89a206ef2f
These allow sending partial bitstream packets over the network before encoding a complete frame is completed, thus lowering end-to-end latency. The tile-rows are not independent. Change-Id: I99986595cbcbff9153e2a14f49b4aa7dee4768e2
378 lines
14 KiB
C
378 lines
14 KiB
C
/*
|
|
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
|
|
#include "limits.h"
|
|
#include "vpx_mem/vpx_mem.h"
|
|
#include "vp9/encoder/vp9_segmentation.h"
|
|
#include "vp9/common/vp9_pred_common.h"
|
|
#include "vp9/common/vp9_tile_common.h"
|
|
|
|
void vp9_update_gf_useage_maps(VP9_COMP *cpi, VP9_COMMON *cm, MACROBLOCK *x) {
|
|
int mb_row, mb_col;
|
|
|
|
MODE_INFO *this_mb_mode_info = cm->mi;
|
|
|
|
x->gf_active_ptr = (signed char *)cpi->gf_active_flags;
|
|
|
|
if ((cm->frame_type == KEY_FRAME) || (cpi->refresh_golden_frame)) {
|
|
// Reset Gf useage monitors
|
|
vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
|
|
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
|
|
} else {
|
|
// for each macroblock row in image
|
|
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
|
|
// for each macroblock col in image
|
|
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
|
|
|
|
// If using golden then set GF active flag if not already set.
|
|
// If using last frame 0,0 mode then leave flag as it is
|
|
// else if using non 0,0 motion or intra modes then clear
|
|
// flag if it is currently set
|
|
if ((this_mb_mode_info->mbmi.ref_frame == GOLDEN_FRAME) ||
|
|
(this_mb_mode_info->mbmi.ref_frame == ALTREF_FRAME)) {
|
|
if (*(x->gf_active_ptr) == 0) {
|
|
*(x->gf_active_ptr) = 1;
|
|
cpi->gf_active_count++;
|
|
}
|
|
} else if ((this_mb_mode_info->mbmi.mode != ZEROMV) &&
|
|
*(x->gf_active_ptr)) {
|
|
*(x->gf_active_ptr) = 0;
|
|
cpi->gf_active_count--;
|
|
}
|
|
|
|
x->gf_active_ptr++; // Step onto next entry
|
|
this_mb_mode_info++; // skip to next mb
|
|
|
|
}
|
|
|
|
// this is to account for the border
|
|
this_mb_mode_info++;
|
|
}
|
|
}
|
|
}
|
|
|
|
void vp9_enable_segmentation(VP9_PTR ptr) {
|
|
VP9_COMP *cpi = (VP9_COMP *)(ptr);
|
|
|
|
// Set the appropriate feature bit
|
|
cpi->mb.e_mbd.segmentation_enabled = 1;
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
|
|
}
|
|
|
|
void vp9_disable_segmentation(VP9_PTR ptr) {
|
|
VP9_COMP *cpi = (VP9_COMP *)(ptr);
|
|
|
|
// Clear the appropriate feature bit
|
|
cpi->mb.e_mbd.segmentation_enabled = 0;
|
|
}
|
|
|
|
void vp9_set_segmentation_map(VP9_PTR ptr,
|
|
unsigned char *segmentation_map) {
|
|
VP9_COMP *cpi = (VP9_COMP *)(ptr);
|
|
|
|
// Copy in the new segmentation map
|
|
vpx_memcpy(cpi->segmentation_map, segmentation_map,
|
|
(cpi->common.mb_rows * cpi->common.mb_cols));
|
|
|
|
// Signal that the map should be updated.
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
|
|
}
|
|
|
|
void vp9_set_segment_data(VP9_PTR ptr,
|
|
signed char *feature_data,
|
|
unsigned char abs_delta) {
|
|
VP9_COMP *cpi = (VP9_COMP *)(ptr);
|
|
|
|
cpi->mb.e_mbd.mb_segment_abs_delta = abs_delta;
|
|
|
|
vpx_memcpy(cpi->mb.e_mbd.segment_feature_data, feature_data,
|
|
sizeof(cpi->mb.e_mbd.segment_feature_data));
|
|
|
|
// TBD ?? Set the feature mask
|
|
// vpx_memcpy(cpi->mb.e_mbd.segment_feature_mask, 0,
|
|
// sizeof(cpi->mb.e_mbd.segment_feature_mask));
|
|
}
|
|
|
|
// Based on set of segment counts calculate a probability tree
|
|
static void calc_segtree_probs(MACROBLOCKD *xd,
|
|
int *segcounts,
|
|
vp9_prob *segment_tree_probs) {
|
|
int count1, count2;
|
|
|
|
// Total count for all segments
|
|
count1 = segcounts[0] + segcounts[1];
|
|
count2 = segcounts[2] + segcounts[3];
|
|
|
|
// Work out probabilities of each segment
|
|
segment_tree_probs[0] = get_binary_prob(count1, count2);
|
|
segment_tree_probs[1] = get_prob(segcounts[0], count1);
|
|
segment_tree_probs[2] = get_prob(segcounts[2], count2);
|
|
}
|
|
|
|
// Based on set of segment counts and probabilities calculate a cost estimate
|
|
static int cost_segmap(MACROBLOCKD *xd,
|
|
int *segcounts,
|
|
vp9_prob *probs) {
|
|
int cost;
|
|
int count1, count2;
|
|
|
|
// Cost the top node of the tree
|
|
count1 = segcounts[0] + segcounts[1];
|
|
count2 = segcounts[2] + segcounts[3];
|
|
cost = count1 * vp9_cost_zero(probs[0]) +
|
|
count2 * vp9_cost_one(probs[0]);
|
|
|
|
// Now add the cost of each individual segment branch
|
|
if (count1 > 0)
|
|
cost += segcounts[0] * vp9_cost_zero(probs[1]) +
|
|
segcounts[1] * vp9_cost_one(probs[1]);
|
|
|
|
if (count2 > 0)
|
|
cost += segcounts[2] * vp9_cost_zero(probs[2]) +
|
|
segcounts[3] * vp9_cost_one(probs[2]);
|
|
|
|
return cost;
|
|
}
|
|
|
|
// Based on set of segment counts calculate a probability tree
|
|
static void calc_segtree_probs_pred(MACROBLOCKD *xd,
|
|
int (*segcounts)[MAX_MB_SEGMENTS],
|
|
vp9_prob *segment_tree_probs,
|
|
vp9_prob *mod_probs) {
|
|
int count[4];
|
|
|
|
assert(!segcounts[0][0] && !segcounts[1][1] &&
|
|
!segcounts[2][2] && !segcounts[3][3]);
|
|
|
|
// Total count for all segments
|
|
count[0] = segcounts[3][0] + segcounts[1][0] + segcounts[2][0];
|
|
count[1] = segcounts[2][1] + segcounts[0][1] + segcounts[3][1];
|
|
count[2] = segcounts[0][2] + segcounts[3][2] + segcounts[1][2];
|
|
count[3] = segcounts[1][3] + segcounts[2][3] + segcounts[0][3];
|
|
|
|
// Work out probabilities of each segment
|
|
segment_tree_probs[0] = get_binary_prob(count[0] + count[1],
|
|
count[2] + count[3]);
|
|
segment_tree_probs[1] = get_binary_prob(count[0], count[1]);
|
|
segment_tree_probs[2] = get_binary_prob(count[2], count[3]);
|
|
|
|
// now work out modified counts that the decoder would have
|
|
count[0] = segment_tree_probs[0] * segment_tree_probs[1];
|
|
count[1] = segment_tree_probs[0] * (256 - segment_tree_probs[1]);
|
|
count[2] = (256 - segment_tree_probs[0]) * segment_tree_probs[2];
|
|
count[3] = (256 - segment_tree_probs[0]) * (256 - segment_tree_probs[2]);
|
|
|
|
// Work out modified probabilties depending on what segment was predicted
|
|
mod_probs[0] = get_binary_prob(count[1], count[2] + count[3]);
|
|
mod_probs[1] = get_binary_prob(count[0], count[2] + count[3]);
|
|
mod_probs[2] = get_binary_prob(count[0] + count[1], count[3]);
|
|
mod_probs[3] = get_binary_prob(count[0] + count[1], count[2]);
|
|
}
|
|
|
|
// Based on set of segment counts and probabilities calculate a cost estimate
|
|
static int cost_segmap_pred(MACROBLOCKD *xd,
|
|
int (*segcounts)[MAX_MB_SEGMENTS],
|
|
vp9_prob *probs, vp9_prob *mod_probs) {
|
|
int pred_seg, cost = 0;
|
|
|
|
for (pred_seg = 0; pred_seg < MAX_MB_SEGMENTS; pred_seg++) {
|
|
int count1, count2;
|
|
|
|
// Cost the top node of the tree
|
|
count1 = segcounts[pred_seg][0] + segcounts[pred_seg][1];
|
|
count2 = segcounts[pred_seg][2] + segcounts[pred_seg][3];
|
|
cost += count1 * vp9_cost_zero(mod_probs[pred_seg]) +
|
|
count2 * vp9_cost_one(mod_probs[pred_seg]);
|
|
|
|
// Now add the cost of each individual segment branch
|
|
if (pred_seg >= 2 && count1) {
|
|
cost += segcounts[pred_seg][0] * vp9_cost_zero(probs[1]) +
|
|
segcounts[pred_seg][1] * vp9_cost_one(probs[1]);
|
|
} else if (pred_seg < 2 && count2 > 0) {
|
|
cost += segcounts[pred_seg][2] * vp9_cost_zero(probs[2]) +
|
|
segcounts[pred_seg][3] * vp9_cost_one(probs[2]);
|
|
}
|
|
}
|
|
|
|
return cost;
|
|
}
|
|
|
|
static void count_segs(VP9_COMP *cpi,
|
|
MODE_INFO *mi,
|
|
int *no_pred_segcounts,
|
|
int (*temporal_predictor_count)[2],
|
|
int (*t_unpred_seg_counts)[MAX_MB_SEGMENTS],
|
|
int mb_size, int mb_row, int mb_col) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
|
|
const int segmap_index = mb_row * cm->mb_cols + mb_col;
|
|
const int segment_id = mi->mbmi.segment_id;
|
|
|
|
xd->mode_info_context = mi;
|
|
xd->mb_to_top_edge = -((mb_row * 16) << 3);
|
|
xd->mb_to_left_edge = -((mb_col * 16) << 3);
|
|
xd->mb_to_bottom_edge = ((cm->mb_rows - mb_size - mb_row) * 16) << 3;
|
|
xd->mb_to_right_edge = ((cm->mb_cols - mb_size - mb_col) * 16) << 3;
|
|
|
|
// Count the number of hits on each segment with no prediction
|
|
no_pred_segcounts[segment_id]++;
|
|
|
|
// Temporal prediction not allowed on key frames
|
|
if (cm->frame_type != KEY_FRAME) {
|
|
// Test to see if the segment id matches the predicted value.
|
|
const int pred_seg_id = vp9_get_pred_mb_segid(cm, xd, segmap_index);
|
|
const int seg_predicted = (segment_id == pred_seg_id);
|
|
|
|
// Get the segment id prediction context
|
|
const int pred_context = vp9_get_pred_context(cm, xd, PRED_SEG_ID);
|
|
|
|
// Store the prediction status for this mb and update counts
|
|
// as appropriate
|
|
vp9_set_pred_flag(xd, PRED_SEG_ID, seg_predicted);
|
|
temporal_predictor_count[pred_context][seg_predicted]++;
|
|
|
|
if (!seg_predicted)
|
|
// Update the "unpredicted" segment count
|
|
t_unpred_seg_counts[pred_seg_id][segment_id]++;
|
|
}
|
|
}
|
|
|
|
void vp9_choose_segmap_coding_method(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
|
|
|
|
int no_pred_cost;
|
|
int t_pred_cost = INT_MAX;
|
|
|
|
int i;
|
|
int tile_col, mb_row, mb_col;
|
|
|
|
int temporal_predictor_count[PREDICTION_PROBS][2];
|
|
int no_pred_segcounts[MAX_MB_SEGMENTS];
|
|
int t_unpred_seg_counts[MAX_MB_SEGMENTS][MAX_MB_SEGMENTS];
|
|
|
|
vp9_prob no_pred_tree[MB_FEATURE_TREE_PROBS];
|
|
vp9_prob t_pred_tree[MB_FEATURE_TREE_PROBS];
|
|
vp9_prob t_pred_tree_mod[MAX_MB_SEGMENTS];
|
|
vp9_prob t_nopred_prob[PREDICTION_PROBS];
|
|
|
|
const int mis = cm->mode_info_stride;
|
|
MODE_INFO *mi_ptr, *mi;
|
|
|
|
// Set default state for the segment tree probabilities and the
|
|
// temporal coding probabilities
|
|
vpx_memset(xd->mb_segment_tree_probs, 255,
|
|
sizeof(xd->mb_segment_tree_probs));
|
|
vpx_memset(cm->segment_pred_probs, 255,
|
|
sizeof(cm->segment_pred_probs));
|
|
|
|
vpx_memset(no_pred_segcounts, 0, sizeof(no_pred_segcounts));
|
|
vpx_memset(t_unpred_seg_counts, 0, sizeof(t_unpred_seg_counts));
|
|
vpx_memset(temporal_predictor_count, 0, sizeof(temporal_predictor_count));
|
|
|
|
// First of all generate stats regarding how well the last segment map
|
|
// predicts this one
|
|
|
|
for (tile_col = 0; tile_col < cm->tile_columns; tile_col++) {
|
|
vp9_get_tile_col_offsets(cm, tile_col);
|
|
mi_ptr = cm->mi + cm->cur_tile_mb_col_start;
|
|
for (mb_row = 0; mb_row < cm->mb_rows; mb_row += 4, mi_ptr += 4 * mis) {
|
|
mi = mi_ptr;
|
|
for (mb_col = cm->cur_tile_mb_col_start;
|
|
mb_col < cm->cur_tile_mb_col_end; mb_col += 4, mi += 4) {
|
|
if (mi->mbmi.sb_type == BLOCK_SIZE_SB64X64) {
|
|
count_segs(cpi, mi, no_pred_segcounts, temporal_predictor_count,
|
|
t_unpred_seg_counts, 4, mb_row, mb_col);
|
|
} else {
|
|
for (i = 0; i < 4; i++) {
|
|
int x_idx = (i & 1) << 1, y_idx = i & 2;
|
|
MODE_INFO *sb_mi = mi + y_idx * mis + x_idx;
|
|
|
|
if (mb_col + x_idx >= cm->mb_cols ||
|
|
mb_row + y_idx >= cm->mb_rows) {
|
|
continue;
|
|
}
|
|
|
|
if (sb_mi->mbmi.sb_type) {
|
|
assert(sb_mi->mbmi.sb_type == BLOCK_SIZE_SB32X32);
|
|
count_segs(cpi, sb_mi, no_pred_segcounts,
|
|
temporal_predictor_count, t_unpred_seg_counts, 2,
|
|
mb_row + y_idx, mb_col + x_idx);
|
|
} else {
|
|
int j;
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
const int x_idx_mb = x_idx + (j & 1);
|
|
const int y_idx_mb = y_idx + (j >> 1);
|
|
MODE_INFO *mb_mi = mi + x_idx_mb + y_idx_mb * mis;
|
|
|
|
if (mb_col + x_idx_mb >= cm->mb_cols ||
|
|
mb_row + y_idx_mb >= cm->mb_rows) {
|
|
continue;
|
|
}
|
|
|
|
assert(mb_mi->mbmi.sb_type == BLOCK_SIZE_MB16X16);
|
|
count_segs(cpi, mb_mi, no_pred_segcounts,
|
|
temporal_predictor_count, t_unpred_seg_counts,
|
|
1, mb_row + y_idx_mb, mb_col + x_idx_mb);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Work out probability tree for coding segments without prediction
|
|
// and the cost.
|
|
calc_segtree_probs(xd, no_pred_segcounts, no_pred_tree);
|
|
no_pred_cost = cost_segmap(xd, no_pred_segcounts, no_pred_tree);
|
|
|
|
// Key frames cannot use temporal prediction
|
|
if (cm->frame_type != KEY_FRAME) {
|
|
// Work out probability tree for coding those segments not
|
|
// predicted using the temporal method and the cost.
|
|
calc_segtree_probs_pred(xd, t_unpred_seg_counts, t_pred_tree,
|
|
t_pred_tree_mod);
|
|
t_pred_cost = cost_segmap_pred(xd, t_unpred_seg_counts, t_pred_tree,
|
|
t_pred_tree_mod);
|
|
|
|
// Add in the cost of the signalling for each prediction context
|
|
for (i = 0; i < PREDICTION_PROBS; i++) {
|
|
t_nopred_prob[i] = get_binary_prob(temporal_predictor_count[i][0],
|
|
temporal_predictor_count[i][1]);
|
|
|
|
// Add in the predictor signaling cost
|
|
t_pred_cost += (temporal_predictor_count[i][0] *
|
|
vp9_cost_zero(t_nopred_prob[i])) +
|
|
(temporal_predictor_count[i][1] *
|
|
vp9_cost_one(t_nopred_prob[i]));
|
|
}
|
|
}
|
|
|
|
// Now choose which coding method to use.
|
|
if (t_pred_cost < no_pred_cost) {
|
|
cm->temporal_update = 1;
|
|
vpx_memcpy(xd->mb_segment_tree_probs,
|
|
t_pred_tree, sizeof(t_pred_tree));
|
|
vpx_memcpy(xd->mb_segment_mispred_tree_probs,
|
|
t_pred_tree_mod, sizeof(t_pred_tree_mod));
|
|
vpx_memcpy(&cm->segment_pred_probs,
|
|
t_nopred_prob, sizeof(t_nopred_prob));
|
|
} else {
|
|
cm->temporal_update = 0;
|
|
vpx_memcpy(xd->mb_segment_tree_probs,
|
|
no_pred_tree, sizeof(no_pred_tree));
|
|
}
|
|
}
|