0d284ffed1
This is an initial step to facilitate experimentation with changes to the prior token context used to code coefficients to take better account of the energy of preceding tokens. This patch merely abstracts the selection of context into two functions and does not alter the output. Change-Id: I117fff0b49c61da83aed641e36620442f86def86
876 lines
24 KiB
C
876 lines
24 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "./vpx_config.h"
|
|
#include "vp9/encoder/vp9_encodemb.h"
|
|
#include "vp9/common/vp9_reconinter.h"
|
|
#include "vp9/encoder/vp9_quantize.h"
|
|
#include "vp9/encoder/vp9_tokenize.h"
|
|
#include "vp9/common/vp9_invtrans.h"
|
|
#include "vp9/common/vp9_reconintra.h"
|
|
#include "vpx_mem/vpx_mem.h"
|
|
#include "vp9/encoder/vp9_rdopt.h"
|
|
#include "vp9/common/vp9_systemdependent.h"
|
|
#include "vp9_rtcd.h"
|
|
|
|
void vp9_subtract_b_c(BLOCK *be, BLOCKD *bd, int pitch) {
|
|
uint8_t *src_ptr = (*(be->base_src) + be->src);
|
|
int16_t *diff_ptr = be->src_diff;
|
|
uint8_t *pred_ptr = bd->predictor;
|
|
int src_stride = be->src_stride;
|
|
|
|
int r, c;
|
|
|
|
for (r = 0; r < 4; r++) {
|
|
for (c = 0; c < 4; c++) {
|
|
diff_ptr[c] = src_ptr[c] - pred_ptr[c];
|
|
}
|
|
|
|
diff_ptr += pitch;
|
|
pred_ptr += pitch;
|
|
src_ptr += src_stride;
|
|
}
|
|
}
|
|
|
|
void vp9_subtract_4b_c(BLOCK *be, BLOCKD *bd, int pitch) {
|
|
uint8_t *src_ptr = (*(be->base_src) + be->src);
|
|
int16_t *diff_ptr = be->src_diff;
|
|
uint8_t *pred_ptr = bd->predictor;
|
|
int src_stride = be->src_stride;
|
|
int r, c;
|
|
|
|
for (r = 0; r < 8; r++) {
|
|
for (c = 0; c < 8; c++) {
|
|
diff_ptr[c] = src_ptr[c] - pred_ptr[c];
|
|
}
|
|
diff_ptr += pitch;
|
|
pred_ptr += pitch;
|
|
src_ptr += src_stride;
|
|
}
|
|
}
|
|
|
|
void vp9_subtract_mbuv_s_c(int16_t *diff, const uint8_t *usrc,
|
|
const uint8_t *vsrc, int src_stride,
|
|
const uint8_t *upred,
|
|
const uint8_t *vpred, int dst_stride) {
|
|
int16_t *udiff = diff + 256;
|
|
int16_t *vdiff = diff + 320;
|
|
int r, c;
|
|
|
|
for (r = 0; r < 8; r++) {
|
|
for (c = 0; c < 8; c++) {
|
|
udiff[c] = usrc[c] - upred[c];
|
|
}
|
|
|
|
udiff += 8;
|
|
upred += dst_stride;
|
|
usrc += src_stride;
|
|
}
|
|
|
|
for (r = 0; r < 8; r++) {
|
|
for (c = 0; c < 8; c++) {
|
|
vdiff[c] = vsrc[c] - vpred[c];
|
|
}
|
|
|
|
vdiff += 8;
|
|
vpred += dst_stride;
|
|
vsrc += src_stride;
|
|
}
|
|
}
|
|
|
|
void vp9_subtract_mbuv_c(int16_t *diff, uint8_t *usrc,
|
|
uint8_t *vsrc, uint8_t *pred, int stride) {
|
|
uint8_t *upred = pred + 256;
|
|
uint8_t *vpred = pred + 320;
|
|
|
|
vp9_subtract_mbuv_s_c(diff, usrc, vsrc, stride, upred, vpred, 8);
|
|
}
|
|
|
|
void vp9_subtract_mby_s_c(int16_t *diff, const uint8_t *src, int src_stride,
|
|
const uint8_t *pred, int dst_stride) {
|
|
int r, c;
|
|
|
|
for (r = 0; r < 16; r++) {
|
|
for (c = 0; c < 16; c++) {
|
|
diff[c] = src[c] - pred[c];
|
|
}
|
|
|
|
diff += 16;
|
|
pred += dst_stride;
|
|
src += src_stride;
|
|
}
|
|
}
|
|
|
|
void vp9_subtract_sby_s_c(int16_t *diff, const uint8_t *src, int src_stride,
|
|
const uint8_t *pred, int dst_stride) {
|
|
int r, c;
|
|
|
|
for (r = 0; r < 32; r++) {
|
|
for (c = 0; c < 32; c++) {
|
|
diff[c] = src[c] - pred[c];
|
|
}
|
|
|
|
diff += 32;
|
|
pred += dst_stride;
|
|
src += src_stride;
|
|
}
|
|
}
|
|
|
|
void vp9_subtract_sbuv_s_c(int16_t *diff, const uint8_t *usrc,
|
|
const uint8_t *vsrc, int src_stride,
|
|
const uint8_t *upred,
|
|
const uint8_t *vpred, int dst_stride) {
|
|
int16_t *udiff = diff + 1024;
|
|
int16_t *vdiff = diff + 1024 + 256;
|
|
int r, c;
|
|
|
|
for (r = 0; r < 16; r++) {
|
|
for (c = 0; c < 16; c++) {
|
|
udiff[c] = usrc[c] - upred[c];
|
|
}
|
|
|
|
udiff += 16;
|
|
upred += dst_stride;
|
|
usrc += src_stride;
|
|
}
|
|
|
|
for (r = 0; r < 16; r++) {
|
|
for (c = 0; c < 16; c++) {
|
|
vdiff[c] = vsrc[c] - vpred[c];
|
|
}
|
|
|
|
vdiff += 16;
|
|
vpred += dst_stride;
|
|
vsrc += src_stride;
|
|
}
|
|
}
|
|
|
|
void vp9_subtract_mby_c(int16_t *diff, uint8_t *src,
|
|
uint8_t *pred, int stride) {
|
|
vp9_subtract_mby_s_c(diff, src, stride, pred, 16);
|
|
}
|
|
|
|
static void subtract_mb(MACROBLOCK *x) {
|
|
BLOCK *b = &x->block[0];
|
|
|
|
vp9_subtract_mby(x->src_diff, *(b->base_src), x->e_mbd.predictor,
|
|
b->src_stride);
|
|
vp9_subtract_mbuv(x->src_diff, x->src.u_buffer, x->src.v_buffer,
|
|
x->e_mbd.predictor, x->src.uv_stride);
|
|
}
|
|
|
|
static void build_dcblock_4x4(MACROBLOCK *x) {
|
|
int16_t *src_diff_ptr = &x->src_diff[384];
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
src_diff_ptr[i] = x->coeff[i * 16];
|
|
x->coeff[i * 16] = 0;
|
|
}
|
|
}
|
|
|
|
void vp9_transform_mby_4x4(MACROBLOCK *x) {
|
|
int i;
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
int has_2nd_order = get_2nd_order_usage(xd);
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
BLOCK *b = &x->block[i];
|
|
TX_TYPE tx_type = get_tx_type_4x4(xd, &xd->block[i]);
|
|
if (tx_type != DCT_DCT) {
|
|
assert(has_2nd_order == 0);
|
|
vp9_fht_c(b->src_diff, 32, b->coeff, tx_type, 4);
|
|
} else if (!(i & 1) && get_tx_type_4x4(xd, &xd->block[i + 1]) == DCT_DCT) {
|
|
x->fwd_txm8x4(&x->block[i].src_diff[0],
|
|
&x->block[i].coeff[0], 32);
|
|
i++;
|
|
} else {
|
|
x->fwd_txm4x4(&x->block[i].src_diff[0],
|
|
&x->block[i].coeff[0], 32);
|
|
}
|
|
}
|
|
|
|
if (has_2nd_order) {
|
|
// build dc block from 16 y dc values
|
|
build_dcblock_4x4(x);
|
|
|
|
// do 2nd order transform on the dc block
|
|
x->fwd_2ndtxm4x4(&x->block[24].src_diff[0],
|
|
&x->block[24].coeff[0], 8);
|
|
} else {
|
|
vpx_memset(x->block[24].coeff, 0, 16 * sizeof(x->block[24].coeff[0]));
|
|
}
|
|
}
|
|
|
|
void vp9_transform_mbuv_4x4(MACROBLOCK *x) {
|
|
int i;
|
|
|
|
for (i = 16; i < 24; i += 2) {
|
|
x->fwd_txm8x4(&x->block[i].src_diff[0],
|
|
&x->block[i].coeff[0], 16);
|
|
}
|
|
}
|
|
|
|
static void transform_mb_4x4(MACROBLOCK *x) {
|
|
vp9_transform_mby_4x4(x);
|
|
vp9_transform_mbuv_4x4(x);
|
|
}
|
|
|
|
static void build_dcblock_8x8(MACROBLOCK *x) {
|
|
int16_t *src_diff_ptr = x->block[24].src_diff;
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
src_diff_ptr[i] = 0;
|
|
}
|
|
src_diff_ptr[0] = x->coeff[0 * 16];
|
|
src_diff_ptr[1] = x->coeff[4 * 16];
|
|
src_diff_ptr[4] = x->coeff[8 * 16];
|
|
src_diff_ptr[8] = x->coeff[12 * 16];
|
|
x->coeff[0 * 16] = 0;
|
|
x->coeff[4 * 16] = 0;
|
|
x->coeff[8 * 16] = 0;
|
|
x->coeff[12 * 16] = 0;
|
|
}
|
|
|
|
void vp9_transform_mby_8x8(MACROBLOCK *x) {
|
|
int i;
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
TX_TYPE tx_type;
|
|
int has_2nd_order = get_2nd_order_usage(xd);
|
|
|
|
for (i = 0; i < 9; i += 8) {
|
|
BLOCK *b = &x->block[i];
|
|
tx_type = get_tx_type_8x8(xd, &xd->block[i]);
|
|
if (tx_type != DCT_DCT) {
|
|
assert(has_2nd_order == 0);
|
|
vp9_fht_c(b->src_diff, 32, b->coeff, tx_type, 8);
|
|
} else {
|
|
x->fwd_txm8x8(&x->block[i].src_diff[0],
|
|
&x->block[i].coeff[0], 32);
|
|
}
|
|
}
|
|
for (i = 2; i < 11; i += 8) {
|
|
BLOCK *b = &x->block[i];
|
|
tx_type = get_tx_type_8x8(xd, &xd->block[i]);
|
|
if (tx_type != DCT_DCT) {
|
|
assert(has_2nd_order == 0);
|
|
vp9_fht_c(b->src_diff, 32, (b + 2)->coeff, tx_type, 8);
|
|
} else {
|
|
x->fwd_txm8x8(&x->block[i].src_diff[0],
|
|
&x->block[i + 2].coeff[0], 32);
|
|
}
|
|
}
|
|
|
|
if (has_2nd_order) {
|
|
// build dc block from 2x2 y dc values
|
|
build_dcblock_8x8(x);
|
|
|
|
// do 2nd order transform on the dc block
|
|
x->fwd_2ndtxm2x2(&x->block[24].src_diff[0],
|
|
&x->block[24].coeff[0], 8);
|
|
} else {
|
|
vpx_memset(x->block[24].coeff, 0, 16 * sizeof(x->block[24].coeff[0]));
|
|
}
|
|
}
|
|
|
|
void vp9_transform_mbuv_8x8(MACROBLOCK *x) {
|
|
int i;
|
|
|
|
for (i = 16; i < 24; i += 4) {
|
|
x->fwd_txm8x8(&x->block[i].src_diff[0],
|
|
&x->block[i].coeff[0], 16);
|
|
}
|
|
}
|
|
|
|
void vp9_transform_mb_8x8(MACROBLOCK *x) {
|
|
vp9_transform_mby_8x8(x);
|
|
vp9_transform_mbuv_8x8(x);
|
|
}
|
|
|
|
void vp9_transform_mby_16x16(MACROBLOCK *x) {
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
BLOCK *b = &x->block[0];
|
|
TX_TYPE tx_type = get_tx_type_16x16(xd, &xd->block[0]);
|
|
vp9_clear_system_state();
|
|
if (tx_type != DCT_DCT) {
|
|
vp9_fht_c(b->src_diff, 32, b->coeff, tx_type, 16);
|
|
} else {
|
|
x->fwd_txm16x16(&x->block[0].src_diff[0],
|
|
&x->block[0].coeff[0], 32);
|
|
}
|
|
}
|
|
|
|
void vp9_transform_mb_16x16(MACROBLOCK *x) {
|
|
vp9_transform_mby_16x16(x);
|
|
vp9_transform_mbuv_8x8(x);
|
|
}
|
|
|
|
void vp9_transform_sby_32x32(MACROBLOCK *x) {
|
|
SUPERBLOCK * const x_sb = &x->sb_coeff_data;
|
|
vp9_short_fdct32x32(x_sb->src_diff, x_sb->coeff, 64);
|
|
}
|
|
|
|
void vp9_transform_sbuv_16x16(MACROBLOCK *x) {
|
|
SUPERBLOCK * const x_sb = &x->sb_coeff_data;
|
|
vp9_clear_system_state();
|
|
x->fwd_txm16x16(x_sb->src_diff + 1024,
|
|
x_sb->coeff + 1024, 32);
|
|
x->fwd_txm16x16(x_sb->src_diff + 1280,
|
|
x_sb->coeff + 1280, 32);
|
|
}
|
|
|
|
#define RDTRUNC(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF )
|
|
#define RDTRUNC_8x8(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF )
|
|
typedef struct vp9_token_state vp9_token_state;
|
|
|
|
struct vp9_token_state {
|
|
int rate;
|
|
int error;
|
|
int next;
|
|
signed char token;
|
|
short qc;
|
|
};
|
|
|
|
// TODO: experiments to find optimal multiple numbers
|
|
#define Y1_RD_MULT 4
|
|
#define UV_RD_MULT 2
|
|
#define Y2_RD_MULT 4
|
|
|
|
static const int plane_rd_mult[4] = {
|
|
Y1_RD_MULT,
|
|
Y2_RD_MULT,
|
|
UV_RD_MULT,
|
|
Y1_RD_MULT
|
|
};
|
|
|
|
#define UPDATE_RD_COST()\
|
|
{\
|
|
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);\
|
|
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);\
|
|
if (rd_cost0 == rd_cost1) {\
|
|
rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);\
|
|
rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);\
|
|
}\
|
|
}
|
|
|
|
// This function is a place holder for now but may ultimately need
|
|
// to scan previous tokens to work out the correct context.
|
|
static int trellis_get_coeff_context(int token) {
|
|
int recent_energy = 0;
|
|
return vp9_get_coef_context(&recent_energy, token);
|
|
}
|
|
|
|
static void optimize_b(MACROBLOCK *mb, int i, PLANE_TYPE type,
|
|
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
|
|
int tx_size) {
|
|
BLOCK *b = &mb->block[i];
|
|
BLOCKD *d = &mb->e_mbd.block[i];
|
|
vp9_token_state tokens[257][2];
|
|
unsigned best_index[257][2];
|
|
const int16_t *dequant_ptr = d->dequant, *coeff_ptr = b->coeff;
|
|
int16_t *qcoeff_ptr = d->qcoeff;
|
|
int16_t *dqcoeff_ptr = d->dqcoeff;
|
|
int eob = d->eob, final_eob, sz = 0;
|
|
int i0 = (type == PLANE_TYPE_Y_NO_DC);
|
|
int rc, x, next;
|
|
int64_t rdmult, rddiv, rd_cost0, rd_cost1;
|
|
int rate0, rate1, error0, error1, t0, t1;
|
|
int best, band, pt;
|
|
int err_mult = plane_rd_mult[type];
|
|
int default_eob;
|
|
int const *scan, *bands;
|
|
|
|
switch (tx_size) {
|
|
default:
|
|
case TX_4X4:
|
|
scan = vp9_default_zig_zag1d_4x4;
|
|
bands = vp9_coef_bands_4x4;
|
|
default_eob = 16;
|
|
// TODO: this isn't called (for intra4x4 modes), but will be left in
|
|
// since it could be used later
|
|
{
|
|
TX_TYPE tx_type = get_tx_type_4x4(&mb->e_mbd, d);
|
|
if (tx_type != DCT_DCT) {
|
|
switch (tx_type) {
|
|
case ADST_DCT:
|
|
scan = vp9_row_scan_4x4;
|
|
break;
|
|
|
|
case DCT_ADST:
|
|
scan = vp9_col_scan_4x4;
|
|
break;
|
|
|
|
default:
|
|
scan = vp9_default_zig_zag1d_4x4;
|
|
break;
|
|
}
|
|
} else {
|
|
scan = vp9_default_zig_zag1d_4x4;
|
|
}
|
|
}
|
|
break;
|
|
case TX_8X8:
|
|
scan = vp9_default_zig_zag1d_8x8;
|
|
bands = vp9_coef_bands_8x8;
|
|
default_eob = 64;
|
|
break;
|
|
case TX_16X16:
|
|
scan = vp9_default_zig_zag1d_16x16;
|
|
bands = vp9_coef_bands_16x16;
|
|
default_eob = 256;
|
|
break;
|
|
}
|
|
|
|
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
|
|
rdmult = mb->rdmult * err_mult;
|
|
if (mb->e_mbd.mode_info_context->mbmi.ref_frame == INTRA_FRAME)
|
|
rdmult = (rdmult * 9) >> 4;
|
|
rddiv = mb->rddiv;
|
|
memset(best_index, 0, sizeof(best_index));
|
|
/* Initialize the sentinel node of the trellis. */
|
|
tokens[eob][0].rate = 0;
|
|
tokens[eob][0].error = 0;
|
|
tokens[eob][0].next = default_eob;
|
|
tokens[eob][0].token = DCT_EOB_TOKEN;
|
|
tokens[eob][0].qc = 0;
|
|
*(tokens[eob] + 1) = *(tokens[eob] + 0);
|
|
next = eob;
|
|
for (i = eob; i-- > i0;) {
|
|
int base_bits, d2, dx;
|
|
|
|
rc = scan[i];
|
|
x = qcoeff_ptr[rc];
|
|
/* Only add a trellis state for non-zero coefficients. */
|
|
if (x) {
|
|
int shortcut = 0;
|
|
error0 = tokens[next][0].error;
|
|
error1 = tokens[next][1].error;
|
|
/* Evaluate the first possibility for this state. */
|
|
rate0 = tokens[next][0].rate;
|
|
rate1 = tokens[next][1].rate;
|
|
t0 = (vp9_dct_value_tokens_ptr + x)->Token;
|
|
/* Consider both possible successor states. */
|
|
if (next < default_eob) {
|
|
band = bands[i + 1];
|
|
pt = trellis_get_coeff_context(t0);
|
|
rate0 +=
|
|
mb->token_costs[tx_size][type][band][pt][tokens[next][0].token];
|
|
rate1 +=
|
|
mb->token_costs[tx_size][type][band][pt][tokens[next][1].token];
|
|
}
|
|
UPDATE_RD_COST();
|
|
/* And pick the best. */
|
|
best = rd_cost1 < rd_cost0;
|
|
base_bits = *(vp9_dct_value_cost_ptr + x);
|
|
dx = dqcoeff_ptr[rc] - coeff_ptr[rc];
|
|
d2 = dx * dx;
|
|
tokens[i][0].rate = base_bits + (best ? rate1 : rate0);
|
|
tokens[i][0].error = d2 + (best ? error1 : error0);
|
|
tokens[i][0].next = next;
|
|
tokens[i][0].token = t0;
|
|
tokens[i][0].qc = x;
|
|
best_index[i][0] = best;
|
|
/* Evaluate the second possibility for this state. */
|
|
rate0 = tokens[next][0].rate;
|
|
rate1 = tokens[next][1].rate;
|
|
|
|
if ((abs(x)*dequant_ptr[rc != 0] > abs(coeff_ptr[rc])) &&
|
|
(abs(x)*dequant_ptr[rc != 0] < abs(coeff_ptr[rc]) + dequant_ptr[rc != 0]))
|
|
shortcut = 1;
|
|
else
|
|
shortcut = 0;
|
|
|
|
if (shortcut) {
|
|
sz = -(x < 0);
|
|
x -= 2 * sz + 1;
|
|
}
|
|
|
|
/* Consider both possible successor states. */
|
|
if (!x) {
|
|
/* If we reduced this coefficient to zero, check to see if
|
|
* we need to move the EOB back here.
|
|
*/
|
|
t0 = tokens[next][0].token == DCT_EOB_TOKEN ?
|
|
DCT_EOB_TOKEN : ZERO_TOKEN;
|
|
t1 = tokens[next][1].token == DCT_EOB_TOKEN ?
|
|
DCT_EOB_TOKEN : ZERO_TOKEN;
|
|
} else {
|
|
t0 = t1 = (vp9_dct_value_tokens_ptr + x)->Token;
|
|
}
|
|
if (next < default_eob) {
|
|
band = bands[i + 1];
|
|
if (t0 != DCT_EOB_TOKEN) {
|
|
pt = trellis_get_coeff_context(t0);
|
|
rate0 += mb->token_costs[tx_size][type][band][pt][
|
|
tokens[next][0].token];
|
|
}
|
|
if (t1 != DCT_EOB_TOKEN) {
|
|
pt = trellis_get_coeff_context(t1);
|
|
rate1 += mb->token_costs[tx_size][type][band][pt][
|
|
tokens[next][1].token];
|
|
}
|
|
}
|
|
|
|
UPDATE_RD_COST();
|
|
/* And pick the best. */
|
|
best = rd_cost1 < rd_cost0;
|
|
base_bits = *(vp9_dct_value_cost_ptr + x);
|
|
|
|
if (shortcut) {
|
|
dx -= (dequant_ptr[rc != 0] + sz) ^ sz;
|
|
d2 = dx * dx;
|
|
}
|
|
tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
|
|
tokens[i][1].error = d2 + (best ? error1 : error0);
|
|
tokens[i][1].next = next;
|
|
tokens[i][1].token = best ? t1 : t0;
|
|
tokens[i][1].qc = x;
|
|
best_index[i][1] = best;
|
|
/* Finally, make this the new head of the trellis. */
|
|
next = i;
|
|
}
|
|
/* There's no choice to make for a zero coefficient, so we don't
|
|
* add a new trellis node, but we do need to update the costs.
|
|
*/
|
|
else {
|
|
band = bands[i + 1];
|
|
t0 = tokens[next][0].token;
|
|
t1 = tokens[next][1].token;
|
|
/* Update the cost of each path if we're past the EOB token. */
|
|
if (t0 != DCT_EOB_TOKEN) {
|
|
tokens[next][0].rate += mb->token_costs[tx_size][type][band][0][t0];
|
|
tokens[next][0].token = ZERO_TOKEN;
|
|
}
|
|
if (t1 != DCT_EOB_TOKEN) {
|
|
tokens[next][1].rate += mb->token_costs[tx_size][type][band][0][t1];
|
|
tokens[next][1].token = ZERO_TOKEN;
|
|
}
|
|
/* Don't update next, because we didn't add a new node. */
|
|
}
|
|
}
|
|
|
|
/* Now pick the best path through the whole trellis. */
|
|
band = bands[i + 1];
|
|
VP9_COMBINEENTROPYCONTEXTS(pt, *a, *l);
|
|
rate0 = tokens[next][0].rate;
|
|
rate1 = tokens[next][1].rate;
|
|
error0 = tokens[next][0].error;
|
|
error1 = tokens[next][1].error;
|
|
t0 = tokens[next][0].token;
|
|
t1 = tokens[next][1].token;
|
|
rate0 += mb->token_costs[tx_size][type][band][pt][t0];
|
|
rate1 += mb->token_costs[tx_size][type][band][pt][t1];
|
|
UPDATE_RD_COST();
|
|
best = rd_cost1 < rd_cost0;
|
|
final_eob = i0 - 1;
|
|
for (i = next; i < eob; i = next) {
|
|
x = tokens[i][best].qc;
|
|
if (x)
|
|
final_eob = i;
|
|
rc = scan[i];
|
|
qcoeff_ptr[rc] = x;
|
|
dqcoeff_ptr[rc] = (x * dequant_ptr[rc != 0]);
|
|
|
|
next = tokens[i][best].next;
|
|
best = best_index[i][best];
|
|
}
|
|
final_eob++;
|
|
|
|
d->eob = final_eob;
|
|
*a = *l = (d->eob > !type);
|
|
}
|
|
|
|
/**************************************************************************
|
|
our inverse hadamard transform effectively is weighted sum of all 16 inputs
|
|
with weight either 1 or -1. It has a last stage scaling of (sum+1)>>2. And
|
|
dc only idct is (dc+16)>>5. So if all the sums are between -65 and 63 the
|
|
output after inverse wht and idct will be all zero. A sum of absolute value
|
|
smaller than 65 guarantees all 16 different (+1/-1) weighted sums in wht
|
|
fall between -65 and +65.
|
|
**************************************************************************/
|
|
#define SUM_2ND_COEFF_THRESH 65
|
|
|
|
static void check_reset_2nd_coeffs(MACROBLOCKD *xd,
|
|
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) {
|
|
int sum = 0;
|
|
int i;
|
|
BLOCKD *bd = &xd->block[24];
|
|
if (bd->dequant[0] >= SUM_2ND_COEFF_THRESH
|
|
&& bd->dequant[1] >= SUM_2ND_COEFF_THRESH)
|
|
return;
|
|
|
|
for (i = 0; i < bd->eob; i++) {
|
|
int coef = bd->dqcoeff[vp9_default_zig_zag1d_4x4[i]];
|
|
sum += (coef >= 0) ? coef : -coef;
|
|
if (sum >= SUM_2ND_COEFF_THRESH)
|
|
return;
|
|
}
|
|
|
|
if (sum < SUM_2ND_COEFF_THRESH) {
|
|
for (i = 0; i < bd->eob; i++) {
|
|
int rc = vp9_default_zig_zag1d_4x4[i];
|
|
bd->qcoeff[rc] = 0;
|
|
bd->dqcoeff[rc] = 0;
|
|
}
|
|
bd->eob = 0;
|
|
*a = *l = (bd->eob != 0);
|
|
}
|
|
}
|
|
|
|
#define SUM_2ND_COEFF_THRESH_8X8 32
|
|
static void check_reset_8x8_2nd_coeffs(MACROBLOCKD *xd,
|
|
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) {
|
|
int sum = 0;
|
|
BLOCKD *bd = &xd->block[24];
|
|
int coef;
|
|
|
|
coef = bd->dqcoeff[0];
|
|
sum += (coef >= 0) ? coef : -coef;
|
|
coef = bd->dqcoeff[1];
|
|
sum += (coef >= 0) ? coef : -coef;
|
|
coef = bd->dqcoeff[4];
|
|
sum += (coef >= 0) ? coef : -coef;
|
|
coef = bd->dqcoeff[8];
|
|
sum += (coef >= 0) ? coef : -coef;
|
|
|
|
if (sum < SUM_2ND_COEFF_THRESH_8X8) {
|
|
bd->qcoeff[0] = 0;
|
|
bd->dqcoeff[0] = 0;
|
|
bd->qcoeff[1] = 0;
|
|
bd->dqcoeff[1] = 0;
|
|
bd->qcoeff[4] = 0;
|
|
bd->dqcoeff[4] = 0;
|
|
bd->qcoeff[8] = 0;
|
|
bd->dqcoeff[8] = 0;
|
|
bd->eob = 0;
|
|
*a = *l = (bd->eob != 0);
|
|
}
|
|
}
|
|
|
|
void vp9_optimize_mby_4x4(MACROBLOCK *x) {
|
|
int b;
|
|
PLANE_TYPE type;
|
|
int has_2nd_order;
|
|
ENTROPY_CONTEXT_PLANES t_above, t_left;
|
|
ENTROPY_CONTEXT *ta;
|
|
ENTROPY_CONTEXT *tl;
|
|
|
|
if (!x->e_mbd.above_context || !x->e_mbd.left_context)
|
|
return;
|
|
|
|
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
|
|
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
|
|
|
|
ta = (ENTROPY_CONTEXT *)&t_above;
|
|
tl = (ENTROPY_CONTEXT *)&t_left;
|
|
|
|
has_2nd_order = get_2nd_order_usage(&x->e_mbd);
|
|
|
|
type = has_2nd_order ? PLANE_TYPE_Y_NO_DC : PLANE_TYPE_Y_WITH_DC;
|
|
|
|
for (b = 0; b < 16; b++) {
|
|
optimize_b(x, b, type,
|
|
ta + vp9_block2above[TX_4X4][b],
|
|
tl + vp9_block2left[TX_4X4][b], TX_4X4);
|
|
}
|
|
|
|
if (has_2nd_order) {
|
|
b = 24;
|
|
optimize_b(x, b, PLANE_TYPE_Y2,
|
|
ta + vp9_block2above[TX_4X4][b],
|
|
tl + vp9_block2left[TX_4X4][b], TX_4X4);
|
|
check_reset_2nd_coeffs(&x->e_mbd,
|
|
ta + vp9_block2above[TX_4X4][b],
|
|
tl + vp9_block2left[TX_4X4][b]);
|
|
}
|
|
}
|
|
|
|
void vp9_optimize_mbuv_4x4(MACROBLOCK *x) {
|
|
int b;
|
|
ENTROPY_CONTEXT_PLANES t_above, t_left;
|
|
ENTROPY_CONTEXT *ta;
|
|
ENTROPY_CONTEXT *tl;
|
|
|
|
if (!x->e_mbd.above_context || !x->e_mbd.left_context)
|
|
return;
|
|
|
|
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
|
|
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
|
|
|
|
ta = (ENTROPY_CONTEXT *)&t_above;
|
|
tl = (ENTROPY_CONTEXT *)&t_left;
|
|
|
|
for (b = 16; b < 24; b++) {
|
|
optimize_b(x, b, PLANE_TYPE_UV,
|
|
ta + vp9_block2above[TX_4X4][b],
|
|
tl + vp9_block2left[TX_4X4][b], TX_4X4);
|
|
}
|
|
}
|
|
|
|
static void optimize_mb_4x4(MACROBLOCK *x) {
|
|
vp9_optimize_mby_4x4(x);
|
|
vp9_optimize_mbuv_4x4(x);
|
|
}
|
|
|
|
void vp9_optimize_mby_8x8(MACROBLOCK *x) {
|
|
int b;
|
|
PLANE_TYPE type;
|
|
ENTROPY_CONTEXT_PLANES t_above, t_left;
|
|
ENTROPY_CONTEXT *ta;
|
|
ENTROPY_CONTEXT *tl;
|
|
int has_2nd_order = get_2nd_order_usage(&x->e_mbd);
|
|
|
|
if (!x->e_mbd.above_context || !x->e_mbd.left_context)
|
|
return;
|
|
|
|
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
|
|
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
|
|
|
|
ta = (ENTROPY_CONTEXT *)&t_above;
|
|
tl = (ENTROPY_CONTEXT *)&t_left;
|
|
type = has_2nd_order ? PLANE_TYPE_Y_NO_DC : PLANE_TYPE_Y_WITH_DC;
|
|
for (b = 0; b < 16; b += 4) {
|
|
ENTROPY_CONTEXT *const a = ta + vp9_block2above[TX_8X8][b];
|
|
ENTROPY_CONTEXT *const l = tl + vp9_block2left[TX_8X8][b];
|
|
#if CONFIG_CNVCONTEXT
|
|
ENTROPY_CONTEXT above_ec = (a[0] + a[1]) != 0;
|
|
ENTROPY_CONTEXT left_ec = (l[0] + l[1]) != 0;
|
|
#else
|
|
ENTROPY_CONTEXT above_ec = a[0];
|
|
ENTROPY_CONTEXT left_ec = l[0];
|
|
#endif
|
|
optimize_b(x, b, type, &above_ec, &left_ec, TX_8X8);
|
|
a[1] = a[0] = above_ec;
|
|
l[1] = l[0] = left_ec;
|
|
}
|
|
|
|
// 8x8 always have 2nd order block
|
|
if (has_2nd_order) {
|
|
check_reset_8x8_2nd_coeffs(&x->e_mbd,
|
|
ta + vp9_block2above[TX_8X8][24],
|
|
tl + vp9_block2left[TX_8X8][24]);
|
|
}
|
|
}
|
|
|
|
void vp9_optimize_mbuv_8x8(MACROBLOCK *x) {
|
|
int b;
|
|
ENTROPY_CONTEXT *const ta = (ENTROPY_CONTEXT *)x->e_mbd.above_context;
|
|
ENTROPY_CONTEXT *const tl = (ENTROPY_CONTEXT *)x->e_mbd.left_context;
|
|
|
|
if (!ta || !tl)
|
|
return;
|
|
|
|
for (b = 16; b < 24; b += 4) {
|
|
ENTROPY_CONTEXT *const a = ta + vp9_block2above[TX_8X8][b];
|
|
ENTROPY_CONTEXT *const l = tl + vp9_block2left[TX_8X8][b];
|
|
#if CONFIG_CNVCONTEXT
|
|
ENTROPY_CONTEXT above_ec = (a[0] + a[1]) != 0;
|
|
ENTROPY_CONTEXT left_ec = (l[0] + l[1]) != 0;
|
|
#else
|
|
ENTROPY_CONTEXT above_ec = a[0];
|
|
ENTROPY_CONTEXT left_ec = l[0];
|
|
#endif
|
|
optimize_b(x, b, PLANE_TYPE_UV, &above_ec, &left_ec, TX_8X8);
|
|
}
|
|
}
|
|
|
|
static void optimize_mb_8x8(MACROBLOCK *x) {
|
|
vp9_optimize_mby_8x8(x);
|
|
vp9_optimize_mbuv_8x8(x);
|
|
}
|
|
|
|
void vp9_optimize_mby_16x16(MACROBLOCK *x) {
|
|
ENTROPY_CONTEXT_PLANES *const t_above = x->e_mbd.above_context;
|
|
ENTROPY_CONTEXT_PLANES *const t_left = x->e_mbd.left_context;
|
|
ENTROPY_CONTEXT ta, tl;
|
|
|
|
if (!t_above || !t_left)
|
|
return;
|
|
|
|
#if CONFIG_CNVCONTEXT
|
|
ta = (t_above->y1[0] + t_above->y1[1] + t_above->y1[2] + t_above->y1[3]) != 0;
|
|
tl = (t_left->y1[0] + t_left->y1[1] + t_left->y1[2] + t_left->y1[3]) != 0;
|
|
#else
|
|
ta = t_above->y1[0];
|
|
tl = t_left->y1[0];
|
|
#endif
|
|
optimize_b(x, 0, PLANE_TYPE_Y_WITH_DC, &ta, &tl, TX_16X16);
|
|
}
|
|
|
|
static void optimize_mb_16x16(MACROBLOCK *x) {
|
|
vp9_optimize_mby_16x16(x);
|
|
vp9_optimize_mbuv_8x8(x);
|
|
}
|
|
|
|
void vp9_fidct_mb(MACROBLOCK *x) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size;
|
|
|
|
if (tx_size == TX_16X16) {
|
|
vp9_transform_mb_16x16(x);
|
|
vp9_quantize_mb_16x16(x);
|
|
if (x->optimize)
|
|
optimize_mb_16x16(x);
|
|
vp9_inverse_transform_mb_16x16(xd);
|
|
} else if (tx_size == TX_8X8) {
|
|
if (xd->mode_info_context->mbmi.mode == SPLITMV) {
|
|
assert(xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4);
|
|
vp9_transform_mby_8x8(x);
|
|
vp9_transform_mbuv_4x4(x);
|
|
vp9_quantize_mby_8x8(x);
|
|
vp9_quantize_mbuv_4x4(x);
|
|
if (x->optimize) {
|
|
vp9_optimize_mby_8x8(x);
|
|
vp9_optimize_mbuv_4x4(x);
|
|
}
|
|
vp9_inverse_transform_mby_8x8(xd);
|
|
vp9_inverse_transform_mbuv_4x4(xd);
|
|
} else {
|
|
vp9_transform_mb_8x8(x);
|
|
vp9_quantize_mb_8x8(x);
|
|
if (x->optimize)
|
|
optimize_mb_8x8(x);
|
|
vp9_inverse_transform_mb_8x8(xd);
|
|
}
|
|
} else {
|
|
transform_mb_4x4(x);
|
|
vp9_quantize_mb_4x4(x);
|
|
if (x->optimize)
|
|
optimize_mb_4x4(x);
|
|
vp9_inverse_transform_mb_4x4(xd);
|
|
}
|
|
}
|
|
|
|
void vp9_encode_inter16x16(MACROBLOCK *x) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
|
|
vp9_build_inter_predictors_mb(xd);
|
|
subtract_mb(x);
|
|
vp9_fidct_mb(x);
|
|
vp9_recon_mb(xd);
|
|
}
|
|
|
|
/* this function is used by first pass only */
|
|
void vp9_encode_inter16x16y(MACROBLOCK *x) {
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
BLOCK *b = &x->block[0];
|
|
|
|
vp9_build_1st_inter16x16_predictors_mby(xd, xd->predictor, 16, 0);
|
|
|
|
vp9_subtract_mby(x->src_diff, *(b->base_src), xd->predictor, b->src_stride);
|
|
|
|
vp9_transform_mby_4x4(x);
|
|
vp9_quantize_mby_4x4(x);
|
|
vp9_inverse_transform_mby_4x4(xd);
|
|
|
|
vp9_recon_mby(xd);
|
|
}
|