"\n\n");
|
|
fprintf(fmode, "const unsigned int vp8_kf_default_bmode_counts ");
|
|
fprintf(fmode, "[VP8_BINTRAMODES] [VP8_BINTRAMODES] [VP8_BINTRAMODES] =\n{\n");
|
|
|
|
for (i = 0; i < 10; i++)
|
|
{
|
|
|
|
fprintf(fmode, " { //Above Mode : %d\n", i);
|
|
|
|
for (j = 0; j < 10; j++)
|
|
{
|
|
|
|
fprintf(fmode, " {");
|
|
|
|
for (k = 0; k < 10; k++)
|
|
{
|
|
if (!intra_mode_stats[i][j][k])
|
|
fprintf(fmode, " %5d, ", 1);
|
|
else
|
|
fprintf(fmode, " %5d, ", intra_mode_stats[i][j][k]);
|
|
}
|
|
|
|
fprintf(fmode, "}, // left_mode %d\n", j);
|
|
|
|
}
|
|
|
|
fprintf(fmode, " },\n");
|
|
|
|
}
|
|
|
|
fprintf(fmode, "};\n");
|
|
fclose(fmode);
|
|
}
|
|
#endif
|
|
|
|
|
|
#if defined(SECTIONBITS_OUTPUT)
|
|
|
|
if (0)
|
|
{
|
|
int i;
|
|
FILE *f = fopen("tokenbits.stt", "a");
|
|
|
|
for (i = 0; i < 28; i++)
|
|
fprintf(f, "%8d", (int)(Sectionbits[i] / 256));
|
|
|
|
fprintf(f, "\n");
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
|
|
#if 0
|
|
{
|
|
printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
|
|
printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
|
|
printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->time_receive_data / 1000, cpi->time_encode_mb_row / 1000, cpi->time_compress_data / 1000, (cpi->time_receive_data + cpi->time_compress_data) / 1000);
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
vp8cx_remove_encoder_threads(cpi);
|
|
#endif
|
|
|
|
dealloc_compressor_data(cpi);
|
|
vpx_free(cpi->mb.ss);
|
|
vpx_free(cpi->tok);
|
|
vpx_free(cpi->cyclic_refresh_map);
|
|
|
|
vp8_remove_common(&cpi->common);
|
|
vpx_free(cpi);
|
|
*ptr = 0;
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
fclose(yuv_file);
|
|
#endif
|
|
|
|
#if 0
|
|
|
|
if (keyfile)
|
|
fclose(keyfile);
|
|
|
|
if (framepsnr)
|
|
fclose(framepsnr);
|
|
|
|
if (kf_list)
|
|
fclose(kf_list);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
static uint64_t calc_plane_error(unsigned char *orig, int orig_stride,
|
|
unsigned char *recon, int recon_stride,
|
|
unsigned int cols, unsigned int rows,
|
|
vp8_variance_rtcd_vtable_t *rtcd)
|
|
{
|
|
unsigned int row, col;
|
|
uint64_t total_sse = 0;
|
|
int diff;
|
|
|
|
for (row = 0; row + 16 <= rows; row += 16)
|
|
{
|
|
for (col = 0; col + 16 <= cols; col += 16)
|
|
{
|
|
unsigned int sse;
|
|
|
|
VARIANCE_INVOKE(rtcd, mse16x16)(orig + col, orig_stride,
|
|
recon + col, recon_stride,
|
|
&sse);
|
|
total_sse += sse;
|
|
}
|
|
|
|
/* Handle odd-sized width */
|
|
if (col < cols)
|
|
{
|
|
unsigned int border_row, border_col;
|
|
unsigned char *border_orig = orig;
|
|
unsigned char *border_recon = recon;
|
|
|
|
for (border_row = 0; border_row < 16; border_row++)
|
|
{
|
|
for (border_col = col; border_col < cols; border_col++)
|
|
{
|
|
diff = border_orig[border_col] - border_recon[border_col];
|
|
total_sse += diff * diff;
|
|
}
|
|
|
|
border_orig += orig_stride;
|
|
border_recon += recon_stride;
|
|
}
|
|
}
|
|
|
|
orig += orig_stride * 16;
|
|
recon += recon_stride * 16;
|
|
}
|
|
|
|
/* Handle odd-sized height */
|
|
for (; row < rows; row++)
|
|
{
|
|
for (col = 0; col < cols; col++)
|
|
{
|
|
diff = orig[col] - recon[col];
|
|
total_sse += diff * diff;
|
|
}
|
|
|
|
orig += orig_stride;
|
|
recon += recon_stride;
|
|
}
|
|
|
|
return total_sse;
|
|
}
|
|
|
|
|
|
static void generate_psnr_packet(VP8_COMP *cpi)
|
|
{
|
|
YV12_BUFFER_CONFIG *orig = cpi->Source;
|
|
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
|
|
struct vpx_codec_cx_pkt pkt;
|
|
uint64_t sse;
|
|
int i;
|
|
unsigned int width = cpi->common.Width;
|
|
unsigned int height = cpi->common.Height;
|
|
|
|
pkt.kind = VPX_CODEC_PSNR_PKT;
|
|
sse = calc_plane_error(orig->y_buffer, orig->y_stride,
|
|
recon->y_buffer, recon->y_stride,
|
|
width, height,
|
|
IF_RTCD(&cpi->rtcd.variance));
|
|
pkt.data.psnr.sse[0] = sse;
|
|
pkt.data.psnr.sse[1] = sse;
|
|
pkt.data.psnr.samples[0] = width * height;
|
|
pkt.data.psnr.samples[1] = width * height;
|
|
|
|
width = (width + 1) / 2;
|
|
height = (height + 1) / 2;
|
|
|
|
sse = calc_plane_error(orig->u_buffer, orig->uv_stride,
|
|
recon->u_buffer, recon->uv_stride,
|
|
width, height,
|
|
IF_RTCD(&cpi->rtcd.variance));
|
|
pkt.data.psnr.sse[0] += sse;
|
|
pkt.data.psnr.sse[2] = sse;
|
|
pkt.data.psnr.samples[0] += width * height;
|
|
pkt.data.psnr.samples[2] = width * height;
|
|
|
|
sse = calc_plane_error(orig->v_buffer, orig->uv_stride,
|
|
recon->v_buffer, recon->uv_stride,
|
|
width, height,
|
|
IF_RTCD(&cpi->rtcd.variance));
|
|
pkt.data.psnr.sse[0] += sse;
|
|
pkt.data.psnr.sse[3] = sse;
|
|
pkt.data.psnr.samples[0] += width * height;
|
|
pkt.data.psnr.samples[3] = width * height;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
pkt.data.psnr.psnr[i] = vp8_mse2psnr(pkt.data.psnr.samples[i], 255.0,
|
|
pkt.data.psnr.sse[i]);
|
|
|
|
vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
|
|
}
|
|
|
|
|
|
int vp8_use_as_reference(VP8_PTR ptr, int ref_frame_flags)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *)(ptr);
|
|
|
|
if (ref_frame_flags > 7)
|
|
return -1 ;
|
|
|
|
cpi->ref_frame_flags = ref_frame_flags;
|
|
return 0;
|
|
}
|
|
int vp8_update_reference(VP8_PTR ptr, int ref_frame_flags)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *)(ptr);
|
|
|
|
if (ref_frame_flags > 7)
|
|
return -1 ;
|
|
|
|
cpi->common.refresh_golden_frame = 0;
|
|
cpi->common.refresh_alt_ref_frame = 0;
|
|
cpi->common.refresh_last_frame = 0;
|
|
|
|
if (ref_frame_flags & VP8_LAST_FLAG)
|
|
cpi->common.refresh_last_frame = 1;
|
|
|
|
if (ref_frame_flags & VP8_GOLD_FLAG)
|
|
cpi->common.refresh_golden_frame = 1;
|
|
|
|
if (ref_frame_flags & VP8_ALT_FLAG)
|
|
cpi->common.refresh_alt_ref_frame = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vp8_get_reference(VP8_PTR ptr, VP8_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *)(ptr);
|
|
VP8_COMMON *cm = &cpi->common;
|
|
int ref_fb_idx;
|
|
|
|
if (ref_frame_flag == VP8_LAST_FLAG)
|
|
ref_fb_idx = cm->lst_fb_idx;
|
|
else if (ref_frame_flag == VP8_GOLD_FLAG)
|
|
ref_fb_idx = cm->gld_fb_idx;
|
|
else if (ref_frame_flag == VP8_ALT_FLAG)
|
|
ref_fb_idx = cm->alt_fb_idx;
|
|
else
|
|
return -1;
|
|
|
|
vp8_yv12_copy_frame_ptr(&cm->yv12_fb[ref_fb_idx], sd);
|
|
|
|
return 0;
|
|
}
|
|
int vp8_set_reference(VP8_PTR ptr, VP8_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *)(ptr);
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
int ref_fb_idx;
|
|
|
|
if (ref_frame_flag == VP8_LAST_FLAG)
|
|
ref_fb_idx = cm->lst_fb_idx;
|
|
else if (ref_frame_flag == VP8_GOLD_FLAG)
|
|
ref_fb_idx = cm->gld_fb_idx;
|
|
else if (ref_frame_flag == VP8_ALT_FLAG)
|
|
ref_fb_idx = cm->alt_fb_idx;
|
|
else
|
|
return -1;
|
|
|
|
vp8_yv12_copy_frame_ptr(sd, &cm->yv12_fb[ref_fb_idx]);
|
|
|
|
return 0;
|
|
}
|
|
int vp8_update_entropy(VP8_PTR comp, int update)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *) comp;
|
|
VP8_COMMON *cm = &cpi->common;
|
|
cm->refresh_entropy_probs = update;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
#if OUTPUT_YUV_SRC
|
|
void vp8_write_yuv_frame(const char *name, YV12_BUFFER_CONFIG *s)
|
|
{
|
|
FILE *yuv_file = fopen(name, "ab");
|
|
unsigned char *src = s->y_buffer;
|
|
int h = s->y_height;
|
|
|
|
do
|
|
{
|
|
fwrite(src, s->y_width, 1, yuv_file);
|
|
src += s->y_stride;
|
|
}
|
|
while (--h);
|
|
|
|
src = s->u_buffer;
|
|
h = s->uv_height;
|
|
|
|
do
|
|
{
|
|
fwrite(src, s->uv_width, 1, yuv_file);
|
|
src += s->uv_stride;
|
|
}
|
|
while (--h);
|
|
|
|
src = s->v_buffer;
|
|
h = s->uv_height;
|
|
|
|
do
|
|
{
|
|
fwrite(src, s->uv_width, 1, yuv_file);
|
|
src += s->uv_stride;
|
|
}
|
|
while (--h);
|
|
|
|
fclose(yuv_file);
|
|
}
|
|
#endif
|
|
|
|
|
|
static void scale_and_extend_source(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
// are we resizing the image
|
|
if (cm->horiz_scale != 0 || cm->vert_scale != 0)
|
|
{
|
|
#if CONFIG_SPATIAL_RESAMPLING
|
|
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
|
|
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
|
|
int tmp_height;
|
|
|
|
if (cm->vert_scale == 3)
|
|
tmp_height = 9;
|
|
else
|
|
tmp_height = 11;
|
|
|
|
Scale2Ratio(cm->horiz_scale, &hr, &hs);
|
|
Scale2Ratio(cm->vert_scale, &vr, &vs);
|
|
|
|
vp8_scale_frame(sd, &cpi->scaled_source, cm->temp_scale_frame.y_buffer,
|
|
tmp_height, hs, hr, vs, vr, 0);
|
|
|
|
vp8_yv12_extend_frame_borders(&cpi->scaled_source);
|
|
cpi->Source = &cpi->scaled_source;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
static void resize_key_frame(VP8_COMP *cpi)
|
|
{
|
|
#if CONFIG_SPATIAL_RESAMPLING
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
// Do we need to apply resampling for one pass cbr.
|
|
// In one pass this is more limited than in two pass cbr
|
|
// The test and any change is only made one per key frame sequence
|
|
if (cpi->oxcf.allow_spatial_resampling && (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER))
|
|
{
|
|
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
|
|
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
|
|
int new_width, new_height;
|
|
|
|
// If we are below the resample DOWN watermark then scale down a notch.
|
|
if (cpi->buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100))
|
|
{
|
|
cm->horiz_scale = (cm->horiz_scale < ONETWO) ? cm->horiz_scale + 1 : ONETWO;
|
|
cm->vert_scale = (cm->vert_scale < ONETWO) ? cm->vert_scale + 1 : ONETWO;
|
|
}
|
|
// Should we now start scaling back up
|
|
else if (cpi->buffer_level > (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100))
|
|
{
|
|
cm->horiz_scale = (cm->horiz_scale > NORMAL) ? cm->horiz_scale - 1 : NORMAL;
|
|
cm->vert_scale = (cm->vert_scale > NORMAL) ? cm->vert_scale - 1 : NORMAL;
|
|
}
|
|
|
|
// Get the new hieght and width
|
|
Scale2Ratio(cm->horiz_scale, &hr, &hs);
|
|
Scale2Ratio(cm->vert_scale, &vr, &vs);
|
|
new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs;
|
|
new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs;
|
|
|
|
// If the image size has changed we need to reallocate the buffers
|
|
// and resample the source image
|
|
if ((cm->Width != new_width) || (cm->Height != new_height))
|
|
{
|
|
cm->Width = new_width;
|
|
cm->Height = new_height;
|
|
vp8_alloc_compressor_data(cpi);
|
|
scale_and_extend_source(cpi->un_scaled_source, cpi);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
|
|
static void update_alt_ref_frame_stats(VP8_COMP *cpi)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
// Select an interval before next GF or altref
|
|
if (!cpi->auto_gold)
|
|
cpi->frames_till_gf_update_due = cpi->goldfreq;
|
|
|
|
if ((cpi->pass != 2) && cpi->frames_till_gf_update_due)
|
|
{
|
|
cpi->current_gf_interval = cpi->frames_till_gf_update_due;
|
|
|
|
// Set the bits per frame that we should try and recover in subsequent inter frames
|
|
// to account for the extra GF spend... note that his does not apply for GF updates
|
|
// that occur coincident with a key frame as the extra cost of key frames is dealt
|
|
// with elsewhere.
|
|
|
|
cpi->gf_overspend_bits += cpi->projected_frame_size;
|
|
cpi->non_gf_bitrate_adjustment = cpi->gf_overspend_bits / cpi->frames_till_gf_update_due;
|
|
}
|
|
|
|
// Update data structure that monitors level of reference to last GF
|
|
vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
|
|
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
|
|
|
|
// this frame refreshes means next frames don't unless specified by user
|
|
cpi->common.frames_since_golden = 0;
|
|
|
|
// Clear the alternate reference update pending flag.
|
|
cpi->source_alt_ref_pending = FALSE;
|
|
|
|
// Set the alternate refernce frame active flag
|
|
cpi->source_alt_ref_active = TRUE;
|
|
|
|
|
|
}
|
|
static void update_golden_frame_stats(VP8_COMP *cpi)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
// Update the Golden frame usage counts.
|
|
if (cm->refresh_golden_frame)
|
|
{
|
|
// Select an interval before next GF
|
|
if (!cpi->auto_gold)
|
|
cpi->frames_till_gf_update_due = cpi->goldfreq;
|
|
|
|
if ((cpi->pass != 2) && (cpi->frames_till_gf_update_due > 0))
|
|
{
|
|
cpi->current_gf_interval = cpi->frames_till_gf_update_due;
|
|
|
|
// Set the bits per frame that we should try and recover in subsequent inter frames
|
|
// to account for the extra GF spend... note that his does not apply for GF updates
|
|
// that occur coincident with a key frame as the extra cost of key frames is dealt
|
|
// with elsewhere.
|
|
if ((cm->frame_type != KEY_FRAME) && !cpi->source_alt_ref_active)
|
|
{
|
|
// Calcluate GF bits to be recovered
|
|
// Projected size - av frame bits available for inter frames for clip as a whole
|
|
cpi->gf_overspend_bits += (cpi->projected_frame_size - cpi->inter_frame_target);
|
|
}
|
|
|
|
cpi->non_gf_bitrate_adjustment = cpi->gf_overspend_bits / cpi->frames_till_gf_update_due;
|
|
|
|
}
|
|
|
|
// Update data structure that monitors level of reference to last GF
|
|
vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
|
|
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
|
|
|
|
// this frame refreshes means next frames don't unless specified by user
|
|
cm->refresh_golden_frame = 0;
|
|
cpi->common.frames_since_golden = 0;
|
|
|
|
//if ( cm->frame_type == KEY_FRAME )
|
|
//{
|
|
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
|
|
//}
|
|
//else
|
|
//{
|
|
// // Carry a potrtion of count over to begining of next gf sequence
|
|
// cpi->recent_ref_frame_usage[INTRA_FRAME] >>= 5;
|
|
// cpi->recent_ref_frame_usage[LAST_FRAME] >>= 5;
|
|
// cpi->recent_ref_frame_usage[GOLDEN_FRAME] >>= 5;
|
|
// cpi->recent_ref_frame_usage[ALTREF_FRAME] >>= 5;
|
|
//}
|
|
|
|
// ******** Fixed Q test code only ************
|
|
// If we are going to use the ALT reference for the next group of frames set a flag to say so.
|
|
if (cpi->oxcf.fixed_q >= 0 &&
|
|
cpi->oxcf.play_alternate && !cpi->common.refresh_alt_ref_frame)
|
|
{
|
|
cpi->source_alt_ref_pending = TRUE;
|
|
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
|
|
}
|
|
|
|
if (!cpi->source_alt_ref_pending)
|
|
cpi->source_alt_ref_active = FALSE;
|
|
|
|
// Decrement count down till next gf
|
|
if (cpi->frames_till_gf_update_due > 0)
|
|
cpi->frames_till_gf_update_due--;
|
|
|
|
}
|
|
else if (!cpi->common.refresh_alt_ref_frame)
|
|
{
|
|
// Decrement count down till next gf
|
|
if (cpi->frames_till_gf_update_due > 0)
|
|
cpi->frames_till_gf_update_due--;
|
|
|
|
if (cpi->common.frames_till_alt_ref_frame)
|
|
cpi->common.frames_till_alt_ref_frame --;
|
|
|
|
cpi->common.frames_since_golden ++;
|
|
|
|
if (cpi->common.frames_since_golden > 1)
|
|
{
|
|
cpi->recent_ref_frame_usage[INTRA_FRAME] += cpi->count_mb_ref_frame_usage[INTRA_FRAME];
|
|
cpi->recent_ref_frame_usage[LAST_FRAME] += cpi->count_mb_ref_frame_usage[LAST_FRAME];
|
|
cpi->recent_ref_frame_usage[GOLDEN_FRAME] += cpi->count_mb_ref_frame_usage[GOLDEN_FRAME];
|
|
cpi->recent_ref_frame_usage[ALTREF_FRAME] += cpi->count_mb_ref_frame_usage[ALTREF_FRAME];
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function updates the reference frame probability estimates that
|
|
// will be used during mode selection
|
|
static void update_rd_ref_frame_probs(VP8_COMP *cpi)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
#if 0
|
|
const int *const rfct = cpi->recent_ref_frame_usage;
|
|
const int rf_intra = rfct[INTRA_FRAME];
|
|
const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
cpi->prob_intra_coded = 255;
|
|
cpi->prob_last_coded = 128;
|
|
cpi->prob_gf_coded = 128;
|
|
}
|
|
else if (!(rf_intra + rf_inter))
|
|
{
|
|
// This is a trap in case this function is called with cpi->recent_ref_frame_usage[] blank.
|
|
cpi->prob_intra_coded = 63;
|
|
cpi->prob_last_coded = 128;
|
|
cpi->prob_gf_coded = 128;
|
|
}
|
|
else
|
|
{
|
|
cpi->prob_intra_coded = (rf_intra * 255) / (rf_intra + rf_inter);
|
|
|
|
if (cpi->prob_intra_coded < 1)
|
|
cpi->prob_intra_coded = 1;
|
|
|
|
if ((cm->frames_since_golden > 0) || cpi->source_alt_ref_active)
|
|
{
|
|
cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128;
|
|
|
|
if (cpi->prob_last_coded < 1)
|
|
cpi->prob_last_coded = 1;
|
|
|
|
cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
|
|
? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128;
|
|
|
|
if (cpi->prob_gf_coded < 1)
|
|
cpi->prob_gf_coded = 1;
|
|
}
|
|
}
|
|
|
|
#else
|
|
const int *const rfct = cpi->count_mb_ref_frame_usage;
|
|
const int rf_intra = rfct[INTRA_FRAME];
|
|
const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
cpi->prob_intra_coded = 255;
|
|
cpi->prob_last_coded = 128;
|
|
cpi->prob_gf_coded = 128;
|
|
}
|
|
else if (!(rf_intra + rf_inter))
|
|
{
|
|
// This is a trap in case this function is called with cpi->recent_ref_frame_usage[] blank.
|
|
cpi->prob_intra_coded = 63;
|
|
cpi->prob_last_coded = 128;
|
|
cpi->prob_gf_coded = 128;
|
|
}
|
|
else
|
|
{
|
|
cpi->prob_intra_coded = (rf_intra * 255) / (rf_intra + rf_inter);
|
|
|
|
if (cpi->prob_intra_coded < 1)
|
|
cpi->prob_intra_coded = 1;
|
|
|
|
cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128;
|
|
|
|
if (cpi->prob_last_coded < 1)
|
|
cpi->prob_last_coded = 1;
|
|
|
|
cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
|
|
? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128;
|
|
|
|
if (cpi->prob_gf_coded < 1)
|
|
cpi->prob_gf_coded = 1;
|
|
}
|
|
|
|
// update reference frame costs since we can do better than what we got last frame.
|
|
|
|
if (cpi->common.refresh_alt_ref_frame)
|
|
{
|
|
cpi->prob_intra_coded += 40;
|
|
cpi->prob_last_coded = 200;
|
|
cpi->prob_gf_coded = 1;
|
|
}
|
|
else if (cpi->common.frames_since_golden == 0)
|
|
{
|
|
cpi->prob_last_coded = 214;
|
|
cpi->prob_gf_coded = 1;
|
|
}
|
|
else if (cpi->common.frames_since_golden == 1)
|
|
{
|
|
cpi->prob_last_coded = 192;
|
|
cpi->prob_gf_coded = 220;
|
|
}
|
|
else if (cpi->source_alt_ref_active)
|
|
{
|
|
//int dist = cpi->common.frames_till_alt_ref_frame + cpi->common.frames_since_golden;
|
|
cpi->prob_gf_coded -= 20;
|
|
|
|
if (cpi->prob_gf_coded < 10)
|
|
cpi->prob_gf_coded = 10;
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
|
|
// 1 = key, 0 = inter
|
|
static int decide_key_frame(VP8_COMP *cpi)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
int code_key_frame = FALSE;
|
|
|
|
cpi->kf_boost = 0;
|
|
|
|
if (cpi->Speed > 11)
|
|
return FALSE;
|
|
|
|
// Clear down mmx registers
|
|
vp8_clear_system_state(); //__asm emms;
|
|
|
|
if ((cpi->compressor_speed == 2) && (cpi->Speed >= 5) && (cpi->sf.RD == 0))
|
|
{
|
|
double change = 1.0 * abs((int)(cpi->intra_error - cpi->last_intra_error)) / (1 + cpi->last_intra_error);
|
|
double change2 = 1.0 * abs((int)(cpi->prediction_error - cpi->last_prediction_error)) / (1 + cpi->last_prediction_error);
|
|
double minerror = cm->MBs * 256;
|
|
|
|
#if 0
|
|
|
|
if (10 * cpi->intra_error / (1 + cpi->prediction_error) < 15
|
|
&& cpi->prediction_error > minerror
|
|
&& (change > .25 || change2 > .25))
|
|
{
|
|
FILE *f = fopen("intra_inter.stt", "a");
|
|
|
|
if (cpi->prediction_error <= 0)
|
|
cpi->prediction_error = 1;
|
|
|
|
fprintf(f, "%d %d %d %d %14.4f\n",
|
|
cm->current_video_frame,
|
|
(int) cpi->prediction_error,
|
|
(int) cpi->intra_error,
|
|
(int)((10 * cpi->intra_error) / cpi->prediction_error),
|
|
change);
|
|
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
|
|
cpi->last_intra_error = cpi->intra_error;
|
|
cpi->last_prediction_error = cpi->prediction_error;
|
|
|
|
if (10 * cpi->intra_error / (1 + cpi->prediction_error) < 15
|
|
&& cpi->prediction_error > minerror
|
|
&& (change > .25 || change2 > .25))
|
|
{
|
|
/*(change > 1.4 || change < .75)&& cpi->this_frame_percent_intra > cpi->last_frame_percent_intra + 3*/
|
|
return TRUE;
|
|
}
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
// If the following are true we might as well code a key frame
|
|
if (((cpi->this_frame_percent_intra == 100) &&
|
|
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra + 2))) ||
|
|
((cpi->this_frame_percent_intra > 95) &&
|
|
(cpi->this_frame_percent_intra >= (cpi->last_frame_percent_intra + 5))))
|
|
{
|
|
code_key_frame = TRUE;
|
|
}
|
|
// in addition if the following are true and this is not a golden frame then code a key frame
|
|
// Note that on golden frames there often seems to be a pop in intra useage anyway hence this
|
|
// restriction is designed to prevent spurious key frames. The Intra pop needs to be investigated.
|
|
else if (((cpi->this_frame_percent_intra > 60) &&
|
|
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra * 2))) ||
|
|
((cpi->this_frame_percent_intra > 75) &&
|
|
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra * 3 / 2))) ||
|
|
((cpi->this_frame_percent_intra > 90) &&
|
|
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra + 10))))
|
|
{
|
|
if (!cm->refresh_golden_frame)
|
|
code_key_frame = TRUE;
|
|
}
|
|
|
|
return code_key_frame;
|
|
|
|
}
|
|
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
static void Pass1Encode(VP8_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags)
|
|
{
|
|
(void) size;
|
|
(void) dest;
|
|
(void) frame_flags;
|
|
vp8_set_quantizer(cpi, 26);
|
|
|
|
scale_and_extend_source(cpi->un_scaled_source, cpi);
|
|
vp8_first_pass(cpi);
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame)
|
|
{
|
|
|
|
// write the frame
|
|
FILE *yframe;
|
|
int i;
|
|
char filename[255];
|
|
|
|
sprintf(filename, "cx\\y%04d.raw", this_frame);
|
|
yframe = fopen(filename, "wb");
|
|
|
|
for (i = 0; i < frame->y_height; i++)
|
|
fwrite(frame->y_buffer + i * frame->y_stride, frame->y_width, 1, yframe);
|
|
|
|
fclose(yframe);
|
|
sprintf(filename, "cx\\u%04d.raw", this_frame);
|
|
yframe = fopen(filename, "wb");
|
|
|
|
for (i = 0; i < frame->uv_height; i++)
|
|
fwrite(frame->u_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe);
|
|
|
|
fclose(yframe);
|
|
sprintf(filename, "cx\\v%04d.raw", this_frame);
|
|
yframe = fopen(filename, "wb");
|
|
|
|
for (i = 0; i < frame->uv_height; i++)
|
|
fwrite(frame->v_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe);
|
|
|
|
fclose(yframe);
|
|
}
|
|
#endif
|
|
// return of 0 means drop frame
|
|
|
|
// Function to test for conditions that indeicate we should loop
|
|
// back and recode a frame.
|
|
static BOOL recode_loop_test( VP8_COMP *cpi,
|
|
int high_limit, int low_limit,
|
|
int q, int maxq, int minq )
|
|
{
|
|
BOOL force_recode = FALSE;
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
// Is frame recode allowed at all
|
|
// Yes if either recode mode 1 is selected or mode two is selcted
|
|
// and the frame is a key frame. golden frame or alt_ref_frame
|
|
if ( (cpi->sf.recode_loop == 1) ||
|
|
( (cpi->sf.recode_loop == 2) &&
|
|
( (cm->frame_type == KEY_FRAME) ||
|
|
cm->refresh_golden_frame ||
|
|
cm->refresh_alt_ref_frame ) ) )
|
|
{
|
|
// General over and under shoot tests
|
|
if ( ((cpi->projected_frame_size > high_limit) && (q < maxq)) ||
|
|
((cpi->projected_frame_size < low_limit) && (q > minq)) )
|
|
{
|
|
force_recode = TRUE;
|
|
}
|
|
// Special Constrained quality tests
|
|
else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY)
|
|
{
|
|
// Undershoot and below auto cq level
|
|
if ( (q > cpi->cq_target_quality) &&
|
|
(cpi->projected_frame_size <
|
|
((cpi->this_frame_target * 7) >> 3)))
|
|
{
|
|
force_recode = TRUE;
|
|
}
|
|
// Severe undershoot and between auto and user cq level
|
|
else if ( (q > cpi->oxcf.cq_level) &&
|
|
(cpi->projected_frame_size < cpi->min_frame_bandwidth) &&
|
|
(cpi->active_best_quality > cpi->oxcf.cq_level))
|
|
{
|
|
force_recode = TRUE;
|
|
cpi->active_best_quality = cpi->oxcf.cq_level;
|
|
}
|
|
}
|
|
}
|
|
|
|
return force_recode;
|
|
}
|
|
|
|
void update_reference_frames(VP8_COMMON *cm)
|
|
{
|
|
YV12_BUFFER_CONFIG *yv12_fb = cm->yv12_fb;
|
|
|
|
// At this point the new frame has been encoded.
|
|
// If any buffer copy / swapping is signaled it should be done here.
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
yv12_fb[cm->new_fb_idx].flags |= VP8_GOLD_FLAG | VP8_ALT_FLAG ;
|
|
|
|
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FLAG;
|
|
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALT_FLAG;
|
|
|
|
cm->alt_fb_idx = cm->gld_fb_idx = cm->new_fb_idx;
|
|
}
|
|
else /* For non key frames */
|
|
{
|
|
if (cm->refresh_alt_ref_frame)
|
|
{
|
|
assert(!cm->copy_buffer_to_arf);
|
|
|
|
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_ALT_FLAG;
|
|
cm->yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALT_FLAG;
|
|
cm->alt_fb_idx = cm->new_fb_idx;
|
|
}
|
|
else if (cm->copy_buffer_to_arf)
|
|
{
|
|
assert(!(cm->copy_buffer_to_arf & ~0x3));
|
|
|
|
if (cm->copy_buffer_to_arf == 1)
|
|
{
|
|
if(cm->alt_fb_idx != cm->lst_fb_idx)
|
|
{
|
|
yv12_fb[cm->lst_fb_idx].flags |= VP8_ALT_FLAG;
|
|
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALT_FLAG;
|
|
cm->alt_fb_idx = cm->lst_fb_idx;
|
|
}
|
|
}
|
|
else /* if (cm->copy_buffer_to_arf == 2) */
|
|
{
|
|
if(cm->alt_fb_idx != cm->gld_fb_idx)
|
|
{
|
|
yv12_fb[cm->gld_fb_idx].flags |= VP8_ALT_FLAG;
|
|
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALT_FLAG;
|
|
cm->alt_fb_idx = cm->gld_fb_idx;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cm->refresh_golden_frame)
|
|
{
|
|
assert(!cm->copy_buffer_to_gf);
|
|
|
|
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_GOLD_FLAG;
|
|
cm->yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FLAG;
|
|
cm->gld_fb_idx = cm->new_fb_idx;
|
|
}
|
|
else if (cm->copy_buffer_to_gf)
|
|
{
|
|
assert(!(cm->copy_buffer_to_arf & ~0x3));
|
|
|
|
if (cm->copy_buffer_to_gf == 1)
|
|
{
|
|
if(cm->gld_fb_idx != cm->lst_fb_idx)
|
|
{
|
|
yv12_fb[cm->lst_fb_idx].flags |= VP8_GOLD_FLAG;
|
|
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FLAG;
|
|
cm->gld_fb_idx = cm->lst_fb_idx;
|
|
}
|
|
}
|
|
else /* if (cm->copy_buffer_to_gf == 2) */
|
|
{
|
|
if(cm->alt_fb_idx != cm->gld_fb_idx)
|
|
{
|
|
yv12_fb[cm->alt_fb_idx].flags |= VP8_GOLD_FLAG;
|
|
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FLAG;
|
|
cm->gld_fb_idx = cm->alt_fb_idx;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cm->refresh_last_frame)
|
|
{
|
|
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_LAST_FLAG;
|
|
cm->yv12_fb[cm->lst_fb_idx].flags &= ~VP8_LAST_FLAG;
|
|
cm->lst_fb_idx = cm->new_fb_idx;
|
|
}
|
|
}
|
|
|
|
void loopfilter_frame(VP8_COMP *cpi, VP8_COMMON *cm)
|
|
{
|
|
if (cm->no_lpf)
|
|
{
|
|
cm->filter_level = 0;
|
|
}
|
|
else
|
|
{
|
|
struct vpx_usec_timer timer;
|
|
|
|
vp8_clear_system_state();
|
|
|
|
vpx_usec_timer_start(&timer);
|
|
if (cpi->sf.auto_filter == 0)
|
|
vp8cx_pick_filter_level_fast(cpi->Source, cpi);
|
|
|
|
else
|
|
vp8cx_pick_filter_level(cpi->Source, cpi);
|
|
|
|
vpx_usec_timer_mark(&timer);
|
|
cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
|
|
}
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
if (cpi->b_multi_threaded)
|
|
sem_post(&cpi->h_event_end_lpf); /* signal that we have set filter_level */
|
|
#endif
|
|
|
|
if (cm->filter_level > 0)
|
|
{
|
|
vp8cx_set_alt_lf_level(cpi, cm->filter_level);
|
|
vp8_loop_filter_frame(cm, &cpi->mb.e_mbd, cm->filter_level);
|
|
cm->last_filter_type = cm->filter_type;
|
|
cm->last_sharpness_level = cm->sharpness_level;
|
|
}
|
|
|
|
vp8_yv12_extend_frame_borders_ptr(cm->frame_to_show);
|
|
|
|
}
|
|
|
|
static void encode_frame_to_data_rate
|
|
(
|
|
VP8_COMP *cpi,
|
|
unsigned long *size,
|
|
unsigned char *dest,
|
|
unsigned int *frame_flags
|
|
)
|
|
{
|
|
int Q;
|
|
int frame_over_shoot_limit;
|
|
int frame_under_shoot_limit;
|
|
|
|
int Loop = FALSE;
|
|
int loop_count;
|
|
int this_q;
|
|
int last_zbin_oq;
|
|
|
|
int q_low;
|
|
int q_high;
|
|
int zbin_oq_high;
|
|
int zbin_oq_low = 0;
|
|
int top_index;
|
|
int bottom_index;
|
|
VP8_COMMON *cm = &cpi->common;
|
|
int active_worst_qchanged = FALSE;
|
|
|
|
int overshoot_seen = FALSE;
|
|
int undershoot_seen = FALSE;
|
|
int drop_mark = cpi->oxcf.drop_frames_water_mark * cpi->oxcf.optimal_buffer_level / 100;
|
|
int drop_mark75 = drop_mark * 2 / 3;
|
|
int drop_mark50 = drop_mark / 4;
|
|
int drop_mark25 = drop_mark / 8;
|
|
|
|
|
|
// Clear down mmx registers to allow floating point in what follows
|
|
vp8_clear_system_state();
|
|
|
|
// Test code for segmentation of gf/arf (0,0)
|
|
//segmentation_test_function((VP8_PTR) cpi);
|
|
|
|
#if CONFIG_REALTIME_ONLY
|
|
if(cpi->oxcf.auto_key && cm->frame_type != KEY_FRAME)
|
|
{
|
|
if(cpi->force_next_frame_intra)
|
|
{
|
|
cm->frame_type = KEY_FRAME; /* delayed intra frame */
|
|
}
|
|
}
|
|
cpi->force_next_frame_intra = 0;
|
|
#endif
|
|
|
|
// For an alt ref frame in 2 pass we skip the call to the second pass function that sets the target bandwidth
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
|
|
if (cpi->pass == 2)
|
|
{
|
|
if (cpi->common.refresh_alt_ref_frame)
|
|
{
|
|
cpi->per_frame_bandwidth = cpi->twopass.gf_bits; // Per frame bit target for the alt ref frame
|
|
cpi->target_bandwidth = cpi->twopass.gf_bits * cpi->output_frame_rate; // per second target bitrate
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
cpi->per_frame_bandwidth = (int)(cpi->target_bandwidth / cpi->output_frame_rate);
|
|
|
|
// Default turn off buffer to buffer copying
|
|
cm->copy_buffer_to_gf = 0;
|
|
cm->copy_buffer_to_arf = 0;
|
|
|
|
// Clear zbin over-quant value and mode boost values.
|
|
cpi->zbin_over_quant = 0;
|
|
cpi->zbin_mode_boost = 0;
|
|
|
|
// Enable or disable mode based tweaking of the zbin
|
|
// For 2 Pass Only used where GF/ARF prediction quality
|
|
// is above a threshold
|
|
cpi->zbin_mode_boost = 0;
|
|
cpi->zbin_mode_boost_enabled = TRUE;
|
|
if (cpi->pass == 2)
|
|
{
|
|
if ( cpi->gfu_boost <= 400 )
|
|
{
|
|
cpi->zbin_mode_boost_enabled = FALSE;
|
|
}
|
|
}
|
|
|
|
// Current default encoder behaviour for the altref sign bias
|
|
if (cpi->source_alt_ref_active)
|
|
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
|
|
else
|
|
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 0;
|
|
|
|
// Check to see if a key frame is signalled
|
|
// For two pass with auto key frame enabled cm->frame_type may already be set, but not for one pass.
|
|
if ((cm->current_video_frame == 0) ||
|
|
(cm->frame_flags & FRAMEFLAGS_KEY) ||
|
|
(cpi->oxcf.auto_key && (cpi->frames_since_key % cpi->key_frame_frequency == 0)))
|
|
{
|
|
// Key frame from VFW/auto-keyframe/first frame
|
|
cm->frame_type = KEY_FRAME;
|
|
}
|
|
|
|
// Set default state for segment and mode based loop filter update flags
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 0;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 0;
|
|
cpi->mb.e_mbd.mode_ref_lf_delta_update = 0;
|
|
|
|
// Set various flags etc to special state if it is a key frame
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
int i;
|
|
|
|
// Reset the loop filter deltas and segmentation map
|
|
setup_features(cpi);
|
|
|
|
// If segmentation is enabled force a map update for key frames
|
|
if (cpi->mb.e_mbd.segmentation_enabled)
|
|
{
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
|
|
}
|
|
|
|
// The alternate reference frame cannot be active for a key frame
|
|
cpi->source_alt_ref_active = FALSE;
|
|
|
|
// Reset the RD threshold multipliers to default of * 1 (128)
|
|
for (i = 0; i < MAX_MODES; i++)
|
|
{
|
|
cpi->rd_thresh_mult[i] = 128;
|
|
}
|
|
}
|
|
|
|
// Test code for segmentation
|
|
//if ( (cm->frame_type == KEY_FRAME) || ((cm->current_video_frame % 2) == 0))
|
|
//if ( (cm->current_video_frame % 2) == 0 )
|
|
// enable_segmentation((VP8_PTR)cpi);
|
|
//else
|
|
// disable_segmentation((VP8_PTR)cpi);
|
|
|
|
#if 0
|
|
// Experimental code for lagged compress and one pass
|
|
// Initialise one_pass GF frames stats
|
|
// Update stats used for GF selection
|
|
//if ( cpi->pass == 0 )
|
|
{
|
|
cpi->one_pass_frame_index = cm->current_video_frame % MAX_LAG_BUFFERS;
|
|
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frames_so_far = 0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_intra_error = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_coded_error = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_inter = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_motion = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr_abs = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc_abs = 0.0;
|
|
}
|
|
#endif
|
|
|
|
update_rd_ref_frame_probs(cpi);
|
|
|
|
if (cpi->drop_frames_allowed)
|
|
{
|
|
// The reset to decimation 0 is only done here for one pass.
|
|
// Once it is set two pass leaves decimation on till the next kf.
|
|
if ((cpi->buffer_level > drop_mark) && (cpi->decimation_factor > 0))
|
|
cpi->decimation_factor --;
|
|
|
|
if (cpi->buffer_level > drop_mark75 && cpi->decimation_factor > 0)
|
|
cpi->decimation_factor = 1;
|
|
|
|
else if (cpi->buffer_level < drop_mark25 && (cpi->decimation_factor == 2 || cpi->decimation_factor == 3))
|
|
{
|
|
cpi->decimation_factor = 3;
|
|
}
|
|
else if (cpi->buffer_level < drop_mark50 && (cpi->decimation_factor == 1 || cpi->decimation_factor == 2))
|
|
{
|
|
cpi->decimation_factor = 2;
|
|
}
|
|
else if (cpi->buffer_level < drop_mark75 && (cpi->decimation_factor == 0 || cpi->decimation_factor == 1))
|
|
{
|
|
cpi->decimation_factor = 1;
|
|
}
|
|
|
|
//vpx_log("Encoder: Decimation Factor: %d \n",cpi->decimation_factor);
|
|
}
|
|
|
|
// The following decimates the frame rate according to a regular pattern (i.e. to 1/2 or 2/3 frame rate)
|
|
// This can be used to help prevent buffer under-run in CBR mode. Alternatively it might be desirable in
|
|
// some situations to drop frame rate but throw more bits at each frame.
|
|
//
|
|
// Note that dropping a key frame can be problematic if spatial resampling is also active
|
|
if (cpi->decimation_factor > 0)
|
|
{
|
|
switch (cpi->decimation_factor)
|
|
{
|
|
case 1:
|
|
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 3 / 2;
|
|
break;
|
|
case 2:
|
|
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4;
|
|
break;
|
|
case 3:
|
|
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4;
|
|
break;
|
|
}
|
|
|
|
// Note that we should not throw out a key frame (especially when spatial resampling is enabled).
|
|
if ((cm->frame_type == KEY_FRAME)) // && cpi->oxcf.allow_spatial_resampling )
|
|
{
|
|
cpi->decimation_count = cpi->decimation_factor;
|
|
}
|
|
else if (cpi->decimation_count > 0)
|
|
{
|
|
cpi->decimation_count --;
|
|
cpi->bits_off_target += cpi->av_per_frame_bandwidth;
|
|
cm->current_video_frame++;
|
|
cpi->frames_since_key++;
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
cpi->count ++;
|
|
#endif
|
|
|
|
cpi->buffer_level = cpi->bits_off_target;
|
|
|
|
return;
|
|
}
|
|
else
|
|
cpi->decimation_count = cpi->decimation_factor;
|
|
}
|
|
|
|
// Decide how big to make the frame
|
|
if (!vp8_pick_frame_size(cpi))
|
|
{
|
|
cm->current_video_frame++;
|
|
cpi->frames_since_key++;
|
|
return;
|
|
}
|
|
|
|
// Reduce active_worst_allowed_q for CBR if our buffer is getting too full.
|
|
// This has a knock on effect on active best quality as well.
|
|
// For CBR if the buffer reaches its maximum level then we can no longer
|
|
// save up bits for later frames so we might as well use them up
|
|
// on the current frame.
|
|
if (cpi->pass == 2
|
|
&& (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
|
|
(cpi->buffer_level >= cpi->oxcf.optimal_buffer_level) && cpi->buffered_mode)
|
|
{
|
|
int Adjustment = cpi->active_worst_quality / 4; // Max adjustment is 1/4
|
|
|
|
if (Adjustment)
|
|
{
|
|
int buff_lvl_step;
|
|
|
|
if (cpi->buffer_level < cpi->oxcf.maximum_buffer_size)
|
|
{
|
|
buff_lvl_step = (cpi->oxcf.maximum_buffer_size - cpi->oxcf.optimal_buffer_level) / Adjustment;
|
|
|
|
if (buff_lvl_step)
|
|
Adjustment = (cpi->buffer_level - cpi->oxcf.optimal_buffer_level) / buff_lvl_step;
|
|
else
|
|
Adjustment = 0;
|
|
}
|
|
|
|
cpi->active_worst_quality -= Adjustment;
|
|
|
|
if(cpi->active_worst_quality < cpi->active_best_quality)
|
|
cpi->active_worst_quality = cpi->active_best_quality;
|
|
}
|
|
}
|
|
|
|
// Set an active best quality and if necessary active worst quality
|
|
// There is some odd behaviour for one pass here that needs attention.
|
|
if ( (cpi->pass == 2) || (cpi->ni_frames > 150))
|
|
{
|
|
vp8_clear_system_state();
|
|
|
|
Q = cpi->active_worst_quality;
|
|
|
|
if ( cm->frame_type == KEY_FRAME )
|
|
{
|
|
if ( cpi->pass == 2 )
|
|
{
|
|
if (cpi->gfu_boost > 600)
|
|
cpi->active_best_quality = kf_low_motion_minq[Q];
|
|
else
|
|
cpi->active_best_quality = kf_high_motion_minq[Q];
|
|
|
|
// Special case for key frames forced because we have reached
|
|
// the maximum key frame interval. Here force the Q to a range
|
|
// based on the ambient Q to reduce the risk of popping
|
|
if ( cpi->this_key_frame_forced )
|
|
{
|
|
if ( cpi->active_best_quality > cpi->avg_frame_qindex * 7/8)
|
|
cpi->active_best_quality = cpi->avg_frame_qindex * 7/8;
|
|
else if ( cpi->active_best_quality < cpi->avg_frame_qindex >> 2 )
|
|
cpi->active_best_quality = cpi->avg_frame_qindex >> 2;
|
|
}
|
|
}
|
|
// One pass more conservative
|
|
else
|
|
cpi->active_best_quality = kf_high_motion_minq[Q];
|
|
}
|
|
|
|
else if (cm->refresh_golden_frame || cpi->common.refresh_alt_ref_frame)
|
|
{
|
|
// Use the lower of cpi->active_worst_quality and recent
|
|
// average Q as basis for GF/ARF Q limit unless last frame was
|
|
// a key frame.
|
|
if ( (cpi->frames_since_key > 1) &&
|
|
(cpi->avg_frame_qindex < cpi->active_worst_quality) )
|
|
{
|
|
Q = cpi->avg_frame_qindex;
|
|
|
|
if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
|
|
(Q < cpi->oxcf.cq_level) )
|
|
{
|
|
Q = cpi->oxcf.cq_level;
|
|
}
|
|
}
|
|
|
|
if ( cpi->pass == 2 )
|
|
{
|
|
if ( cpi->gfu_boost > 1000 )
|
|
cpi->active_best_quality = gf_low_motion_minq[Q];
|
|
else if ( cpi->gfu_boost < 400 )
|
|
cpi->active_best_quality = gf_high_motion_minq[Q];
|
|
else
|
|
cpi->active_best_quality = gf_mid_motion_minq[Q];
|
|
}
|
|
// One pass more conservative
|
|
else
|
|
cpi->active_best_quality = gf_high_motion_minq[Q];
|
|
}
|
|
else
|
|
{
|
|
if(cpi->pass != 2)
|
|
Q = cpi->avg_frame_qindex;
|
|
|
|
cpi->active_best_quality = inter_minq[Q];
|
|
|
|
// For the constant/constrained quality mode we dont want
|
|
// the quality to rise above the cq level.
|
|
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
|
|
(cpi->active_best_quality < cpi->cq_target_quality) )
|
|
{
|
|
// If we are strongly undershooting the target rate in the last
|
|
// frames then use the user passed in cq value not the auto
|
|
// cq value.
|
|
if ( cpi->rolling_actual_bits < cpi->min_frame_bandwidth )
|
|
cpi->active_best_quality = cpi->oxcf.cq_level;
|
|
else
|
|
cpi->active_best_quality = cpi->cq_target_quality;
|
|
}
|
|
}
|
|
|
|
// If CBR and the buffer is as full then it is reasonable to allow
|
|
// higher quality on the frames to prevent bits just going to waste.
|
|
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
|
{
|
|
// Note that the use of >= here elliminates the risk of a devide
|
|
// by 0 error in the else if clause
|
|
if (cpi->buffer_level >= cpi->oxcf.maximum_buffer_size)
|
|
cpi->active_best_quality = cpi->best_quality;
|
|
|
|
else if (cpi->buffer_level > cpi->oxcf.optimal_buffer_level)
|
|
{
|
|
int Fraction = ((cpi->buffer_level - cpi->oxcf.optimal_buffer_level) * 128) / (cpi->oxcf.maximum_buffer_size - cpi->oxcf.optimal_buffer_level);
|
|
int min_qadjustment = ((cpi->active_best_quality - cpi->best_quality) * Fraction) / 128;
|
|
|
|
cpi->active_best_quality -= min_qadjustment;
|
|
}
|
|
}
|
|
}
|
|
// Make sure constrained quality mode limits are adhered to for the first
|
|
// few frames of one pass encodes
|
|
else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY)
|
|
{
|
|
if ( (cm->frame_type == KEY_FRAME) ||
|
|
cm->refresh_golden_frame || cpi->common.refresh_alt_ref_frame )
|
|
{
|
|
cpi->active_best_quality = cpi->best_quality;
|
|
}
|
|
else if (cpi->active_best_quality < cpi->cq_target_quality)
|
|
{
|
|
cpi->active_best_quality = cpi->cq_target_quality;
|
|
}
|
|
}
|
|
|
|
// Clip the active best and worst quality values to limits
|
|
if (cpi->active_worst_quality > cpi->worst_quality)
|
|
cpi->active_worst_quality = cpi->worst_quality;
|
|
|
|
if (cpi->active_best_quality < cpi->best_quality)
|
|
cpi->active_best_quality = cpi->best_quality;
|
|
else if (cpi->active_best_quality > cpi->active_worst_quality)
|
|
cpi->active_best_quality = cpi->active_worst_quality;
|
|
|
|
// Determine initial Q to try
|
|
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
|
|
last_zbin_oq = cpi->zbin_over_quant;
|
|
|
|
// Set highest allowed value for Zbin over quant
|
|
if (cm->frame_type == KEY_FRAME)
|
|
zbin_oq_high = 0; //ZBIN_OQ_MAX/16
|
|
else if (cm->refresh_alt_ref_frame || (cm->refresh_golden_frame && !cpi->source_alt_ref_active))
|
|
zbin_oq_high = 16;
|
|
else
|
|
zbin_oq_high = ZBIN_OQ_MAX;
|
|
|
|
// Setup background Q adjustment for error resilliant mode
|
|
if (cpi->cyclic_refresh_mode_enabled)
|
|
cyclic_background_refresh(cpi, Q, 0);
|
|
|
|
vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit, &frame_over_shoot_limit);
|
|
|
|
// Limit Q range for the adaptive loop.
|
|
bottom_index = cpi->active_best_quality;
|
|
top_index = cpi->active_worst_quality;
|
|
q_low = cpi->active_best_quality;
|
|
q_high = cpi->active_worst_quality;
|
|
|
|
vp8_save_coding_context(cpi);
|
|
|
|
loop_count = 0;
|
|
|
|
|
|
scale_and_extend_source(cpi->un_scaled_source, cpi);
|
|
#if !(CONFIG_REALTIME_ONLY) && CONFIG_POSTPROC
|
|
|
|
if (cpi->oxcf.noise_sensitivity > 0)
|
|
{
|
|
unsigned char *src;
|
|
int l = 0;
|
|
|
|
switch (cpi->oxcf.noise_sensitivity)
|
|
{
|
|
case 1:
|
|
l = 20;
|
|
break;
|
|
case 2:
|
|
l = 40;
|
|
break;
|
|
case 3:
|
|
l = 60;
|
|
break;
|
|
case 4:
|
|
l = 80;
|
|
break;
|
|
case 5:
|
|
l = 100;
|
|
break;
|
|
case 6:
|
|
l = 150;
|
|
break;
|
|
}
|
|
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
vp8_de_noise(cpi->Source, cpi->Source, l , 1, 0, RTCD(postproc));
|
|
}
|
|
else
|
|
{
|
|
vp8_de_noise(cpi->Source, cpi->Source, l , 1, 0, RTCD(postproc));
|
|
|
|
src = cpi->Source->y_buffer;
|
|
|
|
if (cpi->Source->y_stride < 0)
|
|
{
|
|
src += cpi->Source->y_stride * (cpi->Source->y_height - 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
vp8_write_yuv_frame(cpi->Source);
|
|
#endif
|
|
|
|
do
|
|
{
|
|
vp8_clear_system_state(); //__asm emms;
|
|
|
|
/*
|
|
if(cpi->is_src_frame_alt_ref)
|
|
Q = 127;
|
|
*/
|
|
|
|
vp8_set_quantizer(cpi, Q);
|
|
this_q = Q;
|
|
|
|
// setup skip prob for costing in mode/mv decision
|
|
if (cpi->common.mb_no_coeff_skip)
|
|
{
|
|
cpi->prob_skip_false = cpi->base_skip_false_prob[Q];
|
|
|
|
if (cm->frame_type != KEY_FRAME)
|
|
{
|
|
if (cpi->common.refresh_alt_ref_frame)
|
|
{
|
|
if (cpi->last_skip_false_probs[2] != 0)
|
|
cpi->prob_skip_false = cpi->last_skip_false_probs[2];
|
|
|
|
/*
|
|
if(cpi->last_skip_false_probs[2]!=0 && abs(Q- cpi->last_skip_probs_q[2])<=16 )
|
|
cpi->prob_skip_false = cpi->last_skip_false_probs[2];
|
|
else if (cpi->last_skip_false_probs[2]!=0)
|
|
cpi->prob_skip_false = (cpi->last_skip_false_probs[2] + cpi->prob_skip_false ) / 2;
|
|
*/
|
|
}
|
|
else if (cpi->common.refresh_golden_frame)
|
|
{
|
|
if (cpi->last_skip_false_probs[1] != 0)
|
|
cpi->prob_skip_false = cpi->last_skip_false_probs[1];
|
|
|
|
/*
|
|
if(cpi->last_skip_false_probs[1]!=0 && abs(Q- cpi->last_skip_probs_q[1])<=16 )
|
|
cpi->prob_skip_false = cpi->last_skip_false_probs[1];
|
|
else if (cpi->last_skip_false_probs[1]!=0)
|
|
cpi->prob_skip_false = (cpi->last_skip_false_probs[1] + cpi->prob_skip_false ) / 2;
|
|
*/
|
|
}
|
|
else
|
|
{
|
|
if (cpi->last_skip_false_probs[0] != 0)
|
|
cpi->prob_skip_false = cpi->last_skip_false_probs[0];
|
|
|
|
/*
|
|
if(cpi->last_skip_false_probs[0]!=0 && abs(Q- cpi->last_skip_probs_q[0])<=16 )
|
|
cpi->prob_skip_false = cpi->last_skip_false_probs[0];
|
|
else if(cpi->last_skip_false_probs[0]!=0)
|
|
cpi->prob_skip_false = (cpi->last_skip_false_probs[0] + cpi->prob_skip_false ) / 2;
|
|
*/
|
|
}
|
|
|
|
//as this is for cost estimate, let's make sure it does not go extreme eitehr way
|
|
if (cpi->prob_skip_false < 5)
|
|
cpi->prob_skip_false = 5;
|
|
|
|
if (cpi->prob_skip_false > 250)
|
|
cpi->prob_skip_false = 250;
|
|
|
|
if (cpi->is_src_frame_alt_ref)
|
|
cpi->prob_skip_false = 1;
|
|
|
|
|
|
}
|
|
|
|
#if 0
|
|
|
|
if (cpi->pass != 1)
|
|
{
|
|
FILE *f = fopen("skip.stt", "a");
|
|
fprintf(f, "%d, %d, %4d ", cpi->common.refresh_golden_frame, cpi->common.refresh_alt_ref_frame, cpi->prob_skip_false);
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
resize_key_frame(cpi);
|
|
vp8_setup_key_frame(cpi);
|
|
}
|
|
|
|
// transform / motion compensation build reconstruction frame
|
|
vp8_encode_frame(cpi);
|
|
|
|
cpi->projected_frame_size -= vp8_estimate_entropy_savings(cpi);
|
|
cpi->projected_frame_size = (cpi->projected_frame_size > 0) ? cpi->projected_frame_size : 0;
|
|
|
|
vp8_clear_system_state(); //__asm emms;
|
|
|
|
// Test to see if the stats generated for this frame indicate that we should have coded a key frame
|
|
// (assuming that we didn't)!
|
|
if (cpi->pass != 2 && cpi->oxcf.auto_key && cm->frame_type != KEY_FRAME)
|
|
{
|
|
|
|
#if CONFIG_REALTIME_ONLY
|
|
{
|
|
/* we don't do re-encoding in realtime mode
|
|
* if key frame is decided than we force it on next frame */
|
|
cpi->force_next_frame_intra = decide_key_frame(cpi);
|
|
}
|
|
#else
|
|
if (decide_key_frame(cpi))
|
|
{
|
|
// Reset all our sizing numbers and recode
|
|
cm->frame_type = KEY_FRAME;
|
|
|
|
vp8_pick_frame_size(cpi);
|
|
|
|
// Clear the Alt reference frame active flag when we have a key frame
|
|
cpi->source_alt_ref_active = FALSE;
|
|
|
|
// Reset the loop filter deltas and segmentation map
|
|
setup_features(cpi);
|
|
|
|
// If segmentation is enabled force a map update for key frames
|
|
if (cpi->mb.e_mbd.segmentation_enabled)
|
|
{
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
|
|
}
|
|
|
|
vp8_restore_coding_context(cpi);
|
|
|
|
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
|
|
|
|
vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit, &frame_over_shoot_limit);
|
|
|
|
// Limit Q range for the adaptive loop.
|
|
bottom_index = cpi->active_best_quality;
|
|
top_index = cpi->active_worst_quality;
|
|
q_low = cpi->active_best_quality;
|
|
q_high = cpi->active_worst_quality;
|
|
|
|
loop_count++;
|
|
Loop = TRUE;
|
|
|
|
continue;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
vp8_clear_system_state();
|
|
|
|
if (frame_over_shoot_limit == 0)
|
|
frame_over_shoot_limit = 1;
|
|
|
|
// Are we are overshooting and up against the limit of active max Q.
|
|
if (((cpi->pass != 2) || (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)) &&
|
|
(Q == cpi->active_worst_quality) &&
|
|
(cpi->active_worst_quality < cpi->worst_quality) &&
|
|
(cpi->projected_frame_size > frame_over_shoot_limit))
|
|
{
|
|
/* step down active_worst_quality such that the corresponding
|
|
* active_best_quality will be equal to the current
|
|
* active_worst_quality + 1
|
|
*/
|
|
int i;
|
|
|
|
for(i=cpi->active_worst_quality; i<cpi->worst_quality; i++)
|
|
if(inter_minq[i] >= cpi->active_worst_quality + 1)
|
|
break;
|
|
cpi->active_worst_quality = i;
|
|
|
|
// If we have updated the active max Q do not call vp8_update_rate_correction_factors() this loop.
|
|
active_worst_qchanged = TRUE;
|
|
}
|
|
else
|
|
active_worst_qchanged = FALSE;
|
|
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
// Special case handling for forced key frames
|
|
if ( (cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced )
|
|
{
|
|
int last_q = Q;
|
|
int kf_err = vp8_calc_ss_err(cpi->Source,
|
|
&cm->yv12_fb[cm->new_fb_idx],
|
|
IF_RTCD(&cpi->rtcd.variance));
|
|
|
|
// The key frame is not good enough
|
|
if ( kf_err > ((cpi->ambient_err * 7) >> 3) )
|
|
{
|
|
// Lower q_high
|
|
q_high = (Q > q_low) ? (Q - 1) : q_low;
|
|
|
|
// Adjust Q
|
|
Q = (q_high + q_low) >> 1;
|
|
}
|
|
// The key frame is much better than the previous frame
|
|
else if ( kf_err < (cpi->ambient_err >> 1) )
|
|
{
|
|
// Raise q_low
|
|
q_low = (Q < q_high) ? (Q + 1) : q_high;
|
|
|
|
// Adjust Q
|
|
Q = (q_high + q_low + 1) >> 1;
|
|
}
|
|
|
|
// Clamp Q to upper and lower limits:
|
|
if (Q > q_high)
|
|
Q = q_high;
|
|
else if (Q < q_low)
|
|
Q = q_low;
|
|
|
|
Loop = ((Q != last_q)) ? TRUE : FALSE;
|
|
}
|
|
|
|
// Is the projected frame size out of range and are we allowed to attempt to recode.
|
|
else if ( recode_loop_test( cpi,
|
|
frame_over_shoot_limit, frame_under_shoot_limit,
|
|
Q, top_index, bottom_index ) )
|
|
{
|
|
int last_q = Q;
|
|
int Retries = 0;
|
|
|
|
// Frame size out of permitted range:
|
|
// Update correction factor & compute new Q to try...
|
|
|
|
// Frame is too large
|
|
if (cpi->projected_frame_size > cpi->this_frame_target)
|
|
{
|
|
//if ( cpi->zbin_over_quant == 0 )
|
|
q_low = (Q < q_high) ? (Q + 1) : q_high; // Raise Qlow as to at least the current value
|
|
|
|
if (cpi->zbin_over_quant > 0) // If we are using over quant do the same for zbin_oq_low
|
|
zbin_oq_low = (cpi->zbin_over_quant < zbin_oq_high) ? (cpi->zbin_over_quant + 1) : zbin_oq_high;
|
|
|
|
//if ( undershoot_seen || (Q == MAXQ) )
|
|
if (undershoot_seen)
|
|
{
|
|
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
|
|
if (!active_worst_qchanged)
|
|
vp8_update_rate_correction_factors(cpi, 1);
|
|
|
|
Q = (q_high + q_low + 1) / 2;
|
|
|
|
// Adjust cpi->zbin_over_quant (only allowed when Q is max)
|
|
if (Q < MAXQ)
|
|
cpi->zbin_over_quant = 0;
|
|
else
|
|
{
|
|
zbin_oq_low = (cpi->zbin_over_quant < zbin_oq_high) ? (cpi->zbin_over_quant + 1) : zbin_oq_high;
|
|
cpi->zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
|
|
if (!active_worst_qchanged)
|
|
vp8_update_rate_correction_factors(cpi, 0);
|
|
|
|
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
|
|
|
|
while (((Q < q_low) || (cpi->zbin_over_quant < zbin_oq_low)) && (Retries < 10))
|
|
{
|
|
vp8_update_rate_correction_factors(cpi, 0);
|
|
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
|
|
Retries ++;
|
|
}
|
|
}
|
|
|
|
overshoot_seen = TRUE;
|
|
}
|
|
// Frame is too small
|
|
else
|
|
{
|
|
if (cpi->zbin_over_quant == 0)
|
|
q_high = (Q > q_low) ? (Q - 1) : q_low; // Lower q_high if not using over quant
|
|
else // else lower zbin_oq_high
|
|
zbin_oq_high = (cpi->zbin_over_quant > zbin_oq_low) ? (cpi->zbin_over_quant - 1) : zbin_oq_low;
|
|
|
|
if (overshoot_seen)
|
|
{
|
|
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
|
|
if (!active_worst_qchanged)
|
|
vp8_update_rate_correction_factors(cpi, 1);
|
|
|
|
Q = (q_high + q_low) / 2;
|
|
|
|
// Adjust cpi->zbin_over_quant (only allowed when Q is max)
|
|
if (Q < MAXQ)
|
|
cpi->zbin_over_quant = 0;
|
|
else
|
|
cpi->zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2;
|
|
}
|
|
else
|
|
{
|
|
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
|
|
if (!active_worst_qchanged)
|
|
vp8_update_rate_correction_factors(cpi, 0);
|
|
|
|
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
|
|
|
|
// Special case reset for qlow for constrained quality.
|
|
// This should only trigger where there is very substantial
|
|
// undershoot on a frame and the auto cq level is above
|
|
// the user passsed in value.
|
|
if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
|
|
(Q < q_low) )
|
|
{
|
|
q_low = Q;
|
|
}
|
|
|
|
while (((Q > q_high) || (cpi->zbin_over_quant > zbin_oq_high)) && (Retries < 10))
|
|
{
|
|
vp8_update_rate_correction_factors(cpi, 0);
|
|
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
|
|
Retries ++;
|
|
}
|
|
}
|
|
|
|
undershoot_seen = TRUE;
|
|
}
|
|
|
|
// Clamp Q to upper and lower limits:
|
|
if (Q > q_high)
|
|
Q = q_high;
|
|
else if (Q < q_low)
|
|
Q = q_low;
|
|
|
|
// Clamp cpi->zbin_over_quant
|
|
cpi->zbin_over_quant = (cpi->zbin_over_quant < zbin_oq_low) ? zbin_oq_low : (cpi->zbin_over_quant > zbin_oq_high) ? zbin_oq_high : cpi->zbin_over_quant;
|
|
|
|
//Loop = ((Q != last_q) || (last_zbin_oq != cpi->zbin_over_quant)) ? TRUE : FALSE;
|
|
Loop = ((Q != last_q)) ? TRUE : FALSE;
|
|
last_zbin_oq = cpi->zbin_over_quant;
|
|
}
|
|
else
|
|
#endif
|
|
Loop = FALSE;
|
|
|
|
if (cpi->is_src_frame_alt_ref)
|
|
Loop = FALSE;
|
|
|
|
if (Loop == TRUE)
|
|
{
|
|
vp8_restore_coding_context(cpi);
|
|
loop_count++;
|
|
#if CONFIG_INTERNAL_STATS
|
|
cpi->tot_recode_hits++;
|
|
#endif
|
|
}
|
|
}
|
|
while (Loop == TRUE);
|
|
|
|
#if 0
|
|
// Experimental code for lagged and one pass
|
|
// Update stats used for one pass GF selection
|
|
{
|
|
/*
|
|
int frames_so_far;
|
|
double frame_intra_error;
|
|
double frame_coded_error;
|
|
double frame_pcnt_inter;
|
|
double frame_pcnt_motion;
|
|
double frame_mvr;
|
|
double frame_mvr_abs;
|
|
double frame_mvc;
|
|
double frame_mvc_abs;
|
|
*/
|
|
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_coded_error = (double)cpi->prediction_error;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_intra_error = (double)cpi->intra_error;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_pcnt_inter = (double)(100 - cpi->this_frame_percent_intra) / 100.0;
|
|
}
|
|
#endif
|
|
|
|
// Special case code to reduce pulsing when key frames are forced at a
|
|
// fixed interval. Note the reconstruction error if it is the frame before
|
|
// the force key frame
|
|
if ( cpi->next_key_frame_forced && (cpi->twopass.frames_to_key == 0) )
|
|
{
|
|
cpi->ambient_err = vp8_calc_ss_err(cpi->Source,
|
|
&cm->yv12_fb[cm->new_fb_idx],
|
|
IF_RTCD(&cpi->rtcd.variance));
|
|
}
|
|
|
|
// This frame's MVs are saved and will be used in next frame's MV prediction.
|
|
// Last frame has one more line(add to bottom) and one more column(add to right) than cm->mip. The edge elements are initialized to 0.
|
|
if(cm->show_frame) //do not save for altref frame
|
|
{
|
|
int mb_row;
|
|
int mb_col;
|
|
MODE_INFO *tmp = cm->mip; //point to beginning of allocated MODE_INFO arrays.
|
|
|
|
if(cm->frame_type != KEY_FRAME)
|
|
{
|
|
for (mb_row = 0; mb_row < cm->mb_rows+1; mb_row ++)
|
|
{
|
|
for (mb_col = 0; mb_col < cm->mb_cols+1; mb_col ++)
|
|
{
|
|
if(tmp->mbmi.ref_frame != INTRA_FRAME)
|
|
cpi->lfmv[mb_col + mb_row*(cm->mode_info_stride+1)].as_int = tmp->mbmi.mv.as_int;
|
|
|
|
cpi->lf_ref_frame_sign_bias[mb_col + mb_row*(cm->mode_info_stride+1)] = cm->ref_frame_sign_bias[tmp->mbmi.ref_frame];
|
|
cpi->lf_ref_frame[mb_col + mb_row*(cm->mode_info_stride+1)] = tmp->mbmi.ref_frame;
|
|
tmp++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update the GF useage maps.
|
|
// This is done after completing the compression of a frame when all modes etc. are finalized but before loop filter
|
|
// This is done after completing the compression of a frame when all modes etc. are finalized but before loop filter
|
|
vp8_update_gf_useage_maps(cpi, cm, &cpi->mb);
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
cm->refresh_last_frame = 1;
|
|
|
|
#if 0
|
|
{
|
|
FILE *f = fopen("gfactive.stt", "a");
|
|
fprintf(f, "%8d %8d %8d %8d %8d\n", cm->current_video_frame, (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols), cpi->this_iiratio, cpi->next_iiratio, cm->refresh_golden_frame);
|
|
fclose(f);
|
|
}
|
|
#endif
|
|
|
|
// For inter frames the current default behavior is that when
|
|
// cm->refresh_golden_frame is set we copy the old GF over to the ARF buffer
|
|
// This is purely an encoder decision at present.
|
|
if (!cpi->oxcf.error_resilient_mode && cm->refresh_golden_frame)
|
|
cm->copy_buffer_to_arf = 2;
|
|
else
|
|
cm->copy_buffer_to_arf = 0;
|
|
|
|
cm->frame_to_show = &cm->yv12_fb[cm->new_fb_idx];
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
if (cpi->b_multi_threaded)
|
|
{
|
|
sem_post(&cpi->h_event_start_lpf); /* start loopfilter in separate thread */
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
loopfilter_frame(cpi, cm);
|
|
}
|
|
|
|
update_reference_frames(cm);
|
|
|
|
if (cpi->oxcf.error_resilient_mode == 1)
|
|
{
|
|
cm->refresh_entropy_probs = 0;
|
|
}
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
/* wait that filter_level is picked so that we can continue with stream packing */
|
|
if (cpi->b_multi_threaded)
|
|
sem_wait(&cpi->h_event_end_lpf);
|
|
#endif
|
|
|
|
// build the bitstream
|
|
vp8_pack_bitstream(cpi, dest, size);
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
/* wait for loopfilter thread done */
|
|
if (cpi->b_multi_threaded)
|
|
{
|
|
sem_wait(&cpi->h_event_end_lpf);
|
|
}
|
|
#endif
|
|
|
|
/* Move storing frame_type out of the above loop since it is also
|
|
* needed in motion search besides loopfilter */
|
|
cm->last_frame_type = cm->frame_type;
|
|
|
|
// Update rate control heuristics
|
|
cpi->total_byte_count += (*size);
|
|
cpi->projected_frame_size = (*size) << 3;
|
|
|
|
if (!active_worst_qchanged)
|
|
vp8_update_rate_correction_factors(cpi, 2);
|
|
|
|
cpi->last_q[cm->frame_type] = cm->base_qindex;
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
vp8_adjust_key_frame_context(cpi);
|
|
}
|
|
|
|
// Keep a record of ambient average Q.
|
|
if (cm->frame_type != KEY_FRAME)
|
|
cpi->avg_frame_qindex = (2 + 3 * cpi->avg_frame_qindex + cm->base_qindex) >> 2;
|
|
|
|
// Keep a record from which we can calculate the average Q excluding GF updates and key frames
|
|
if ((cm->frame_type != KEY_FRAME) && !cm->refresh_golden_frame && !cm->refresh_alt_ref_frame)
|
|
{
|
|
cpi->ni_frames++;
|
|
|
|
// Calculate the average Q for normal inter frames (not key or GFU
|
|
// frames).
|
|
if ( cpi->pass == 2 )
|
|
{
|
|
cpi->ni_tot_qi += Q;
|
|
cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames);
|
|
}
|
|
else
|
|
{
|
|
// Damp value for first few frames
|
|
if (cpi->ni_frames > 150 )
|
|
{
|
|
cpi->ni_tot_qi += Q;
|
|
cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames);
|
|
}
|
|
// For one pass, early in the clip ... average the current frame Q
|
|
// value with the worstq entered by the user as a dampening measure
|
|
else
|
|
{
|
|
cpi->ni_tot_qi += Q;
|
|
cpi->ni_av_qi = ((cpi->ni_tot_qi / cpi->ni_frames) + cpi->worst_quality + 1) / 2;
|
|
}
|
|
|
|
// If the average Q is higher than what was used in the last frame
|
|
// (after going through the recode loop to keep the frame size within range)
|
|
// then use the last frame value - 1.
|
|
// The -1 is designed to stop Q and hence the data rate, from progressively
|
|
// falling away during difficult sections, but at the same time reduce the number of
|
|
// itterations around the recode loop.
|
|
if (Q > cpi->ni_av_qi)
|
|
cpi->ni_av_qi = Q - 1;
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
|
|
// If the frame was massively oversize and we are below optimal buffer level drop next frame
|
|
if ((cpi->drop_frames_allowed) &&
|
|
(cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
|
|
(cpi->buffer_level < cpi->oxcf.drop_frames_water_mark * cpi->oxcf.optimal_buffer_level / 100) &&
|
|
(cpi->projected_frame_size > (4 * cpi->this_frame_target)))
|
|
{
|
|
cpi->drop_frame = TRUE;
|
|
}
|
|
|
|
#endif
|
|
|
|
// Set the count for maximum consequative dropped frames based upon the ratio of
|
|
// this frame size to the target average per frame bandwidth.
|
|
// (cpi->av_per_frame_bandwidth > 0) is just a sanity check to prevent / 0.
|
|
if (cpi->drop_frames_allowed && (cpi->av_per_frame_bandwidth > 0))
|
|
{
|
|
cpi->max_drop_count = cpi->projected_frame_size / cpi->av_per_frame_bandwidth;
|
|
|
|
if (cpi->max_drop_count > cpi->max_consec_dropped_frames)
|
|
cpi->max_drop_count = cpi->max_consec_dropped_frames;
|
|
}
|
|
|
|
// Update the buffer level variable.
|
|
// Non-viewable frames are a special case and are treated as pure overhead.
|
|
if ( cm->show_frame )
|
|
cpi->bits_off_target += cpi->av_per_frame_bandwidth;
|
|
cpi->bits_off_target -= cpi->projected_frame_size;
|
|
|
|
// Rolling monitors of whether we are over or underspending used to help regulate min and Max Q in two pass.
|
|
cpi->rolling_target_bits = ((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4;
|
|
cpi->rolling_actual_bits = ((cpi->rolling_actual_bits * 3) + cpi->projected_frame_size + 2) / 4;
|
|
cpi->long_rolling_target_bits = ((cpi->long_rolling_target_bits * 31) + cpi->this_frame_target + 16) / 32;
|
|
cpi->long_rolling_actual_bits = ((cpi->long_rolling_actual_bits * 31) + cpi->projected_frame_size + 16) / 32;
|
|
|
|
// Actual bits spent
|
|
cpi->total_actual_bits += cpi->projected_frame_size;
|
|
|
|
// Debug stats
|
|
cpi->total_target_vs_actual += (cpi->this_frame_target - cpi->projected_frame_size);
|
|
|
|
// Update the buffered average bitrate
|
|
{
|
|
long long numerator;
|
|
|
|
numerator = cpi->oxcf.maximum_buffer_size
|
|
- cpi->buffered_av_per_frame_bandwidth
|
|
+ cpi->projected_frame_size;
|
|
numerator *= cpi->buffered_av_per_frame_bandwidth;
|
|
cpi->buffered_av_per_frame_bandwidth = numerator
|
|
/ cpi->oxcf.maximum_buffer_size;
|
|
}
|
|
|
|
{
|
|
long long tmp = (long long)cpi->buffered_av_per_frame_bandwidth
|
|
* cpi->oxcf.maximum_buffer_size
|
|
/ cpi->av_per_frame_bandwidth;
|
|
cpi->buffer_level = cpi->oxcf.maximum_buffer_size
|
|
- tmp
|
|
+ cpi->oxcf.optimal_buffer_level;
|
|
}
|
|
|
|
// Accumulate overshoot error.
|
|
cpi->accumulated_overshoot +=
|
|
(cpi->projected_frame_size > cpi->av_per_frame_bandwidth)
|
|
? cpi->projected_frame_size - cpi->av_per_frame_bandwidth
|
|
: 0;
|
|
|
|
|
|
// Update bits left to the kf and gf groups to account for overshoot or undershoot on these frames
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
cpi->twopass.kf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
|
|
|
|
if (cpi->twopass.kf_group_bits < 0)
|
|
cpi->twopass.kf_group_bits = 0 ;
|
|
}
|
|
else if (cm->refresh_golden_frame || cm->refresh_alt_ref_frame)
|
|
{
|
|
cpi->twopass.gf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
|
|
|
|
if (cpi->twopass.gf_group_bits < 0)
|
|
cpi->twopass.gf_group_bits = 0 ;
|
|
}
|
|
|
|
if (cm->frame_type != KEY_FRAME)
|
|
{
|
|
if (cpi->common.refresh_alt_ref_frame)
|
|
{
|
|
cpi->last_skip_false_probs[2] = cpi->prob_skip_false;
|
|
cpi->last_skip_probs_q[2] = cm->base_qindex;
|
|
}
|
|
else if (cpi->common.refresh_golden_frame)
|
|
{
|
|
cpi->last_skip_false_probs[1] = cpi->prob_skip_false;
|
|
cpi->last_skip_probs_q[1] = cm->base_qindex;
|
|
}
|
|
else
|
|
{
|
|
cpi->last_skip_false_probs[0] = cpi->prob_skip_false;
|
|
cpi->last_skip_probs_q[0] = cm->base_qindex;
|
|
|
|
//update the baseline
|
|
cpi->base_skip_false_prob[cm->base_qindex] = cpi->prob_skip_false;
|
|
|
|
}
|
|
}
|
|
|
|
#if 0 && CONFIG_INTERNAL_STATS
|
|
{
|
|
FILE *f = fopen("tmp.stt", "a");
|
|
|
|
vp8_clear_system_state(); //__asm emms;
|
|
|
|
if (cpi->twopass.total_coded_error_left != 0.0)
|
|
fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d %6d %6d"
|
|
"%6d %6d %6d %5d %5d %5d %8d %8.2f %10d %10.3f"
|
|
"%10.3f %8d\n",
|
|
cpi->common.current_video_frame, cpi->this_frame_target,
|
|
cpi->projected_frame_size,
|
|
(cpi->projected_frame_size - cpi->this_frame_target),
|
|
(int)cpi->total_target_vs_actual,
|
|
(cpi->oxcf.starting_buffer_level-cpi->bits_off_target),
|
|
(int)cpi->total_actual_bits, cm->base_qindex,
|
|
cpi->active_best_quality, cpi->active_worst_quality,
|
|
cpi->ni_av_qi, cpi->cq_target_quality, cpi->zbin_over_quant,
|
|
//cpi->avg_frame_qindex, cpi->zbin_over_quant,
|
|
cm->refresh_golden_frame, cm->refresh_alt_ref_frame,
|
|
cm->frame_type, cpi->gfu_boost,
|
|
cpi->twopass.est_max_qcorrection_factor, (int)cpi->twopass.bits_left,
|
|
cpi->twopass.total_coded_error_left,
|
|
(double)cpi->twopass.bits_left / cpi->twopass.total_coded_error_left,
|
|
cpi->tot_recode_hits);
|
|
else
|
|
fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d %6d %6d"
|
|
"%6d %6d %6d %5d %5d %5d %8d %8.2f %10d %10.3f"
|
|
"%8d\n",
|
|
cpi->common.current_video_frame,
|
|
cpi->this_frame_target, cpi->projected_frame_size,
|
|
(cpi->projected_frame_size - cpi->this_frame_target),
|
|
(int)cpi->total_target_vs_actual,
|
|
(cpi->oxcf.starting_buffer_level-cpi->bits_off_target),
|
|
(int)cpi->total_actual_bits, cm->base_qindex,
|
|
cpi->active_best_quality, cpi->active_worst_quality,
|
|
cpi->ni_av_qi, cpi->cq_target_quality, cpi->zbin_over_quant,
|
|
//cpi->avg_frame_qindex, cpi->zbin_over_quant,
|
|
cm->refresh_golden_frame, cm->refresh_alt_ref_frame,
|
|
cm->frame_type, cpi->gfu_boost,
|
|
cpi->twopass.est_max_qcorrection_factor, (int)cpi->twopass.bits_left,
|
|
cpi->twopass.total_coded_error_left, cpi->tot_recode_hits);
|
|
|
|
fclose(f);
|
|
|
|
{
|
|
FILE *fmodes = fopen("Modes.stt", "a");
|
|
int i;
|
|
|
|
fprintf(fmodes, "%6d:%1d:%1d:%1d ",
|
|
cpi->common.current_video_frame,
|
|
cm->frame_type, cm->refresh_golden_frame,
|
|
cm->refresh_alt_ref_frame);
|
|
|
|
for (i = 0; i < MAX_MODES; i++)
|
|
fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]);
|
|
|
|
fprintf(fmodes, "\n");
|
|
|
|
fclose(fmodes);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
// If this was a kf or Gf note the Q
|
|
if ((cm->frame_type == KEY_FRAME) || cm->refresh_golden_frame || cm->refresh_alt_ref_frame)
|
|
cm->last_kf_gf_q = cm->base_qindex;
|
|
|
|
if (cm->refresh_golden_frame == 1)
|
|
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_GOLDEN;
|
|
else
|
|
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_GOLDEN;
|
|
|
|
if (cm->refresh_alt_ref_frame == 1)
|
|
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_ALTREF;
|
|
else
|
|
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_ALTREF;
|
|
|
|
|
|
if (cm->refresh_last_frame & cm->refresh_golden_frame) // both refreshed
|
|
cpi->gold_is_last = 1;
|
|
else if (cm->refresh_last_frame ^ cm->refresh_golden_frame) // 1 refreshed but not the other
|
|
cpi->gold_is_last = 0;
|
|
|
|
if (cm->refresh_last_frame & cm->refresh_alt_ref_frame) // both refreshed
|
|
cpi->alt_is_last = 1;
|
|
else if (cm->refresh_last_frame ^ cm->refresh_alt_ref_frame) // 1 refreshed but not the other
|
|
cpi->alt_is_last = 0;
|
|
|
|
if (cm->refresh_alt_ref_frame & cm->refresh_golden_frame) // both refreshed
|
|
cpi->gold_is_alt = 1;
|
|
else if (cm->refresh_alt_ref_frame ^ cm->refresh_golden_frame) // 1 refreshed but not the other
|
|
cpi->gold_is_alt = 0;
|
|
|
|
cpi->ref_frame_flags = VP8_ALT_FLAG | VP8_GOLD_FLAG | VP8_LAST_FLAG;
|
|
|
|
if (cpi->gold_is_last)
|
|
cpi->ref_frame_flags &= ~VP8_GOLD_FLAG;
|
|
|
|
if (cpi->alt_is_last)
|
|
cpi->ref_frame_flags &= ~VP8_ALT_FLAG;
|
|
|
|
if (cpi->gold_is_alt)
|
|
cpi->ref_frame_flags &= ~VP8_ALT_FLAG;
|
|
|
|
|
|
if (!cpi->oxcf.error_resilient_mode)
|
|
{
|
|
if (cpi->oxcf.play_alternate && cm->refresh_alt_ref_frame && (cm->frame_type != KEY_FRAME))
|
|
// Update the alternate reference frame stats as appropriate.
|
|
update_alt_ref_frame_stats(cpi);
|
|
else
|
|
// Update the Golden frame stats as appropriate.
|
|
update_golden_frame_stats(cpi);
|
|
}
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
// Tell the caller that the frame was coded as a key frame
|
|
*frame_flags = cm->frame_flags | FRAMEFLAGS_KEY;
|
|
|
|
// As this frame is a key frame the next defaults to an inter frame.
|
|
cm->frame_type = INTER_FRAME;
|
|
|
|
cpi->last_frame_percent_intra = 100;
|
|
}
|
|
else
|
|
{
|
|
*frame_flags = cm->frame_flags&~FRAMEFLAGS_KEY;
|
|
|
|
cpi->last_frame_percent_intra = cpi->this_frame_percent_intra;
|
|
}
|
|
|
|
// Clear the one shot update flags for segmentation map and mode/ref loop filter deltas.
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 0;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 0;
|
|
cpi->mb.e_mbd.mode_ref_lf_delta_update = 0;
|
|
|
|
|
|
// Dont increment frame counters if this was an altref buffer update not a real frame
|
|
if (cm->show_frame)
|
|
{
|
|
cm->current_video_frame++;
|
|
cpi->frames_since_key++;
|
|
}
|
|
|
|
// reset to normal state now that we are done.
|
|
|
|
|
|
|
|
#if 0
|
|
{
|
|
char filename[512];
|
|
FILE *recon_file;
|
|
sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame);
|
|
recon_file = fopen(filename, "wb");
|
|
fwrite(cm->yv12_fb[cm->lst_fb_idx].buffer_alloc,
|
|
cm->yv12_fb[cm->lst_fb_idx].frame_size, 1, recon_file);
|
|
fclose(recon_file);
|
|
}
|
|
#endif
|
|
|
|
// DEBUG
|
|
//vp8_write_yuv_frame("encoder_recon.yuv", cm->frame_to_show);
|
|
|
|
|
|
}
|
|
|
|
|
|
static void check_gf_quality(VP8_COMP *cpi)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
int gf_active_pct = (100 * cpi->gf_active_count) / (cm->mb_rows * cm->mb_cols);
|
|
int gf_ref_usage_pct = (cpi->count_mb_ref_frame_usage[GOLDEN_FRAME] * 100) / (cm->mb_rows * cm->mb_cols);
|
|
int last_ref_zz_useage = (cpi->inter_zz_count * 100) / (cm->mb_rows * cm->mb_cols);
|
|
|
|
// Gf refresh is not currently being signalled
|
|
if (cpi->gf_update_recommended == 0)
|
|
{
|
|
if (cpi->common.frames_since_golden > 7)
|
|
{
|
|
// Low use of gf
|
|
if ((gf_active_pct < 10) || ((gf_active_pct + gf_ref_usage_pct) < 15))
|
|
{
|
|
// ...but last frame zero zero usage is reasonbable so a new gf might be appropriate
|
|
if (last_ref_zz_useage >= 25)
|
|
{
|
|
cpi->gf_bad_count ++;
|
|
|
|
if (cpi->gf_bad_count >= 8) // Check that the condition is stable
|
|
{
|
|
cpi->gf_update_recommended = 1;
|
|
cpi->gf_bad_count = 0;
|
|
}
|
|
}
|
|
else
|
|
cpi->gf_bad_count = 0; // Restart count as the background is not stable enough
|
|
}
|
|
else
|
|
cpi->gf_bad_count = 0; // Gf useage has picked up so reset count
|
|
}
|
|
}
|
|
// If the signal is set but has not been read should we cancel it.
|
|
else if (last_ref_zz_useage < 15)
|
|
{
|
|
cpi->gf_update_recommended = 0;
|
|
cpi->gf_bad_count = 0;
|
|
}
|
|
|
|
#if 0
|
|
{
|
|
FILE *f = fopen("gfneeded.stt", "a");
|
|
fprintf(f, "%10d %10d %10d %10d %10ld \n",
|
|
cm->current_video_frame,
|
|
cpi->common.frames_since_golden,
|
|
gf_active_pct, gf_ref_usage_pct,
|
|
cpi->gf_update_recommended);
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
static void Pass2Encode(VP8_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags)
|
|
{
|
|
|
|
if (!cpi->common.refresh_alt_ref_frame)
|
|
vp8_second_pass(cpi);
|
|
|
|
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
|
|
cpi->twopass.bits_left -= 8 * *size;
|
|
|
|
if (!cpi->common.refresh_alt_ref_frame)
|
|
{
|
|
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth
|
|
*cpi->oxcf.two_pass_vbrmin_section / 100);
|
|
cpi->twopass.bits_left += (long long)(two_pass_min_rate / cpi->oxcf.frame_rate);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//For ARM NEON, d8-d15 are callee-saved registers, and need to be saved by us.
|
|
#if HAVE_ARMV7
|
|
extern void vp8_push_neon(INT64 *store);
|
|
extern void vp8_pop_neon(INT64 *store);
|
|
#endif
|
|
|
|
|
|
int vp8_receive_raw_frame(VP8_PTR ptr, unsigned int frame_flags, YV12_BUFFER_CONFIG *sd, INT64 time_stamp, INT64 end_time)
|
|
{
|
|
#if HAVE_ARMV7
|
|
INT64 store_reg[8];
|
|
#endif
|
|
VP8_COMP *cpi = (VP8_COMP *) ptr;
|
|
VP8_COMMON *cm = &cpi->common;
|
|
struct vpx_usec_timer timer;
|
|
int res = 0;
|
|
|
|
#if HAVE_ARMV7
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
if (cm->rtcd.flags & HAS_NEON)
|
|
#endif
|
|
{
|
|
vp8_push_neon(store_reg);
|
|
}
|
|
#endif
|
|
|
|
vpx_usec_timer_start(&timer);
|
|
if(vp8_lookahead_push(cpi->lookahead, sd, time_stamp, end_time,
|
|
frame_flags))
|
|
res = -1;
|
|
cm->clr_type = sd->clrtype;
|
|
vpx_usec_timer_mark(&timer);
|
|
cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
|
|
|
|
#if HAVE_ARMV7
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
if (cm->rtcd.flags & HAS_NEON)
|
|
#endif
|
|
{
|
|
vp8_pop_neon(store_reg);
|
|
}
|
|
#endif
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
int vp8_get_compressed_data(VP8_PTR ptr, unsigned int *frame_flags, unsigned long *size, unsigned char *dest, INT64 *time_stamp, INT64 *time_end, int flush)
|
|
{
|
|
#if HAVE_ARMV7
|
|
INT64 store_reg[8];
|
|
#endif
|
|
VP8_COMP *cpi = (VP8_COMP *) ptr;
|
|
VP8_COMMON *cm = &cpi->common;
|
|
struct vpx_usec_timer tsctimer;
|
|
struct vpx_usec_timer ticktimer;
|
|
struct vpx_usec_timer cmptimer;
|
|
YV12_BUFFER_CONFIG *force_src_buffer = NULL;
|
|
|
|
if (!cpi)
|
|
return -1;
|
|
|
|
#if HAVE_ARMV7
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
if (cm->rtcd.flags & HAS_NEON)
|
|
#endif
|
|
{
|
|
vp8_push_neon(store_reg);
|
|
}
|
|
#endif
|
|
|
|
vpx_usec_timer_start(&cmptimer);
|
|
|
|
cpi->source = NULL;
|
|
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
// Should we code an alternate reference frame
|
|
if (cpi->oxcf.error_resilient_mode == 0 &&
|
|
cpi->oxcf.play_alternate &&
|
|
cpi->source_alt_ref_pending)
|
|
{
|
|
if ((cpi->source = vp8_lookahead_peek(cpi->lookahead,
|
|
cpi->frames_till_gf_update_due)))
|
|
{
|
|
cpi->alt_ref_source = cpi->source;
|
|
if (cpi->oxcf.arnr_max_frames > 0)
|
|
{
|
|
vp8_temporal_filter_prepare_c(cpi,
|
|
cpi->frames_till_gf_update_due);
|
|
force_src_buffer = &cpi->alt_ref_buffer;
|
|
}
|
|
cm->frames_till_alt_ref_frame = cpi->frames_till_gf_update_due;
|
|
cm->refresh_alt_ref_frame = 1;
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 0;
|
|
cm->show_frame = 0;
|
|
cpi->source_alt_ref_pending = FALSE; // Clear Pending altf Ref flag.
|
|
cpi->is_src_frame_alt_ref = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (!cpi->source)
|
|
{
|
|
if ((cpi->source = vp8_lookahead_pop(cpi->lookahead, flush)))
|
|
{
|
|
cm->show_frame = 1;
|
|
|
|
cpi->is_src_frame_alt_ref = cpi->alt_ref_source
|
|
&& (cpi->source == cpi->alt_ref_source);
|
|
|
|
if(cpi->is_src_frame_alt_ref)
|
|
cpi->alt_ref_source = NULL;
|
|
}
|
|
}
|
|
|
|
if (cpi->source)
|
|
{
|
|
cpi->un_scaled_source =
|
|
cpi->Source = force_src_buffer ? force_src_buffer : &cpi->source->img;
|
|
*time_stamp = cpi->source->ts_start;
|
|
*time_end = cpi->source->ts_end;
|
|
*frame_flags = cpi->source->flags;
|
|
}
|
|
else
|
|
{
|
|
*size = 0;
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
|
|
if (flush && cpi->pass == 1 && !cpi->twopass.first_pass_done)
|
|
{
|
|
vp8_end_first_pass(cpi); /* get last stats packet */
|
|
cpi->twopass.first_pass_done = 1;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if HAVE_ARMV7
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
if (cm->rtcd.flags & HAS_NEON)
|
|
#endif
|
|
{
|
|
vp8_pop_neon(store_reg);
|
|
}
|
|
#endif
|
|
return -1;
|
|
}
|
|
|
|
if (cpi->source->ts_start < cpi->first_time_stamp_ever)
|
|
{
|
|
cpi->first_time_stamp_ever = cpi->source->ts_start;
|
|
cpi->last_end_time_stamp_seen = cpi->source->ts_start;
|
|
}
|
|
|
|
// adjust frame rates based on timestamps given
|
|
if (!cm->refresh_alt_ref_frame)
|
|
{
|
|
long long this_duration;
|
|
int step = 0;
|
|
|
|
if (cpi->source->ts_start == cpi->first_time_stamp_ever)
|
|
{
|
|
this_duration = cpi->source->ts_end - cpi->source->ts_start;
|
|
step = 1;
|
|
}
|
|
else
|
|
{
|
|
long long last_duration;
|
|
|
|
this_duration = cpi->source->ts_end - cpi->last_end_time_stamp_seen;
|
|
last_duration = cpi->last_end_time_stamp_seen
|
|
- cpi->last_time_stamp_seen;
|
|
// do a step update if the duration changes by 10%
|
|
if (last_duration)
|
|
step = ((this_duration - last_duration) * 10 / last_duration);
|
|
}
|
|
|
|
if (this_duration)
|
|
{
|
|
if (step)
|
|
vp8_new_frame_rate(cpi, 10000000.0 / this_duration);
|
|
else
|
|
{
|
|
double avg_duration, interval;
|
|
|
|
/* Average this frame's rate into the last second's average
|
|
* frame rate. If we haven't seen 1 second yet, then average
|
|
* over the whole interval seen.
|
|
*/
|
|
interval = cpi->source->ts_end - cpi->first_time_stamp_ever;
|
|
if(interval > 10000000.0)
|
|
interval = 10000000;
|
|
|
|
avg_duration = 10000000.0 / cpi->oxcf.frame_rate;
|
|
avg_duration *= (interval - avg_duration + this_duration);
|
|
avg_duration /= interval;
|
|
|
|
vp8_new_frame_rate(cpi, 10000000.0 / avg_duration);
|
|
}
|
|
}
|
|
|
|
cpi->last_time_stamp_seen = cpi->source->ts_start;
|
|
cpi->last_end_time_stamp_seen = cpi->source->ts_end;
|
|
}
|
|
|
|
if (cpi->compressor_speed == 2)
|
|
{
|
|
check_gf_quality(cpi);
|
|
vpx_usec_timer_start(&tsctimer);
|
|
vpx_usec_timer_start(&ticktimer);
|
|
}
|
|
|
|
// start with a 0 size frame
|
|
*size = 0;
|
|
|
|
// Clear down mmx registers
|
|
vp8_clear_system_state(); //__asm emms;
|
|
|
|
cm->frame_type = INTER_FRAME;
|
|
cm->frame_flags = *frame_flags;
|
|
|
|
#if 0
|
|
|
|
if (cm->refresh_alt_ref_frame)
|
|
{
|
|
//cm->refresh_golden_frame = 1;
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 0;
|
|
}
|
|
else
|
|
{
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 1;
|
|
}
|
|
|
|
#endif
|
|
/* find a free buffer for the new frame */
|
|
{
|
|
int i = 0;
|
|
for(; i < NUM_YV12_BUFFERS; i++)
|
|
{
|
|
if(!cm->yv12_fb[i].flags)
|
|
{
|
|
cm->new_fb_idx = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(i < NUM_YV12_BUFFERS );
|
|
}
|
|
#if !(CONFIG_REALTIME_ONLY)
|
|
|
|
if (cpi->pass == 1)
|
|
{
|
|
Pass1Encode(cpi, size, dest, frame_flags);
|
|
}
|
|
else if (cpi->pass == 2)
|
|
{
|
|
Pass2Encode(cpi, size, dest, frame_flags);
|
|
}
|
|
else
|
|
#endif
|
|
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
|
|
|
|
if (cpi->compressor_speed == 2)
|
|
{
|
|
unsigned int duration, duration2;
|
|
vpx_usec_timer_mark(&tsctimer);
|
|
vpx_usec_timer_mark(&ticktimer);
|
|
|
|
duration = vpx_usec_timer_elapsed(&ticktimer);
|
|
duration2 = (unsigned int)((double)duration / 2);
|
|
|
|
if (cm->frame_type != KEY_FRAME)
|
|
{
|
|
if (cpi->avg_encode_time == 0)
|
|
cpi->avg_encode_time = duration;
|
|
else
|
|
cpi->avg_encode_time = (7 * cpi->avg_encode_time + duration) >> 3;
|
|
}
|
|
|
|
if (duration2)
|
|
{
|
|
//if(*frame_flags!=1)
|
|
{
|
|
|
|
if (cpi->avg_pick_mode_time == 0)
|
|
cpi->avg_pick_mode_time = duration2;
|
|
else
|
|
cpi->avg_pick_mode_time = (7 * cpi->avg_pick_mode_time + duration2) >> 3;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
if (cm->refresh_entropy_probs == 0)
|
|
{
|
|
vpx_memcpy(&cm->fc, &cm->lfc, sizeof(cm->fc));
|
|
}
|
|
|
|
// if its a dropped frame honor the requests on subsequent frames
|
|
if (*size > 0)
|
|
{
|
|
|
|
// return to normal state
|
|
cm->refresh_entropy_probs = 1;
|
|
cm->refresh_alt_ref_frame = 0;
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 1;
|
|
cm->frame_type = INTER_FRAME;
|
|
|
|
}
|
|
|
|
vpx_usec_timer_mark(&cmptimer);
|
|
cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
|
|
|
|
if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame)
|
|
{
|
|
generate_psnr_packet(cpi);
|
|
}
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
|
|
if (cpi->pass != 1)
|
|
{
|
|
cpi->bytes += *size;
|
|
|
|
if (cm->show_frame)
|
|
{
|
|
|
|
cpi->count ++;
|
|
|
|
if (cpi->b_calculate_psnr)
|
|
{
|
|
double ye,ue,ve;
|
|
double frame_psnr;
|
|
YV12_BUFFER_CONFIG *orig = cpi->Source;
|
|
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
|
|
YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer;
|
|
int y_samples = orig->y_height * orig->y_width ;
|
|
int uv_samples = orig->uv_height * orig->uv_width ;
|
|
int t_samples = y_samples + 2 * uv_samples;
|
|
long long sq_error;
|
|
|
|
ye = calc_plane_error(orig->y_buffer, orig->y_stride,
|
|
recon->y_buffer, recon->y_stride, orig->y_width, orig->y_height,
|
|
IF_RTCD(&cpi->rtcd.variance));
|
|
|
|
ue = calc_plane_error(orig->u_buffer, orig->uv_stride,
|
|
recon->u_buffer, recon->uv_stride, orig->uv_width, orig->uv_height,
|
|
IF_RTCD(&cpi->rtcd.variance));
|
|
|
|
ve = calc_plane_error(orig->v_buffer, orig->uv_stride,
|
|
recon->v_buffer, recon->uv_stride, orig->uv_width, orig->uv_height,
|
|
IF_RTCD(&cpi->rtcd.variance));
|
|
|
|
sq_error = ye + ue + ve;
|
|
|
|
frame_psnr = vp8_mse2psnr(t_samples, 255.0, sq_error);
|
|
|
|
cpi->total_y += vp8_mse2psnr(y_samples, 255.0, ye);
|
|
cpi->total_u += vp8_mse2psnr(uv_samples, 255.0, ue);
|
|
cpi->total_v += vp8_mse2psnr(uv_samples, 255.0, ve);
|
|
cpi->total_sq_error += sq_error;
|
|
cpi->total += frame_psnr;
|
|
{
|
|
double frame_psnr2, frame_ssim2 = 0;
|
|
double weight = 0;
|
|
|
|
vp8_deblock(cm->frame_to_show, &cm->post_proc_buffer, cm->filter_level * 10 / 6, 1, 0, IF_RTCD(&cm->rtcd.postproc));
|
|
vp8_clear_system_state();
|
|
|
|
ye = calc_plane_error(orig->y_buffer, orig->y_stride,
|
|
pp->y_buffer, pp->y_stride, orig->y_width, orig->y_height,
|
|
IF_RTCD(&cpi->rtcd.variance));
|
|
|
|
ue = calc_plane_error(orig->u_buffer, orig->uv_stride,
|
|
pp->u_buffer, pp->uv_stride, orig->uv_width, orig->uv_height,
|
|
IF_RTCD(&cpi->rtcd.variance));
|
|
|
|
ve = calc_plane_error(orig->v_buffer, orig->uv_stride,
|
|
pp->v_buffer, pp->uv_stride, orig->uv_width, orig->uv_height,
|
|
IF_RTCD(&cpi->rtcd.variance));
|
|
|
|
sq_error = ye + ue + ve;
|
|
|
|
frame_psnr2 = vp8_mse2psnr(t_samples, 255.0, sq_error);
|
|
|
|
cpi->totalp_y += vp8_mse2psnr(y_samples, 255.0, ye);
|
|
cpi->totalp_u += vp8_mse2psnr(uv_samples, 255.0, ue);
|
|
cpi->totalp_v += vp8_mse2psnr(uv_samples, 255.0, ve);
|
|
cpi->total_sq_error2 += sq_error;
|
|
cpi->totalp += frame_psnr2;
|
|
|
|
frame_ssim2 = vp8_calc_ssim(cpi->Source,
|
|
&cm->post_proc_buffer, 1, &weight,
|
|
IF_RTCD(&cpi->rtcd.variance));
|
|
|
|
cpi->summed_quality += frame_ssim2 * weight;
|
|
cpi->summed_weights += weight;
|
|
|
|
}
|
|
}
|
|
|
|
if (cpi->b_calculate_ssimg)
|
|
{
|
|
double y, u, v, frame_all;
|
|
frame_all = vp8_calc_ssimg(cpi->Source, cm->frame_to_show,
|
|
&y, &u, &v, IF_RTCD(&cpi->rtcd.variance));
|
|
cpi->total_ssimg_y += y;
|
|
cpi->total_ssimg_u += u;
|
|
cpi->total_ssimg_v += v;
|
|
cpi->total_ssimg_all += frame_all;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
|
|
if (cpi->common.frame_type != 0 && cpi->common.base_qindex == cpi->oxcf.worst_allowed_q)
|
|
{
|
|
skiptruecount += cpi->skip_true_count;
|
|
skipfalsecount += cpi->skip_false_count;
|
|
}
|
|
|
|
#endif
|
|
#if 0
|
|
|
|
if (cpi->pass != 1)
|
|
{
|
|
FILE *f = fopen("skip.stt", "a");
|
|
fprintf(f, "frame:%4d flags:%4x Q:%4d P:%4d Size:%5d\n", cpi->common.current_video_frame, *frame_flags, cpi->common.base_qindex, cpi->prob_skip_false, *size);
|
|
|
|
if (cpi->is_src_frame_alt_ref == 1)
|
|
fprintf(f, "skipcount: %4d framesize: %d\n", cpi->skip_true_count , *size);
|
|
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
#endif
|
|
|
|
#if HAVE_ARMV7
|
|
#if CONFIG_RUNTIME_CPU_DETECT
|
|
if (cm->rtcd.flags & HAS_NEON)
|
|
#endif
|
|
{
|
|
vp8_pop_neon(store_reg);
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vp8_get_preview_raw_frame(VP8_PTR comp, YV12_BUFFER_CONFIG *dest, vp8_ppflags_t *flags)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *) comp;
|
|
|
|
if (cpi->common.refresh_alt_ref_frame)
|
|
return -1;
|
|
else
|
|
{
|
|
int ret;
|
|
#if CONFIG_POSTPROC
|
|
ret = vp8_post_proc_frame(&cpi->common, dest, flags);
|
|
#else
|
|
|
|
if (cpi->common.frame_to_show)
|
|
{
|
|
*dest = *cpi->common.frame_to_show;
|
|
dest->y_width = cpi->common.Width;
|
|
dest->y_height = cpi->common.Height;
|
|
dest->uv_height = cpi->common.Height / 2;
|
|
ret = 0;
|
|
}
|
|
else
|
|
{
|
|
ret = -1;
|
|
}
|
|
|
|
#endif //!CONFIG_POSTPROC
|
|
vp8_clear_system_state();
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
int vp8_set_roimap(VP8_PTR comp, unsigned char *map, unsigned int rows, unsigned int cols, int delta_q[4], int delta_lf[4], unsigned int threshold[4])
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *) comp;
|
|
signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS];
|
|
|
|
if (cpi->common.mb_rows != rows || cpi->common.mb_cols != cols)
|
|
return -1;
|
|
|
|
if (!map)
|
|
{
|
|
disable_segmentation((VP8_PTR)cpi);
|
|
return 0;
|
|
}
|
|
|
|
// Set the segmentation Map
|
|
set_segmentation_map((VP8_PTR)cpi, map);
|
|
|
|
// Activate segmentation.
|
|
enable_segmentation((VP8_PTR)cpi);
|
|
|
|
// Set up the quant segment data
|
|
feature_data[MB_LVL_ALT_Q][0] = delta_q[0];
|
|
feature_data[MB_LVL_ALT_Q][1] = delta_q[1];
|
|
feature_data[MB_LVL_ALT_Q][2] = delta_q[2];
|
|
feature_data[MB_LVL_ALT_Q][3] = delta_q[3];
|
|
|
|
// Set up the loop segment data s
|
|
feature_data[MB_LVL_ALT_LF][0] = delta_lf[0];
|
|
feature_data[MB_LVL_ALT_LF][1] = delta_lf[1];
|
|
feature_data[MB_LVL_ALT_LF][2] = delta_lf[2];
|
|
feature_data[MB_LVL_ALT_LF][3] = delta_lf[3];
|
|
|
|
cpi->segment_encode_breakout[0] = threshold[0];
|
|
cpi->segment_encode_breakout[1] = threshold[1];
|
|
cpi->segment_encode_breakout[2] = threshold[2];
|
|
cpi->segment_encode_breakout[3] = threshold[3];
|
|
|
|
// Initialise the feature data structure
|
|
// SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1
|
|
set_segment_data((VP8_PTR)cpi, &feature_data[0][0], SEGMENT_DELTADATA);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vp8_set_active_map(VP8_PTR comp, unsigned char *map, unsigned int rows, unsigned int cols)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *) comp;
|
|
|
|
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols)
|
|
{
|
|
if (map)
|
|
{
|
|
vpx_memcpy(cpi->active_map, map, rows * cols);
|
|
cpi->active_map_enabled = 1;
|
|
}
|
|
else
|
|
cpi->active_map_enabled = 0;
|
|
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
//cpi->active_map_enabled = 0;
|
|
return -1 ;
|
|
}
|
|
}
|
|
|
|
int vp8_set_internal_size(VP8_PTR comp, VPX_SCALING horiz_mode, VPX_SCALING vert_mode)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *) comp;
|
|
|
|
if (horiz_mode <= ONETWO)
|
|
cpi->common.horiz_scale = horiz_mode;
|
|
else
|
|
return -1;
|
|
|
|
if (vert_mode <= ONETWO)
|
|
cpi->common.vert_scale = vert_mode;
|
|
else
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, const vp8_variance_rtcd_vtable_t *rtcd)
|
|
{
|
|
int i, j;
|
|
int Total = 0;
|
|
|
|
unsigned char *src = source->y_buffer;
|
|
unsigned char *dst = dest->y_buffer;
|
|
(void)rtcd;
|
|
|
|
// Loop through the Y plane raw and reconstruction data summing (square differences)
|
|
for (i = 0; i < source->y_height; i += 16)
|
|
{
|
|
for (j = 0; j < source->y_width; j += 16)
|
|
{
|
|
unsigned int sse;
|
|
Total += VARIANCE_INVOKE(rtcd, mse16x16)(src + j, source->y_stride, dst + j, dest->y_stride, &sse);
|
|
}
|
|
|
|
src += 16 * source->y_stride;
|
|
dst += 16 * dest->y_stride;
|
|
}
|
|
|
|
return Total;
|
|
}
|
|
|
|
|
|
int vp8_get_quantizer(VP8_PTR c)
|
|
{
|
|
VP8_COMP *cpi = (VP8_COMP *) c;
|
|
return cpi->common.base_qindex;
|
|
}
|