vpx/test/dct16x16_test.cc
Jingning Han 5c2696c378 Rework unit test for 8x8 transformation
This commit reworks the unit test for 8x8 forward/inverse
transformation. It adds extreme input value test to detect overflow
issues in the intermediate steps.

It temporarily disables unit test for the SSSE3 version, which
showed overflow failure in the new test conditions.

Change-Id: I7caf10bba4b6db031add65d8c0eb99426b38aa42
2014-06-03 14:20:47 -07:00

610 lines
18 KiB
C++

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "./vp9_rtcd.h"
#include "vp9/common/vp9_entropy.h"
#include "vpx/vpx_integer.h"
extern "C" {
void vp9_idct16x16_256_add_c(const int16_t *input, uint8_t *output, int pitch);
}
using libvpx_test::ACMRandom;
namespace {
#ifdef _MSC_VER
static int round(double x) {
if (x < 0)
return static_cast<int>(ceil(x - 0.5));
else
return static_cast<int>(floor(x + 0.5));
}
#endif
const int kNumCoeffs = 256;
const double PI = 3.1415926535898;
void reference2_16x16_idct_2d(double *input, double *output) {
double x;
for (int l = 0; l < 16; ++l) {
for (int k = 0; k < 16; ++k) {
double s = 0;
for (int i = 0; i < 16; ++i) {
for (int j = 0; j < 16; ++j) {
x = cos(PI * j * (l + 0.5) / 16.0) *
cos(PI * i * (k + 0.5) / 16.0) *
input[i * 16 + j] / 256;
if (i != 0)
x *= sqrt(2.0);
if (j != 0)
x *= sqrt(2.0);
s += x;
}
}
output[k*16+l] = s;
}
}
}
const double C1 = 0.995184726672197;
const double C2 = 0.98078528040323;
const double C3 = 0.956940335732209;
const double C4 = 0.923879532511287;
const double C5 = 0.881921264348355;
const double C6 = 0.831469612302545;
const double C7 = 0.773010453362737;
const double C8 = 0.707106781186548;
const double C9 = 0.634393284163646;
const double C10 = 0.555570233019602;
const double C11 = 0.471396736825998;
const double C12 = 0.38268343236509;
const double C13 = 0.290284677254462;
const double C14 = 0.195090322016128;
const double C15 = 0.098017140329561;
void butterfly_16x16_dct_1d(double input[16], double output[16]) {
double step[16];
double intermediate[16];
double temp1, temp2;
// step 1
step[ 0] = input[0] + input[15];
step[ 1] = input[1] + input[14];
step[ 2] = input[2] + input[13];
step[ 3] = input[3] + input[12];
step[ 4] = input[4] + input[11];
step[ 5] = input[5] + input[10];
step[ 6] = input[6] + input[ 9];
step[ 7] = input[7] + input[ 8];
step[ 8] = input[7] - input[ 8];
step[ 9] = input[6] - input[ 9];
step[10] = input[5] - input[10];
step[11] = input[4] - input[11];
step[12] = input[3] - input[12];
step[13] = input[2] - input[13];
step[14] = input[1] - input[14];
step[15] = input[0] - input[15];
// step 2
output[0] = step[0] + step[7];
output[1] = step[1] + step[6];
output[2] = step[2] + step[5];
output[3] = step[3] + step[4];
output[4] = step[3] - step[4];
output[5] = step[2] - step[5];
output[6] = step[1] - step[6];
output[7] = step[0] - step[7];
temp1 = step[ 8] * C7;
temp2 = step[15] * C9;
output[ 8] = temp1 + temp2;
temp1 = step[ 9] * C11;
temp2 = step[14] * C5;
output[ 9] = temp1 - temp2;
temp1 = step[10] * C3;
temp2 = step[13] * C13;
output[10] = temp1 + temp2;
temp1 = step[11] * C15;
temp2 = step[12] * C1;
output[11] = temp1 - temp2;
temp1 = step[11] * C1;
temp2 = step[12] * C15;
output[12] = temp2 + temp1;
temp1 = step[10] * C13;
temp2 = step[13] * C3;
output[13] = temp2 - temp1;
temp1 = step[ 9] * C5;
temp2 = step[14] * C11;
output[14] = temp2 + temp1;
temp1 = step[ 8] * C9;
temp2 = step[15] * C7;
output[15] = temp2 - temp1;
// step 3
step[ 0] = output[0] + output[3];
step[ 1] = output[1] + output[2];
step[ 2] = output[1] - output[2];
step[ 3] = output[0] - output[3];
temp1 = output[4] * C14;
temp2 = output[7] * C2;
step[ 4] = temp1 + temp2;
temp1 = output[5] * C10;
temp2 = output[6] * C6;
step[ 5] = temp1 + temp2;
temp1 = output[5] * C6;
temp2 = output[6] * C10;
step[ 6] = temp2 - temp1;
temp1 = output[4] * C2;
temp2 = output[7] * C14;
step[ 7] = temp2 - temp1;
step[ 8] = output[ 8] + output[11];
step[ 9] = output[ 9] + output[10];
step[10] = output[ 9] - output[10];
step[11] = output[ 8] - output[11];
step[12] = output[12] + output[15];
step[13] = output[13] + output[14];
step[14] = output[13] - output[14];
step[15] = output[12] - output[15];
// step 4
output[ 0] = (step[ 0] + step[ 1]);
output[ 8] = (step[ 0] - step[ 1]);
temp1 = step[2] * C12;
temp2 = step[3] * C4;
temp1 = temp1 + temp2;
output[ 4] = 2*(temp1 * C8);
temp1 = step[2] * C4;
temp2 = step[3] * C12;
temp1 = temp2 - temp1;
output[12] = 2 * (temp1 * C8);
output[ 2] = 2 * ((step[4] + step[ 5]) * C8);
output[14] = 2 * ((step[7] - step[ 6]) * C8);
temp1 = step[4] - step[5];
temp2 = step[6] + step[7];
output[ 6] = (temp1 + temp2);
output[10] = (temp1 - temp2);
intermediate[8] = step[8] + step[14];
intermediate[9] = step[9] + step[15];
temp1 = intermediate[8] * C12;
temp2 = intermediate[9] * C4;
temp1 = temp1 - temp2;
output[3] = 2 * (temp1 * C8);
temp1 = intermediate[8] * C4;
temp2 = intermediate[9] * C12;
temp1 = temp2 + temp1;
output[13] = 2 * (temp1 * C8);
output[ 9] = 2 * ((step[10] + step[11]) * C8);
intermediate[11] = step[10] - step[11];
intermediate[12] = step[12] + step[13];
intermediate[13] = step[12] - step[13];
intermediate[14] = step[ 8] - step[14];
intermediate[15] = step[ 9] - step[15];
output[15] = (intermediate[11] + intermediate[12]);
output[ 1] = -(intermediate[11] - intermediate[12]);
output[ 7] = 2 * (intermediate[13] * C8);
temp1 = intermediate[14] * C12;
temp2 = intermediate[15] * C4;
temp1 = temp1 - temp2;
output[11] = -2 * (temp1 * C8);
temp1 = intermediate[14] * C4;
temp2 = intermediate[15] * C12;
temp1 = temp2 + temp1;
output[ 5] = 2 * (temp1 * C8);
}
void reference_16x16_dct_2d(int16_t input[256], double output[256]) {
// First transform columns
for (int i = 0; i < 16; ++i) {
double temp_in[16], temp_out[16];
for (int j = 0; j < 16; ++j)
temp_in[j] = input[j * 16 + i];
butterfly_16x16_dct_1d(temp_in, temp_out);
for (int j = 0; j < 16; ++j)
output[j * 16 + i] = temp_out[j];
}
// Then transform rows
for (int i = 0; i < 16; ++i) {
double temp_in[16], temp_out[16];
for (int j = 0; j < 16; ++j)
temp_in[j] = output[j + i * 16];
butterfly_16x16_dct_1d(temp_in, temp_out);
// Scale by some magic number
for (int j = 0; j < 16; ++j)
output[j + i * 16] = temp_out[j]/2;
}
}
typedef void (*fdct_t)(const int16_t *in, int16_t *out, int stride);
typedef void (*idct_t)(const int16_t *in, uint8_t *out, int stride);
typedef void (*fht_t) (const int16_t *in, int16_t *out, int stride,
int tx_type);
typedef void (*iht_t) (const int16_t *in, uint8_t *out, int stride,
int tx_type);
typedef std::tr1::tuple<fdct_t, idct_t, int> dct_16x16_param_t;
typedef std::tr1::tuple<fht_t, iht_t, int> ht_16x16_param_t;
void fdct16x16_ref(const int16_t *in, int16_t *out, int stride, int tx_type) {
vp9_fdct16x16_c(in, out, stride);
}
void idct16x16_ref(const int16_t *in, uint8_t *dest, int stride, int tx_type) {
vp9_idct16x16_256_add_c(in, dest, stride);
}
void fht16x16_ref(const int16_t *in, int16_t *out, int stride, int tx_type) {
vp9_fht16x16_c(in, out, stride, tx_type);
}
void iht16x16_ref(const int16_t *in, uint8_t *dest, int stride, int tx_type) {
vp9_iht16x16_256_add_c(in, dest, stride, tx_type);
}
class Trans16x16TestBase {
public:
virtual ~Trans16x16TestBase() {}
protected:
virtual void RunFwdTxfm(int16_t *in, int16_t *out, int stride) = 0;
virtual void RunInvTxfm(int16_t *out, uint8_t *dst, int stride) = 0;
void RunAccuracyCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
uint32_t max_error = 0;
int64_t total_error = 0;
const int count_test_block = 10000;
for (int i = 0; i < count_test_block; ++i) {
DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, test_temp_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs);
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < kNumCoeffs; ++j) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
test_input_block[j] = src[j] - dst[j];
}
REGISTER_STATE_CHECK(RunFwdTxfm(test_input_block,
test_temp_block, pitch_));
REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst, pitch_));
for (int j = 0; j < kNumCoeffs; ++j) {
const uint32_t diff = dst[j] - src[j];
const uint32_t error = diff * diff;
if (max_error < error)
max_error = error;
total_error += error;
}
}
EXPECT_GE(1u, max_error)
<< "Error: 16x16 FHT/IHT has an individual round trip error > 1";
EXPECT_GE(count_test_block , total_error)
<< "Error: 16x16 FHT/IHT has average round trip error > 1 per block";
}
void RunCoeffCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, kNumCoeffs);
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < kNumCoeffs; ++j)
input_block[j] = rnd.Rand8() - rnd.Rand8();
fwd_txfm_ref(input_block, output_ref_block, pitch_, tx_type_);
REGISTER_STATE_CHECK(RunFwdTxfm(input_block, output_block, pitch_));
// The minimum quant value is 4.
for (int j = 0; j < kNumCoeffs; ++j)
EXPECT_EQ(output_block[j], output_ref_block[j]);
}
}
void RunMemCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, input_extreme_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, kNumCoeffs);
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < kNumCoeffs; ++j) {
input_block[j] = rnd.Rand8() - rnd.Rand8();
input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255;
}
if (i == 0) {
for (int j = 0; j < kNumCoeffs; ++j)
input_extreme_block[j] = 255;
} else if (i == 1) {
for (int j = 0; j < kNumCoeffs; ++j)
input_extreme_block[j] = -255;
}
fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, tx_type_);
REGISTER_STATE_CHECK(RunFwdTxfm(input_extreme_block,
output_block, pitch_));
// The minimum quant value is 4.
for (int j = 0; j < kNumCoeffs; ++j) {
EXPECT_EQ(output_block[j], output_ref_block[j]);
EXPECT_GE(4 * DCT_MAX_VALUE, abs(output_block[j]))
<< "Error: 16x16 FDCT has coefficient larger than 4*DCT_MAX_VALUE";
}
}
}
void RunQuantCheck(int dc_thred, int ac_thred) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, input_extreme_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, uint8_t, ref, kNumCoeffs);
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < kNumCoeffs; ++j) {
input_block[j] = rnd.Rand8() - rnd.Rand8();
input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255;
}
if (i == 0)
for (int j = 0; j < kNumCoeffs; ++j)
input_extreme_block[j] = 255;
if (i == 1)
for (int j = 0; j < kNumCoeffs; ++j)
input_extreme_block[j] = -255;
fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, tx_type_);
// clear reconstructed pixel buffers
vpx_memset(dst, 0, kNumCoeffs * sizeof(uint8_t));
vpx_memset(ref, 0, kNumCoeffs * sizeof(uint8_t));
// quantization with maximum allowed step sizes
output_ref_block[0] = (output_ref_block[0] / dc_thred) * dc_thred;
for (int j = 1; j < kNumCoeffs; ++j)
output_ref_block[j] = (output_ref_block[j] / ac_thred) * ac_thred;
inv_txfm_ref(output_ref_block, ref, pitch_, tx_type_);
REGISTER_STATE_CHECK(RunInvTxfm(output_ref_block, dst, pitch_));
for (int j = 0; j < kNumCoeffs; ++j)
EXPECT_EQ(ref[j], dst[j]);
}
}
void RunInvAccuracyCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
DECLARE_ALIGNED_ARRAY(16, int16_t, in, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, coeff, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs);
for (int i = 0; i < count_test_block; ++i) {
double out_r[kNumCoeffs];
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < kNumCoeffs; ++j) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
in[j] = src[j] - dst[j];
}
reference_16x16_dct_2d(in, out_r);
for (int j = 0; j < kNumCoeffs; ++j)
coeff[j] = round(out_r[j]);
REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, 16));
for (int j = 0; j < kNumCoeffs; ++j) {
const uint32_t diff = dst[j] - src[j];
const uint32_t error = diff * diff;
EXPECT_GE(1u, error)
<< "Error: 16x16 IDCT has error " << error
<< " at index " << j;
}
}
}
int pitch_;
int tx_type_;
fht_t fwd_txfm_ref;
iht_t inv_txfm_ref;
};
class Trans16x16DCT
: public Trans16x16TestBase,
public ::testing::TestWithParam<dct_16x16_param_t> {
public:
virtual ~Trans16x16DCT() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
tx_type_ = GET_PARAM(2);
pitch_ = 16;
fwd_txfm_ref = fdct16x16_ref;
inv_txfm_ref = idct16x16_ref;
}
virtual void TearDown() { libvpx_test::ClearSystemState(); }
protected:
void RunFwdTxfm(int16_t *in, int16_t *out, int stride) {
fwd_txfm_(in, out, stride);
}
void RunInvTxfm(int16_t *out, uint8_t *dst, int stride) {
inv_txfm_(out, dst, stride);
}
fdct_t fwd_txfm_;
idct_t inv_txfm_;
};
TEST_P(Trans16x16DCT, AccuracyCheck) {
RunAccuracyCheck();
}
TEST_P(Trans16x16DCT, CoeffCheck) {
RunCoeffCheck();
}
TEST_P(Trans16x16DCT, MemCheck) {
RunMemCheck();
}
TEST_P(Trans16x16DCT, QuantCheck) {
// Use maximally allowed quantization step sizes for DC and AC
// coefficients respectively.
RunQuantCheck(1336, 1828);
}
TEST_P(Trans16x16DCT, InvAccuracyCheck) {
RunInvAccuracyCheck();
}
class Trans16x16HT
: public Trans16x16TestBase,
public ::testing::TestWithParam<ht_16x16_param_t> {
public:
virtual ~Trans16x16HT() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
tx_type_ = GET_PARAM(2);
pitch_ = 16;
fwd_txfm_ref = fht16x16_ref;
inv_txfm_ref = iht16x16_ref;
}
virtual void TearDown() { libvpx_test::ClearSystemState(); }
protected:
void RunFwdTxfm(int16_t *in, int16_t *out, int stride) {
fwd_txfm_(in, out, stride, tx_type_);
}
void RunInvTxfm(int16_t *out, uint8_t *dst, int stride) {
inv_txfm_(out, dst, stride, tx_type_);
}
fht_t fwd_txfm_;
iht_t inv_txfm_;
};
TEST_P(Trans16x16HT, AccuracyCheck) {
RunAccuracyCheck();
}
TEST_P(Trans16x16HT, CoeffCheck) {
RunCoeffCheck();
}
TEST_P(Trans16x16HT, MemCheck) {
RunMemCheck();
}
TEST_P(Trans16x16HT, QuantCheck) {
// The encoder skips any non-DC intra prediction modes,
// when the quantization step size goes beyond 988.
RunQuantCheck(549, 988);
}
using std::tr1::make_tuple;
INSTANTIATE_TEST_CASE_P(
C, Trans16x16DCT,
::testing::Values(
make_tuple(&vp9_fdct16x16_c, &vp9_idct16x16_256_add_c, 0)));
INSTANTIATE_TEST_CASE_P(
C, Trans16x16HT,
::testing::Values(
make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 0),
make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 1),
make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 2),
make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 3)));
#if HAVE_NEON_ASM
INSTANTIATE_TEST_CASE_P(
NEON, Trans16x16DCT,
::testing::Values(
make_tuple(&vp9_fdct16x16_c,
&vp9_idct16x16_256_add_neon, 0)));
#endif
#if HAVE_SSE2
INSTANTIATE_TEST_CASE_P(
SSE2, Trans16x16DCT,
::testing::Values(
make_tuple(&vp9_fdct16x16_sse2,
&vp9_idct16x16_256_add_sse2, 0)));
INSTANTIATE_TEST_CASE_P(
SSE2, Trans16x16HT,
::testing::Values(
make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2, 0),
make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2, 1),
make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2, 2),
make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2, 3)));
#endif
#if HAVE_SSSE3
INSTANTIATE_TEST_CASE_P(
SSSE3, Trans16x16DCT,
::testing::Values(
make_tuple(&vp9_fdct16x16_c, &vp9_idct16x16_256_add_ssse3, 0)));
#endif
} // namespace