vpx/vp9/decoder/vp9_decodframe.c
Dmitry Kovalev 5a21de8418 Replacing 64 / MI_SIZE with MI_BLOCK_SIZE.
Change-Id: I32276552b3ea6dc1dce8e298be114cfe1019b31c
2013-07-03 10:54:50 -07:00

1054 lines
35 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include "./vp9_rtcd.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_scale/vpx_scale.h"
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_extend.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9/decoder/vp9_dboolhuff.h"
#include "vp9/decoder/vp9_decodframe.h"
#include "vp9/decoder/vp9_detokenize.h"
#include "vp9/decoder/vp9_decodemv.h"
#include "vp9/decoder/vp9_dsubexp.h"
#include "vp9/decoder/vp9_onyxd_int.h"
#include "vp9/decoder/vp9_read_bit_buffer.h"
// #define DEC_DEBUG
#ifdef DEC_DEBUG
int dec_debug = 0;
#endif
static int read_be32(const uint8_t *p) {
return (p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3];
}
// len == 0 is not allowed
static int read_is_valid(const uint8_t *start, size_t len,
const uint8_t *end) {
return start + len > start && start + len <= end;
}
static int decode_unsigned_max(struct vp9_read_bit_buffer *rb, int max) {
const int data = vp9_rb_read_literal(rb, get_unsigned_bits(max));
return data > max ? max : data;
}
static void setup_txfm_mode(VP9_COMMON *pc, int lossless, vp9_reader *r) {
if (lossless) {
pc->txfm_mode = ONLY_4X4;
} else {
pc->txfm_mode = vp9_read_literal(r, 2);
if (pc->txfm_mode == ALLOW_32X32)
pc->txfm_mode += vp9_read_bit(r);
if (pc->txfm_mode == TX_MODE_SELECT) {
int i, j;
for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
for (j = 0; j < TX_SIZE_MAX_SB - 3; ++j)
if (vp9_read(r, VP9_MODE_UPDATE_PROB))
vp9_diff_update_prob(r, &pc->fc.tx_probs_8x8p[i][j]);
for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
for (j = 0; j < TX_SIZE_MAX_SB - 2; ++j)
if (vp9_read(r, VP9_MODE_UPDATE_PROB))
vp9_diff_update_prob(r, &pc->fc.tx_probs_16x16p[i][j]);
for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
for (j = 0; j < TX_SIZE_MAX_SB - 1; ++j)
if (vp9_read(r, VP9_MODE_UPDATE_PROB))
vp9_diff_update_prob(r, &pc->fc.tx_probs_32x32p[i][j]);
}
}
}
static void mb_init_dequantizer(VP9_COMMON *pc, MACROBLOCKD *xd) {
int i;
const int segment_id = xd->mode_info_context->mbmi.segment_id;
xd->q_index = vp9_get_qindex(xd, segment_id, pc->base_qindex);
xd->plane[0].dequant = pc->y_dequant[xd->q_index];
for (i = 1; i < MAX_MB_PLANE; i++)
xd->plane[i].dequant = pc->uv_dequant[xd->q_index];
}
static void decode_block(int plane, int block, BLOCK_SIZE_TYPE bsize,
int ss_txfrm_size, void *arg) {
MACROBLOCKD* const xd = arg;
struct macroblockd_plane *pd = &xd->plane[plane];
int16_t* const qcoeff = BLOCK_OFFSET(pd->qcoeff, block, 16);
const int stride = pd->dst.stride;
const int raster_block = txfrm_block_to_raster_block(xd, bsize, plane,
block, ss_txfrm_size);
uint8_t* const dst = raster_block_offset_uint8(xd, bsize, plane,
raster_block,
pd->dst.buf, stride);
TX_TYPE tx_type;
switch (ss_txfrm_size / 2) {
case TX_4X4:
tx_type = plane == 0 ? get_tx_type_4x4(xd, raster_block) : DCT_DCT;
if (tx_type == DCT_DCT)
xd->itxm_add(qcoeff, dst, stride, pd->eobs[block]);
else
vp9_iht_add_c(tx_type, qcoeff, dst, stride, pd->eobs[block]);
break;
case TX_8X8:
tx_type = plane == 0 ? get_tx_type_8x8(xd) : DCT_DCT;
vp9_iht_add_8x8_c(tx_type, qcoeff, dst, stride, pd->eobs[block]);
break;
case TX_16X16:
tx_type = plane == 0 ? get_tx_type_16x16(xd) : DCT_DCT;
vp9_iht_add_16x16_c(tx_type, qcoeff, dst, stride, pd->eobs[block]);
break;
case TX_32X32:
vp9_idct_add_32x32(qcoeff, dst, stride, pd->eobs[block]);
break;
}
}
static void decode_block_intra(int plane, int block, BLOCK_SIZE_TYPE bsize,
int ss_txfrm_size, void *arg) {
MACROBLOCKD* const xd = arg;
struct macroblockd_plane *pd = &xd->plane[plane];
MODE_INFO *const mi = xd->mode_info_context;
const int raster_block = txfrm_block_to_raster_block(xd, bsize, plane,
block, ss_txfrm_size);
uint8_t* const dst = raster_block_offset_uint8(xd, bsize, plane,
raster_block,
pd->dst.buf, pd->dst.stride);
const TX_SIZE tx_size = (TX_SIZE)(ss_txfrm_size / 2);
int b_mode;
int plane_b_size;
const int tx_ib = raster_block >> tx_size;
const int mode = plane == 0 ? mi->mbmi.mode
: mi->mbmi.uv_mode;
if (plane == 0 && mi->mbmi.sb_type < BLOCK_SIZE_SB8X8) {
assert(bsize == BLOCK_SIZE_SB8X8);
b_mode = mi->bmi[raster_block].as_mode.first;
} else {
b_mode = mode;
}
if (xd->mb_to_right_edge < 0 || xd->mb_to_bottom_edge < 0)
extend_for_intra(xd, plane, block, bsize, ss_txfrm_size);
plane_b_size = b_width_log2(bsize) - pd->subsampling_x;
vp9_predict_intra_block(xd, tx_ib, plane_b_size, tx_size, b_mode,
dst, pd->dst.stride,
dst, pd->dst.stride);
// Early exit if there are no coefficients
if (mi->mbmi.mb_skip_coeff)
return;
decode_block(plane, block, bsize, ss_txfrm_size, arg);
}
static int decode_tokens(VP9D_COMP *pbi, BLOCK_SIZE_TYPE bsize, vp9_reader *r) {
MACROBLOCKD *const xd = &pbi->mb;
if (xd->mode_info_context->mbmi.mb_skip_coeff) {
vp9_reset_sb_tokens_context(xd, bsize);
return -1;
} else {
if (xd->segmentation_enabled)
mb_init_dequantizer(&pbi->common, xd);
// TODO(dkovalev) if (!vp9_reader_has_error(r))
return vp9_decode_tokens(pbi, r, bsize);
}
}
static void set_offsets(VP9D_COMP *pbi, BLOCK_SIZE_TYPE bsize,
int mi_row, int mi_col) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
const int bh = 1 << mi_height_log2(bsize);
const int bw = 1 << mi_width_log2(bsize);
const int mi_idx = mi_row * cm->mode_info_stride + mi_col;
int i;
xd->mode_info_context = cm->mi + mi_idx;
xd->mode_info_context->mbmi.sb_type = bsize;
// Special case: if prev_mi is NULL, the previous mode info context
// cannot be used.
xd->prev_mode_info_context = cm->prev_mi ? cm->prev_mi + mi_idx : NULL;
for (i = 0; i < MAX_MB_PLANE; i++) {
struct macroblockd_plane *pd = &xd->plane[i];
pd->above_context = cm->above_context[i] +
(mi_col * 2 >> pd->subsampling_x);
pd->left_context = cm->left_context[i] +
(((mi_row * 2) & 15) >> pd->subsampling_y);
}
xd->above_seg_context = cm->above_seg_context + mi_col;
xd->left_seg_context = cm->left_seg_context + (mi_row & MI_MASK);
// Distance of Mb to the various image edges. These are specified to 8th pel
// as they are always compared to values that are in 1/8th pel units
set_mi_row_col(cm, xd, mi_row, bh, mi_col, bw);
setup_dst_planes(xd, &cm->yv12_fb[cm->new_fb_idx], mi_row, mi_col);
}
static void set_refs(VP9D_COMP *pbi, int mi_row, int mi_col) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
// Select the appropriate reference frame for this MB
const int fb_idx = cm->active_ref_idx[mbmi->ref_frame[0] - 1];
const YV12_BUFFER_CONFIG *cfg = &cm->yv12_fb[fb_idx];
xd->scale_factor[0] = cm->active_ref_scale[mbmi->ref_frame[0] - 1];
xd->scale_factor_uv[0] = cm->active_ref_scale[mbmi->ref_frame[0] - 1];
setup_pre_planes(xd, cfg, NULL, mi_row, mi_col, xd->scale_factor,
xd->scale_factor_uv);
xd->corrupted |= cfg->corrupted;
if (mbmi->ref_frame[1] > INTRA_FRAME) {
// Select the appropriate reference frame for this MB
const int second_fb_idx = cm->active_ref_idx[mbmi->ref_frame[1] - 1];
const YV12_BUFFER_CONFIG *second_cfg = &cm->yv12_fb[second_fb_idx];
xd->scale_factor[1] = cm->active_ref_scale[mbmi->ref_frame[1] - 1];
xd->scale_factor_uv[1] = cm->active_ref_scale[mbmi->ref_frame[1] - 1];
setup_pre_planes(xd, NULL, second_cfg, mi_row, mi_col, xd->scale_factor,
xd->scale_factor_uv);
xd->corrupted |= second_cfg->corrupted;
}
}
static void decode_modes_b(VP9D_COMP *pbi, int mi_row, int mi_col,
vp9_reader *r, BLOCK_SIZE_TYPE bsize) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
const int less8x8 = bsize < BLOCK_SIZE_SB8X8;
MB_MODE_INFO *mbmi;
if (less8x8)
if (xd->ab_index > 0)
return;
set_offsets(pbi, bsize, mi_row, mi_col);
vp9_read_mode_info(pbi, mi_row, mi_col, r);
if (less8x8)
bsize = BLOCK_SIZE_SB8X8;
// Has to be called after set_offsets
mbmi = &xd->mode_info_context->mbmi;
if (mbmi->ref_frame[0] == INTRA_FRAME) {
// Intra reconstruction
decode_tokens(pbi, bsize, r);
foreach_transformed_block(xd, bsize, decode_block_intra, xd);
} else {
// Inter reconstruction
int eobtotal;
set_refs(pbi, mi_row, mi_col);
vp9_setup_interp_filters(xd, mbmi->interp_filter, cm);
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
eobtotal = decode_tokens(pbi, bsize, r);
if (less8x8) {
if (eobtotal >= 0)
foreach_transformed_block(xd, bsize, decode_block, xd);
} else {
assert(mbmi->sb_type == bsize);
if (eobtotal == 0)
vp9_set_pred_flag(xd, bsize, PRED_MBSKIP, 1); // skip loopfilter
else if (eobtotal > 0)
foreach_transformed_block(xd, bsize, decode_block, xd);
}
}
xd->corrupted |= vp9_reader_has_error(r);
}
static void decode_modes_sb(VP9D_COMP *pbi, int mi_row, int mi_col,
vp9_reader* r, BLOCK_SIZE_TYPE bsize) {
VP9_COMMON *const pc = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
int bs = (1 << mi_width_log2(bsize)) / 2, n;
PARTITION_TYPE partition = PARTITION_NONE;
BLOCK_SIZE_TYPE subsize;
if (mi_row >= pc->mi_rows || mi_col >= pc->mi_cols)
return;
if (bsize < BLOCK_SIZE_SB8X8)
if (xd->ab_index != 0)
return;
if (bsize >= BLOCK_SIZE_SB8X8) {
int pl;
int idx = check_bsize_coverage(pc, xd, mi_row, mi_col, bsize);
// read the partition information
xd->left_seg_context = pc->left_seg_context + (mi_row & MI_MASK);
xd->above_seg_context = pc->above_seg_context + mi_col;
pl = partition_plane_context(xd, bsize);
if (idx == 0)
partition = treed_read(r, vp9_partition_tree,
pc->fc.partition_prob[pc->frame_type][pl]);
else if (idx > 0 &&
!vp9_read(r, pc->fc.partition_prob[pc->frame_type][pl][idx]))
partition = (idx == 1) ? PARTITION_HORZ : PARTITION_VERT;
else
partition = PARTITION_SPLIT;
pc->fc.partition_counts[pl][partition]++;
}
subsize = get_subsize(bsize, partition);
*(get_sb_index(xd, subsize)) = 0;
switch (partition) {
case PARTITION_NONE:
decode_modes_b(pbi, mi_row, mi_col, r, subsize);
break;
case PARTITION_HORZ:
decode_modes_b(pbi, mi_row, mi_col, r, subsize);
*(get_sb_index(xd, subsize)) = 1;
if (mi_row + bs < pc->mi_rows)
decode_modes_b(pbi, mi_row + bs, mi_col, r, subsize);
break;
case PARTITION_VERT:
decode_modes_b(pbi, mi_row, mi_col, r, subsize);
*(get_sb_index(xd, subsize)) = 1;
if (mi_col + bs < pc->mi_cols)
decode_modes_b(pbi, mi_row, mi_col + bs, r, subsize);
break;
case PARTITION_SPLIT:
for (n = 0; n < 4; n++) {
int j = n >> 1, i = n & 0x01;
*(get_sb_index(xd, subsize)) = n;
decode_modes_sb(pbi, mi_row + j * bs, mi_col + i * bs, r, subsize);
}
break;
default:
assert(0);
}
// update partition context
if (bsize >= BLOCK_SIZE_SB8X8 &&
(bsize == BLOCK_SIZE_SB8X8 || partition != PARTITION_SPLIT)) {
set_partition_seg_context(pc, xd, mi_row, mi_col);
update_partition_context(xd, subsize, bsize);
}
}
static void setup_token_decoder(VP9D_COMP *pbi,
const uint8_t *data, size_t read_size,
vp9_reader *r) {
VP9_COMMON *pc = &pbi->common;
const uint8_t *data_end = pbi->source + pbi->source_sz;
// Validate the calculated partition length. If the buffer
// described by the partition can't be fully read, then restrict
// it to the portion that can be (for EC mode) or throw an error.
if (!read_is_valid(data, read_size, data_end))
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
if (vp9_reader_init(r, data, read_size))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d", 1);
}
static void read_coef_probs_common(FRAME_CONTEXT *fc, TX_SIZE tx_size,
vp9_reader *r) {
vp9_coeff_probs_model *coef_probs = fc->coef_probs[tx_size];
if (vp9_read_bit(r)) {
int i, j, k, l, m;
for (i = 0; i < BLOCK_TYPES; i++) {
for (j = 0; j < REF_TYPES; j++) {
for (k = 0; k < COEF_BANDS; k++) {
for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
if (l >= 3 && k == 0)
continue;
for (m = 0; m < UNCONSTRAINED_NODES; m++) {
vp9_prob *const p = coef_probs[i][j][k][l] + m;
if (vp9_read(r, VP9_COEF_UPDATE_PROB))
vp9_diff_update_prob(r, p);
}
}
}
}
}
}
}
static void read_coef_probs(VP9D_COMP *pbi, vp9_reader *r) {
const TXFM_MODE txfm_mode = pbi->common.txfm_mode;
FRAME_CONTEXT *const fc = &pbi->common.fc;
read_coef_probs_common(fc, TX_4X4, r);
if (txfm_mode > ONLY_4X4)
read_coef_probs_common(fc, TX_8X8, r);
if (txfm_mode > ALLOW_8X8)
read_coef_probs_common(fc, TX_16X16, r);
if (txfm_mode > ALLOW_16X16)
read_coef_probs_common(fc, TX_32X32, r);
}
static void setup_segmentation(VP9D_COMP *pbi, struct vp9_read_bit_buffer *rb) {
int i, j;
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
xd->update_mb_segmentation_map = 0;
xd->update_mb_segmentation_data = 0;
xd->segmentation_enabled = vp9_rb_read_bit(rb);
if (!xd->segmentation_enabled)
return;
// Segmentation map update
xd->update_mb_segmentation_map = vp9_rb_read_bit(rb);
if (xd->update_mb_segmentation_map) {
for (i = 0; i < MB_SEG_TREE_PROBS; i++)
xd->mb_segment_tree_probs[i] = vp9_rb_read_bit(rb) ?
vp9_rb_read_literal(rb, 8) : MAX_PROB;
cm->temporal_update = vp9_rb_read_bit(rb);
if (cm->temporal_update) {
for (i = 0; i < PREDICTION_PROBS; i++)
cm->segment_pred_probs[i] = vp9_rb_read_bit(rb) ?
vp9_rb_read_literal(rb, 8) : MAX_PROB;
} else {
for (i = 0; i < PREDICTION_PROBS; i++)
cm->segment_pred_probs[i] = MAX_PROB;
}
}
// Segmentation data update
xd->update_mb_segmentation_data = vp9_rb_read_bit(rb);
if (xd->update_mb_segmentation_data) {
xd->mb_segment_abs_delta = vp9_rb_read_bit(rb);
vp9_clearall_segfeatures(xd);
for (i = 0; i < MAX_MB_SEGMENTS; i++) {
for (j = 0; j < SEG_LVL_MAX; j++) {
int data = 0;
const int feature_enabled = vp9_rb_read_bit(rb);
if (feature_enabled) {
vp9_enable_segfeature(xd, i, j);
data = decode_unsigned_max(rb, vp9_seg_feature_data_max(j));
if (vp9_is_segfeature_signed(j))
data = vp9_rb_read_bit(rb) ? -data : data;
}
vp9_set_segdata(xd, i, j, data);
}
}
}
}
static void setup_loopfilter(VP9D_COMP *pbi, struct vp9_read_bit_buffer *rb) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
cm->filter_level = vp9_rb_read_literal(rb, 6);
cm->sharpness_level = vp9_rb_read_literal(rb, 3);
// Read in loop filter deltas applied at the MB level based on mode or ref
// frame.
xd->mode_ref_lf_delta_update = 0;
xd->mode_ref_lf_delta_enabled = vp9_rb_read_bit(rb);
if (xd->mode_ref_lf_delta_enabled) {
xd->mode_ref_lf_delta_update = vp9_rb_read_bit(rb);
if (xd->mode_ref_lf_delta_update) {
int i;
for (i = 0; i < MAX_REF_LF_DELTAS; i++)
if (vp9_rb_read_bit(rb))
xd->ref_lf_deltas[i] = vp9_rb_read_signed_literal(rb, 6);
for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
if (vp9_rb_read_bit(rb))
xd->mode_lf_deltas[i] = vp9_rb_read_signed_literal(rb, 6);
}
}
}
static int read_delta_q(struct vp9_read_bit_buffer *rb, int *delta_q) {
const int old = *delta_q;
if (vp9_rb_read_bit(rb))
*delta_q = vp9_rb_read_signed_literal(rb, 4);
return old != *delta_q;
}
static void setup_quantization(VP9D_COMP *pbi, struct vp9_read_bit_buffer *rb) {
MACROBLOCKD *const xd = &pbi->mb;
VP9_COMMON *const cm = &pbi->common;
int update = 0;
cm->base_qindex = vp9_rb_read_literal(rb, QINDEX_BITS);
update |= read_delta_q(rb, &cm->y_dc_delta_q);
update |= read_delta_q(rb, &cm->uv_dc_delta_q);
update |= read_delta_q(rb, &cm->uv_ac_delta_q);
if (update)
vp9_init_dequantizer(cm);
xd->lossless = cm->base_qindex == 0 &&
cm->y_dc_delta_q == 0 &&
cm->uv_dc_delta_q == 0 &&
cm->uv_ac_delta_q == 0;
xd->itxm_add = xd->lossless ? vp9_idct_add_lossless_c
: vp9_idct_add;
}
static INTERPOLATIONFILTERTYPE read_interp_filter_type(
struct vp9_read_bit_buffer *rb) {
return vp9_rb_read_bit(rb) ? SWITCHABLE
: vp9_rb_read_literal(rb, 2);
}
static void read_frame_size(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb,
int *width, int *height) {
const int w = vp9_rb_read_literal(rb, 16) + 1;
const int h = vp9_rb_read_literal(rb, 16) + 1;
*width = w;
*height = h;
}
static void setup_display_size(VP9D_COMP *pbi, struct vp9_read_bit_buffer *rb) {
VP9_COMMON *const cm = &pbi->common;
cm->display_width = cm->width;
cm->display_height = cm->height;
if (vp9_rb_read_bit(rb))
read_frame_size(cm, rb, &cm->display_width, &cm->display_height);
}
static void apply_frame_size(VP9D_COMP *pbi, int width, int height) {
VP9_COMMON *cm = &pbi->common;
if (cm->width != width || cm->height != height) {
if (!pbi->initial_width || !pbi->initial_height) {
if (vp9_alloc_frame_buffers(cm, width, height))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
pbi->initial_width = width;
pbi->initial_height = height;
} else {
if (width > pbi->initial_width)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Frame width too large");
if (height > pbi->initial_height)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Frame height too large");
}
cm->width = width;
cm->height = height;
vp9_update_frame_size(cm);
}
vp9_realloc_frame_buffer(&cm->yv12_fb[cm->new_fb_idx], cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9BORDERINPIXELS);
}
static void setup_frame_size(VP9D_COMP *pbi,
struct vp9_read_bit_buffer *rb) {
VP9_COMMON *const cm = &pbi->common;
int width, height;
read_frame_size(cm, rb, &width, &height);
setup_display_size(pbi, rb);
apply_frame_size(pbi, width, height);
}
static void setup_frame_size_with_refs(VP9D_COMP *pbi,
struct vp9_read_bit_buffer *rb) {
VP9_COMMON *const cm = &pbi->common;
int width, height;
int found = 0, i;
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
if (vp9_rb_read_bit(rb)) {
YV12_BUFFER_CONFIG *cfg = &cm->yv12_fb[cm->active_ref_idx[i]];
width = cfg->y_crop_width;
height = cfg->y_crop_height;
found = 1;
break;
}
}
if (!found)
read_frame_size(cm, rb, &width, &height);
if (!width || !height)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Referenced frame with invalid size");
setup_display_size(pbi, rb);
apply_frame_size(pbi, width, height);
}
static void update_frame_context(FRAME_CONTEXT *fc) {
vp9_copy(fc->pre_coef_probs, fc->coef_probs);
vp9_copy(fc->pre_y_mode_prob, fc->y_mode_prob);
vp9_copy(fc->pre_uv_mode_prob, fc->uv_mode_prob);
vp9_copy(fc->pre_partition_prob, fc->partition_prob[1]);
vp9_copy(fc->pre_intra_inter_prob, fc->intra_inter_prob);
vp9_copy(fc->pre_comp_inter_prob, fc->comp_inter_prob);
vp9_copy(fc->pre_single_ref_prob, fc->single_ref_prob);
vp9_copy(fc->pre_comp_ref_prob, fc->comp_ref_prob);
fc->pre_nmvc = fc->nmvc;
vp9_copy(fc->pre_switchable_interp_prob, fc->switchable_interp_prob);
vp9_copy(fc->pre_inter_mode_probs, fc->inter_mode_probs);
vp9_copy(fc->pre_tx_probs_8x8p, fc->tx_probs_8x8p);
vp9_copy(fc->pre_tx_probs_16x16p, fc->tx_probs_16x16p);
vp9_copy(fc->pre_tx_probs_32x32p, fc->tx_probs_32x32p);
vp9_copy(fc->pre_mbskip_probs, fc->mbskip_probs);
vp9_zero(fc->coef_counts);
vp9_zero(fc->eob_branch_counts);
vp9_zero(fc->y_mode_counts);
vp9_zero(fc->uv_mode_counts);
vp9_zero(fc->NMVcount);
vp9_zero(fc->inter_mode_counts);
vp9_zero(fc->partition_counts);
vp9_zero(fc->switchable_interp_count);
vp9_zero(fc->intra_inter_count);
vp9_zero(fc->comp_inter_count);
vp9_zero(fc->single_ref_count);
vp9_zero(fc->comp_ref_count);
vp9_zero(fc->tx_count_8x8p);
vp9_zero(fc->tx_count_16x16p);
vp9_zero(fc->tx_count_32x32p);
vp9_zero(fc->mbskip_count);
}
static void decode_tile(VP9D_COMP *pbi, vp9_reader *r) {
VP9_COMMON *const pc = &pbi->common;
int mi_row, mi_col;
for (mi_row = pc->cur_tile_mi_row_start; mi_row < pc->cur_tile_mi_row_end;
mi_row += MI_BLOCK_SIZE) {
// For a SB there are 2 left contexts, each pertaining to a MB row within
vpx_memset(&pc->left_context, 0, sizeof(pc->left_context));
vpx_memset(pc->left_seg_context, 0, sizeof(pc->left_seg_context));
for (mi_col = pc->cur_tile_mi_col_start; mi_col < pc->cur_tile_mi_col_end;
mi_col += MI_BLOCK_SIZE)
decode_modes_sb(pbi, mi_row, mi_col, r, BLOCK_SIZE_SB64X64);
}
}
static void setup_tile_info(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) {
int delta_log2_tiles;
vp9_get_tile_n_bits(cm, &cm->log2_tile_columns, &delta_log2_tiles);
while (delta_log2_tiles--) {
if (vp9_rb_read_bit(rb)) {
cm->log2_tile_columns++;
} else {
break;
}
}
cm->log2_tile_rows = vp9_rb_read_bit(rb);
if (cm->log2_tile_rows)
cm->log2_tile_rows += vp9_rb_read_bit(rb);
cm->tile_columns = 1 << cm->log2_tile_columns;
cm->tile_rows = 1 << cm->log2_tile_rows;
}
static void decode_tiles(VP9D_COMP *pbi,
const uint8_t *data, size_t first_partition_size,
vp9_reader *residual_bc) {
VP9_COMMON *const pc = &pbi->common;
const uint8_t *data_ptr = data + first_partition_size;
const uint8_t* const data_end = pbi->source + pbi->source_sz;
int tile_row, tile_col;
// Note: this memset assumes above_context[0], [1] and [2]
// are allocated as part of the same buffer.
vpx_memset(pc->above_context[0], 0, sizeof(ENTROPY_CONTEXT) * 2 *
MAX_MB_PLANE * mi_cols_aligned_to_sb(pc));
vpx_memset(pc->above_seg_context, 0, sizeof(PARTITION_CONTEXT) *
mi_cols_aligned_to_sb(pc));
if (pbi->oxcf.inv_tile_order) {
const int n_cols = pc->tile_columns;
const uint8_t *data_ptr2[4][1 << 6];
vp9_reader bc_bak = {0};
// pre-initialize the offsets, we're going to read in inverse order
data_ptr2[0][0] = data_ptr;
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
if (tile_row) {
const int size = read_be32(data_ptr2[tile_row - 1][n_cols - 1]);
data_ptr2[tile_row - 1][n_cols - 1] += 4;
data_ptr2[tile_row][0] = data_ptr2[tile_row - 1][n_cols - 1] + size;
}
for (tile_col = 1; tile_col < n_cols; tile_col++) {
const int size = read_be32(data_ptr2[tile_row][tile_col - 1]);
data_ptr2[tile_row][tile_col - 1] += 4;
data_ptr2[tile_row][tile_col] =
data_ptr2[tile_row][tile_col - 1] + size;
}
}
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
vp9_get_tile_row_offsets(pc, tile_row);
for (tile_col = n_cols - 1; tile_col >= 0; tile_col--) {
vp9_get_tile_col_offsets(pc, tile_col);
setup_token_decoder(pbi, data_ptr2[tile_row][tile_col],
data_end - data_ptr2[tile_row][tile_col],
residual_bc);
decode_tile(pbi, residual_bc);
if (tile_row == pc->tile_rows - 1 && tile_col == n_cols - 1)
bc_bak = *residual_bc;
}
}
*residual_bc = bc_bak;
} else {
int has_more;
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
vp9_get_tile_row_offsets(pc, tile_row);
for (tile_col = 0; tile_col < pc->tile_columns; tile_col++) {
size_t size;
vp9_get_tile_col_offsets(pc, tile_col);
has_more = tile_col < pc->tile_columns - 1 ||
tile_row < pc->tile_rows - 1;
if (has_more) {
if (!read_is_valid(data_ptr, 4, data_end))
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
size = read_be32(data_ptr);
data_ptr += 4;
} else {
size = data_end - data_ptr;
}
setup_token_decoder(pbi, data_ptr, size, residual_bc);
decode_tile(pbi, residual_bc);
data_ptr += size;
}
}
}
}
static void check_sync_code(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) {
if (vp9_rb_read_literal(rb, 8) != SYNC_CODE_0 ||
vp9_rb_read_literal(rb, 8) != SYNC_CODE_1 ||
vp9_rb_read_literal(rb, 8) != SYNC_CODE_2) {
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
}
}
static void error_handler(void *data, size_t bit_offset) {
VP9_COMMON *const cm = (VP9_COMMON *)data;
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet");
}
static void setup_inter_inter(VP9_COMMON *cm) {
int i;
cm->allow_comp_inter_inter = 0;
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
cm->allow_comp_inter_inter |= i > 0 &&
cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1];
}
if (cm->allow_comp_inter_inter) {
// which one is always-on in comp inter-inter?
if (cm->ref_frame_sign_bias[LAST_FRAME] ==
cm->ref_frame_sign_bias[GOLDEN_FRAME]) {
cm->comp_fixed_ref = ALTREF_FRAME;
cm->comp_var_ref[0] = LAST_FRAME;
cm->comp_var_ref[1] = GOLDEN_FRAME;
} else if (cm->ref_frame_sign_bias[LAST_FRAME] ==
cm->ref_frame_sign_bias[ALTREF_FRAME]) {
cm->comp_fixed_ref = GOLDEN_FRAME;
cm->comp_var_ref[0] = LAST_FRAME;
cm->comp_var_ref[1] = ALTREF_FRAME;
} else {
cm->comp_fixed_ref = LAST_FRAME;
cm->comp_var_ref[0] = GOLDEN_FRAME;
cm->comp_var_ref[1] = ALTREF_FRAME;
}
}
}
#define RESERVED \
if (vp9_rb_read_bit(rb)) \
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, \
"Reserved bit must be unset")
static size_t read_uncompressed_header(VP9D_COMP *pbi,
struct vp9_read_bit_buffer *rb) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
int i;
cm->last_frame_type = cm->frame_type;
if (vp9_rb_read_literal(rb, 2) != 0x2)
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame marker");
cm->version = vp9_rb_read_bit(rb);
RESERVED;
if (vp9_rb_read_bit(rb)) {
// show an existing frame directly
int frame_to_show = cm->ref_frame_map[vp9_rb_read_literal(rb, 3)];
ref_cnt_fb(cm->fb_idx_ref_cnt, &cm->new_fb_idx, frame_to_show);
pbi->refresh_frame_flags = 0;
cm->filter_level = 0;
return 0;
}
cm->frame_type = (FRAME_TYPE) vp9_rb_read_bit(rb);
cm->show_frame = vp9_rb_read_bit(rb);
cm->error_resilient_mode = vp9_rb_read_bit(rb);
if (cm->frame_type == KEY_FRAME) {
int csp;
check_sync_code(cm, rb);
csp = vp9_rb_read_literal(rb, 3); // colorspace
if (csp != 7) { // != sRGB
vp9_rb_read_bit(rb); // [16,235] (including xvycc) vs [0,255] range
if (cm->version == 1) {
cm->subsampling_x = vp9_rb_read_bit(rb);
cm->subsampling_y = vp9_rb_read_bit(rb);
vp9_rb_read_bit(rb); // has extra plane
} else {
cm->subsampling_y = cm->subsampling_x = 1;
}
} else {
if (cm->version == 1) {
cm->subsampling_y = cm->subsampling_x = 0;
vp9_rb_read_bit(rb); // has extra plane
} else {
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"RGB not supported in profile 0");
}
}
pbi->refresh_frame_flags = (1 << NUM_REF_FRAMES) - 1;
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i)
cm->active_ref_idx[i] = cm->new_fb_idx;
setup_frame_size(pbi, rb);
} else {
cm->intra_only = cm->show_frame ? 0 : vp9_rb_read_bit(rb);
cm->reset_frame_context = cm->error_resilient_mode ?
0 : vp9_rb_read_literal(rb, 2);
if (cm->intra_only) {
check_sync_code(cm, rb);
pbi->refresh_frame_flags = vp9_rb_read_literal(rb, NUM_REF_FRAMES);
setup_frame_size(pbi, rb);
} else {
pbi->refresh_frame_flags = vp9_rb_read_literal(rb, NUM_REF_FRAMES);
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
const int ref = vp9_rb_read_literal(rb, NUM_REF_FRAMES_LG2);
cm->active_ref_idx[i] = cm->ref_frame_map[ref];
cm->ref_frame_sign_bias[LAST_FRAME + i] = vp9_rb_read_bit(rb);
}
setup_frame_size_with_refs(pbi, rb);
xd->allow_high_precision_mv = vp9_rb_read_bit(rb);
cm->mcomp_filter_type = read_interp_filter_type(rb);
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i)
vp9_setup_scale_factors(cm, i);
setup_inter_inter(cm);
}
}
if (!cm->error_resilient_mode) {
cm->refresh_frame_context = vp9_rb_read_bit(rb);
cm->frame_parallel_decoding_mode = vp9_rb_read_bit(rb);
} else {
cm->refresh_frame_context = 0;
cm->frame_parallel_decoding_mode = 1;
}
cm->frame_context_idx = vp9_rb_read_literal(rb, NUM_FRAME_CONTEXTS_LG2);
if (cm->frame_type == KEY_FRAME || cm->error_resilient_mode || cm->intra_only)
vp9_setup_past_independence(cm, xd);
setup_loopfilter(pbi, rb);
setup_quantization(pbi, rb);
setup_segmentation(pbi, rb);
setup_tile_info(cm, rb);
return vp9_rb_read_literal(rb, 16);
}
void vp9_init_dequantizer(VP9_COMMON *pc) {
int q;
for (q = 0; q < QINDEX_RANGE; q++) {
// DC value
pc->y_dequant[q][0] = vp9_dc_quant(q, pc->y_dc_delta_q);
pc->uv_dequant[q][0] = vp9_dc_quant(q, pc->uv_dc_delta_q);
// AC values
pc->y_dequant[q][1] = vp9_ac_quant(q, 0);
pc->uv_dequant[q][1] = vp9_ac_quant(q, pc->uv_ac_delta_q);
}
}
int vp9_decode_frame(VP9D_COMP *pbi, const uint8_t **p_data_end) {
int i;
vp9_reader header_bc, residual_bc;
VP9_COMMON *const pc = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
const uint8_t *data = pbi->source;
const uint8_t *data_end = pbi->source + pbi->source_sz;
struct vp9_read_bit_buffer rb = { data, data_end, 0,
pc, error_handler };
const size_t first_partition_size = read_uncompressed_header(pbi, &rb);
const int keyframe = pc->frame_type == KEY_FRAME;
YV12_BUFFER_CONFIG *new_fb = &pc->yv12_fb[pc->new_fb_idx];
if (!first_partition_size) {
// showing a frame directly
*p_data_end = data + 1;
return 0;
}
data += vp9_rb_bytes_read(&rb);
xd->corrupted = 0;
new_fb->corrupted = 0;
if (!pbi->decoded_key_frame && !keyframe)
return -1;
if (!read_is_valid(data, first_partition_size, data_end))
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt header length");
xd->mode_info_context = pc->mi;
xd->prev_mode_info_context = pc->prev_mi;
xd->frame_type = pc->frame_type;
xd->mode_info_stride = pc->mode_info_stride;
if (vp9_reader_init(&header_bc, data, first_partition_size))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder 0");
mb_init_dequantizer(pc, &pbi->mb); // MB level dequantizer setup
if (!keyframe)
vp9_setup_interp_filters(xd, pc->mcomp_filter_type, pc);
pc->fc = pc->frame_contexts[pc->frame_context_idx];
update_frame_context(&pc->fc);
setup_txfm_mode(pc, xd->lossless, &header_bc);
read_coef_probs(pbi, &header_bc);
// Initialize xd pointers. Any reference should do for xd->pre, so use 0.
setup_pre_planes(xd, &pc->yv12_fb[pc->active_ref_idx[0]], NULL,
0, 0, NULL, NULL);
setup_dst_planes(xd, new_fb, 0, 0);
// Create the segmentation map structure and set to 0
if (!pc->last_frame_seg_map)
CHECK_MEM_ERROR(pc, pc->last_frame_seg_map,
vpx_calloc((pc->mi_rows * pc->mi_cols), 1));
setup_block_dptrs(xd, pc->subsampling_x, pc->subsampling_y);
// clear out the coeff buffer
for (i = 0; i < MAX_MB_PLANE; ++i)
vp9_zero(xd->plane[i].qcoeff);
set_prev_mi(pc);
vp9_prepare_read_mode_info(pbi, &header_bc);
decode_tiles(pbi, data, first_partition_size, &residual_bc);
pc->last_width = pc->width;
pc->last_height = pc->height;
new_fb->corrupted = vp9_reader_has_error(&header_bc) | xd->corrupted;
if (!pbi->decoded_key_frame) {
if (keyframe && !new_fb->corrupted)
pbi->decoded_key_frame = 1;
else
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"A stream must start with a complete key frame");
}
// Adaptation
if (!pc->error_resilient_mode && !pc->frame_parallel_decoding_mode) {
vp9_adapt_coef_probs(pc);
if ((!keyframe) && (!pc->intra_only)) {
vp9_adapt_mode_probs(pc);
vp9_adapt_mode_context(pc);
vp9_adapt_mv_probs(pc, xd->allow_high_precision_mv);
}
}
if (pc->refresh_frame_context)
pc->frame_contexts[pc->frame_context_idx] = pc->fc;
*p_data_end = vp9_reader_find_end(&residual_bc);
return 0;
}