Files
vpx/vp10/encoder/encodemb.c
Geza Lore 01bb4a318d Eliminate copying for FLIPADST in fwd transforms.
This patch eliminates the copying of data when using FLIPADST forward
transforms, by incorporating the necessary data flipping into the
load_buffer_* functions of the SSE2 optimized forward transforms. The
load_buffer_* functions are normally inlined, so the overhead of copying
the data is removed and the overhead of flipping is minimized. Left to
right flipping is still not free, as the columns need to be shuffled in
registers.

To preserve identity between the C and SSE2 implementations, the
appropriate C implementations now also do the data flipping as part of
the transform, rather than relying on the caller for flipping the input.

Overall speedup is about 1.5-2% in encode on my tests. Note that these
are only the forward transforms. Inverse transforms to come in a later
patch.

There are also a few code hygiene changes:
- Fixed some indents of switch statements.
- DCT_DCT transform now always use vp10_fht* functions, which dispatch
  to vpx_fdct* for DCT_DCT (some of them used to call vpx_fdct*
  directly, some of them used to call vp10_fht*).

Change-Id: I93439257dc5cd104ac6129cfed45af142fb64574
2015-11-03 17:10:55 +00:00

1603 lines
54 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "./vp10_rtcd.h"
#include "./vpx_config.h"
#include "./vpx_dsp_rtcd.h"
#include "vpx_dsp/quantize.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem.h"
#include "vp10/common/idct.h"
#include "vp10/common/reconinter.h"
#include "vp10/common/reconintra.h"
#include "vp10/common/scan.h"
#include "vp10/encoder/encodemb.h"
#include "vp10/encoder/rd.h"
#include "vp10/encoder/tokenize.h"
struct optimize_ctx {
ENTROPY_CONTEXT ta[MAX_MB_PLANE][16];
ENTROPY_CONTEXT tl[MAX_MB_PLANE][16];
};
void vp10_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int bw = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int bh = 4 * num_4x4_blocks_high_lookup[plane_bsize];
#if CONFIG_VP9_HIGHBITDEPTH
if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
vpx_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf,
p->src.stride, pd->dst.buf, pd->dst.stride,
x->e_mbd.bd);
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
vpx_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride);
}
#define RDTRUNC(RM, DM, R, D) ((128 + (R) * (RM)) & 0xFF)
typedef struct vp10_token_state {
int rate;
int error;
int next;
int16_t token;
short qc;
} vp10_token_state;
// TODO(jimbankoski): experiment to find optimal RD numbers.
static const int plane_rd_mult[PLANE_TYPES] = { 4, 2 };
#define UPDATE_RD_COST()\
{\
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);\
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);\
if (rd_cost0 == rd_cost1) {\
rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);\
rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);\
}\
}
// This function is a place holder for now but may ultimately need
// to scan previous tokens to work out the correct context.
static int trellis_get_coeff_context(const int16_t *scan,
const int16_t *nb,
int idx, int token,
uint8_t *token_cache) {
int bak = token_cache[scan[idx]], pt;
token_cache[scan[idx]] = vp10_pt_energy_class[token];
pt = get_coef_context(nb, token_cache, idx + 1);
token_cache[scan[idx]] = bak;
return pt;
}
static int optimize_b(MACROBLOCK *mb, int plane, int block,
TX_SIZE tx_size, int ctx) {
MACROBLOCKD *const xd = &mb->e_mbd;
struct macroblock_plane *const p = &mb->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
const int ref = is_inter_block(&xd->mi[0]->mbmi);
vp10_token_state tokens[1025][2];
unsigned best_index[1025][2];
uint8_t token_cache[1024];
const tran_low_t *const coeff = BLOCK_OFFSET(mb->plane[plane].coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const int eob = p->eobs[block];
const PLANE_TYPE type = pd->plane_type;
const int default_eob = 16 << (tx_size << 1);
const int mul = 1 + (tx_size == TX_32X32);
const int16_t *dequant_ptr = pd->dequant;
const uint8_t *const band_translate = get_band_translate(tx_size);
TX_TYPE tx_type = get_tx_type(type, xd, block, tx_size);
const scan_order *const so =
get_scan(tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi));
const int16_t *const scan = so->scan;
const int16_t *const nb = so->neighbors;
int next = eob, sz = 0;
int64_t rdmult = mb->rdmult * plane_rd_mult[type], rddiv = mb->rddiv;
int64_t rd_cost0, rd_cost1;
int rate0, rate1, error0, error1;
int16_t t0, t1;
EXTRABIT e0;
int best, band, pt, i, final_eob;
#if CONFIG_VP9_HIGHBITDEPTH
const int16_t *cat6_high_cost = vp10_get_high_cost_table(xd->bd);
#else
const int16_t *cat6_high_cost = vp10_get_high_cost_table(8);
#endif
assert((!type && !plane) || (type && plane));
assert(eob <= default_eob);
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
if (!ref)
rdmult = (rdmult * 9) >> 4;
/* Initialize the sentinel node of the trellis. */
tokens[eob][0].rate = 0;
tokens[eob][0].error = 0;
tokens[eob][0].next = default_eob;
tokens[eob][0].token = EOB_TOKEN;
tokens[eob][0].qc = 0;
tokens[eob][1] = tokens[eob][0];
for (i = 0; i < eob; i++)
token_cache[scan[i]] =
vp10_pt_energy_class[vp10_get_token(qcoeff[scan[i]])];
for (i = eob; i-- > 0;) {
int base_bits, d2, dx;
const int rc = scan[i];
int x = qcoeff[rc];
/* Only add a trellis state for non-zero coefficients. */
if (x) {
int shortcut = 0;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
/* Evaluate the first possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
vp10_get_token_extra(x, &t0, &e0);
/* Consider both possible successor states. */
if (next < default_eob) {
band = band_translate[i + 1];
pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache);
rate0 += mb->token_costs[tx_size][type][ref][band][0][pt]
[tokens[next][0].token];
rate1 += mb->token_costs[tx_size][type][ref][band][0][pt]
[tokens[next][1].token];
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = vp10_get_cost(t0, e0, cat6_high_cost);
dx = mul * (dqcoeff[rc] - coeff[rc]);
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx >>= xd->bd - 8;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
d2 = dx * dx;
tokens[i][0].rate = base_bits + (best ? rate1 : rate0);
tokens[i][0].error = d2 + (best ? error1 : error0);
tokens[i][0].next = next;
tokens[i][0].token = t0;
tokens[i][0].qc = x;
best_index[i][0] = best;
/* Evaluate the second possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
if ((abs(x) * dequant_ptr[rc != 0] > abs(coeff[rc]) * mul) &&
(abs(x) * dequant_ptr[rc != 0] < abs(coeff[rc]) * mul +
dequant_ptr[rc != 0]))
shortcut = 1;
else
shortcut = 0;
if (shortcut) {
sz = -(x < 0);
x -= 2 * sz + 1;
}
/* Consider both possible successor states. */
if (!x) {
/* If we reduced this coefficient to zero, check to see if
* we need to move the EOB back here.
*/
t0 = tokens[next][0].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
t1 = tokens[next][1].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
e0 = 0;
} else {
vp10_get_token_extra(x, &t0, &e0);
t1 = t0;
}
if (next < default_eob) {
band = band_translate[i + 1];
if (t0 != EOB_TOKEN) {
pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache);
rate0 += mb->token_costs[tx_size][type][ref][band][!x][pt]
[tokens[next][0].token];
}
if (t1 != EOB_TOKEN) {
pt = trellis_get_coeff_context(scan, nb, i, t1, token_cache);
rate1 += mb->token_costs[tx_size][type][ref][band][!x][pt]
[tokens[next][1].token];
}
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = vp10_get_cost(t0, e0, cat6_high_cost);
if (shortcut) {
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx -= ((dequant_ptr[rc != 0] >> (xd->bd - 8)) + sz) ^ sz;
} else {
dx -= (dequant_ptr[rc != 0] + sz) ^ sz;
}
#else
dx -= (dequant_ptr[rc != 0] + sz) ^ sz;
#endif // CONFIG_VP9_HIGHBITDEPTH
d2 = dx * dx;
}
tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
tokens[i][1].error = d2 + (best ? error1 : error0);
tokens[i][1].next = next;
tokens[i][1].token = best ? t1 : t0;
tokens[i][1].qc = x;
best_index[i][1] = best;
/* Finally, make this the new head of the trellis. */
next = i;
} else {
/* There's no choice to make for a zero coefficient, so we don't
* add a new trellis node, but we do need to update the costs.
*/
band = band_translate[i + 1];
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
/* Update the cost of each path if we're past the EOB token. */
if (t0 != EOB_TOKEN) {
tokens[next][0].rate +=
mb->token_costs[tx_size][type][ref][band][1][0][t0];
tokens[next][0].token = ZERO_TOKEN;
}
if (t1 != EOB_TOKEN) {
tokens[next][1].rate +=
mb->token_costs[tx_size][type][ref][band][1][0][t1];
tokens[next][1].token = ZERO_TOKEN;
}
best_index[i][0] = best_index[i][1] = 0;
/* Don't update next, because we didn't add a new node. */
}
}
/* Now pick the best path through the whole trellis. */
band = band_translate[i + 1];
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
rate0 += mb->token_costs[tx_size][type][ref][band][0][ctx][t0];
rate1 += mb->token_costs[tx_size][type][ref][band][0][ctx][t1];
UPDATE_RD_COST();
best = rd_cost1 < rd_cost0;
final_eob = -1;
memset(qcoeff, 0, sizeof(*qcoeff) * (16 << (tx_size * 2)));
memset(dqcoeff, 0, sizeof(*dqcoeff) * (16 << (tx_size * 2)));
for (i = next; i < eob; i = next) {
const int x = tokens[i][best].qc;
const int rc = scan[i];
if (x) {
final_eob = i;
}
qcoeff[rc] = x;
dqcoeff[rc] = (x * dequant_ptr[rc != 0]) / mul;
next = tokens[i][best].next;
best = best_index[i][best];
}
final_eob++;
mb->plane[plane].eobs[block] = final_eob;
assert(final_eob <= default_eob);
return final_eob;
}
static INLINE void fdct32x32(int rd_transform,
const int16_t *src, tran_low_t *dst,
int src_stride) {
if (rd_transform)
vpx_fdct32x32_rd(src, dst, src_stride);
else
vpx_fdct32x32(src, dst, src_stride);
}
#if CONFIG_VP9_HIGHBITDEPTH
static INLINE void highbd_fdct32x32(int rd_transform, const int16_t *src,
tran_low_t *dst, int src_stride) {
if (rd_transform)
vpx_highbd_fdct32x32_rd(src, dst, src_stride);
else
vpx_highbd_fdct32x32(src, dst, src_stride);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
#if CONFIG_EXT_TX
// Forward identity transform.
static void fwd_idtx_c(const int16_t *src_diff, tran_low_t *coeff, int stride,
int bs) {
int r, c;
const int shift = bs < 32 ? 3 : 2;
for (r = 0; r < bs; ++r) {
for (c = 0; c < bs; ++c)
coeff[c] = src_diff[c] << shift;
src_diff += stride;
coeff += bs;
}
}
#endif // CONFIG_EXT_TX
void vp10_fwd_txfm_4x4(const int16_t *src_diff, tran_low_t *coeff,
int diff_stride, TX_TYPE tx_type, int lossless) {
if (lossless) {
assert(tx_type == DCT_DCT);
vp10_fwht4x4(src_diff, coeff, diff_stride);
return;
}
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
vp10_fht4x4(src_diff, coeff, diff_stride, tx_type);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
vp10_fht4x4(src_diff, coeff, diff_stride, tx_type);
break;
case DST_DST:
case DCT_DST:
case DST_DCT:
case DST_ADST:
case ADST_DST:
case DST_FLIPADST:
case FLIPADST_DST:
// Use C version since DST exists only in C
vp10_fht4x4_c(src_diff, coeff, diff_stride, tx_type);
break;
case IDTX:
fwd_idtx_c(src_diff, coeff, diff_stride, 4);
break;
#endif // CONFIG_EXT_TX
default:
assert(0);
break;
}
}
static void fwd_txfm_8x8(const int16_t *src_diff, tran_low_t *coeff,
int diff_stride, TX_TYPE tx_type) {
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
vp10_fht8x8(src_diff, coeff, diff_stride, tx_type);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
vp10_fht8x8(src_diff, coeff, diff_stride, tx_type);
break;
case DST_DST:
case DCT_DST:
case DST_DCT:
case DST_ADST:
case ADST_DST:
case DST_FLIPADST:
case FLIPADST_DST:
// Use C version since DST exists only in C
vp10_fht8x8_c(src_diff, coeff, diff_stride, tx_type);
break;
case IDTX:
fwd_idtx_c(src_diff, coeff, diff_stride, 8);
break;
#endif // CONFIG_EXT_TX
default:
assert(0);
break;
}
}
static void fwd_txfm_8x8_1(const int16_t *src_diff, tran_low_t *coeff,
int diff_stride, TX_TYPE tx_type) {
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
vpx_fdct8x8_1(src_diff, coeff, diff_stride);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
vp10_fht8x8(src_diff, coeff, diff_stride, tx_type);
break;
case DST_DST:
case DCT_DST:
case DST_DCT:
case DST_ADST:
case ADST_DST:
case DST_FLIPADST:
case FLIPADST_DST:
// Use C version since DST exists only in C
vp10_fht8x8_c(src_diff, coeff, diff_stride, tx_type);
break;
case IDTX:
fwd_idtx_c(src_diff, coeff, diff_stride, 8);
break;
#endif // CONFIG_EXT_TX
default:
assert(0);
break;
}
}
static void fwd_txfm_16x16(const int16_t *src_diff, tran_low_t *coeff,
int diff_stride, TX_TYPE tx_type) {
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
vp10_fht16x16(src_diff, coeff, diff_stride, tx_type);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
vp10_fht16x16(src_diff, coeff, diff_stride, tx_type);
break;
case DST_DST:
case DCT_DST:
case DST_DCT:
case DST_ADST:
case ADST_DST:
case DST_FLIPADST:
case FLIPADST_DST:
// Use C version since DST exists only in C
vp10_fht16x16_c(src_diff, coeff, diff_stride, tx_type);
break;
case IDTX:
fwd_idtx_c(src_diff, coeff, diff_stride, 16);
break;
#endif // CONFIG_EXT_TX
default:
assert(0);
break;
}
}
static void fwd_txfm_16x16_1(const int16_t *src_diff, tran_low_t *coeff,
int diff_stride, TX_TYPE tx_type) {
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
vpx_fdct16x16_1(src_diff, coeff, diff_stride);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
vp10_fht16x16(src_diff, coeff, diff_stride, tx_type);
break;
case DST_DST:
case DCT_DST:
case DST_DCT:
case DST_ADST:
case ADST_DST:
case DST_FLIPADST:
case FLIPADST_DST:
// Use C version since DST exists only in C
vp10_fht16x16_c(src_diff, coeff, diff_stride, tx_type);
break;
case IDTX:
fwd_idtx_c(src_diff, coeff, diff_stride, 16);
break;
#endif // CONFIG_EXT_TX
default:
assert(0);
break;
}
}
static void fwd_txfm_32x32(int rd_transform, const int16_t *src_diff,
tran_low_t *coeff, int diff_stride,
TX_TYPE tx_type) {
switch (tx_type) {
case DCT_DCT:
fdct32x32(rd_transform, src_diff, coeff, diff_stride);
break;
#if CONFIG_EXT_TX
case IDTX:
fwd_idtx_c(src_diff, coeff, diff_stride, 32);
break;
#endif // CONFIG_EXT_TX
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
assert(0);
break;
default:
assert(0);
break;
}
}
static void fwd_txfm_32x32_1(const int16_t *src_diff,
tran_low_t *coeff, int diff_stride,
TX_TYPE tx_type) {
switch (tx_type) {
case DCT_DCT:
vpx_fdct32x32_1(src_diff, coeff, diff_stride);
break;
#if CONFIG_EXT_TX
case IDTX:
fwd_idtx_c(src_diff, coeff, diff_stride, 32);
break;
#endif // CONFIG_EXT_TX
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
assert(0);
break;
default:
assert(0);
break;
}
}
#if CONFIG_VP9_HIGHBITDEPTH
void vp10_highbd_fwd_txfm_4x4(const int16_t *src_diff, tran_low_t *coeff,
int diff_stride, TX_TYPE tx_type, int lossless) {
if (lossless) {
assert(tx_type == DCT_DCT);
vp10_highbd_fwht4x4(src_diff, coeff, diff_stride);
return;
}
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
vp10_highbd_fht4x4(src_diff, coeff, diff_stride, tx_type);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
vp10_highbd_fht4x4(src_diff, coeff, diff_stride, tx_type);
break;
case DST_DST:
case DCT_DST:
case DST_DCT:
case DST_ADST:
case ADST_DST:
case DST_FLIPADST:
case FLIPADST_DST:
// Use C version since DST exists only in C
vp10_highbd_fht4x4_c(src_diff, coeff, diff_stride, tx_type);
break;
case IDTX:
fwd_idtx_c(src_diff, coeff, diff_stride, 4);
break;
#endif // CONFIG_EXT_TX
default:
assert(0);
break;
}
}
static void highbd_fwd_txfm_8x8(const int16_t *src_diff, tran_low_t *coeff,
int diff_stride, TX_TYPE tx_type) {
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
vp10_highbd_fht8x8(src_diff, coeff, diff_stride, tx_type);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
vp10_highbd_fht8x8(src_diff, coeff, diff_stride, tx_type);
break;
case DST_DST:
case DCT_DST:
case DST_DCT:
case DST_ADST:
case ADST_DST:
case DST_FLIPADST:
case FLIPADST_DST:
// Use C version since DST exists only in C
vp10_highbd_fht8x8_c(src_diff, coeff, diff_stride, tx_type);
break;
case IDTX:
fwd_idtx_c(src_diff, coeff, diff_stride, 8);
break;
#endif // CONFIG_EXT_TX
default:
assert(0);
break;
}
}
static void highbd_fwd_txfm_8x8_1(const int16_t *src_diff, tran_low_t *coeff,
int diff_stride, TX_TYPE tx_type) {
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
vp10_highbd_fht8x8(src_diff, coeff, diff_stride, tx_type);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
vp10_highbd_fht8x8(src_diff, coeff, diff_stride, tx_type);
break;
case DST_DST:
case DCT_DST:
case DST_DCT:
case DST_ADST:
case ADST_DST:
case DST_FLIPADST:
case FLIPADST_DST:
// Use C version since DST exists only in C
vp10_highbd_fht8x8_c(src_diff, coeff, diff_stride, tx_type);
break;
case IDTX:
fwd_idtx_c(src_diff, coeff, diff_stride, 8);
break;
#endif // CONFIG_EXT_TX
default:
assert(0);
break;
}
}
static void highbd_fwd_txfm_16x16(const int16_t *src_diff, tran_low_t *coeff,
int diff_stride, TX_TYPE tx_type) {
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
vp10_highbd_fht16x16(src_diff, coeff, diff_stride, tx_type);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
vp10_highbd_fht16x16(src_diff, coeff, diff_stride, tx_type);
break;
case DST_DST:
case DCT_DST:
case DST_DCT:
case DST_ADST:
case ADST_DST:
case DST_FLIPADST:
case FLIPADST_DST:
// Use C version since DST exists only in C
vp10_highbd_fht16x16_c(src_diff, coeff, diff_stride, tx_type);
break;
case IDTX:
fwd_idtx_c(src_diff, coeff, diff_stride, 16);
break;
#endif // CONFIG_EXT_TX
default:
assert(0);
break;
}
}
static void highbd_fwd_txfm_16x16_1(const int16_t *src_diff, tran_low_t *coeff,
int diff_stride, TX_TYPE tx_type) {
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
vp10_highbd_fht16x16(src_diff, coeff, diff_stride, tx_type);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
vp10_highbd_fht16x16(src_diff, coeff, diff_stride, tx_type);
break;
case DST_DST:
case DCT_DST:
case DST_DCT:
case DST_ADST:
case ADST_DST:
case DST_FLIPADST:
case FLIPADST_DST:
// Use C version since DST exists only in C
vp10_highbd_fht16x16_c(src_diff, coeff, diff_stride, tx_type);
break;
case IDTX:
fwd_idtx_c(src_diff, coeff, diff_stride, 16);
break;
#endif // CONFIG_EXT_TX
default:
assert(0);
break;
}
}
static void highbd_fwd_txfm_32x32(int rd_transform, const int16_t *src_diff,
tran_low_t *coeff, int diff_stride,
TX_TYPE tx_type) {
switch (tx_type) {
case DCT_DCT:
highbd_fdct32x32(rd_transform, src_diff, coeff, diff_stride);
break;
#if CONFIG_EXT_TX
case IDTX:
fwd_idtx_c(src_diff, coeff, diff_stride, 32);
break;
#endif // CONFIG_EXT_TX
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
assert(0);
break;
default:
assert(0);
break;
}
}
static void highbd_fwd_txfm_32x32_1(const int16_t *src_diff,
tran_low_t *coeff, int diff_stride,
TX_TYPE tx_type) {
switch (tx_type) {
case DCT_DCT:
vpx_highbd_fdct32x32_1(src_diff, coeff, diff_stride);
break;
#if CONFIG_EXT_TX
case IDTX:
fwd_idtx_c(src_diff, coeff, diff_stride, 32);
break;
#endif // CONFIG_EXT_TX
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
assert(0);
break;
default:
assert(0);
break;
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
void vp10_xform_quant_fp(MACROBLOCK *x, int plane, int block,
int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
const scan_order *const scan_order =
get_scan(tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi));
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int16_t *src_diff;
src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
switch (tx_size) {
case TX_32X32:
highbd_fwd_txfm_32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride,
tx_type);
vp10_highbd_quantize_fp_32x32(coeff, 1024, x->skip_block, p->zbin,
p->round_fp, p->quant_fp, p->quant_shift,
qcoeff, dqcoeff, pd->dequant,
eob, scan_order->scan,
scan_order->iscan);
break;
case TX_16X16:
highbd_fwd_txfm_16x16(src_diff, coeff, diff_stride, tx_type);
vp10_highbd_quantize_fp(coeff, 256, x->skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_8X8:
highbd_fwd_txfm_8x8(src_diff, coeff, diff_stride, tx_type);
vp10_highbd_quantize_fp(coeff, 64, x->skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_4X4:
vp10_highbd_fwd_txfm_4x4(src_diff, coeff, diff_stride, tx_type,
xd->lossless[xd->mi[0]->mbmi.segment_id]);
vp10_highbd_quantize_fp(coeff, 16, x->skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
default:
assert(0);
}
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
switch (tx_size) {
case TX_32X32:
fwd_txfm_32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride, tx_type);
vp10_quantize_fp_32x32(coeff, 1024, x->skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
scan_order->iscan);
break;
case TX_16X16:
fwd_txfm_16x16(src_diff, coeff, diff_stride, tx_type);
vp10_quantize_fp(coeff, 256, x->skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_8X8:
fwd_txfm_8x8(src_diff, coeff, diff_stride, tx_type);
vp10_quantize_fp(coeff, 64, x->skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_4X4:
vp10_fwd_txfm_4x4(src_diff, coeff, diff_stride, tx_type,
xd->lossless[xd->mi[0]->mbmi.segment_id]);
vp10_quantize_fp(coeff, 16, x->skip_block, p->zbin, p->round_fp,
p->quant_fp, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
default:
assert(0);
break;
}
}
void vp10_xform_quant_dc(MACROBLOCK *x, int plane, int block,
int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int16_t *src_diff;
src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
switch (tx_size) {
case TX_32X32:
highbd_fwd_txfm_32x32_1(src_diff, coeff, diff_stride, tx_type);
vpx_highbd_quantize_dc_32x32(coeff, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff,
pd->dequant[0], eob);
break;
case TX_16X16:
highbd_fwd_txfm_16x16_1(src_diff, coeff, diff_stride, tx_type);
vpx_highbd_quantize_dc(coeff, 256, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff,
pd->dequant[0], eob);
break;
case TX_8X8:
highbd_fwd_txfm_8x8_1(src_diff, coeff, diff_stride, tx_type);
vpx_highbd_quantize_dc(coeff, 64, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff,
pd->dequant[0], eob);
break;
case TX_4X4:
vp10_highbd_fwd_txfm_4x4(src_diff, coeff, diff_stride, tx_type,
xd->lossless[xd->mi[0]->mbmi.segment_id]);
vpx_highbd_quantize_dc(coeff, 16, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff,
pd->dequant[0], eob);
break;
default:
assert(0);
}
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
switch (tx_size) {
case TX_32X32:
fwd_txfm_32x32_1(src_diff, coeff, diff_stride, tx_type);
vpx_quantize_dc_32x32(coeff, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff,
pd->dequant[0], eob);
break;
case TX_16X16:
fwd_txfm_16x16_1(src_diff, coeff, diff_stride, tx_type);
vpx_quantize_dc(coeff, 256, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff,
pd->dequant[0], eob);
break;
case TX_8X8:
fwd_txfm_8x8_1(src_diff, coeff, diff_stride, tx_type);
vpx_quantize_dc(coeff, 64, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff,
pd->dequant[0], eob);
break;
case TX_4X4:
vp10_fwd_txfm_4x4(src_diff, coeff, diff_stride, tx_type,
xd->lossless[xd->mi[0]->mbmi.segment_id]);
vpx_quantize_dc(coeff, 16, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff,
pd->dequant[0], eob);
break;
default:
assert(0);
break;
}
}
void vp10_xform_quant(MACROBLOCK *x, int plane, int block,
int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
const scan_order *const scan_order =
get_scan(tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi));
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int16_t *src_diff;
src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
switch (tx_size) {
case TX_32X32:
highbd_fwd_txfm_32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride,
tx_type);
vpx_highbd_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin,
p->round, p->quant, p->quant_shift, qcoeff,
dqcoeff, pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_16X16:
highbd_fwd_txfm_16x16(src_diff, coeff, diff_stride, tx_type);
vpx_highbd_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_8X8:
highbd_fwd_txfm_8x8(src_diff, coeff, diff_stride, tx_type);
vpx_highbd_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_4X4:
vp10_highbd_fwd_txfm_4x4(src_diff, coeff, diff_stride, tx_type,
xd->lossless[xd->mi[0]->mbmi.segment_id]);
vpx_highbd_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
default:
assert(0);
}
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
switch (tx_size) {
case TX_32X32:
fwd_txfm_32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride, tx_type);
vpx_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
scan_order->iscan);
break;
case TX_16X16:
fwd_txfm_16x16(src_diff, coeff, diff_stride, tx_type);
vpx_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_8X8:
fwd_txfm_8x8(src_diff, coeff, diff_stride, tx_type);
vpx_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_4X4:
vp10_fwd_txfm_4x4(src_diff, coeff, diff_stride, tx_type,
xd->lossless[xd->mi[0]->mbmi.segment_id]);
vpx_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
break;
default:
assert(0);
break;
}
}
static void encode_block(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
struct encode_b_args *const args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx *const ctx = args->ctx;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint8_t *dst;
ENTROPY_CONTEXT *a, *l;
TX_TYPE tx_type = get_tx_type(pd->plane_type, xd, block, tx_size);
#if CONFIG_VAR_TX
int i;
const int bwl = b_width_log2_lookup[plane_bsize];
#endif
dst = &pd->dst.buf[4 * blk_row * pd->dst.stride + 4 * blk_col];
a = &ctx->ta[plane][blk_col];
l = &ctx->tl[plane][blk_row];
// TODO(jingning): per transformed block zero forcing only enabled for
// luma component. will integrate chroma components as well.
// Turn this back on when the rate-distortion loop is synchronized with
// the recursive transform block coding.
// if (x->zcoeff_blk[tx_size][block] && plane == 0) {
// p->eobs[block] = 0;
// *a = *l = 0;
// return;
// }
#if CONFIG_VAR_TX
if (!x->skip_recode &&
x->blk_skip[plane][(blk_row << bwl) + blk_col] == 0) {
#else
if (!x->skip_recode) {
#endif
if (x->quant_fp) {
// Encoding process for rtc mode
if (x->skip_txfm[0] == SKIP_TXFM_AC_DC && plane == 0) {
// skip forward transform
p->eobs[block] = 0;
*a = *l = 0;
return;
} else {
vp10_xform_quant_fp(x, plane, block, blk_row, blk_col,
plane_bsize, tx_size);
}
} else {
if (max_txsize_lookup[plane_bsize] == tx_size) {
int txfm_blk_index = (plane << 2) + (block >> (tx_size << 1));
if (x->skip_txfm[txfm_blk_index] == SKIP_TXFM_NONE) {
// full forward transform and quantization
vp10_xform_quant(x, plane, block, blk_row, blk_col,
plane_bsize, tx_size);
} else if (x->skip_txfm[txfm_blk_index] == SKIP_TXFM_AC_ONLY) {
// fast path forward transform and quantization
vp10_xform_quant_dc(x, plane, block, blk_row, blk_col,
plane_bsize, tx_size);
} else {
// skip forward transform
p->eobs[block] = 0;
*a = *l = 0;
#if !CONFIG_VAR_TX
return;
#endif
}
} else {
vp10_xform_quant(x, plane, block, blk_row, blk_col,
plane_bsize, tx_size);
}
}
}
#if CONFIG_VAR_TX
else {
if (!x->skip_recode)
p->eobs[block] = 0;
}
#endif
if (x->optimize && (!x->skip_recode || !x->skip_optimize)) {
int ctx;
#if CONFIG_VAR_TX
switch (tx_size) {
case TX_4X4:
break;
case TX_8X8:
a[0] = !!*(const uint16_t *)&a[0];
l[0] = !!*(const uint16_t *)&l[0];
break;
case TX_16X16:
a[0] = !!*(const uint32_t *)&a[0];
l[0] = !!*(const uint32_t *)&l[0];
break;
case TX_32X32:
a[0] = !!*(const uint64_t *)&a[0];
l[0] = !!*(const uint64_t *)&l[0];
break;
default:
assert(0 && "Invalid transform size.");
break;
}
#endif
ctx = combine_entropy_contexts(*a, *l);
*a = *l = optimize_b(x, plane, block, tx_size, ctx) > 0;
} else {
*a = *l = p->eobs[block] > 0;
}
#if CONFIG_VAR_TX
for (i = 0; i < (1 << tx_size); ++i) {
a[i] = a[0];
l[i] = l[0];
}
#endif
if (p->eobs[block])
*(args->skip) = 0;
if (p->eobs[block] == 0)
return;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
switch (tx_size) {
case TX_32X32:
vp10_highbd_inv_txfm_add_32x32(dqcoeff, dst, pd->dst.stride,
p->eobs[block], xd->bd, tx_type);
break;
case TX_16X16:
vp10_highbd_inv_txfm_add_16x16(dqcoeff, dst, pd->dst.stride,
p->eobs[block], xd->bd, tx_type);
break;
case TX_8X8:
vp10_highbd_inv_txfm_add_8x8(dqcoeff, dst, pd->dst.stride,
p->eobs[block], xd->bd, tx_type);
break;
case TX_4X4:
// this is like vp10_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
vp10_highbd_inv_txfm_add_4x4(dqcoeff, dst, pd->dst.stride,
p->eobs[block], xd->bd, tx_type,
xd->lossless[xd->mi[0]->mbmi.segment_id]);
break;
default:
assert(0 && "Invalid transform size");
break;
}
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
switch (tx_size) {
case TX_32X32:
vp10_inv_txfm_add_32x32(dqcoeff, dst, pd->dst.stride, p->eobs[block],
tx_type);
break;
case TX_16X16:
vp10_inv_txfm_add_16x16(dqcoeff, dst, pd->dst.stride, p->eobs[block],
tx_type);
break;
case TX_8X8:
vp10_inv_txfm_add_8x8(dqcoeff, dst, pd->dst.stride, p->eobs[block],
tx_type);
break;
case TX_4X4:
// this is like vp10_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
vp10_inv_txfm_add_4x4(dqcoeff, dst, pd->dst.stride, p->eobs[block],
tx_type, xd->lossless[xd->mi[0]->mbmi.segment_id]);
break;
default:
assert(0 && "Invalid transform size");
break;
}
}
#if CONFIG_VAR_TX
static void encode_block_inter(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct encode_b_args *const args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
const struct macroblockd_plane *const pd = &xd->plane[plane];
int blk_idx = (blk_row >> (1 - pd->subsampling_y)) * 8 +
(blk_col >> (1 - pd->subsampling_x));
TX_SIZE plane_tx_size = plane ?
get_uv_tx_size_impl(mbmi->inter_tx_size[blk_idx], bsize,
0, 0) :
mbmi->inter_tx_size[blk_idx];
int max_blocks_high = num_4x4_blocks_high_lookup[plane_bsize];
int max_blocks_wide = num_4x4_blocks_wide_lookup[plane_bsize];
if (xd->mb_to_bottom_edge < 0)
max_blocks_high += xd->mb_to_bottom_edge >> (5 + pd->subsampling_y);
if (xd->mb_to_right_edge < 0)
max_blocks_wide += xd->mb_to_right_edge >> (5 + pd->subsampling_x);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide)
return;
if (tx_size == plane_tx_size) {
encode_block(plane, block, blk_row, blk_col, plane_bsize,
tx_size, arg);
} else {
int bsl = b_width_log2_lookup[bsize];
int i;
assert(bsl > 0);
--bsl;
for (i = 0; i < 4; ++i) {
const int offsetr = blk_row + ((i >> 1) << bsl);
const int offsetc = blk_col + ((i & 0x01) << bsl);
int step = 1 << (2 * (tx_size - 1));
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide)
continue;
encode_block_inter(plane, block + i * step, offsetr, offsetc,
plane_bsize, tx_size - 1, arg);
}
}
}
#endif
static void encode_block_pass1(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
MACROBLOCK *const x = (MACROBLOCK *)arg;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint8_t *dst;
dst = &pd->dst.buf[4 * blk_row * pd->dst.stride + 4 * blk_col];
vp10_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size);
if (p->eobs[block] > 0) {
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
vp10_highbd_iwht4x4_add(dqcoeff, dst, pd->dst.stride,
p->eobs[block], xd->bd);
} else {
vp10_highbd_idct4x4_add(dqcoeff, dst, pd->dst.stride,
p->eobs[block], xd->bd);
}
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
vp10_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
} else {
vp10_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
}
}
}
void vp10_encode_sby_pass1(MACROBLOCK *x, BLOCK_SIZE bsize) {
vp10_subtract_plane(x, bsize, 0);
vp10_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0,
encode_block_pass1, x);
}
void vp10_encode_sb(MACROBLOCK *x, BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx ctx;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct encode_b_args arg = {x, &ctx, &mbmi->skip};
int plane;
mbmi->skip = 1;
if (x->skip)
return;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
#if CONFIG_VAR_TX
// TODO(jingning): Clean this up.
const struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int mi_width = num_4x4_blocks_wide_lookup[plane_bsize];
const int mi_height = num_4x4_blocks_high_lookup[plane_bsize];
const TX_SIZE max_tx_size = max_txsize_lookup[plane_bsize];
const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
const int bh = num_4x4_blocks_wide_lookup[txb_size];
int idx, idy;
int block = 0;
int step = 1 << (max_tx_size * 2);
#endif
if (!x->skip_recode)
vp10_subtract_plane(x, bsize, plane);
if (x->optimize && (!x->skip_recode || !x->skip_optimize)) {
#if CONFIG_VAR_TX
vp10_get_entropy_contexts(bsize, TX_4X4, pd,
ctx.ta[plane], ctx.tl[plane]);
#else
const struct macroblockd_plane* const pd = &xd->plane[plane];
const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size;
vp10_get_entropy_contexts(bsize, tx_size, pd,
ctx.ta[plane], ctx.tl[plane]);
#endif
}
#if CONFIG_VAR_TX
for (idy = 0; idy < mi_height; idy += bh) {
for (idx = 0; idx < mi_width; idx += bh) {
encode_block_inter(plane, block, idy, idx, plane_bsize,
max_tx_size, &arg);
block += step;
}
}
#else
vp10_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block,
&arg);
#endif
}
}
void vp10_encode_block_intra(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
struct encode_b_args* const args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
const scan_order *const scan_order = get_scan(tx_size, tx_type, 0);
PREDICTION_MODE mode;
const int bwl = b_width_log2_lookup[plane_bsize];
const int bhl = b_height_log2_lookup[plane_bsize];
const int diff_stride = 4 * (1 << bwl);
uint8_t *src, *dst;
int16_t *src_diff;
uint16_t *eob = &p->eobs[block];
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
dst = &pd->dst.buf[4 * (blk_row * dst_stride + blk_col)];
src = &p->src.buf[4 * (blk_row * src_stride + blk_col)];
src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
mode = plane == 0 ? get_y_mode(xd->mi[0], block) : mbmi->uv_mode;
vp10_predict_intra_block(xd, bwl, bhl, tx_size, mode, dst, dst_stride,
dst, dst_stride, blk_col, blk_row, plane);
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
switch (tx_size) {
case TX_32X32:
if (!x->skip_recode) {
vpx_highbd_subtract_block(32, 32, src_diff, diff_stride,
src, src_stride, dst, dst_stride, xd->bd);
highbd_fwd_txfm_32x32(x->use_lp32x32fdct, src_diff, coeff,
diff_stride, tx_type);
vpx_highbd_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin,
p->round, p->quant, p->quant_shift,
qcoeff, dqcoeff, pd->dequant, eob,
scan_order->scan, scan_order->iscan);
}
if (*eob)
vp10_highbd_inv_txfm_add_32x32(dqcoeff, dst, dst_stride, *eob, xd->bd,
tx_type);
break;
case TX_16X16:
if (!x->skip_recode) {
vpx_highbd_subtract_block(16, 16, src_diff, diff_stride,
src, src_stride, dst, dst_stride, xd->bd);
highbd_fwd_txfm_16x16(src_diff, coeff, diff_stride, tx_type);
vpx_highbd_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
}
if (*eob)
vp10_highbd_inv_txfm_add_16x16(dqcoeff, dst, dst_stride, *eob, xd->bd,
tx_type);
break;
case TX_8X8:
if (!x->skip_recode) {
vpx_highbd_subtract_block(8, 8, src_diff, diff_stride,
src, src_stride, dst, dst_stride, xd->bd);
highbd_fwd_txfm_8x8(src_diff, coeff, diff_stride, tx_type);
vpx_highbd_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
}
if (*eob)
vp10_highbd_inv_txfm_add_8x8(dqcoeff, dst, dst_stride, *eob, xd->bd,
tx_type);
break;
case TX_4X4:
if (!x->skip_recode) {
vpx_highbd_subtract_block(4, 4, src_diff, diff_stride,
src, src_stride, dst, dst_stride, xd->bd);
vp10_highbd_fwd_txfm_4x4(src_diff, coeff, diff_stride, tx_type,
xd->lossless[mbmi->segment_id]);
vpx_highbd_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob,
scan_order->scan, scan_order->iscan);
}
if (*eob)
// this is like vp10_short_idct4x4 but has a special case around
// eob<=1 which is significant (not just an optimization) for the
// lossless case.
vp10_highbd_inv_txfm_add_4x4(dqcoeff, dst, dst_stride, *eob, xd->bd,
tx_type, xd->lossless[mbmi->segment_id]);
break;
default:
assert(0);
return;
}
if (*eob)
*(args->skip) = 0;
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
switch (tx_size) {
case TX_32X32:
if (!x->skip_recode) {
vpx_subtract_block(32, 32, src_diff, diff_stride,
src, src_stride, dst, dst_stride);
fwd_txfm_32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride,
tx_type);
vpx_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
scan_order->iscan);
}
if (*eob)
vp10_inv_txfm_add_32x32(dqcoeff, dst, dst_stride, *eob, tx_type);
break;
case TX_16X16:
if (!x->skip_recode) {
vpx_subtract_block(16, 16, src_diff, diff_stride,
src, src_stride, dst, dst_stride);
fwd_txfm_16x16(src_diff, coeff, diff_stride, tx_type);
vpx_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
scan_order->iscan);
}
if (*eob)
vp10_inv_txfm_add_16x16(dqcoeff, dst, dst_stride, *eob, tx_type);
break;
case TX_8X8:
if (!x->skip_recode) {
vpx_subtract_block(8, 8, src_diff, diff_stride,
src, src_stride, dst, dst_stride);
fwd_txfm_8x8(src_diff, coeff, diff_stride, tx_type);
vpx_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant,
p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
scan_order->iscan);
}
if (*eob)
vp10_inv_txfm_add_8x8(dqcoeff, dst, dst_stride, *eob, tx_type);
break;
case TX_4X4:
if (!x->skip_recode) {
vpx_subtract_block(4, 4, src_diff, diff_stride,
src, src_stride, dst, dst_stride);
vp10_fwd_txfm_4x4(src_diff, coeff, diff_stride, tx_type,
xd->lossless[mbmi->segment_id]);
vpx_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant,
p->quant_shift, qcoeff, dqcoeff,
pd->dequant, eob, scan_order->scan,
scan_order->iscan);
}
if (*eob) {
// this is like vp10_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
vp10_inv_txfm_add_4x4(dqcoeff, dst, dst_stride, *eob, tx_type,
xd->lossless[xd->mi[0]->mbmi.segment_id]);
}
break;
default:
assert(0);
break;
}
if (*eob)
*(args->skip) = 0;
}
void vp10_encode_intra_block_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
const MACROBLOCKD *const xd = &x->e_mbd;
struct encode_b_args arg = {x, NULL, &xd->mi[0]->mbmi.skip};
vp10_foreach_transformed_block_in_plane(xd, bsize, plane,
vp10_encode_block_intra, &arg);
}