32042af14b
Renamed: MAX_MB_SEGMENTS to MAX_SEGMENTS MB_SEG_TREE_PROBS to SEG_TREE_PROBS The minimum unit for segmentation in the segment map is now 8x8 so it is misleading to use MB_ as macro-block traditionally refers to a 16x16 region. Change-Id: I0b55a6f0426bb46dd13435fcfa5bae0a30a7fa22
451 lines
20 KiB
C
451 lines
20 KiB
C
|
|
/*
|
|
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <limits.h>
|
|
|
|
#include "vp9/common/vp9_common.h"
|
|
#include "vp9/common/vp9_pred_common.h"
|
|
#include "vp9/common/vp9_seg_common.h"
|
|
#include "vp9/common/vp9_treecoder.h"
|
|
|
|
// Returns a context number for the given MB prediction signal
|
|
unsigned char vp9_get_pred_context_switchable_interp(const MACROBLOCKD *xd) {
|
|
const MODE_INFO *const mi = xd->mode_info_context;
|
|
const MB_MODE_INFO *const above_mbmi = &mi[-xd->mode_info_stride].mbmi;
|
|
const MB_MODE_INFO *const left_mbmi = &mi[-1].mbmi;
|
|
const int left_in_image = xd->left_available && left_mbmi->mb_in_image;
|
|
const int above_in_image = xd->up_available && above_mbmi->mb_in_image;
|
|
// Note:
|
|
// The mode info data structure has a one element border above and to the
|
|
// left of the entries correpsonding to real macroblocks.
|
|
// The prediction flags in these dummy entries are initialised to 0.
|
|
// left
|
|
const int left_mv_pred = is_inter_mode(left_mbmi->mode);
|
|
const int left_interp = left_in_image && left_mv_pred ?
|
|
vp9_switchable_interp_map[left_mbmi->interp_filter] :
|
|
VP9_SWITCHABLE_FILTERS;
|
|
|
|
// above
|
|
const int above_mv_pred = is_inter_mode(above_mbmi->mode);
|
|
const int above_interp = above_in_image && above_mv_pred ?
|
|
vp9_switchable_interp_map[above_mbmi->interp_filter] :
|
|
VP9_SWITCHABLE_FILTERS;
|
|
|
|
assert(left_interp != -1);
|
|
assert(above_interp != -1);
|
|
|
|
if (left_interp == above_interp)
|
|
return left_interp;
|
|
else if (left_interp == VP9_SWITCHABLE_FILTERS &&
|
|
above_interp != VP9_SWITCHABLE_FILTERS)
|
|
return above_interp;
|
|
else if (left_interp != VP9_SWITCHABLE_FILTERS &&
|
|
above_interp == VP9_SWITCHABLE_FILTERS)
|
|
return left_interp;
|
|
else
|
|
return VP9_SWITCHABLE_FILTERS;
|
|
}
|
|
// Returns a context number for the given MB prediction signal
|
|
unsigned char vp9_get_pred_context_intra_inter(const MACROBLOCKD *xd) {
|
|
int pred_context;
|
|
const MODE_INFO *const mi = xd->mode_info_context;
|
|
const MB_MODE_INFO *const above_mbmi = &mi[-xd->mode_info_stride].mbmi;
|
|
const MB_MODE_INFO *const left_mbmi = &mi[-1].mbmi;
|
|
const int left_in_image = xd->left_available && left_mbmi->mb_in_image;
|
|
const int above_in_image = xd->up_available && above_mbmi->mb_in_image;
|
|
// Note:
|
|
// The mode info data structure has a one element border above and to the
|
|
// left of the entries correpsonding to real macroblocks.
|
|
// The prediction flags in these dummy entries are initialised to 0.
|
|
if (above_in_image && left_in_image) { // both edges available
|
|
if (left_mbmi->ref_frame[0] == INTRA_FRAME &&
|
|
above_mbmi->ref_frame[0] == INTRA_FRAME) { // intra/intra (3)
|
|
pred_context = 3;
|
|
} else { // intra/inter (1) or inter/inter (0)
|
|
pred_context = left_mbmi->ref_frame[0] == INTRA_FRAME ||
|
|
above_mbmi->ref_frame[0] == INTRA_FRAME;
|
|
}
|
|
} else if (above_in_image || left_in_image) { // one edge available
|
|
const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi;
|
|
|
|
// inter: 0, intra: 2
|
|
pred_context = 2 * (edge_mbmi->ref_frame[0] == INTRA_FRAME);
|
|
} else {
|
|
pred_context = 0;
|
|
}
|
|
assert(pred_context >= 0 && pred_context < INTRA_INTER_CONTEXTS);
|
|
return pred_context;
|
|
}
|
|
// Returns a context number for the given MB prediction signal
|
|
unsigned char vp9_get_pred_context_comp_inter_inter(const VP9_COMMON *cm,
|
|
const MACROBLOCKD *xd) {
|
|
int pred_context;
|
|
const MODE_INFO *const mi = xd->mode_info_context;
|
|
const MB_MODE_INFO *const above_mbmi = &mi[-cm->mode_info_stride].mbmi;
|
|
const MB_MODE_INFO *const left_mbmi = &mi[-1].mbmi;
|
|
const int left_in_image = xd->left_available && left_mbmi->mb_in_image;
|
|
const int above_in_image = xd->up_available && above_mbmi->mb_in_image;
|
|
// Note:
|
|
// The mode info data structure has a one element border above and to the
|
|
// left of the entries correpsonding to real macroblocks.
|
|
// The prediction flags in these dummy entries are initialised to 0.
|
|
if (above_in_image && left_in_image) { // both edges available
|
|
if (above_mbmi->ref_frame[1] <= INTRA_FRAME &&
|
|
left_mbmi->ref_frame[1] <= INTRA_FRAME)
|
|
// neither edge uses comp pred (0/1)
|
|
pred_context = (above_mbmi->ref_frame[0] == cm->comp_fixed_ref) ^
|
|
(left_mbmi->ref_frame[0] == cm->comp_fixed_ref);
|
|
else if (above_mbmi->ref_frame[1] <= INTRA_FRAME)
|
|
// one of two edges uses comp pred (2/3)
|
|
pred_context = 2 + (above_mbmi->ref_frame[0] == cm->comp_fixed_ref ||
|
|
above_mbmi->ref_frame[0] == INTRA_FRAME);
|
|
else if (left_mbmi->ref_frame[1] <= INTRA_FRAME)
|
|
// one of two edges uses comp pred (2/3)
|
|
pred_context = 2 + (left_mbmi->ref_frame[0] == cm->comp_fixed_ref ||
|
|
left_mbmi->ref_frame[0] == INTRA_FRAME);
|
|
else // both edges use comp pred (4)
|
|
pred_context = 4;
|
|
} else if (above_in_image || left_in_image) { // one edge available
|
|
const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi;
|
|
|
|
if (edge_mbmi->ref_frame[1] <= INTRA_FRAME)
|
|
// edge does not use comp pred (0/1)
|
|
pred_context = edge_mbmi->ref_frame[0] == cm->comp_fixed_ref;
|
|
else
|
|
// edge uses comp pred (3)
|
|
pred_context = 3;
|
|
} else { // no edges available (1)
|
|
pred_context = 1;
|
|
}
|
|
assert(pred_context >= 0 && pred_context < COMP_INTER_CONTEXTS);
|
|
return pred_context;
|
|
}
|
|
|
|
// Returns a context number for the given MB prediction signal
|
|
unsigned char vp9_get_pred_context_comp_ref_p(const VP9_COMMON *cm,
|
|
const MACROBLOCKD *xd) {
|
|
int pred_context;
|
|
const MODE_INFO *const mi = xd->mode_info_context;
|
|
const MB_MODE_INFO *const above_mbmi = &mi[-cm->mode_info_stride].mbmi;
|
|
const MB_MODE_INFO *const left_mbmi = &mi[-1].mbmi;
|
|
const int left_in_image = xd->left_available && left_mbmi->mb_in_image;
|
|
const int above_in_image = xd->up_available && above_mbmi->mb_in_image;
|
|
// Note:
|
|
// The mode info data structure has a one element border above and to the
|
|
// left of the entries correpsonding to real macroblocks.
|
|
// The prediction flags in these dummy entries are initialised to 0.
|
|
const int fix_ref_idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref];
|
|
const int var_ref_idx = !fix_ref_idx;
|
|
|
|
if (above_in_image && left_in_image) { // both edges available
|
|
if (above_mbmi->ref_frame[0] == INTRA_FRAME &&
|
|
left_mbmi->ref_frame[0] == INTRA_FRAME) { // intra/intra (2)
|
|
pred_context = 2;
|
|
} else if (above_mbmi->ref_frame[0] == INTRA_FRAME ||
|
|
left_mbmi->ref_frame[0] == INTRA_FRAME) { // intra/inter
|
|
const MB_MODE_INFO *edge_mbmi = above_mbmi->ref_frame[0] == INTRA_FRAME ?
|
|
left_mbmi : above_mbmi;
|
|
|
|
if (edge_mbmi->ref_frame[1] <= INTRA_FRAME) // single pred (1/3)
|
|
pred_context = 1 + 2 * (edge_mbmi->ref_frame[0] != cm->comp_var_ref[1]);
|
|
else // comp pred (1/3)
|
|
pred_context = 1 + 2 * (edge_mbmi->ref_frame[var_ref_idx]
|
|
!= cm->comp_var_ref[1]);
|
|
} else { // inter/inter
|
|
int l_sg = left_mbmi->ref_frame[1] <= INTRA_FRAME;
|
|
int a_sg = above_mbmi->ref_frame[1] <= INTRA_FRAME;
|
|
MV_REFERENCE_FRAME vrfa = a_sg ? above_mbmi->ref_frame[0]
|
|
: above_mbmi->ref_frame[var_ref_idx];
|
|
MV_REFERENCE_FRAME vrfl = l_sg ? left_mbmi->ref_frame[0]
|
|
: left_mbmi->ref_frame[var_ref_idx];
|
|
|
|
if (vrfa == vrfl && cm->comp_var_ref[1] == vrfa) {
|
|
pred_context = 0;
|
|
} else if (l_sg && a_sg) { // single/single
|
|
if ((vrfa == cm->comp_fixed_ref && vrfl == cm->comp_var_ref[0]) ||
|
|
(vrfl == cm->comp_fixed_ref && vrfa == cm->comp_var_ref[0]))
|
|
pred_context = 4;
|
|
else if (vrfa == vrfl)
|
|
pred_context = 3;
|
|
else
|
|
pred_context = 1;
|
|
} else if (l_sg || a_sg) { // single/comp
|
|
MV_REFERENCE_FRAME vrfc = l_sg ? vrfa : vrfl;
|
|
MV_REFERENCE_FRAME rfs = a_sg ? vrfa : vrfl;
|
|
if (vrfc == cm->comp_var_ref[1] && rfs != cm->comp_var_ref[1])
|
|
pred_context = 1;
|
|
else if (rfs == cm->comp_var_ref[1] && vrfc != cm->comp_var_ref[1])
|
|
pred_context = 2;
|
|
else
|
|
pred_context = 4;
|
|
} else if (vrfa == vrfl) { // comp/comp
|
|
pred_context = 4;
|
|
} else {
|
|
pred_context = 2;
|
|
}
|
|
}
|
|
} else if (above_in_image || left_in_image) { // one edge available
|
|
const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi;
|
|
|
|
if (edge_mbmi->ref_frame[0] == INTRA_FRAME)
|
|
pred_context = 2;
|
|
else if (edge_mbmi->ref_frame[1] > INTRA_FRAME)
|
|
pred_context = 4 * (edge_mbmi->ref_frame[var_ref_idx]
|
|
!= cm->comp_var_ref[1]);
|
|
else
|
|
pred_context = 3 * (edge_mbmi->ref_frame[0] != cm->comp_var_ref[1]);
|
|
} else { // no edges available (2)
|
|
pred_context = 2;
|
|
}
|
|
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
|
|
|
|
return pred_context;
|
|
}
|
|
unsigned char vp9_get_pred_context_single_ref_p1(const MACROBLOCKD *xd) {
|
|
int pred_context;
|
|
const MODE_INFO *const mi = xd->mode_info_context;
|
|
const MB_MODE_INFO *const above_mbmi = &mi[-xd->mode_info_stride].mbmi;
|
|
const MB_MODE_INFO *const left_mbmi = &mi[-1].mbmi;
|
|
const int left_in_image = xd->left_available && left_mbmi->mb_in_image;
|
|
const int above_in_image = xd->up_available && above_mbmi->mb_in_image;
|
|
// Note:
|
|
// The mode info data structure has a one element border above and to the
|
|
// left of the entries correpsonding to real macroblocks.
|
|
// The prediction flags in these dummy entries are initialised to 0.
|
|
if (above_in_image && left_in_image) { // both edges available
|
|
if (above_mbmi->ref_frame[0] == INTRA_FRAME &&
|
|
left_mbmi->ref_frame[0] == INTRA_FRAME) {
|
|
pred_context = 2;
|
|
} else if (above_mbmi->ref_frame[0] == INTRA_FRAME ||
|
|
left_mbmi->ref_frame[0] == INTRA_FRAME) {
|
|
const MB_MODE_INFO *edge_mbmi = above_mbmi->ref_frame[0] == INTRA_FRAME ?
|
|
left_mbmi : above_mbmi;
|
|
|
|
if (edge_mbmi->ref_frame[1] <= INTRA_FRAME)
|
|
pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST_FRAME);
|
|
else
|
|
pred_context = 1 + (edge_mbmi->ref_frame[0] == LAST_FRAME ||
|
|
edge_mbmi->ref_frame[1] == LAST_FRAME);
|
|
} else if (above_mbmi->ref_frame[1] <= INTRA_FRAME &&
|
|
left_mbmi->ref_frame[1] <= INTRA_FRAME) {
|
|
pred_context = 2 * (above_mbmi->ref_frame[0] == LAST_FRAME) +
|
|
2 * (left_mbmi->ref_frame[0] == LAST_FRAME);
|
|
} else if (above_mbmi->ref_frame[1] > INTRA_FRAME &&
|
|
left_mbmi->ref_frame[1] > INTRA_FRAME) {
|
|
pred_context = 1 + (above_mbmi->ref_frame[0] == LAST_FRAME ||
|
|
above_mbmi->ref_frame[1] == LAST_FRAME ||
|
|
left_mbmi->ref_frame[0] == LAST_FRAME ||
|
|
left_mbmi->ref_frame[1] == LAST_FRAME);
|
|
} else {
|
|
MV_REFERENCE_FRAME rfs = above_mbmi->ref_frame[1] <= INTRA_FRAME ?
|
|
above_mbmi->ref_frame[0] : left_mbmi->ref_frame[0];
|
|
MV_REFERENCE_FRAME crf1 = above_mbmi->ref_frame[1] > INTRA_FRAME ?
|
|
above_mbmi->ref_frame[0] : left_mbmi->ref_frame[0];
|
|
MV_REFERENCE_FRAME crf2 = above_mbmi->ref_frame[1] > INTRA_FRAME ?
|
|
above_mbmi->ref_frame[1] : left_mbmi->ref_frame[1];
|
|
|
|
if (rfs == LAST_FRAME)
|
|
pred_context = 3 + (crf1 == LAST_FRAME || crf2 == LAST_FRAME);
|
|
else
|
|
pred_context = crf1 == LAST_FRAME || crf2 == LAST_FRAME;
|
|
}
|
|
} else if (above_in_image || left_in_image) { // one edge available
|
|
const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi;
|
|
|
|
if (edge_mbmi->ref_frame[0] == INTRA_FRAME)
|
|
pred_context = 2;
|
|
else if (edge_mbmi->ref_frame[1] <= INTRA_FRAME)
|
|
pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST_FRAME);
|
|
else
|
|
pred_context = 1 + (edge_mbmi->ref_frame[0] == LAST_FRAME ||
|
|
edge_mbmi->ref_frame[1] == LAST_FRAME);
|
|
} else { // no edges available (2)
|
|
pred_context = 2;
|
|
}
|
|
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
|
|
return pred_context;
|
|
}
|
|
|
|
unsigned char vp9_get_pred_context_single_ref_p2(const MACROBLOCKD *xd) {
|
|
int pred_context;
|
|
const MODE_INFO *const mi = xd->mode_info_context;
|
|
const MB_MODE_INFO *const above_mbmi = &mi[-xd->mode_info_stride].mbmi;
|
|
const MB_MODE_INFO *const left_mbmi = &mi[-1].mbmi;
|
|
const int left_in_image = xd->left_available && left_mbmi->mb_in_image;
|
|
const int above_in_image = xd->up_available && above_mbmi->mb_in_image;
|
|
|
|
// Note:
|
|
// The mode info data structure has a one element border above and to the
|
|
// left of the entries correpsonding to real macroblocks.
|
|
// The prediction flags in these dummy entries are initialised to 0.
|
|
if (above_in_image && left_in_image) { // both edges available
|
|
if (above_mbmi->ref_frame[0] == INTRA_FRAME &&
|
|
left_mbmi->ref_frame[0] == INTRA_FRAME) {
|
|
pred_context = 2;
|
|
} else if (above_mbmi->ref_frame[0] == INTRA_FRAME ||
|
|
left_mbmi->ref_frame[0] == INTRA_FRAME) {
|
|
const MB_MODE_INFO *edge_mbmi = above_mbmi->ref_frame[0] == INTRA_FRAME ?
|
|
left_mbmi : above_mbmi;
|
|
|
|
if (edge_mbmi->ref_frame[1] <= INTRA_FRAME) {
|
|
if (edge_mbmi->ref_frame[0] == LAST_FRAME)
|
|
pred_context = 3;
|
|
else
|
|
pred_context = 4 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME);
|
|
} else {
|
|
pred_context = 1 + 2 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME ||
|
|
edge_mbmi->ref_frame[1] == GOLDEN_FRAME);
|
|
}
|
|
} else if (above_mbmi->ref_frame[1] <= INTRA_FRAME &&
|
|
left_mbmi->ref_frame[1] <= INTRA_FRAME) {
|
|
if (above_mbmi->ref_frame[0] == LAST_FRAME &&
|
|
left_mbmi->ref_frame[0] == LAST_FRAME) {
|
|
pred_context = 3;
|
|
} else if (above_mbmi->ref_frame[0] == LAST_FRAME ||
|
|
left_mbmi->ref_frame[0] == LAST_FRAME) {
|
|
const MB_MODE_INFO *edge_mbmi = above_mbmi->ref_frame[0] == LAST_FRAME ?
|
|
left_mbmi : above_mbmi;
|
|
|
|
pred_context = 4 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME);
|
|
} else {
|
|
pred_context = 2 * (above_mbmi->ref_frame[0] == GOLDEN_FRAME) +
|
|
2 * (left_mbmi->ref_frame[0] == GOLDEN_FRAME);
|
|
}
|
|
} else if (above_mbmi->ref_frame[1] > INTRA_FRAME &&
|
|
left_mbmi->ref_frame[1] > INTRA_FRAME) {
|
|
if (above_mbmi->ref_frame[0] == left_mbmi->ref_frame[0] &&
|
|
above_mbmi->ref_frame[1] == left_mbmi->ref_frame[1])
|
|
pred_context = 3 * (above_mbmi->ref_frame[0] == GOLDEN_FRAME ||
|
|
above_mbmi->ref_frame[1] == GOLDEN_FRAME ||
|
|
left_mbmi->ref_frame[0] == GOLDEN_FRAME ||
|
|
left_mbmi->ref_frame[1] == GOLDEN_FRAME);
|
|
else
|
|
pred_context = 2;
|
|
} else {
|
|
MV_REFERENCE_FRAME rfs = above_mbmi->ref_frame[1] <= INTRA_FRAME ?
|
|
above_mbmi->ref_frame[0] : left_mbmi->ref_frame[0];
|
|
MV_REFERENCE_FRAME crf1 = above_mbmi->ref_frame[1] > INTRA_FRAME ?
|
|
above_mbmi->ref_frame[0] : left_mbmi->ref_frame[0];
|
|
MV_REFERENCE_FRAME crf2 = above_mbmi->ref_frame[1] > INTRA_FRAME ?
|
|
above_mbmi->ref_frame[1] : left_mbmi->ref_frame[1];
|
|
|
|
if (rfs == GOLDEN_FRAME)
|
|
pred_context = 3 + (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME);
|
|
else if (rfs == ALTREF_FRAME)
|
|
pred_context = crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME;
|
|
else
|
|
pred_context = 1 + 2 * (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME);
|
|
}
|
|
} else if (above_in_image || left_in_image) { // one edge available
|
|
const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi;
|
|
|
|
if (edge_mbmi->ref_frame[0] == INTRA_FRAME ||
|
|
(edge_mbmi->ref_frame[0] == LAST_FRAME &&
|
|
edge_mbmi->ref_frame[1] <= INTRA_FRAME))
|
|
pred_context = 2;
|
|
else if (edge_mbmi->ref_frame[1] <= INTRA_FRAME)
|
|
pred_context = 4 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME);
|
|
else
|
|
pred_context = 3 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME ||
|
|
edge_mbmi->ref_frame[1] == GOLDEN_FRAME);
|
|
} else { // no edges available (2)
|
|
pred_context = 2;
|
|
}
|
|
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
|
|
return pred_context;
|
|
}
|
|
// Returns a context number for the given MB prediction signal
|
|
unsigned char vp9_get_pred_context_tx_size(const MACROBLOCKD *xd) {
|
|
const MODE_INFO *const mi = xd->mode_info_context;
|
|
const MODE_INFO *const above_mi = mi - xd->mode_info_stride;
|
|
const MODE_INFO *const left_mi = mi - 1;
|
|
const int left_in_image = xd->left_available && left_mi->mbmi.mb_in_image;
|
|
const int above_in_image = xd->up_available && above_mi->mbmi.mb_in_image;
|
|
// Note:
|
|
// The mode info data structure has a one element border above and to the
|
|
// left of the entries correpsonding to real macroblocks.
|
|
// The prediction flags in these dummy entries are initialised to 0.
|
|
int above_context, left_context;
|
|
int max_tx_size;
|
|
if (mi->mbmi.sb_type < BLOCK_SIZE_SB8X8)
|
|
max_tx_size = TX_4X4;
|
|
else if (mi->mbmi.sb_type < BLOCK_SIZE_MB16X16)
|
|
max_tx_size = TX_8X8;
|
|
else if (mi->mbmi.sb_type < BLOCK_SIZE_SB32X32)
|
|
max_tx_size = TX_16X16;
|
|
else
|
|
max_tx_size = TX_32X32;
|
|
|
|
above_context = left_context = max_tx_size;
|
|
|
|
if (above_in_image)
|
|
above_context = above_mi->mbmi.mb_skip_coeff ? max_tx_size
|
|
: above_mi->mbmi.txfm_size;
|
|
|
|
if (left_in_image)
|
|
left_context = left_mi->mbmi.mb_skip_coeff ? max_tx_size
|
|
: left_mi->mbmi.txfm_size;
|
|
|
|
if (!left_in_image)
|
|
left_context = above_context;
|
|
|
|
if (!above_in_image)
|
|
above_context = left_context;
|
|
|
|
return above_context + left_context > max_tx_size;
|
|
}
|
|
|
|
void vp9_set_pred_flag_seg_id(VP9_COMMON *cm, BLOCK_SIZE_TYPE bsize,
|
|
int mi_row, int mi_col, uint8_t pred_flag) {
|
|
MODE_INFO *mi = &cm->mi[mi_row * cm->mode_info_stride + mi_col];
|
|
const int bw = 1 << mi_width_log2(bsize);
|
|
const int bh = 1 << mi_height_log2(bsize);
|
|
const int xmis = MIN(cm->mi_cols - mi_col, bw);
|
|
const int ymis = MIN(cm->mi_rows - mi_row, bh);
|
|
int x, y;
|
|
|
|
for (y = 0; y < ymis; y++)
|
|
for (x = 0; x < xmis; x++)
|
|
mi[y * cm->mode_info_stride + x].mbmi.seg_id_predicted = pred_flag;
|
|
}
|
|
|
|
void vp9_set_pred_flag_mbskip(VP9_COMMON *cm, BLOCK_SIZE_TYPE bsize,
|
|
int mi_row, int mi_col, uint8_t pred_flag) {
|
|
MODE_INFO *mi = &cm->mi[mi_row * cm->mode_info_stride + mi_col];
|
|
const int bw = 1 << mi_width_log2(bsize);
|
|
const int bh = 1 << mi_height_log2(bsize);
|
|
const int xmis = MIN(cm->mi_cols - mi_col, bw);
|
|
const int ymis = MIN(cm->mi_rows - mi_row, bh);
|
|
int x, y;
|
|
|
|
for (y = 0; y < ymis; y++)
|
|
for (x = 0; x < xmis; x++)
|
|
mi[y * cm->mode_info_stride + x].mbmi.mb_skip_coeff = pred_flag;
|
|
}
|
|
|
|
int vp9_get_segment_id(VP9_COMMON *cm, const uint8_t *segment_ids,
|
|
BLOCK_SIZE_TYPE bsize, int mi_row, int mi_col) {
|
|
const int mi_offset = mi_row * cm->mi_cols + mi_col;
|
|
const int bw = 1 << mi_width_log2(bsize);
|
|
const int bh = 1 << mi_height_log2(bsize);
|
|
const int xmis = MIN(cm->mi_cols - mi_col, bw);
|
|
const int ymis = MIN(cm->mi_rows - mi_row, bh);
|
|
int x, y, segment_id = INT_MAX;
|
|
|
|
for (y = 0; y < ymis; y++)
|
|
for (x = 0; x < xmis; x++)
|
|
segment_id = MIN(segment_id,
|
|
segment_ids[mi_offset + y * cm->mi_cols + x]);
|
|
|
|
assert(segment_id >= 0 && segment_id < MAX_SEGMENTS);
|
|
return segment_id;
|
|
}
|