2987fa1dc1
Consider the previous behavior for the MV 1 3/8 (11/8 pel). In the existing code, the fractional part of the MV is considered separately, and rounded is applied, giving a result of 6/8. Rounding is not required in this case, as we're increasing the precision from a q3 to a q4, and the correct value 11/16 can be represented exactly. Slight gain observed (+.033 average on derf) Change-Id: I320e160e8b12f1dd66aa0ce7966b5088870fe9f8
1505 lines
58 KiB
C
1505 lines
58 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
|
|
#include "./vpx_config.h"
|
|
#include "vpx/vpx_integer.h"
|
|
#include "vp9/common/vp9_blockd.h"
|
|
#include "vp9/common/vp9_filter.h"
|
|
#include "vp9/common/vp9_reconinter.h"
|
|
#include "vp9/common/vp9_reconintra.h"
|
|
|
|
void vp9_setup_scale_factors_for_frame(struct scale_factors *scale,
|
|
YV12_BUFFER_CONFIG *other,
|
|
int this_w, int this_h) {
|
|
int other_h = other->y_crop_height;
|
|
int other_w = other->y_crop_width;
|
|
|
|
scale->x_num = other_w;
|
|
scale->x_den = this_w;
|
|
scale->x_offset_q4 = 0; // calculated per-mb
|
|
scale->x_step_q4 = 16 * other_w / this_w;
|
|
|
|
scale->y_num = other_h;
|
|
scale->y_den = this_h;
|
|
scale->y_offset_q4 = 0; // calculated per-mb
|
|
scale->y_step_q4 = 16 * other_h / this_h;
|
|
|
|
if (scale->x_num == scale->x_den && scale->y_num == scale->y_den) {
|
|
scale->scale_value_x = unscaled_value;
|
|
scale->scale_value_y = unscaled_value;
|
|
scale->set_scaled_offsets = set_offsets_without_scaling;
|
|
scale->scale_motion_vector_q3_to_q4 =
|
|
motion_vector_q3_to_q4_without_scaling;
|
|
scale->scale_motion_vector_component_q4 =
|
|
motion_vector_component_q4_without_scaling;
|
|
} else {
|
|
scale->scale_value_x = scale_value_x_with_scaling;
|
|
scale->scale_value_y = scale_value_y_with_scaling;
|
|
scale->set_scaled_offsets = set_offsets_with_scaling;
|
|
scale->scale_motion_vector_q3_to_q4 =
|
|
motion_vector_q3_to_q4_with_scaling;
|
|
scale->scale_motion_vector_component_q4 =
|
|
motion_vector_component_q4_with_scaling;
|
|
}
|
|
|
|
// TODO(agrange): Investigate the best choice of functions to use here
|
|
// for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what
|
|
// to do at full-pel offsets. The current selection, where the filter is
|
|
// applied in one direction only, and not at all for 0,0, seems to give the
|
|
// best quality, but it may be worth trying an additional mode that does
|
|
// do the filtering on full-pel.
|
|
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
|
|
if (scale->x_step_q4 == 16) {
|
|
if (scale->y_step_q4 == 16) {
|
|
// No scaling in either direction.
|
|
scale->predict[0][0][0] = vp9_convolve_copy;
|
|
scale->predict[0][0][1] = vp9_convolve_1by8;
|
|
scale->predict[0][0][2] = vp9_convolve_qtr;
|
|
scale->predict[0][0][3] = vp9_convolve_3by8;
|
|
scale->predict[0][0][4] = vp9_convolve_avg;
|
|
scale->predict[0][0][5] = vp9_convolve_5by8;
|
|
scale->predict[0][0][6] = vp9_convolve_3qtr;
|
|
scale->predict[0][0][7] = vp9_convolve_7by8;
|
|
scale->predict[0][1][0] = vp9_convolve8_vert;
|
|
scale->predict[0][1][1] = vp9_convolve8_1by8_vert;
|
|
scale->predict[0][1][2] = vp9_convolve8_qtr_vert;
|
|
scale->predict[0][1][3] = vp9_convolve8_3by8_vert;
|
|
scale->predict[0][1][4] = vp9_convolve8_avg_vert;
|
|
scale->predict[0][1][5] = vp9_convolve8_5by8_vert;
|
|
scale->predict[0][1][6] = vp9_convolve8_3qtr_vert;
|
|
scale->predict[0][1][7] = vp9_convolve8_7by8_vert;
|
|
scale->predict[1][0][0] = vp9_convolve8_horiz;
|
|
scale->predict[1][0][1] = vp9_convolve8_1by8_horiz;
|
|
scale->predict[1][0][2] = vp9_convolve8_qtr_horiz;
|
|
scale->predict[1][0][3] = vp9_convolve8_3by8_horiz;
|
|
scale->predict[1][0][4] = vp9_convolve8_avg_horiz;
|
|
scale->predict[1][0][5] = vp9_convolve8_5by8_horiz;
|
|
scale->predict[1][0][6] = vp9_convolve8_3qtr_horiz;
|
|
scale->predict[1][0][7] = vp9_convolve8_7by8_horiz;
|
|
} else {
|
|
// No scaling in x direction. Must always scale in the y direction.
|
|
scale->predict[0][0][0] = vp9_convolve8_vert;
|
|
scale->predict[0][0][1] = vp9_convolve8_1by8_vert;
|
|
scale->predict[0][0][2] = vp9_convolve8_qtr_vert;
|
|
scale->predict[0][0][3] = vp9_convolve8_3by8_vert;
|
|
scale->predict[0][0][4] = vp9_convolve8_avg_vert;
|
|
scale->predict[0][0][5] = vp9_convolve8_5by8_vert;
|
|
scale->predict[0][0][6] = vp9_convolve8_3qtr_vert;
|
|
scale->predict[0][0][7] = vp9_convolve8_7by8_vert;
|
|
scale->predict[0][1][0] = vp9_convolve8_vert;
|
|
scale->predict[0][1][1] = vp9_convolve8_1by8_vert;
|
|
scale->predict[0][1][2] = vp9_convolve8_qtr_vert;
|
|
scale->predict[0][1][3] = vp9_convolve8_3by8_vert;
|
|
scale->predict[0][1][4] = vp9_convolve8_avg_vert;
|
|
scale->predict[0][1][5] = vp9_convolve8_5by8_vert;
|
|
scale->predict[0][1][6] = vp9_convolve8_3qtr_vert;
|
|
scale->predict[0][1][7] = vp9_convolve8_7by8_vert;
|
|
scale->predict[1][0][0] = vp9_convolve8;
|
|
scale->predict[1][0][1] = vp9_convolve8_1by8;
|
|
scale->predict[1][0][2] = vp9_convolve8_qtr;
|
|
scale->predict[1][0][3] = vp9_convolve8_3by8;
|
|
scale->predict[1][0][4] = vp9_convolve8_avg;
|
|
scale->predict[1][0][5] = vp9_convolve8_5by8;
|
|
scale->predict[1][0][6] = vp9_convolve8_3qtr;
|
|
scale->predict[1][0][7] = vp9_convolve8_7by8;
|
|
}
|
|
} else {
|
|
if (scale->y_step_q4 == 16) {
|
|
// No scaling in the y direction. Must always scale in the x direction.
|
|
scale->predict[0][0][0] = vp9_convolve8_horiz;
|
|
scale->predict[0][0][1] = vp9_convolve8_1by8_horiz;
|
|
scale->predict[0][0][2] = vp9_convolve8_qtr_horiz;
|
|
scale->predict[0][0][3] = vp9_convolve8_3by8_horiz;
|
|
scale->predict[0][0][4] = vp9_convolve8_avg_horiz;
|
|
scale->predict[0][0][5] = vp9_convolve8_5by8_horiz;
|
|
scale->predict[0][0][6] = vp9_convolve8_3qtr_horiz;
|
|
scale->predict[0][0][7] = vp9_convolve8_7by8_horiz;
|
|
scale->predict[0][1][0] = vp9_convolve8;
|
|
scale->predict[0][1][1] = vp9_convolve8_1by8;
|
|
scale->predict[0][1][2] = vp9_convolve8_qtr;
|
|
scale->predict[0][1][3] = vp9_convolve8_3by8;
|
|
scale->predict[0][1][4] = vp9_convolve8_avg;
|
|
scale->predict[0][1][5] = vp9_convolve8_5by8;
|
|
scale->predict[0][1][6] = vp9_convolve8_3qtr;
|
|
scale->predict[0][1][7] = vp9_convolve8_7by8;
|
|
scale->predict[1][0][0] = vp9_convolve8_horiz;
|
|
scale->predict[1][0][1] = vp9_convolve8_1by8_horiz;
|
|
scale->predict[1][0][2] = vp9_convolve8_qtr_horiz;
|
|
scale->predict[1][0][3] = vp9_convolve8_3by8_horiz;
|
|
scale->predict[1][0][4] = vp9_convolve8_avg_horiz;
|
|
scale->predict[1][0][5] = vp9_convolve8_5by8_horiz;
|
|
scale->predict[1][0][6] = vp9_convolve8_3qtr_horiz;
|
|
scale->predict[1][0][7] = vp9_convolve8_7by8_horiz;
|
|
} else {
|
|
// Must always scale in both directions.
|
|
scale->predict[0][0][0] = vp9_convolve8;
|
|
scale->predict[0][0][1] = vp9_convolve8_1by8;
|
|
scale->predict[0][0][2] = vp9_convolve8_qtr;
|
|
scale->predict[0][0][3] = vp9_convolve8_3by8;
|
|
scale->predict[0][0][4] = vp9_convolve8_avg;
|
|
scale->predict[0][0][5] = vp9_convolve8_5by8;
|
|
scale->predict[0][0][6] = vp9_convolve8_3qtr;
|
|
scale->predict[0][0][7] = vp9_convolve8_7by8;
|
|
scale->predict[0][1][0] = vp9_convolve8;
|
|
scale->predict[0][1][1] = vp9_convolve8_1by8;
|
|
scale->predict[0][1][2] = vp9_convolve8_qtr;
|
|
scale->predict[0][1][3] = vp9_convolve8_3by8;
|
|
scale->predict[0][1][4] = vp9_convolve8_avg;
|
|
scale->predict[0][1][5] = vp9_convolve8_5by8;
|
|
scale->predict[0][1][6] = vp9_convolve8_3qtr;
|
|
scale->predict[0][1][7] = vp9_convolve8_7by8;
|
|
scale->predict[1][0][0] = vp9_convolve8;
|
|
scale->predict[1][0][1] = vp9_convolve8_1by8;
|
|
scale->predict[1][0][2] = vp9_convolve8_qtr;
|
|
scale->predict[1][0][3] = vp9_convolve8_3by8;
|
|
scale->predict[1][0][4] = vp9_convolve8_avg;
|
|
scale->predict[1][0][5] = vp9_convolve8_5by8;
|
|
scale->predict[1][0][6] = vp9_convolve8_3qtr;
|
|
scale->predict[1][0][7] = vp9_convolve8_7by8;
|
|
}
|
|
}
|
|
// 2D subpel motion always gets filtered in both directions
|
|
scale->predict[1][1][0] = vp9_convolve8;
|
|
scale->predict[1][1][1] = vp9_convolve8_1by8;
|
|
scale->predict[1][1][2] = vp9_convolve8_qtr;
|
|
scale->predict[1][1][3] = vp9_convolve8_3by8;
|
|
scale->predict[1][1][4] = vp9_convolve8_avg;
|
|
scale->predict[1][1][5] = vp9_convolve8_5by8;
|
|
scale->predict[1][1][6] = vp9_convolve8_3qtr;
|
|
scale->predict[1][1][7] = vp9_convolve8_7by8;
|
|
}
|
|
#else
|
|
if (scale->x_step_q4 == 16) {
|
|
if (scale->y_step_q4 == 16) {
|
|
// No scaling in either direction.
|
|
scale->predict[0][0][0] = vp9_convolve_copy;
|
|
scale->predict[0][0][1] = vp9_convolve_avg;
|
|
scale->predict[0][1][0] = vp9_convolve8_vert;
|
|
scale->predict[0][1][1] = vp9_convolve8_avg_vert;
|
|
scale->predict[1][0][0] = vp9_convolve8_horiz;
|
|
scale->predict[1][0][1] = vp9_convolve8_avg_horiz;
|
|
} else {
|
|
// No scaling in x direction. Must always scale in the y direction.
|
|
scale->predict[0][0][0] = vp9_convolve8_vert;
|
|
scale->predict[0][0][1] = vp9_convolve8_avg_vert;
|
|
scale->predict[0][1][0] = vp9_convolve8_vert;
|
|
scale->predict[0][1][1] = vp9_convolve8_avg_vert;
|
|
scale->predict[1][0][0] = vp9_convolve8;
|
|
scale->predict[1][0][1] = vp9_convolve8_avg;
|
|
}
|
|
} else {
|
|
if (scale->y_step_q4 == 16) {
|
|
// No scaling in the y direction. Must always scale in the x direction.
|
|
scale->predict[0][0][0] = vp9_convolve8_horiz;
|
|
scale->predict[0][0][1] = vp9_convolve8_avg_horiz;
|
|
scale->predict[0][1][0] = vp9_convolve8;
|
|
scale->predict[0][1][1] = vp9_convolve8_avg;
|
|
scale->predict[1][0][0] = vp9_convolve8_horiz;
|
|
scale->predict[1][0][1] = vp9_convolve8_avg_horiz;
|
|
} else {
|
|
// Must always scale in both directions.
|
|
scale->predict[0][0][0] = vp9_convolve8;
|
|
scale->predict[0][0][1] = vp9_convolve8_avg;
|
|
scale->predict[0][1][0] = vp9_convolve8;
|
|
scale->predict[0][1][1] = vp9_convolve8_avg;
|
|
scale->predict[1][0][0] = vp9_convolve8;
|
|
scale->predict[1][0][1] = vp9_convolve8_avg;
|
|
}
|
|
}
|
|
// 2D subpel motion always gets filtered in both directions
|
|
scale->predict[1][1][0] = vp9_convolve8;
|
|
scale->predict[1][1][1] = vp9_convolve8_avg;
|
|
}
|
|
#endif
|
|
|
|
void vp9_setup_interp_filters(MACROBLOCKD *xd,
|
|
INTERPOLATIONFILTERTYPE mcomp_filter_type,
|
|
VP9_COMMON *cm) {
|
|
if (xd->mode_info_context) {
|
|
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
|
|
|
|
set_scale_factors(xd,
|
|
mbmi->ref_frame - 1,
|
|
mbmi->second_ref_frame - 1,
|
|
cm->active_ref_scale);
|
|
}
|
|
|
|
switch (mcomp_filter_type) {
|
|
case EIGHTTAP:
|
|
case SWITCHABLE:
|
|
xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8;
|
|
break;
|
|
case EIGHTTAP_SMOOTH:
|
|
xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8lp;
|
|
break;
|
|
case EIGHTTAP_SHARP:
|
|
xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8s;
|
|
break;
|
|
case BILINEAR:
|
|
xd->subpix.filter_x = xd->subpix.filter_y = vp9_bilinear_filters;
|
|
break;
|
|
#if CONFIG_ENABLE_6TAP
|
|
case SIXTAP:
|
|
xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_6;
|
|
break;
|
|
#endif
|
|
}
|
|
assert(((intptr_t)xd->subpix.filter_x & 0xff) == 0);
|
|
}
|
|
|
|
void vp9_copy_mem16x16_c(const uint8_t *src,
|
|
int src_stride,
|
|
uint8_t *dst,
|
|
int dst_stride) {
|
|
int r;
|
|
|
|
for (r = 0; r < 16; r++) {
|
|
#if !(CONFIG_FAST_UNALIGNED)
|
|
dst[0] = src[0];
|
|
dst[1] = src[1];
|
|
dst[2] = src[2];
|
|
dst[3] = src[3];
|
|
dst[4] = src[4];
|
|
dst[5] = src[5];
|
|
dst[6] = src[6];
|
|
dst[7] = src[7];
|
|
dst[8] = src[8];
|
|
dst[9] = src[9];
|
|
dst[10] = src[10];
|
|
dst[11] = src[11];
|
|
dst[12] = src[12];
|
|
dst[13] = src[13];
|
|
dst[14] = src[14];
|
|
dst[15] = src[15];
|
|
|
|
#else
|
|
((uint32_t *)dst)[0] = ((const uint32_t *)src)[0];
|
|
((uint32_t *)dst)[1] = ((const uint32_t *)src)[1];
|
|
((uint32_t *)dst)[2] = ((const uint32_t *)src)[2];
|
|
((uint32_t *)dst)[3] = ((const uint32_t *)src)[3];
|
|
|
|
#endif
|
|
src += src_stride;
|
|
dst += dst_stride;
|
|
}
|
|
}
|
|
|
|
void vp9_copy_mem8x8_c(const uint8_t *src,
|
|
int src_stride,
|
|
uint8_t *dst,
|
|
int dst_stride) {
|
|
int r;
|
|
|
|
for (r = 0; r < 8; r++) {
|
|
#if !(CONFIG_FAST_UNALIGNED)
|
|
dst[0] = src[0];
|
|
dst[1] = src[1];
|
|
dst[2] = src[2];
|
|
dst[3] = src[3];
|
|
dst[4] = src[4];
|
|
dst[5] = src[5];
|
|
dst[6] = src[6];
|
|
dst[7] = src[7];
|
|
#else
|
|
((uint32_t *)dst)[0] = ((const uint32_t *)src)[0];
|
|
((uint32_t *)dst)[1] = ((const uint32_t *)src)[1];
|
|
#endif
|
|
src += src_stride;
|
|
dst += dst_stride;
|
|
}
|
|
}
|
|
|
|
void vp9_copy_mem8x4_c(const uint8_t *src,
|
|
int src_stride,
|
|
uint8_t *dst,
|
|
int dst_stride) {
|
|
int r;
|
|
|
|
for (r = 0; r < 4; r++) {
|
|
#if !(CONFIG_FAST_UNALIGNED)
|
|
dst[0] = src[0];
|
|
dst[1] = src[1];
|
|
dst[2] = src[2];
|
|
dst[3] = src[3];
|
|
dst[4] = src[4];
|
|
dst[5] = src[5];
|
|
dst[6] = src[6];
|
|
dst[7] = src[7];
|
|
#else
|
|
((uint32_t *)dst)[0] = ((const uint32_t *)src)[0];
|
|
((uint32_t *)dst)[1] = ((const uint32_t *)src)[1];
|
|
#endif
|
|
src += src_stride;
|
|
dst += dst_stride;
|
|
}
|
|
}
|
|
|
|
void vp9_build_inter_predictor(const uint8_t *src, int src_stride,
|
|
uint8_t *dst, int dst_stride,
|
|
const int_mv *mv_q3,
|
|
const struct scale_factors *scale,
|
|
int w, int h, int weight,
|
|
const struct subpix_fn_table *subpix) {
|
|
int_mv32 mv = scale->scale_motion_vector_q3_to_q4(mv_q3, scale);
|
|
src += (mv.as_mv.row >> 4) * src_stride + (mv.as_mv.col >> 4);
|
|
scale->predict[!!(mv.as_mv.col & 15)][!!(mv.as_mv.row & 15)][weight](
|
|
src, src_stride, dst, dst_stride,
|
|
subpix->filter_x[mv.as_mv.col & 15], scale->x_step_q4,
|
|
subpix->filter_y[mv.as_mv.row & 15], scale->y_step_q4,
|
|
w, h);
|
|
}
|
|
|
|
/* Like vp9_build_inter_predictor, but takes the full-pel part of the
|
|
* mv separately, and the fractional part as a q4.
|
|
*/
|
|
void vp9_build_inter_predictor_q4(const uint8_t *src, int src_stride,
|
|
uint8_t *dst, int dst_stride,
|
|
const int_mv *mv_q4,
|
|
const struct scale_factors *scale,
|
|
int w, int h, int weight,
|
|
const struct subpix_fn_table *subpix) {
|
|
const int scaled_mv_row_q4 =
|
|
scale->scale_motion_vector_component_q4(mv_q4->as_mv.row,
|
|
scale->y_num, scale->y_den,
|
|
scale->y_offset_q4);
|
|
const int scaled_mv_col_q4 =
|
|
scale->scale_motion_vector_component_q4(mv_q4->as_mv.col,
|
|
scale->x_num, scale->x_den,
|
|
scale->x_offset_q4);
|
|
const int subpel_x = scaled_mv_col_q4 & 15;
|
|
const int subpel_y = scaled_mv_row_q4 & 15;
|
|
|
|
src += (scaled_mv_row_q4 >> 4) * src_stride + (scaled_mv_col_q4 >> 4);
|
|
scale->predict[!!subpel_x][!!subpel_y][weight](
|
|
src, src_stride, dst, dst_stride,
|
|
subpix->filter_x[subpel_x], scale->x_step_q4,
|
|
subpix->filter_y[subpel_y], scale->y_step_q4,
|
|
w, h);
|
|
}
|
|
|
|
static void build_2x1_inter_predictor_wh(const BLOCKD *d0, const BLOCKD *d1,
|
|
struct scale_factors *s,
|
|
uint8_t *predictor,
|
|
int block_size, int stride,
|
|
int which_mv, int weight,
|
|
int width, int height,
|
|
const struct subpix_fn_table *subpix,
|
|
int row, int col) {
|
|
struct scale_factors * scale = &s[which_mv];
|
|
|
|
assert(d1->dst - d0->dst == block_size);
|
|
assert(d1->pre == d0->pre + block_size);
|
|
|
|
scale->set_scaled_offsets(scale, row, col);
|
|
|
|
if (d0->bmi.as_mv[which_mv].as_int == d1->bmi.as_mv[which_mv].as_int) {
|
|
uint8_t **base_pre = which_mv ? d0->base_second_pre : d0->base_pre;
|
|
|
|
vp9_build_inter_predictor(*base_pre + d0->pre,
|
|
d0->pre_stride,
|
|
predictor, stride,
|
|
&d0->bmi.as_mv[which_mv],
|
|
scale,
|
|
width, height,
|
|
weight, subpix);
|
|
|
|
} else {
|
|
uint8_t **base_pre0 = which_mv ? d0->base_second_pre : d0->base_pre;
|
|
uint8_t **base_pre1 = which_mv ? d1->base_second_pre : d1->base_pre;
|
|
|
|
vp9_build_inter_predictor(*base_pre0 + d0->pre,
|
|
d0->pre_stride,
|
|
predictor, stride,
|
|
&d0->bmi.as_mv[which_mv],
|
|
scale,
|
|
width > block_size ? block_size : width, height,
|
|
weight, subpix);
|
|
|
|
if (width <= block_size) return;
|
|
|
|
scale->set_scaled_offsets(scale, row, col + block_size);
|
|
|
|
vp9_build_inter_predictor(*base_pre1 + d1->pre,
|
|
d1->pre_stride,
|
|
predictor + block_size, stride,
|
|
&d1->bmi.as_mv[which_mv],
|
|
scale,
|
|
width - block_size, height,
|
|
weight, subpix);
|
|
}
|
|
}
|
|
|
|
static void build_2x1_inter_predictor(const BLOCKD *d0, const BLOCKD *d1,
|
|
struct scale_factors *s,
|
|
int block_size, int stride,
|
|
int which_mv, int weight,
|
|
const struct subpix_fn_table *subpix,
|
|
int row, int col) {
|
|
uint8_t *d0_predictor = *(d0->base_dst) + d0->dst;
|
|
uint8_t *d1_predictor = *(d1->base_dst) + d1->dst;
|
|
struct scale_factors * scale = &s[which_mv];
|
|
stride = d0->dst_stride;
|
|
|
|
assert(d1_predictor - d0_predictor == block_size);
|
|
assert(d1->pre == d0->pre + block_size);
|
|
|
|
scale->set_scaled_offsets(scale, row, col);
|
|
|
|
if (d0->bmi.as_mv[which_mv].as_int == d1->bmi.as_mv[which_mv].as_int) {
|
|
uint8_t **base_pre = which_mv ? d0->base_second_pre : d0->base_pre;
|
|
|
|
vp9_build_inter_predictor(*base_pre + d0->pre,
|
|
d0->pre_stride,
|
|
d0_predictor, stride,
|
|
&d0->bmi.as_mv[which_mv],
|
|
scale,
|
|
2 * block_size, block_size,
|
|
weight, subpix);
|
|
} else {
|
|
uint8_t **base_pre0 = which_mv ? d0->base_second_pre : d0->base_pre;
|
|
uint8_t **base_pre1 = which_mv ? d1->base_second_pre : d1->base_pre;
|
|
|
|
vp9_build_inter_predictor(*base_pre0 + d0->pre,
|
|
d0->pre_stride,
|
|
d0_predictor, stride,
|
|
&d0->bmi.as_mv[which_mv],
|
|
scale,
|
|
block_size, block_size,
|
|
weight, subpix);
|
|
|
|
scale->set_scaled_offsets(scale, row, col + block_size);
|
|
|
|
vp9_build_inter_predictor(*base_pre1 + d1->pre,
|
|
d1->pre_stride,
|
|
d1_predictor, stride,
|
|
&d1->bmi.as_mv[which_mv],
|
|
scale,
|
|
block_size, block_size,
|
|
weight, subpix);
|
|
}
|
|
}
|
|
|
|
static void clamp_mv_to_umv_border(MV *mv, const MACROBLOCKD *xd) {
|
|
/* If the MV points so far into the UMV border that no visible pixels
|
|
* are used for reconstruction, the subpel part of the MV can be
|
|
* discarded and the MV limited to 16 pixels with equivalent results.
|
|
*
|
|
* This limit kicks in at 19 pixels for the top and left edges, for
|
|
* the 16 pixels plus 3 taps right of the central pixel when subpel
|
|
* filtering. The bottom and right edges use 16 pixels plus 2 pixels
|
|
* left of the central pixel when filtering.
|
|
*/
|
|
if (mv->col < (xd->mb_to_left_edge - ((16 + VP9_INTERP_EXTEND) << 3)))
|
|
mv->col = xd->mb_to_left_edge - (16 << 3);
|
|
else if (mv->col > xd->mb_to_right_edge + ((15 + VP9_INTERP_EXTEND) << 3))
|
|
mv->col = xd->mb_to_right_edge + (16 << 3);
|
|
|
|
if (mv->row < (xd->mb_to_top_edge - ((16 + VP9_INTERP_EXTEND) << 3)))
|
|
mv->row = xd->mb_to_top_edge - (16 << 3);
|
|
else if (mv->row > xd->mb_to_bottom_edge + ((15 + VP9_INTERP_EXTEND) << 3))
|
|
mv->row = xd->mb_to_bottom_edge + (16 << 3);
|
|
}
|
|
|
|
/* A version of the above function for chroma block MVs.*/
|
|
static void clamp_uvmv_to_umv_border(MV *mv, const MACROBLOCKD *xd) {
|
|
const int extend = VP9_INTERP_EXTEND;
|
|
|
|
mv->col = (2 * mv->col < (xd->mb_to_left_edge - ((16 + extend) << 3))) ?
|
|
(xd->mb_to_left_edge - (16 << 3)) >> 1 : mv->col;
|
|
mv->col = (2 * mv->col > xd->mb_to_right_edge + ((15 + extend) << 3)) ?
|
|
(xd->mb_to_right_edge + (16 << 3)) >> 1 : mv->col;
|
|
|
|
mv->row = (2 * mv->row < (xd->mb_to_top_edge - ((16 + extend) << 3))) ?
|
|
(xd->mb_to_top_edge - (16 << 3)) >> 1 : mv->row;
|
|
mv->row = (2 * mv->row > xd->mb_to_bottom_edge + ((15 + extend) << 3)) ?
|
|
(xd->mb_to_bottom_edge + (16 << 3)) >> 1 : mv->row;
|
|
}
|
|
|
|
#if !CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
|
|
// TODO(jkoleszar): yet another mv clamping function :-(
|
|
MV clamp_mv_to_umv_border_sb(const MV *src_mv,
|
|
int bwl, int bhl,
|
|
int mb_to_left_edge, int mb_to_top_edge,
|
|
int mb_to_right_edge, int mb_to_bottom_edge) {
|
|
/* If the MV points so far into the UMV border that no visible pixels
|
|
* are used for reconstruction, the subpel part of the MV can be
|
|
* discarded and the MV limited to 16 pixels with equivalent results.
|
|
*/
|
|
const int epel_left = (VP9_INTERP_EXTEND + (4 << bwl)) << 3;
|
|
const int epel_right = epel_left - (1 << 3);
|
|
const int epel_top = (VP9_INTERP_EXTEND + (4 << bhl)) << 3;
|
|
const int epel_bottom = epel_top - (1 << 3);
|
|
MV clamped_mv;
|
|
clamped_mv.col = clamp(src_mv->col,
|
|
mb_to_left_edge - epel_left,
|
|
mb_to_right_edge + epel_right);
|
|
clamped_mv.row = clamp(src_mv->row,
|
|
mb_to_top_edge - epel_top,
|
|
mb_to_bottom_edge + epel_bottom);
|
|
return clamped_mv;
|
|
}
|
|
|
|
struct build_inter_predictors_args {
|
|
MACROBLOCKD *xd;
|
|
uint8_t* dst[MAX_MB_PLANE];
|
|
int dst_stride[MAX_MB_PLANE];
|
|
int x;
|
|
int y;
|
|
};
|
|
static void build_inter_predictors(int plane, int block,
|
|
BLOCK_SIZE_TYPE bsize,
|
|
int pred_w, int pred_h,
|
|
void *argv) {
|
|
const struct build_inter_predictors_args* const arg = argv;
|
|
const int bwl = pred_w, bw = 4 << bwl;
|
|
const int bhl = pred_h, bh = 4 << bhl;
|
|
const int x_idx = block & ((1 << bwl) - 1), y_idx = block >> bwl;
|
|
const int x = x_idx * 4, y = y_idx * 4;
|
|
MACROBLOCKD * const xd = arg->xd;
|
|
const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0;
|
|
int which_mv;
|
|
|
|
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
|
|
const MV* const mv = (xd->mode_info_context->mbmi.mode == SPLITMV)
|
|
? &xd->block[block].bmi.as_mv[which_mv].as_mv
|
|
: &xd->mode_info_context->mbmi.mv[which_mv].as_mv;
|
|
|
|
const uint8_t * const base_pre = which_mv ? xd->second_pre.y_buffer
|
|
: xd->pre.y_buffer;
|
|
const int pre_stride = which_mv ? xd->second_pre.y_stride
|
|
: xd->pre.y_stride;
|
|
const uint8_t *const pre = base_pre +
|
|
scaled_buffer_offset(x, y, pre_stride, &xd->scale_factor[which_mv]);
|
|
struct scale_factors * const scale =
|
|
plane == 0 ? &xd->scale_factor[which_mv] : &xd->scale_factor_uv[which_mv];
|
|
|
|
int_mv clamped_mv;
|
|
clamped_mv.as_mv = clamp_mv_to_umv_border_sb(mv, bwl, bhl,
|
|
xd->mb_to_left_edge,
|
|
xd->mb_to_top_edge,
|
|
xd->mb_to_right_edge,
|
|
xd->mb_to_bottom_edge);
|
|
|
|
scale->set_scaled_offsets(scale, arg->y + y, arg->x + x);
|
|
|
|
vp9_build_inter_predictor(pre, pre_stride,
|
|
arg->dst[plane], arg->dst_stride[plane],
|
|
&clamped_mv, &xd->scale_factor[which_mv],
|
|
bw, bh, which_mv, &xd->subpix);
|
|
}
|
|
}
|
|
void vp9_build_inter_predictors_sby(MACROBLOCKD *xd,
|
|
uint8_t *dst_y,
|
|
int dst_ystride,
|
|
int mb_row,
|
|
int mb_col,
|
|
BLOCK_SIZE_TYPE bsize) {
|
|
struct build_inter_predictors_args args = {
|
|
xd, {dst_y, NULL, NULL}, {dst_ystride, 0, 0}, mb_col * 16, mb_row * 16
|
|
};
|
|
foreach_predicted_block_in_plane(xd, bsize, 0, build_inter_predictors, &args);
|
|
}
|
|
#endif
|
|
|
|
#define AVERAGE_WEIGHT (1 << (2 * CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT))
|
|
|
|
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
|
|
|
|
// Whether to use implicit weighting for UV
|
|
#define USE_IMPLICIT_WEIGHT_UV
|
|
|
|
// Whether to use implicit weighting for SplitMV
|
|
// #define USE_IMPLICIT_WEIGHT_SPLITMV
|
|
|
|
// #define SEARCH_MIN3
|
|
static int64_t get_consistency_metric(MACROBLOCKD *xd,
|
|
uint8_t *tmp_y, int tmp_ystride) {
|
|
int block_size = 16 << xd->mode_info_context->mbmi.sb_type;
|
|
uint8_t *rec_y = xd->dst.y_buffer;
|
|
int rec_ystride = xd->dst.y_stride;
|
|
int64_t metric = 0;
|
|
int i;
|
|
if (xd->up_available) {
|
|
for (i = 0; i < block_size; ++i) {
|
|
int diff = abs(*(rec_y - rec_ystride + i) -
|
|
*(tmp_y + i));
|
|
#ifdef SEARCH_MIN3
|
|
// Searches for the min abs diff among 3 pixel neighbors in the border
|
|
int diff1 = xd->left_available ?
|
|
abs(*(rec_y - rec_ystride + i - 1) - *(tmp_y + i)) : diff;
|
|
int diff2 = i < block_size - 1 ?
|
|
abs(*(rec_y - rec_ystride + i + 1) - *(tmp_y + i)) : diff;
|
|
diff = diff <= diff1 ? diff : diff1;
|
|
diff = diff <= diff2 ? diff : diff2;
|
|
#endif
|
|
metric += diff;
|
|
}
|
|
}
|
|
if (xd->left_available) {
|
|
for (i = 0; i < block_size; ++i) {
|
|
int diff = abs(*(rec_y - 1 + i * rec_ystride) -
|
|
*(tmp_y + i * tmp_ystride));
|
|
#ifdef SEARCH_MIN3
|
|
// Searches for the min abs diff among 3 pixel neighbors in the border
|
|
int diff1 = xd->up_available ?
|
|
abs(*(rec_y - 1 + (i - 1) * rec_ystride) -
|
|
*(tmp_y + i * tmp_ystride)) : diff;
|
|
int diff2 = i < block_size - 1 ?
|
|
abs(*(rec_y - 1 + (i + 1) * rec_ystride) -
|
|
*(tmp_y + i * tmp_ystride)) : diff;
|
|
diff = diff <= diff1 ? diff : diff1;
|
|
diff = diff <= diff2 ? diff : diff2;
|
|
#endif
|
|
metric += diff;
|
|
}
|
|
}
|
|
return metric;
|
|
}
|
|
|
|
static int get_weight(MACROBLOCKD *xd, int64_t metric_1, int64_t metric_2) {
|
|
int weight = AVERAGE_WEIGHT;
|
|
if (2 * metric_1 < metric_2)
|
|
weight = 6;
|
|
else if (4 * metric_1 < 3 * metric_2)
|
|
weight = 5;
|
|
else if (2 * metric_2 < metric_1)
|
|
weight = 2;
|
|
else if (4 * metric_2 < 3 * metric_1)
|
|
weight = 3;
|
|
return weight;
|
|
}
|
|
|
|
#ifdef USE_IMPLICIT_WEIGHT_SPLITMV
|
|
static int get_implicit_compoundinter_weight_splitmv(
|
|
MACROBLOCKD *xd, int mb_row, int mb_col) {
|
|
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
|
|
BLOCKD *blockd = xd->block;
|
|
const int use_second_ref = mbmi->second_ref_frame > 0;
|
|
int64_t metric_2 = 0, metric_1 = 0;
|
|
int i, which_mv, weight;
|
|
uint8_t tmp_y[256];
|
|
const int tmp_ystride = 16;
|
|
|
|
if (!use_second_ref) return 0;
|
|
if (!(xd->up_available || xd->left_available))
|
|
return AVERAGE_WEIGHT;
|
|
|
|
assert(xd->mode_info_context->mbmi.mode == SPLITMV);
|
|
|
|
which_mv = 1; // second predictor
|
|
if (xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4) {
|
|
for (i = 0; i < 16; i += 8) {
|
|
BLOCKD *d0 = &blockd[i];
|
|
BLOCKD *d1 = &blockd[i + 2];
|
|
const int y = i & 8;
|
|
|
|
blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0];
|
|
blockd[i + 2].bmi = xd->mode_info_context->bmi[i + 2];
|
|
|
|
if (mbmi->need_to_clamp_mvs) {
|
|
clamp_mv_to_umv_border(&blockd[i + 0].bmi.as_mv[which_mv].as_mv, xd);
|
|
clamp_mv_to_umv_border(&blockd[i + 2].bmi.as_mv[which_mv].as_mv, xd);
|
|
}
|
|
if (i == 0) {
|
|
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 8, 16,
|
|
which_mv, 0, 16, 1,
|
|
&xd->subpix, mb_row * 16 + y, mb_col * 16);
|
|
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 8, 16,
|
|
which_mv, 0, 1, 8,
|
|
&xd->subpix, mb_row * 16 + y, mb_col * 16);
|
|
} else {
|
|
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y + 8 * 16,
|
|
8, 16, which_mv, 0, 1, 8,
|
|
&xd->subpix, mb_row * 16 + y, mb_col * 16);
|
|
}
|
|
}
|
|
} else {
|
|
for (i = 0; i < 16; i += 2) {
|
|
BLOCKD *d0 = &blockd[i];
|
|
BLOCKD *d1 = &blockd[i + 1];
|
|
const int x = (i & 3) * 4;
|
|
const int y = (i >> 2) * 4;
|
|
|
|
blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0];
|
|
blockd[i + 1].bmi = xd->mode_info_context->bmi[i + 1];
|
|
|
|
if (i >= 4 && (i & 3) != 0) continue;
|
|
|
|
if (i == 0) {
|
|
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 4, 16,
|
|
which_mv, 0, 8, 1, &xd->subpix,
|
|
mb_row * 16 + y, mb_col * 16 + x);
|
|
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 4, 16,
|
|
which_mv, 0, 1, 4, &xd->subpix,
|
|
mb_row * 16 + y, mb_col * 16 + x);
|
|
} else if (i < 4) {
|
|
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y + x, 4, 16,
|
|
which_mv, 0, 8, 1, &xd->subpix,
|
|
mb_row * 16 + y, mb_col * 16 + x);
|
|
} else {
|
|
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y + y * 16,
|
|
4, 16, which_mv, 0, 1, 4, &xd->subpix,
|
|
mb_row * 16 + y, mb_col * 16 + x);
|
|
}
|
|
}
|
|
}
|
|
metric_2 = get_consistency_metric(xd, tmp_y, tmp_ystride);
|
|
|
|
which_mv = 0; // first predictor
|
|
if (xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4) {
|
|
for (i = 0; i < 16; i += 8) {
|
|
BLOCKD *d0 = &blockd[i];
|
|
BLOCKD *d1 = &blockd[i + 2];
|
|
const int y = i & 8;
|
|
|
|
blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0];
|
|
blockd[i + 2].bmi = xd->mode_info_context->bmi[i + 2];
|
|
|
|
if (mbmi->need_to_clamp_mvs) {
|
|
clamp_mv_to_umv_border(&blockd[i + 0].bmi.as_mv[which_mv].as_mv, xd);
|
|
clamp_mv_to_umv_border(&blockd[i + 2].bmi.as_mv[which_mv].as_mv, xd);
|
|
}
|
|
if (i == 0) {
|
|
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 8, 16,
|
|
which_mv, 0, 16, 1,
|
|
&xd->subpix, mb_row * 16 + y, mb_col * 16);
|
|
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 8, 16,
|
|
which_mv, 0, 1, 8,
|
|
&xd->subpix, mb_row * 16 + y, mb_col * 16);
|
|
} else {
|
|
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y + 8 * 16,
|
|
8, 16, which_mv, 0, 1, 8,
|
|
&xd->subpix, mb_row * 16 + y, mb_col * 16);
|
|
}
|
|
}
|
|
} else {
|
|
for (i = 0; i < 16; i += 2) {
|
|
BLOCKD *d0 = &blockd[i];
|
|
BLOCKD *d1 = &blockd[i + 1];
|
|
const int x = (i & 3) * 4;
|
|
const int y = (i >> 2) * 4;
|
|
|
|
blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0];
|
|
blockd[i + 1].bmi = xd->mode_info_context->bmi[i + 1];
|
|
|
|
if (i >= 4 && (i & 3) != 0) continue;
|
|
|
|
if (i == 0) {
|
|
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 4, 16,
|
|
which_mv, 0, 8, 1, &xd->subpix,
|
|
mb_row * 16 + y, mb_col * 16 + x);
|
|
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 4, 16,
|
|
which_mv, 0, 1, 4, &xd->subpix,
|
|
mb_row * 16 + y, mb_col * 16 + x);
|
|
} else if (i < 4) {
|
|
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y + x, 4, 16,
|
|
which_mv, 0, 8, 1, &xd->subpix,
|
|
mb_row * 16 + y, mb_col * 16 + x);
|
|
} else {
|
|
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y + y * 16,
|
|
4, 16, which_mv, 0, 1, 4, &xd->subpix,
|
|
mb_row * 16 + y, mb_col * 16 + x);
|
|
}
|
|
}
|
|
}
|
|
metric_1 = get_consistency_metric(xd, tmp_y, tmp_ystride);
|
|
|
|
// Choose final weight for averaging
|
|
weight = get_weight(xd, metric_1, metric_2);
|
|
return weight;
|
|
}
|
|
#endif
|
|
|
|
static int get_implicit_compoundinter_weight(MACROBLOCKD *xd,
|
|
int mb_row,
|
|
int mb_col) {
|
|
const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0;
|
|
int64_t metric_2 = 0, metric_1 = 0;
|
|
int n, clamp_mvs, pre_stride;
|
|
uint8_t *base_pre;
|
|
int_mv ymv;
|
|
uint8_t tmp_y[4096];
|
|
const int tmp_ystride = 64;
|
|
int weight;
|
|
int edge[4];
|
|
int block_size = 16 << xd->mode_info_context->mbmi.sb_type;
|
|
struct scale_factors *scale;
|
|
|
|
if (!use_second_ref) return 0;
|
|
if (!(xd->up_available || xd->left_available))
|
|
return AVERAGE_WEIGHT;
|
|
|
|
edge[0] = xd->mb_to_top_edge;
|
|
edge[1] = xd->mb_to_bottom_edge;
|
|
edge[2] = xd->mb_to_left_edge;
|
|
edge[3] = xd->mb_to_right_edge;
|
|
|
|
clamp_mvs = xd->mode_info_context->mbmi.need_to_clamp_secondmv;
|
|
base_pre = xd->second_pre.y_buffer;
|
|
pre_stride = xd->second_pre.y_stride;
|
|
ymv.as_int = xd->mode_info_context->mbmi.mv[1].as_int;
|
|
// First generate the second predictor
|
|
scale = &xd->scale_factor[1];
|
|
for (n = 0; n < block_size; n += 16) {
|
|
xd->mb_to_left_edge = edge[2] - (n << 3);
|
|
xd->mb_to_right_edge = edge[3] + ((16 - n) << 3);
|
|
if (clamp_mvs)
|
|
clamp_mv_to_umv_border(&ymv.as_mv, xd);
|
|
scale->set_scaled_offsets(scale, mb_row * 16, mb_col * 16 + n);
|
|
// predict a single row of pixels
|
|
vp9_build_inter_predictor(base_pre +
|
|
scaled_buffer_offset(n, 0, pre_stride, scale),
|
|
pre_stride, tmp_y + n, tmp_ystride, &ymv, scale, 16, 1, 0, &xd->subpix);
|
|
}
|
|
xd->mb_to_left_edge = edge[2];
|
|
xd->mb_to_right_edge = edge[3];
|
|
for (n = 0; n < block_size; n += 16) {
|
|
xd->mb_to_top_edge = edge[0] - (n << 3);
|
|
xd->mb_to_bottom_edge = edge[1] + ((16 - n) << 3);
|
|
if (clamp_mvs)
|
|
clamp_mv_to_umv_border(&ymv.as_mv, xd);
|
|
scale->set_scaled_offsets(scale, mb_row * 16 + n, mb_col * 16);
|
|
// predict a single col of pixels
|
|
vp9_build_inter_predictor(base_pre +
|
|
scaled_buffer_offset(0, n, pre_stride, scale),
|
|
pre_stride, tmp_y + n * tmp_ystride, tmp_ystride, &ymv,
|
|
scale, 1, 16, 0, &xd->subpix);
|
|
}
|
|
xd->mb_to_top_edge = edge[0];
|
|
xd->mb_to_bottom_edge = edge[1];
|
|
// Compute consistency metric
|
|
metric_2 = get_consistency_metric(xd, tmp_y, tmp_ystride);
|
|
|
|
clamp_mvs = xd->mode_info_context->mbmi.need_to_clamp_mvs;
|
|
base_pre = xd->pre.y_buffer;
|
|
pre_stride = xd->pre.y_stride;
|
|
ymv.as_int = xd->mode_info_context->mbmi.mv[0].as_int;
|
|
// Now generate the first predictor
|
|
scale = &xd->scale_factor[0];
|
|
for (n = 0; n < block_size; n += 16) {
|
|
xd->mb_to_left_edge = edge[2] - (n << 3);
|
|
xd->mb_to_right_edge = edge[3] + ((16 - n) << 3);
|
|
if (clamp_mvs)
|
|
clamp_mv_to_umv_border(&ymv.as_mv, xd);
|
|
scale->set_scaled_offsets(scale, mb_row * 16, mb_col * 16 + n);
|
|
// predict a single row of pixels
|
|
vp9_build_inter_predictor(base_pre +
|
|
scaled_buffer_offset(n, 0, pre_stride, scale),
|
|
pre_stride, tmp_y + n, tmp_ystride, &ymv, scale, 16, 1, 0, &xd->subpix);
|
|
}
|
|
xd->mb_to_left_edge = edge[2];
|
|
xd->mb_to_right_edge = edge[3];
|
|
for (n = 0; n < block_size; n += 16) {
|
|
xd->mb_to_top_edge = edge[0] - (n << 3);
|
|
xd->mb_to_bottom_edge = edge[1] + ((16 - n) << 3);
|
|
if (clamp_mvs)
|
|
clamp_mv_to_umv_border(&ymv.as_mv, xd);
|
|
scale->set_scaled_offsets(scale, mb_row * 16 + n, mb_col * 16);
|
|
// predict a single col of pixels
|
|
vp9_build_inter_predictor(base_pre +
|
|
scaled_buffer_offset(0, n, pre_stride, scale),
|
|
pre_stride, tmp_y + n * tmp_ystride, tmp_ystride, &ymv,
|
|
scale, 1, 16, 0, &xd->subpix);
|
|
}
|
|
xd->mb_to_top_edge = edge[0];
|
|
xd->mb_to_bottom_edge = edge[1];
|
|
metric_1 = get_consistency_metric(xd, tmp_y, tmp_ystride);
|
|
|
|
// Choose final weight for averaging
|
|
weight = get_weight(xd, metric_1, metric_2);
|
|
return weight;
|
|
}
|
|
|
|
static void build_inter16x16_predictors_mby_w(MACROBLOCKD *xd,
|
|
uint8_t *dst_y,
|
|
int dst_ystride,
|
|
int weight,
|
|
int mb_row,
|
|
int mb_col) {
|
|
const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0;
|
|
int which_mv;
|
|
|
|
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
|
|
const int clamp_mvs = which_mv ?
|
|
xd->mode_info_context->mbmi.need_to_clamp_secondmv :
|
|
xd->mode_info_context->mbmi.need_to_clamp_mvs;
|
|
|
|
uint8_t *base_pre = which_mv ? xd->second_pre.y_buffer : xd->pre.y_buffer;
|
|
int pre_stride = which_mv ? xd->second_pre.y_stride : xd->pre.y_stride;
|
|
int_mv ymv;
|
|
struct scale_factors *scale = &xd->scale_factor[which_mv];
|
|
|
|
ymv.as_int = xd->mode_info_context->mbmi.mv[which_mv].as_int;
|
|
|
|
if (clamp_mvs)
|
|
clamp_mv_to_umv_border(&ymv.as_mv, xd);
|
|
|
|
scale->set_scaled_offsets(scale, mb_row * 16, mb_col * 16);
|
|
|
|
vp9_build_inter_predictor(base_pre, pre_stride, dst_y, dst_ystride,
|
|
&ymv, scale, 16, 16,
|
|
which_mv ? weight : 0, &xd->subpix);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
|
|
static void build_inter16x16_predictors_mbuv_w(MACROBLOCKD *xd,
|
|
uint8_t *dst_u,
|
|
uint8_t *dst_v,
|
|
int dst_uvstride,
|
|
int weight,
|
|
int mb_row,
|
|
int mb_col) {
|
|
const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0;
|
|
int which_mv;
|
|
|
|
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
|
|
const int clamp_mvs =
|
|
which_mv ? xd->mode_info_context->mbmi.need_to_clamp_secondmv
|
|
: xd->mode_info_context->mbmi.need_to_clamp_mvs;
|
|
uint8_t *uptr, *vptr;
|
|
int pre_stride = which_mv ? xd->second_pre.uv_stride
|
|
: xd->pre.uv_stride;
|
|
int_mv mv;
|
|
|
|
struct scale_factors *scale = &xd->scale_factor_uv[which_mv];
|
|
mv.as_int = xd->mode_info_context->mbmi.mv[which_mv].as_int;
|
|
|
|
|
|
if (clamp_mvs)
|
|
clamp_mv_to_umv_border(&mv.as_mv, xd);
|
|
|
|
uptr = (which_mv ? xd->second_pre.u_buffer : xd->pre.u_buffer);
|
|
vptr = (which_mv ? xd->second_pre.v_buffer : xd->pre.v_buffer);
|
|
|
|
scale->set_scaled_offsets(scale, mb_row * 16, mb_col * 16);
|
|
|
|
vp9_build_inter_predictor_q4(
|
|
uptr, pre_stride, dst_u, dst_uvstride, &mv,
|
|
scale, 8, 8, which_mv ? weight : 0, &xd->subpix);
|
|
|
|
vp9_build_inter_predictor_q4(
|
|
vptr, pre_stride, dst_v, dst_uvstride, &mv,
|
|
scale, 8, 8, which_mv ? weight : 0, &xd->subpix);
|
|
}
|
|
}
|
|
|
|
void vp9_build_inter16x16_predictors_mbuv(MACROBLOCKD *xd,
|
|
uint8_t *dst_u,
|
|
uint8_t *dst_v,
|
|
int dst_uvstride,
|
|
int mb_row,
|
|
int mb_col) {
|
|
#ifdef USE_IMPLICIT_WEIGHT_UV
|
|
int weight = get_implicit_compoundinter_weight(xd, mb_row, mb_col);
|
|
#else
|
|
int weight = AVERAGE_WEIGHT;
|
|
#endif
|
|
build_inter16x16_predictors_mbuv_w(xd, dst_u, dst_v, dst_uvstride,
|
|
weight, mb_row, mb_col);
|
|
}
|
|
|
|
#else
|
|
|
|
void vp9_build_inter16x16_predictors_mbuv(MACROBLOCKD *xd,
|
|
uint8_t *dst_u,
|
|
uint8_t *dst_v,
|
|
int dst_uvstride,
|
|
int mb_row,
|
|
int mb_col) {
|
|
const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0;
|
|
int which_mv;
|
|
|
|
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
|
|
const int clamp_mvs =
|
|
which_mv ? xd->mode_info_context->mbmi.need_to_clamp_secondmv
|
|
: xd->mode_info_context->mbmi.need_to_clamp_mvs;
|
|
uint8_t *uptr, *vptr;
|
|
int pre_stride = which_mv ? xd->second_pre.uv_stride
|
|
: xd->pre.uv_stride;
|
|
int_mv mv;
|
|
|
|
struct scale_factors *scale = &xd->scale_factor_uv[which_mv];
|
|
mv.as_int = xd->mode_info_context->mbmi.mv[which_mv].as_int;
|
|
|
|
|
|
if (clamp_mvs)
|
|
clamp_mv_to_umv_border(&mv.as_mv, xd);
|
|
|
|
uptr = (which_mv ? xd->second_pre.u_buffer : xd->pre.u_buffer);
|
|
vptr = (which_mv ? xd->second_pre.v_buffer : xd->pre.v_buffer);
|
|
|
|
scale->set_scaled_offsets(scale, mb_row * 16, mb_col * 16);
|
|
|
|
vp9_build_inter_predictor_q4(
|
|
uptr, pre_stride, dst_u, dst_uvstride, &mv,
|
|
scale, 8, 8,
|
|
which_mv << (2 * CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT), &xd->subpix);
|
|
|
|
vp9_build_inter_predictor_q4(
|
|
vptr, pre_stride, dst_v, dst_uvstride, &mv,
|
|
scale, 8, 8,
|
|
which_mv << (2 * CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT), &xd->subpix);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
|
|
static void build_inter_predictors_sby_w(MACROBLOCKD *x,
|
|
uint8_t *dst_y,
|
|
int dst_ystride,
|
|
int weight,
|
|
int mb_row,
|
|
int mb_col,
|
|
BLOCK_SIZE_TYPE bsize) {
|
|
const int bwl = mb_width_log2(bsize), bw = 1 << bwl;
|
|
const int bhl = mb_height_log2(bsize), bh = 1 << bhl;
|
|
uint8_t *y1 = x->pre.y_buffer;
|
|
uint8_t *y2 = x->second_pre.y_buffer;
|
|
int edge[4], n;
|
|
|
|
edge[0] = x->mb_to_top_edge;
|
|
edge[1] = x->mb_to_bottom_edge;
|
|
edge[2] = x->mb_to_left_edge;
|
|
edge[3] = x->mb_to_right_edge;
|
|
|
|
for (n = 0; n < bw * bh; n++) {
|
|
const int x_idx = n & (bw - 1), y_idx = n >> bwl;
|
|
|
|
x->mb_to_top_edge = edge[0] - ((y_idx * 16) << 3);
|
|
x->mb_to_bottom_edge = edge[1] + (((bh - 1 - y_idx) * 16) << 3);
|
|
x->mb_to_left_edge = edge[2] - ((x_idx * 16) << 3);
|
|
x->mb_to_right_edge = edge[3] + (((bw - 1 - x_idx) * 16) << 3);
|
|
|
|
x->pre.y_buffer = y1 + scaled_buffer_offset(x_idx * 16,
|
|
y_idx * 16,
|
|
x->pre.y_stride,
|
|
&x->scale_factor[0]);
|
|
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
|
|
x->second_pre.y_buffer = y2 +
|
|
scaled_buffer_offset(x_idx * 16,
|
|
y_idx * 16,
|
|
x->second_pre.y_stride,
|
|
&x->scale_factor[1]);
|
|
}
|
|
build_inter16x16_predictors_mby_w(x,
|
|
dst_y + y_idx * 16 * dst_ystride + x_idx * 16,
|
|
dst_ystride, weight, mb_row + y_idx, mb_col + x_idx);
|
|
}
|
|
x->mb_to_top_edge = edge[0];
|
|
x->mb_to_bottom_edge = edge[1];
|
|
x->mb_to_left_edge = edge[2];
|
|
x->mb_to_right_edge = edge[3];
|
|
|
|
x->pre.y_buffer = y1;
|
|
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
|
|
x->second_pre.y_buffer = y2;
|
|
}
|
|
}
|
|
|
|
void vp9_build_inter_predictors_sby(MACROBLOCKD *x,
|
|
uint8_t *dst_y,
|
|
int dst_ystride,
|
|
int mb_row,
|
|
int mb_col,
|
|
BLOCK_SIZE_TYPE bsize) {
|
|
int weight = get_implicit_compoundinter_weight(x, mb_row, mb_col);
|
|
build_inter_predictors_sby_w(x, dst_y, dst_ystride, weight,
|
|
mb_row, mb_col, bsize);
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
|
|
static void build_inter_predictors_sbuv_w(MACROBLOCKD *x,
|
|
uint8_t *dst_u,
|
|
uint8_t *dst_v,
|
|
int dst_uvstride,
|
|
int weight,
|
|
int mb_row,
|
|
int mb_col,
|
|
BLOCK_SIZE_TYPE bsize) {
|
|
const int bwl = mb_width_log2(bsize), bw = 1 << bwl;
|
|
const int bhl = mb_height_log2(bsize), bh = 1 << bhl;
|
|
uint8_t *u1 = x->pre.u_buffer, *v1 = x->pre.v_buffer;
|
|
uint8_t *u2 = x->second_pre.u_buffer, *v2 = x->second_pre.v_buffer;
|
|
int edge[4], n;
|
|
|
|
edge[0] = x->mb_to_top_edge;
|
|
edge[1] = x->mb_to_bottom_edge;
|
|
edge[2] = x->mb_to_left_edge;
|
|
edge[3] = x->mb_to_right_edge;
|
|
|
|
for (n = 0; n < bw * bh; n++) {
|
|
int scaled_uv_offset;
|
|
const int x_idx = n & (bw - 1), y_idx = n >> bwl;
|
|
|
|
x->mb_to_top_edge = edge[0] - ((y_idx * 16) << 3);
|
|
x->mb_to_bottom_edge = edge[1] + (((bh - 1 - y_idx) * 16) << 3);
|
|
x->mb_to_left_edge = edge[2] - ((x_idx * 16) << 3);
|
|
x->mb_to_right_edge = edge[3] + (((bw - 1 - x_idx) * 16) << 3);
|
|
|
|
scaled_uv_offset = scaled_buffer_offset(x_idx * 8,
|
|
y_idx * 8,
|
|
x->pre.uv_stride,
|
|
&x->scale_factor_uv[0]);
|
|
x->pre.u_buffer = u1 + scaled_uv_offset;
|
|
x->pre.v_buffer = v1 + scaled_uv_offset;
|
|
|
|
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
|
|
scaled_uv_offset = scaled_buffer_offset(x_idx * 8,
|
|
y_idx * 8,
|
|
x->second_pre.uv_stride,
|
|
&x->scale_factor_uv[1]);
|
|
x->second_pre.u_buffer = u2 + scaled_uv_offset;
|
|
x->second_pre.v_buffer = v2 + scaled_uv_offset;
|
|
}
|
|
|
|
build_inter16x16_predictors_mbuv_w(x,
|
|
dst_u + y_idx * 8 * dst_uvstride + x_idx * 8,
|
|
dst_v + y_idx * 8 * dst_uvstride + x_idx * 8,
|
|
dst_uvstride, weight, mb_row + y_idx, mb_col + x_idx);
|
|
}
|
|
x->mb_to_top_edge = edge[0];
|
|
x->mb_to_bottom_edge = edge[1];
|
|
x->mb_to_left_edge = edge[2];
|
|
x->mb_to_right_edge = edge[3];
|
|
|
|
x->pre.u_buffer = u1;
|
|
x->pre.v_buffer = v1;
|
|
|
|
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
|
|
x->second_pre.u_buffer = u2;
|
|
x->second_pre.v_buffer = v2;
|
|
}
|
|
}
|
|
|
|
void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd,
|
|
uint8_t *dst_u,
|
|
uint8_t *dst_v,
|
|
int dst_uvstride,
|
|
int mb_row,
|
|
int mb_col,
|
|
BLOCK_SIZE_TYPE bsize) {
|
|
#ifdef USE_IMPLICIT_WEIGHT_UV
|
|
int weight = get_implicit_compoundinter_weight(xd, mb_row, mb_col);
|
|
#else
|
|
int weight = AVERAGE_WEIGHT;
|
|
#endif
|
|
build_inter_predictors_sbuv_w(xd, dst_u, dst_v, dst_uvstride,
|
|
weight, mb_row, mb_col, bsize);
|
|
}
|
|
|
|
#else
|
|
|
|
void vp9_build_inter_predictors_sbuv(MACROBLOCKD *x,
|
|
uint8_t *dst_u,
|
|
uint8_t *dst_v,
|
|
int dst_uvstride,
|
|
int mb_row,
|
|
int mb_col,
|
|
BLOCK_SIZE_TYPE bsize) {
|
|
const int bwl = mb_width_log2(bsize), bw = 1 << bwl;
|
|
const int bhl = mb_height_log2(bsize), bh = 1 << bhl;
|
|
uint8_t *u1 = x->pre.u_buffer, *v1 = x->pre.v_buffer;
|
|
uint8_t *u2 = x->second_pre.u_buffer, *v2 = x->second_pre.v_buffer;
|
|
int edge[4], n;
|
|
|
|
edge[0] = x->mb_to_top_edge;
|
|
edge[1] = x->mb_to_bottom_edge;
|
|
edge[2] = x->mb_to_left_edge;
|
|
edge[3] = x->mb_to_right_edge;
|
|
|
|
for (n = 0; n < bw * bh; n++) {
|
|
int scaled_uv_offset;
|
|
const int x_idx = n & (bw - 1), y_idx = n >> bwl;
|
|
|
|
x->mb_to_top_edge = edge[0] - ((y_idx * 16) << 3);
|
|
x->mb_to_bottom_edge = edge[1] + (((bh - 1 - y_idx) * 16) << 3);
|
|
x->mb_to_left_edge = edge[2] - ((x_idx * 16) << 3);
|
|
x->mb_to_right_edge = edge[3] + (((bw - 1 - x_idx) * 16) << 3);
|
|
|
|
scaled_uv_offset = scaled_buffer_offset(x_idx * 8,
|
|
y_idx * 8,
|
|
x->pre.uv_stride,
|
|
&x->scale_factor_uv[0]);
|
|
x->pre.u_buffer = u1 + scaled_uv_offset;
|
|
x->pre.v_buffer = v1 + scaled_uv_offset;
|
|
|
|
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
|
|
scaled_uv_offset = scaled_buffer_offset(x_idx * 8,
|
|
y_idx * 8,
|
|
x->second_pre.uv_stride,
|
|
&x->scale_factor_uv[1]);
|
|
x->second_pre.u_buffer = u2 + scaled_uv_offset;
|
|
x->second_pre.v_buffer = v2 + scaled_uv_offset;
|
|
}
|
|
|
|
vp9_build_inter16x16_predictors_mbuv(x,
|
|
dst_u + y_idx * 8 * dst_uvstride + x_idx * 8,
|
|
dst_v + y_idx * 8 * dst_uvstride + x_idx * 8,
|
|
dst_uvstride, mb_row + y_idx, mb_col + x_idx);
|
|
}
|
|
x->mb_to_top_edge = edge[0];
|
|
x->mb_to_bottom_edge = edge[1];
|
|
x->mb_to_left_edge = edge[2];
|
|
x->mb_to_right_edge = edge[3];
|
|
|
|
x->pre.u_buffer = u1;
|
|
x->pre.v_buffer = v1;
|
|
|
|
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
|
|
x->second_pre.u_buffer = u2;
|
|
x->second_pre.v_buffer = v2;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void vp9_build_inter_predictors_sb(MACROBLOCKD *mb,
|
|
int mb_row, int mb_col,
|
|
BLOCK_SIZE_TYPE bsize) {
|
|
uint8_t *const y = mb->dst.y_buffer;
|
|
uint8_t *const u = mb->dst.u_buffer;
|
|
uint8_t *const v = mb->dst.v_buffer;
|
|
const int y_stride = mb->dst.y_stride;
|
|
const int uv_stride = mb->dst.uv_stride;
|
|
|
|
vp9_build_inter_predictors_sby(mb, y, y_stride, mb_row, mb_col, bsize);
|
|
vp9_build_inter_predictors_sbuv(mb, u, v, uv_stride, mb_row, mb_col, bsize);
|
|
#if CONFIG_COMP_INTERINTRA_PRED
|
|
if (mb->mode_info_context->mbmi.second_ref_frame == INTRA_FRAME) {
|
|
if (bsize == BLOCK_SIZE_SB32X32)
|
|
vp9_build_interintra_32x32_predictors_sb(mb, y, u, v,
|
|
y_stride, uv_stride);
|
|
else
|
|
vp9_build_interintra_64x64_predictors_sb(mb, y, u, v,
|
|
y_stride, uv_stride);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void build_inter4x4_predictors_mb(MACROBLOCKD *xd,
|
|
int mb_row, int mb_col) {
|
|
int i;
|
|
MB_MODE_INFO * mbmi = &xd->mode_info_context->mbmi;
|
|
BLOCKD *blockd = xd->block;
|
|
int which_mv = 0;
|
|
const int use_second_ref = mbmi->second_ref_frame > 0;
|
|
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT && defined(USE_IMPLICIT_WEIGHT_SPLITMV)
|
|
int weight = get_implicit_compoundinter_weight_splitmv(xd, mb_row, mb_col);
|
|
#else
|
|
int weight = AVERAGE_WEIGHT;
|
|
#endif
|
|
|
|
if (xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4) {
|
|
for (i = 0; i < 16; i += 8) {
|
|
BLOCKD *d0 = &blockd[i];
|
|
BLOCKD *d1 = &blockd[i + 2];
|
|
const int y = i & 8;
|
|
|
|
blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0];
|
|
blockd[i + 2].bmi = xd->mode_info_context->bmi[i + 2];
|
|
|
|
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
|
|
if (mbmi->need_to_clamp_mvs) {
|
|
clamp_mv_to_umv_border(&blockd[i + 0].bmi.as_mv[which_mv].as_mv, xd);
|
|
clamp_mv_to_umv_border(&blockd[i + 2].bmi.as_mv[which_mv].as_mv, xd);
|
|
}
|
|
|
|
build_2x1_inter_predictor(d0, d1, xd->scale_factor, 8, 16, which_mv,
|
|
which_mv ? weight : 0,
|
|
&xd->subpix, mb_row * 16 + y, mb_col * 16);
|
|
}
|
|
}
|
|
} else {
|
|
for (i = 0; i < 16; i += 2) {
|
|
BLOCKD *d0 = &blockd[i];
|
|
BLOCKD *d1 = &blockd[i + 1];
|
|
const int x = (i & 3) * 4;
|
|
const int y = (i >> 2) * 4;
|
|
|
|
blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0];
|
|
blockd[i + 1].bmi = xd->mode_info_context->bmi[i + 1];
|
|
|
|
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
|
|
build_2x1_inter_predictor(d0, d1, xd->scale_factor, 4, 16, which_mv,
|
|
which_mv ? weight : 0,
|
|
&xd->subpix,
|
|
mb_row * 16 + y, mb_col * 16 + x);
|
|
}
|
|
}
|
|
}
|
|
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
|
|
#if !defined(USE_IMPLICIT_WEIGHT_UV)
|
|
weight = AVERAGE_WEIGHT;
|
|
#endif
|
|
#endif
|
|
for (i = 16; i < 24; i += 2) {
|
|
BLOCKD *d0 = &blockd[i];
|
|
BLOCKD *d1 = &blockd[i + 1];
|
|
const int x = 4 * (i & 1);
|
|
const int y = ((i - 16) >> 1) * 4;
|
|
|
|
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
|
|
build_2x1_inter_predictor(d0, d1, xd->scale_factor_uv, 4, 8, which_mv,
|
|
which_mv ? weight : 0, &xd->subpix,
|
|
mb_row * 8 + y, mb_col * 8 + x);
|
|
}
|
|
}
|
|
}
|
|
|
|
static INLINE int round_mv_comp(int value) {
|
|
return (value < 0 ? value - 4 : value + 4) / 8;
|
|
}
|
|
|
|
static int mi_mv_pred_row(MACROBLOCKD *mb, int off, int idx) {
|
|
const int temp = mb->mode_info_context->bmi[off + 0].as_mv[idx].as_mv.row +
|
|
mb->mode_info_context->bmi[off + 1].as_mv[idx].as_mv.row +
|
|
mb->mode_info_context->bmi[off + 4].as_mv[idx].as_mv.row +
|
|
mb->mode_info_context->bmi[off + 5].as_mv[idx].as_mv.row;
|
|
return round_mv_comp(temp);
|
|
}
|
|
|
|
static int mi_mv_pred_col(MACROBLOCKD *mb, int off, int idx) {
|
|
const int temp = mb->mode_info_context->bmi[off + 0].as_mv[idx].as_mv.col +
|
|
mb->mode_info_context->bmi[off + 1].as_mv[idx].as_mv.col +
|
|
mb->mode_info_context->bmi[off + 4].as_mv[idx].as_mv.col +
|
|
mb->mode_info_context->bmi[off + 5].as_mv[idx].as_mv.col;
|
|
return round_mv_comp(temp);
|
|
}
|
|
|
|
static int b_mv_pred_row(MACROBLOCKD *mb, int off, int idx) {
|
|
BLOCKD *const blockd = mb->block;
|
|
const int temp = blockd[off + 0].bmi.as_mv[idx].as_mv.row +
|
|
blockd[off + 1].bmi.as_mv[idx].as_mv.row +
|
|
blockd[off + 4].bmi.as_mv[idx].as_mv.row +
|
|
blockd[off + 5].bmi.as_mv[idx].as_mv.row;
|
|
return round_mv_comp(temp);
|
|
}
|
|
|
|
static int b_mv_pred_col(MACROBLOCKD *mb, int off, int idx) {
|
|
BLOCKD *const blockd = mb->block;
|
|
const int temp = blockd[off + 0].bmi.as_mv[idx].as_mv.col +
|
|
blockd[off + 1].bmi.as_mv[idx].as_mv.col +
|
|
blockd[off + 4].bmi.as_mv[idx].as_mv.col +
|
|
blockd[off + 5].bmi.as_mv[idx].as_mv.col;
|
|
return round_mv_comp(temp);
|
|
}
|
|
|
|
|
|
static void build_4x4uvmvs(MACROBLOCKD *xd) {
|
|
int i, j;
|
|
BLOCKD *blockd = xd->block;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
for (j = 0; j < 2; j++) {
|
|
const int yoffset = i * 8 + j * 2;
|
|
const int uoffset = 16 + i * 2 + j;
|
|
const int voffset = 20 + i * 2 + j;
|
|
|
|
MV *u = &blockd[uoffset].bmi.as_mv[0].as_mv;
|
|
MV *v = &blockd[voffset].bmi.as_mv[0].as_mv;
|
|
u->row = mi_mv_pred_row(xd, yoffset, 0);
|
|
u->col = mi_mv_pred_col(xd, yoffset, 0);
|
|
|
|
// if (x->mode_info_context->mbmi.need_to_clamp_mvs)
|
|
clamp_uvmv_to_umv_border(u, xd);
|
|
|
|
// if (x->mode_info_context->mbmi.need_to_clamp_mvs)
|
|
clamp_uvmv_to_umv_border(u, xd);
|
|
|
|
v->row = u->row;
|
|
v->col = u->col;
|
|
|
|
if (xd->mode_info_context->mbmi.second_ref_frame > 0) {
|
|
u = &blockd[uoffset].bmi.as_mv[1].as_mv;
|
|
v = &blockd[voffset].bmi.as_mv[1].as_mv;
|
|
u->row = mi_mv_pred_row(xd, yoffset, 1);
|
|
u->col = mi_mv_pred_col(xd, yoffset, 1);
|
|
|
|
// if (mbmi->need_to_clamp_mvs)
|
|
clamp_uvmv_to_umv_border(u, xd);
|
|
|
|
// if (mbmi->need_to_clamp_mvs)
|
|
clamp_uvmv_to_umv_border(u, xd);
|
|
|
|
v->row = u->row;
|
|
v->col = u->col;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void vp9_build_inter_predictors_mb(MACROBLOCKD *xd,
|
|
int mb_row,
|
|
int mb_col) {
|
|
if (xd->mode_info_context->mbmi.mode != SPLITMV) {
|
|
vp9_build_inter_predictors_sb(xd, mb_row, mb_col, BLOCK_SIZE_MB16X16);
|
|
} else {
|
|
build_4x4uvmvs(xd);
|
|
build_inter4x4_predictors_mb(xd, mb_row, mb_col);
|
|
}
|
|
}
|
|
|
|
/*encoder only*/
|
|
void vp9_build_inter4x4_predictors_mbuv(MACROBLOCKD *xd,
|
|
int mb_row, int mb_col) {
|
|
int i, j, weight;
|
|
BLOCKD *const blockd = xd->block;
|
|
|
|
/* build uv mvs */
|
|
for (i = 0; i < 2; i++) {
|
|
for (j = 0; j < 2; j++) {
|
|
const int yoffset = i * 8 + j * 2;
|
|
const int uoffset = 16 + i * 2 + j;
|
|
const int voffset = 20 + i * 2 + j;
|
|
|
|
MV *u = &blockd[uoffset].bmi.as_mv[0].as_mv;
|
|
MV *v = &blockd[voffset].bmi.as_mv[0].as_mv;
|
|
|
|
v->row = u->row = b_mv_pred_row(xd, yoffset, 0);
|
|
v->col = u->col = b_mv_pred_col(xd, yoffset, 0);
|
|
|
|
if (xd->mode_info_context->mbmi.second_ref_frame > 0) {
|
|
u = &blockd[uoffset].bmi.as_mv[1].as_mv;
|
|
v = &blockd[voffset].bmi.as_mv[1].as_mv;
|
|
|
|
v->row = u->row = b_mv_pred_row(xd, yoffset, 1);
|
|
v->col = u->col = b_mv_pred_col(xd, yoffset, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT && \
|
|
defined(USE_IMPLICIT_WEIGHT_SPLITMV) && \
|
|
defined(USE_IMPLICIT_WEIGHT_UV)
|
|
weight = get_implicit_compoundinter_weight_splitmv(xd, mb_row, mb_col);
|
|
#else
|
|
weight = AVERAGE_WEIGHT;
|
|
#endif
|
|
for (i = 16; i < 24; i += 2) {
|
|
const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0;
|
|
const int x = 4 * (i & 1);
|
|
const int y = ((i - 16) >> 1) * 4;
|
|
|
|
int which_mv;
|
|
BLOCKD *d0 = &blockd[i];
|
|
BLOCKD *d1 = &blockd[i + 1];
|
|
|
|
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
|
|
build_2x1_inter_predictor(d0, d1, xd->scale_factor_uv, 4, 8, which_mv,
|
|
which_mv ? weight : 0,
|
|
&xd->subpix, mb_row * 8 + y, mb_col * 8 + x);
|
|
}
|
|
}
|
|
}
|