vpx/vp9/encoder/vp9_encodeframe.c
Ronald S. Bultje 4cca47b538 Use standard integer types for pixel values and coefficients.
For coefficients, use int16_t (instead of short); for pixel values in
16-bit intermediates, use uint16_t (instead of unsigned short); for all
others, use uint8_t (instead of unsigned char).

Change-Id: I3619cd9abf106c3742eccc2e2f5e89a62774f7da
2012-12-18 15:31:19 -08:00

2568 lines
84 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_ports/config.h"
#include "vp9/encoder/vp9_encodeframe.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/common/vp9_common.h"
#include "vp9/encoder/vp9_onyx_int.h"
#include "vp9/common/vp9_extend.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/common/vp9_setupintrarecon.h"
#include "vp9/common/vp9_reconintra4x4.h"
#include "vp9/encoder/vp9_encodeintra.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_invtrans.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/common/vp9_findnearmv.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/encoder/vp9_tokenize.h"
#include "vp9_rtcd.h"
#include <stdio.h>
#include <math.h>
#include <limits.h>
#include "vpx_ports/vpx_timer.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_mvref_common.h"
#define DBG_PRNT_SEGMAP 0
// #define ENC_DEBUG
#ifdef ENC_DEBUG
int enc_debug = 0;
#endif
static void encode_macroblock(VP9_COMP *cpi, MACROBLOCK *x,
TOKENEXTRA **t, int recon_yoffset,
int recon_uvoffset, int output_enabled,
int mb_col, int mb_row);
static void encode_superblock(VP9_COMP *cpi, MACROBLOCK *x,
TOKENEXTRA **t, int recon_yoffset,
int recon_uvoffset, int mb_col, int mb_row);
static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x);
#ifdef MODE_STATS
unsigned int inter_y_modes[MB_MODE_COUNT];
unsigned int inter_uv_modes[VP9_UV_MODES];
unsigned int inter_b_modes[B_MODE_COUNT];
unsigned int y_modes[VP9_YMODES];
unsigned int i8x8_modes[VP9_I8X8_MODES];
unsigned int uv_modes[VP9_UV_MODES];
unsigned int uv_modes_y[VP9_YMODES][VP9_UV_MODES];
unsigned int b_modes[B_MODE_COUNT];
#endif
/* activity_avg must be positive, or flat regions could get a zero weight
* (infinite lambda), which confounds analysis.
* This also avoids the need for divide by zero checks in
* vp9_activity_masking().
*/
#define VP9_ACTIVITY_AVG_MIN (64)
/* This is used as a reference when computing the source variance for the
* purposes of activity masking.
* Eventually this should be replaced by custom no-reference routines,
* which will be faster.
*/
static const uint8_t VP9_VAR_OFFS[16] = {
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
};
// Original activity measure from Tim T's code.
static unsigned int tt_activity_measure(VP9_COMP *cpi, MACROBLOCK *x) {
unsigned int act;
unsigned int sse;
/* TODO: This could also be done over smaller areas (8x8), but that would
* require extensive changes elsewhere, as lambda is assumed to be fixed
* over an entire MB in most of the code.
* Another option is to compute four 8x8 variances, and pick a single
* lambda using a non-linear combination (e.g., the smallest, or second
* smallest, etc.).
*/
act = vp9_variance16x16(x->src.y_buffer, x->src.y_stride, VP9_VAR_OFFS, 0,
&sse);
act = act << 4;
/* If the region is flat, lower the activity some more. */
if (act < 8 << 12)
act = act < 5 << 12 ? act : 5 << 12;
return act;
}
// Stub for alternative experimental activity measures.
static unsigned int alt_activity_measure(VP9_COMP *cpi,
MACROBLOCK *x, int use_dc_pred) {
return vp9_encode_intra(cpi, x, use_dc_pred);
}
// Measure the activity of the current macroblock
// What we measure here is TBD so abstracted to this function
#define ALT_ACT_MEASURE 1
static unsigned int mb_activity_measure(VP9_COMP *cpi, MACROBLOCK *x,
int mb_row, int mb_col) {
unsigned int mb_activity;
if (ALT_ACT_MEASURE) {
int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
// Or use and alternative.
mb_activity = alt_activity_measure(cpi, x, use_dc_pred);
} else {
// Original activity measure from Tim T's code.
mb_activity = tt_activity_measure(cpi, x);
}
if (mb_activity < VP9_ACTIVITY_AVG_MIN)
mb_activity = VP9_ACTIVITY_AVG_MIN;
return mb_activity;
}
// Calculate an "average" mb activity value for the frame
#define ACT_MEDIAN 0
static void calc_av_activity(VP9_COMP *cpi, int64_t activity_sum) {
#if ACT_MEDIAN
// Find median: Simple n^2 algorithm for experimentation
{
unsigned int median;
unsigned int i, j;
unsigned int *sortlist;
unsigned int tmp;
// Create a list to sort to
CHECK_MEM_ERROR(sortlist,
vpx_calloc(sizeof(unsigned int),
cpi->common.MBs));
// Copy map to sort list
vpx_memcpy(sortlist, cpi->mb_activity_map,
sizeof(unsigned int) * cpi->common.MBs);
// Ripple each value down to its correct position
for (i = 1; i < cpi->common.MBs; i ++) {
for (j = i; j > 0; j --) {
if (sortlist[j] < sortlist[j - 1]) {
// Swap values
tmp = sortlist[j - 1];
sortlist[j - 1] = sortlist[j];
sortlist[j] = tmp;
} else
break;
}
}
// Even number MBs so estimate median as mean of two either side.
median = (1 + sortlist[cpi->common.MBs >> 1] +
sortlist[(cpi->common.MBs >> 1) + 1]) >> 1;
cpi->activity_avg = median;
vpx_free(sortlist);
}
#else
// Simple mean for now
cpi->activity_avg = (unsigned int)(activity_sum / cpi->common.MBs);
#endif
if (cpi->activity_avg < VP9_ACTIVITY_AVG_MIN)
cpi->activity_avg = VP9_ACTIVITY_AVG_MIN;
// Experimental code: return fixed value normalized for several clips
if (ALT_ACT_MEASURE)
cpi->activity_avg = 100000;
}
#define USE_ACT_INDEX 0
#define OUTPUT_NORM_ACT_STATS 0
#if USE_ACT_INDEX
// Calculate and activity index for each mb
static void calc_activity_index(VP9_COMP *cpi, MACROBLOCK *x) {
VP9_COMMON *const cm = &cpi->common;
int mb_row, mb_col;
int64_t act;
int64_t a;
int64_t b;
#if OUTPUT_NORM_ACT_STATS
FILE *f = fopen("norm_act.stt", "a");
fprintf(f, "\n%12d\n", cpi->activity_avg);
#endif
// Reset pointers to start of activity map
x->mb_activity_ptr = cpi->mb_activity_map;
// Calculate normalized mb activity number.
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
// for each macroblock col in image
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
// Read activity from the map
act = *(x->mb_activity_ptr);
// Calculate a normalized activity number
a = act + 4 * cpi->activity_avg;
b = 4 * act + cpi->activity_avg;
if (b >= a)
*(x->activity_ptr) = (int)((b + (a >> 1)) / a) - 1;
else
*(x->activity_ptr) = 1 - (int)((a + (b >> 1)) / b);
#if OUTPUT_NORM_ACT_STATS
fprintf(f, " %6d", *(x->mb_activity_ptr));
#endif
// Increment activity map pointers
x->mb_activity_ptr++;
}
#if OUTPUT_NORM_ACT_STATS
fprintf(f, "\n");
#endif
}
#if OUTPUT_NORM_ACT_STATS
fclose(f);
#endif
}
#endif
// Loop through all MBs. Note activity of each, average activity and
// calculate a normalized activity for each
static void build_activity_map(VP9_COMP *cpi) {
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *xd = &x->e_mbd;
VP9_COMMON *const cm = &cpi->common;
#if ALT_ACT_MEASURE
YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
int recon_yoffset;
int recon_y_stride = new_yv12->y_stride;
#endif
int mb_row, mb_col;
unsigned int mb_activity;
int64_t activity_sum = 0;
// for each macroblock row in image
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
#if ALT_ACT_MEASURE
// reset above block coeffs
xd->up_available = (mb_row != 0);
recon_yoffset = (mb_row * recon_y_stride * 16);
#endif
// for each macroblock col in image
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
#if ALT_ACT_MEASURE
xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset;
xd->left_available = (mb_col != 0);
recon_yoffset += 16;
#endif
#if !CONFIG_SUPERBLOCKS
// Copy current mb to a buffer
vp9_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16);
#endif
// measure activity
mb_activity = mb_activity_measure(cpi, x, mb_row, mb_col);
// Keep frame sum
activity_sum += mb_activity;
// Store MB level activity details.
*x->mb_activity_ptr = mb_activity;
// Increment activity map pointer
x->mb_activity_ptr++;
// adjust to the next column of source macroblocks
x->src.y_buffer += 16;
}
// adjust to the next row of mbs
x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
#if ALT_ACT_MEASURE
// extend the recon for intra prediction
vp9_extend_mb_row(new_yv12, xd->dst.y_buffer + 16,
xd->dst.u_buffer + 8, xd->dst.v_buffer + 8);
#endif
}
// Calculate an "average" MB activity
calc_av_activity(cpi, activity_sum);
#if USE_ACT_INDEX
// Calculate an activity index number of each mb
calc_activity_index(cpi, x);
#endif
}
// Macroblock activity masking
void vp9_activity_masking(VP9_COMP *cpi, MACROBLOCK *x) {
#if USE_ACT_INDEX
x->rdmult += *(x->mb_activity_ptr) * (x->rdmult >> 2);
x->errorperbit = x->rdmult * 100 / (110 * x->rddiv);
x->errorperbit += (x->errorperbit == 0);
#else
int64_t a;
int64_t b;
int64_t act = *(x->mb_activity_ptr);
// Apply the masking to the RD multiplier.
a = act + (2 * cpi->activity_avg);
b = (2 * act) + cpi->activity_avg;
x->rdmult = (unsigned int)(((int64_t)x->rdmult * b + (a >> 1)) / a);
x->errorperbit = x->rdmult * 100 / (110 * x->rddiv);
x->errorperbit += (x->errorperbit == 0);
#endif
// Activity based Zbin adjustment
adjust_act_zbin(cpi, x);
}
#if CONFIG_NEW_MVREF
static int vp9_cost_mv_ref_id(vp9_prob * ref_id_probs, int mv_ref_id) {
int cost;
// Encode the index for the MV reference.
switch (mv_ref_id) {
case 0:
cost = vp9_cost_zero(ref_id_probs[0]);
break;
case 1:
cost = vp9_cost_one(ref_id_probs[0]);
cost += vp9_cost_zero(ref_id_probs[1]);
break;
case 2:
cost = vp9_cost_one(ref_id_probs[0]);
cost += vp9_cost_one(ref_id_probs[1]);
cost += vp9_cost_zero(ref_id_probs[2]);
break;
case 3:
cost = vp9_cost_one(ref_id_probs[0]);
cost += vp9_cost_one(ref_id_probs[1]);
cost += vp9_cost_one(ref_id_probs[2]);
break;
// TRAP.. This should not happen
default:
assert(0);
break;
}
return cost;
}
// Estimate the cost of each coding the vector using each reference candidate
static unsigned int pick_best_mv_ref(MACROBLOCK *x,
MV_REFERENCE_FRAME ref_frame,
int_mv target_mv,
int_mv * mv_ref_list,
int_mv * best_ref) {
int i;
int best_index = 0;
int cost, cost2;
int zero_seen = (mv_ref_list[0].as_int) ? FALSE : TRUE;
MACROBLOCKD *xd = &x->e_mbd;
int max_mv = MV_MAX;
cost = vp9_cost_mv_ref_id(xd->mb_mv_ref_id_probs[ref_frame], 0) +
vp9_mv_bit_cost(&target_mv, &mv_ref_list[0], x->nmvjointcost,
x->mvcost, 96, xd->allow_high_precision_mv);
for (i = 1; i < MAX_MV_REF_CANDIDATES; ++i) {
// If we see a 0,0 reference vector for a second time we have reached
// the end of the list of valid candidate vectors.
if (!mv_ref_list[i].as_int) {
if (zero_seen)
break;
else
zero_seen = TRUE;
}
// Check for cases where the reference choice would give rise to an
// uncodable/out of range residual for row or col.
if ((abs(target_mv.as_mv.row - mv_ref_list[i].as_mv.row) > max_mv) ||
(abs(target_mv.as_mv.col - mv_ref_list[i].as_mv.col) > max_mv)) {
continue;
}
cost2 = vp9_cost_mv_ref_id(xd->mb_mv_ref_id_probs[ref_frame], i) +
vp9_mv_bit_cost(&target_mv, &mv_ref_list[i], x->nmvjointcost,
x->mvcost, 96, xd->allow_high_precision_mv);
if (cost2 < cost) {
cost = cost2;
best_index = i;
}
}
// best_index = x->mv_best_ref_index[ref_frame];
best_ref->as_int = mv_ref_list[best_index].as_int;
return best_index;
}
#endif
static void update_state(VP9_COMP *cpi, MACROBLOCK *x,
PICK_MODE_CONTEXT *ctx) {
int i;
MACROBLOCKD *xd = &x->e_mbd;
MODE_INFO *mi = &ctx->mic;
MB_MODE_INFO * mbmi = &xd->mode_info_context->mbmi;
int mb_mode = mi->mbmi.mode;
int mb_mode_index = ctx->best_mode_index;
#if CONFIG_DEBUG
assert(mb_mode < MB_MODE_COUNT);
assert(mb_mode_index < MAX_MODES);
assert(mi->mbmi.ref_frame < MAX_REF_FRAMES);
#endif
// Restore the coding context of the MB to that that was in place
// when the mode was picked for it
vpx_memcpy(xd->mode_info_context, mi, sizeof(MODE_INFO));
#if CONFIG_SUPERBLOCKS
if (mi->mbmi.encoded_as_sb) {
const int mis = cpi->common.mode_info_stride;
if (xd->mb_to_right_edge >= 0)
vpx_memcpy(xd->mode_info_context + 1, mi, sizeof(MODE_INFO));
if (xd->mb_to_bottom_edge >= 0) {
vpx_memcpy(xd->mode_info_context + mis, mi, sizeof(MODE_INFO));
if (xd->mb_to_right_edge >= 0)
vpx_memcpy(xd->mode_info_context + mis + 1, mi, sizeof(MODE_INFO));
}
#if CONFIG_TX32X32 && CONFIG_SUPERBLOCKS
} else {
ctx->txfm_rd_diff[ALLOW_32X32] = ctx->txfm_rd_diff[ALLOW_16X16];
#endif
}
#endif
if (mb_mode == B_PRED) {
for (i = 0; i < 16; i++) {
xd->block[i].bmi.as_mode = xd->mode_info_context->bmi[i].as_mode;
assert(xd->block[i].bmi.as_mode.first < B_MODE_COUNT);
}
} else if (mb_mode == I8X8_PRED) {
for (i = 0; i < 16; i++) {
xd->block[i].bmi = xd->mode_info_context->bmi[i];
}
} else if (mb_mode == SPLITMV) {
vpx_memcpy(x->partition_info, &ctx->partition_info,
sizeof(PARTITION_INFO));
mbmi->mv[0].as_int = x->partition_info->bmi[15].mv.as_int;
mbmi->mv[1].as_int = x->partition_info->bmi[15].second_mv.as_int;
}
{
int segment_id = mbmi->segment_id;
if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_EOB) ||
vp9_get_segdata(xd, segment_id, SEG_LVL_EOB)) {
for (i = 0; i < NB_TXFM_MODES; i++) {
cpi->rd_tx_select_diff[i] += ctx->txfm_rd_diff[i];
}
}
}
if (cpi->common.frame_type == KEY_FRAME) {
// Restore the coding modes to that held in the coding context
// if (mb_mode == B_PRED)
// for (i = 0; i < 16; i++)
// {
// xd->block[i].bmi.as_mode =
// xd->mode_info_context->bmi[i].as_mode;
// assert(xd->mode_info_context->bmi[i].as_mode < MB_MODE_COUNT);
// }
#if CONFIG_INTERNAL_STATS
static const int kf_mode_index[] = {
THR_DC /*DC_PRED*/,
THR_V_PRED /*V_PRED*/,
THR_H_PRED /*H_PRED*/,
THR_D45_PRED /*D45_PRED*/,
THR_D135_PRED /*D135_PRED*/,
THR_D117_PRED /*D117_PRED*/,
THR_D153_PRED /*D153_PRED*/,
THR_D27_PRED /*D27_PRED*/,
THR_D63_PRED /*D63_PRED*/,
THR_TM /*TM_PRED*/,
THR_I8X8_PRED /*I8X8_PRED*/,
THR_B_PRED /*B_PRED*/,
};
cpi->mode_chosen_counts[kf_mode_index[mb_mode]]++;
#endif
} else {
/*
// Reduce the activation RD thresholds for the best choice mode
if ((cpi->rd_baseline_thresh[mb_mode_index] > 0) &&
(cpi->rd_baseline_thresh[mb_mode_index] < (INT_MAX >> 2)))
{
int best_adjustment = (cpi->rd_thresh_mult[mb_mode_index] >> 2);
cpi->rd_thresh_mult[mb_mode_index] =
(cpi->rd_thresh_mult[mb_mode_index]
>= (MIN_THRESHMULT + best_adjustment)) ?
cpi->rd_thresh_mult[mb_mode_index] - best_adjustment :
MIN_THRESHMULT;
cpi->rd_threshes[mb_mode_index] =
(cpi->rd_baseline_thresh[mb_mode_index] >> 7)
* cpi->rd_thresh_mult[mb_mode_index];
}
*/
// Note how often each mode chosen as best
cpi->mode_chosen_counts[mb_mode_index]++;
if (mbmi->mode == SPLITMV || mbmi->mode == NEWMV) {
int_mv best_mv, best_second_mv;
MV_REFERENCE_FRAME rf = mbmi->ref_frame;
#if CONFIG_NEW_MVREF
unsigned int best_index;
MV_REFERENCE_FRAME sec_ref_frame = mbmi->second_ref_frame;
#endif
best_mv.as_int = ctx->best_ref_mv.as_int;
best_second_mv.as_int = ctx->second_best_ref_mv.as_int;
if (mbmi->mode == NEWMV) {
best_mv.as_int = mbmi->ref_mvs[rf][0].as_int;
best_second_mv.as_int = mbmi->ref_mvs[mbmi->second_ref_frame][0].as_int;
#if CONFIG_NEW_MVREF
best_index = pick_best_mv_ref(x, rf, mbmi->mv[0],
mbmi->ref_mvs[rf], &best_mv);
mbmi->best_index = best_index;
if (mbmi->second_ref_frame > 0) {
unsigned int best_index;
best_index =
pick_best_mv_ref(x, sec_ref_frame, mbmi->mv[1],
mbmi->ref_mvs[sec_ref_frame],
&best_second_mv);
mbmi->best_second_index = best_index;
}
#endif
}
mbmi->best_mv.as_int = best_mv.as_int;
mbmi->best_second_mv.as_int = best_second_mv.as_int;
vp9_update_nmv_count(cpi, x, &best_mv, &best_second_mv);
}
#if CONFIG_COMP_INTERINTRA_PRED
if (mbmi->mode >= NEARESTMV && mbmi->mode < SPLITMV &&
mbmi->second_ref_frame <= INTRA_FRAME) {
if (mbmi->second_ref_frame == INTRA_FRAME) {
++cpi->interintra_count[1];
++cpi->ymode_count[mbmi->interintra_mode];
#if SEPARATE_INTERINTRA_UV
++cpi->y_uv_mode_count[mbmi->interintra_mode][mbmi->interintra_uv_mode];
#endif
} else {
++cpi->interintra_count[0];
}
}
#endif
if (cpi->common.mcomp_filter_type == SWITCHABLE &&
mbmi->mode >= NEARESTMV &&
mbmi->mode <= SPLITMV) {
++cpi->switchable_interp_count
[vp9_get_pred_context(&cpi->common, xd, PRED_SWITCHABLE_INTERP)]
[vp9_switchable_interp_map[mbmi->interp_filter]];
}
cpi->prediction_error += ctx->distortion;
cpi->intra_error += ctx->intra_error;
cpi->rd_comp_pred_diff[SINGLE_PREDICTION_ONLY] += ctx->single_pred_diff;
cpi->rd_comp_pred_diff[COMP_PREDICTION_ONLY] += ctx->comp_pred_diff;
cpi->rd_comp_pred_diff[HYBRID_PREDICTION] += ctx->hybrid_pred_diff;
}
}
static void pick_mb_modes(VP9_COMP *cpi,
VP9_COMMON *cm,
int mb_row,
int mb_col,
MACROBLOCK *x,
MACROBLOCKD *xd,
TOKENEXTRA **tp,
int *totalrate,
int *totaldist) {
int i;
int map_index;
int recon_yoffset, recon_uvoffset;
int ref_fb_idx = cm->lst_fb_idx;
int dst_fb_idx = cm->new_fb_idx;
int recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride;
int recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride;
ENTROPY_CONTEXT_PLANES left_context[2];
ENTROPY_CONTEXT_PLANES above_context[2];
ENTROPY_CONTEXT_PLANES *initial_above_context_ptr = cm->above_context
+ mb_col;
// Offsets to move pointers from MB to MB within a SB in raster order
int row_delta[4] = { 0, +1, 0, -1};
int col_delta[4] = { +1, -1, +1, +1};
/* Function should not modify L & A contexts; save and restore on exit */
vpx_memcpy(left_context,
cm->left_context,
sizeof(left_context));
vpx_memcpy(above_context,
initial_above_context_ptr,
sizeof(above_context));
/* Encode MBs in raster order within the SB */
for (i = 0; i < 4; i++) {
int dy = row_delta[i];
int dx = col_delta[i];
int offset_unextended = dy * cm->mb_cols + dx;
int offset_extended = dy * xd->mode_info_stride + dx;
MB_MODE_INFO * mbmi = &xd->mode_info_context->mbmi;
// TODO Many of the index items here can be computed more efficiently!
if ((mb_row >= cm->mb_rows) || (mb_col >= cm->mb_cols)) {
// MB lies outside frame, move on
mb_row += dy;
mb_col += dx;
// Update pointers
x->src.y_buffer += 16 * (dx + dy * x->src.y_stride);
x->src.u_buffer += 8 * (dx + dy * x->src.uv_stride);
x->src.v_buffer += 8 * (dx + dy * x->src.uv_stride);
x->gf_active_ptr += offset_unextended;
x->partition_info += offset_extended;
xd->mode_info_context += offset_extended;
xd->prev_mode_info_context += offset_extended;
#if CONFIG_DEBUG
assert((xd->prev_mode_info_context - cpi->common.prev_mip) ==
(xd->mode_info_context - cpi->common.mip));
#endif
continue;
}
// Index of the MB in the SB 0..3
xd->mb_index = i;
map_index = (mb_row * cpi->common.mb_cols) + mb_col;
x->mb_activity_ptr = &cpi->mb_activity_map[map_index];
// set above context pointer
xd->above_context = cm->above_context + mb_col;
// Restore the appropriate left context depending on which
// row in the SB the MB is situated
xd->left_context = cm->left_context + (i >> 1);
// Set up distance of MB to edge of frame in 1/8th pel units
xd->mb_to_top_edge = -((mb_row * 16) << 3);
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3;
xd->mb_to_right_edge = ((cm->mb_cols - 1 - mb_col) * 16) << 3;
// Set up limit values for MV components to prevent them from
// extending beyond the UMV borders assuming 16x16 block size
x->mv_row_min = -((mb_row * 16) + VP9BORDERINPIXELS - VP9_INTERP_EXTEND);
x->mv_col_min = -((mb_col * 16) + VP9BORDERINPIXELS - VP9_INTERP_EXTEND);
x->mv_row_max = ((cm->mb_rows - mb_row) * 16 +
(VP9BORDERINPIXELS - 16 - VP9_INTERP_EXTEND));
x->mv_col_max = ((cm->mb_cols - mb_col) * 16 +
(VP9BORDERINPIXELS - 16 - VP9_INTERP_EXTEND));
xd->up_available = (mb_row != 0);
xd->left_available = (mb_col != 0);
recon_yoffset = (mb_row * recon_y_stride * 16) + (mb_col * 16);
recon_uvoffset = (mb_row * recon_uv_stride * 8) + (mb_col * 8);
xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset;
xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset;
xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset;
#if !CONFIG_SUPERBLOCKS
// Copy current MB to a work buffer
vp9_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16);
#endif
x->rddiv = cpi->RDDIV;
x->rdmult = cpi->RDMULT;
if (cpi->oxcf.tuning == VP8_TUNE_SSIM)
vp9_activity_masking(cpi, x);
// Is segmentation enabled
if (xd->segmentation_enabled) {
// Code to set segment id in xd->mbmi.segment_id
if (xd->update_mb_segmentation_map)
mbmi->segment_id = cpi->segmentation_map[map_index];
else
mbmi->segment_id = cm->last_frame_seg_map[map_index];
if (mbmi->segment_id > 3)
mbmi->segment_id = 0;
vp9_mb_init_quantizer(cpi, x);
} else
// Set to Segment 0 by default
mbmi->segment_id = 0;
x->active_ptr = cpi->active_map + map_index;
#if CONFIG_SUPERBLOCKS
xd->mode_info_context->mbmi.encoded_as_sb = 0;
#endif
cpi->update_context = 0; // TODO Do we need this now??
vp9_intra_prediction_down_copy(xd);
#ifdef ENC_DEBUG
enc_debug = (cpi->common.current_video_frame == 46 &&
mb_row == 5 && mb_col == 2);
#endif
// Find best coding mode & reconstruct the MB so it is available
// as a predictor for MBs that follow in the SB
if (cm->frame_type == KEY_FRAME) {
int r, d;
#ifdef ENC_DEBUG
if (enc_debug)
printf("intra pick_mb_modes %d %d\n", mb_row, mb_col);
#endif
vp9_rd_pick_intra_mode(cpi, x, &r, &d);
*totalrate += r;
*totaldist += d;
// Dummy encode, do not do the tokenization
encode_macroblock(cpi, x, tp,
recon_yoffset, recon_uvoffset, 0, mb_col, mb_row);
// Note the encoder may have changed the segment_id
// Save the coding context
vpx_memcpy(&x->mb_context[i].mic, xd->mode_info_context,
sizeof(MODE_INFO));
} else {
int seg_id, r, d;
if (xd->segmentation_enabled && cpi->seg0_cnt > 0 &&
!vp9_segfeature_active(xd, 0, SEG_LVL_REF_FRAME) &&
vp9_segfeature_active(xd, 1, SEG_LVL_REF_FRAME) &&
vp9_check_segref(xd, 1, INTRA_FRAME) +
vp9_check_segref(xd, 1, LAST_FRAME) +
vp9_check_segref(xd, 1, GOLDEN_FRAME) +
vp9_check_segref(xd, 1, ALTREF_FRAME) == 1) {
cpi->seg0_progress = (cpi->seg0_idx << 16) / cpi->seg0_cnt;
} else {
cpi->seg0_progress = (((mb_col & ~1) * 2 + (mb_row & ~1) * cm->mb_cols + i) << 16) / cm->MBs;
}
#ifdef ENC_DEBUG
if (enc_debug)
printf("inter pick_mb_modes %d %d\n", mb_row, mb_col);
#endif
vp9_pick_mode_inter_macroblock(cpi, x, recon_yoffset,
recon_uvoffset, &r, &d);
*totalrate += r;
*totaldist += d;
// Dummy encode, do not do the tokenization
encode_macroblock(cpi, x, tp,
recon_yoffset, recon_uvoffset, 0, mb_col, mb_row);
seg_id = mbmi->segment_id;
if (cpi->mb.e_mbd.segmentation_enabled && seg_id == 0) {
cpi->seg0_idx++;
}
if (!xd->segmentation_enabled ||
!vp9_segfeature_active(xd, seg_id, SEG_LVL_REF_FRAME) ||
vp9_check_segref(xd, seg_id, INTRA_FRAME) +
vp9_check_segref(xd, seg_id, LAST_FRAME) +
vp9_check_segref(xd, seg_id, GOLDEN_FRAME) +
vp9_check_segref(xd, seg_id, ALTREF_FRAME) > 1) {
// Get the prediction context and status
int pred_flag = vp9_get_pred_flag(xd, PRED_REF);
int pred_context = vp9_get_pred_context(cm, xd, PRED_REF);
// Count prediction success
cpi->ref_pred_count[pred_context][pred_flag]++;
}
}
// Next MB
mb_row += dy;
mb_col += dx;
x->src.y_buffer += 16 * (dx + dy * x->src.y_stride);
x->src.u_buffer += 8 * (dx + dy * x->src.uv_stride);
x->src.v_buffer += 8 * (dx + dy * x->src.uv_stride);
x->gf_active_ptr += offset_unextended;
x->partition_info += offset_extended;
xd->mode_info_context += offset_extended;
xd->prev_mode_info_context += offset_extended;
#if CONFIG_DEBUG
assert((xd->prev_mode_info_context - cpi->common.prev_mip) ==
(xd->mode_info_context - cpi->common.mip));
#endif
}
/* Restore L & A coding context to those in place on entry */
vpx_memcpy(cm->left_context,
left_context,
sizeof(left_context));
vpx_memcpy(initial_above_context_ptr,
above_context,
sizeof(above_context));
}
#if CONFIG_SUPERBLOCKS
static void pick_sb_modes (VP9_COMP *cpi,
VP9_COMMON *cm,
int mb_row,
int mb_col,
MACROBLOCK *x,
MACROBLOCKD *xd,
TOKENEXTRA **tp,
int *totalrate,
int *totaldist)
{
int map_index;
int recon_yoffset, recon_uvoffset;
int ref_fb_idx = cm->lst_fb_idx;
int dst_fb_idx = cm->new_fb_idx;
int recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride;
int recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride;
ENTROPY_CONTEXT_PLANES left_context[2];
ENTROPY_CONTEXT_PLANES above_context[2];
ENTROPY_CONTEXT_PLANES *initial_above_context_ptr = cm->above_context
+ mb_col;
/* Function should not modify L & A contexts; save and restore on exit */
vpx_memcpy (left_context,
cm->left_context,
sizeof(left_context));
vpx_memcpy (above_context,
initial_above_context_ptr,
sizeof(above_context));
map_index = (mb_row * cpi->common.mb_cols) + mb_col;
x->mb_activity_ptr = &cpi->mb_activity_map[map_index];
/* set above context pointer */
xd->above_context = cm->above_context + mb_col;
/* Restore the appropriate left context depending on which
* row in the SB the MB is situated */
xd->left_context = cm->left_context;
// Set up distance of MB to edge of frame in 1/8th pel units
xd->mb_to_top_edge = -((mb_row * 16) << 3);
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_bottom_edge = ((cm->mb_rows - 2 - mb_row) * 16) << 3;
xd->mb_to_right_edge = ((cm->mb_cols - 2 - mb_col) * 16) << 3;
/* Set up limit values for MV components to prevent them from
* extending beyond the UMV borders assuming 16x16 block size */
x->mv_row_min = -((mb_row * 16) + VP9BORDERINPIXELS - VP9_INTERP_EXTEND);
x->mv_col_min = -((mb_col * 16) + VP9BORDERINPIXELS - VP9_INTERP_EXTEND);
x->mv_row_max = ((cm->mb_rows - mb_row) * 16 +
(VP9BORDERINPIXELS - 32 - VP9_INTERP_EXTEND));
x->mv_col_max = ((cm->mb_cols - mb_col) * 16 +
(VP9BORDERINPIXELS - 32 - VP9_INTERP_EXTEND));
xd->up_available = (mb_row != 0);
xd->left_available = (mb_col != 0);
recon_yoffset = (mb_row * recon_y_stride * 16) + (mb_col * 16);
recon_uvoffset = (mb_row * recon_uv_stride * 8) + (mb_col * 8);
xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset;
xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset;
xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset;
#if 0 // FIXME
/* Copy current MB to a work buffer */
vp9_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16);
#endif
x->rddiv = cpi->RDDIV;
x->rdmult = cpi->RDMULT;
if(cpi->oxcf.tuning == VP8_TUNE_SSIM)
vp9_activity_masking(cpi, x);
/* Is segmentation enabled */
if (xd->segmentation_enabled)
{
/* Code to set segment id in xd->mbmi.segment_id */
if (xd->update_mb_segmentation_map)
xd->mode_info_context->mbmi.segment_id =
cpi->segmentation_map[map_index] &&
cpi->segmentation_map[map_index + 1] &&
cpi->segmentation_map[map_index + cm->mb_cols] &&
cpi->segmentation_map[map_index + cm->mb_cols + 1];
else
xd->mode_info_context->mbmi.segment_id =
cm->last_frame_seg_map[map_index] &&
cm->last_frame_seg_map[map_index + 1] &&
cm->last_frame_seg_map[map_index + cm->mb_cols] &&
cm->last_frame_seg_map[map_index + cm->mb_cols + 1];
if (xd->mode_info_context->mbmi.segment_id > 3)
xd->mode_info_context->mbmi.segment_id = 0;
vp9_mb_init_quantizer(cpi, x);
}
else
/* Set to Segment 0 by default */
xd->mode_info_context->mbmi.segment_id = 0;
x->active_ptr = cpi->active_map + map_index;
cpi->update_context = 0; // TODO Do we need this now??
/* Find best coding mode & reconstruct the MB so it is available
* as a predictor for MBs that follow in the SB */
if (cm->frame_type == KEY_FRAME)
{
vp9_rd_pick_intra_mode_sb(cpi, x,
totalrate,
totaldist);
/* Save the coding context */
vpx_memcpy(&x->sb_context[0].mic, xd->mode_info_context,
sizeof(MODE_INFO));
} else {
if (xd->segmentation_enabled && cpi->seg0_cnt > 0 &&
!vp9_segfeature_active(xd, 0, SEG_LVL_REF_FRAME) &&
vp9_segfeature_active(xd, 1, SEG_LVL_REF_FRAME) &&
vp9_check_segref(xd, 1, INTRA_FRAME) +
vp9_check_segref(xd, 1, LAST_FRAME) +
vp9_check_segref(xd, 1, GOLDEN_FRAME) +
vp9_check_segref(xd, 1, ALTREF_FRAME) == 1) {
cpi->seg0_progress = (cpi->seg0_idx << 16) / cpi->seg0_cnt;
} else {
cpi->seg0_progress =
(((mb_col & ~1) * 2 + (mb_row & ~1) * cm->mb_cols) << 16) / cm->MBs;
}
vp9_rd_pick_inter_mode_sb(cpi, x,
recon_yoffset,
recon_uvoffset,
totalrate,
totaldist);
}
/* Restore L & A coding context to those in place on entry */
vpx_memcpy (cm->left_context,
left_context,
sizeof(left_context));
vpx_memcpy (initial_above_context_ptr,
above_context,
sizeof(above_context));
}
#endif
static void encode_sb(VP9_COMP *cpi,
VP9_COMMON *cm,
int mbrow,
int mbcol,
MACROBLOCK *x,
MACROBLOCKD *xd,
TOKENEXTRA **tp) {
int i;
int map_index;
int mb_row, mb_col;
int recon_yoffset, recon_uvoffset;
int ref_fb_idx = cm->lst_fb_idx;
int dst_fb_idx = cm->new_fb_idx;
int recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride;
int recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride;
int row_delta[4] = { 0, +1, 0, -1};
int col_delta[4] = { +1, -1, +1, +1};
mb_row = mbrow;
mb_col = mbcol;
/* Encode MBs in raster order within the SB */
for (i = 0; i < 4; i++) {
int dy = row_delta[i];
int dx = col_delta[i];
int offset_extended = dy * xd->mode_info_stride + dx;
int offset_unextended = dy * cm->mb_cols + dx;
MB_MODE_INFO * mbmi = &xd->mode_info_context->mbmi;
if ((mb_row >= cm->mb_rows) || (mb_col >= cm->mb_cols)) {
// MB lies outside frame, move on
mb_row += dy;
mb_col += dx;
x->src.y_buffer += 16 * (dx + dy * x->src.y_stride);
x->src.u_buffer += 8 * (dx + dy * x->src.uv_stride);
x->src.v_buffer += 8 * (dx + dy * x->src.uv_stride);
x->gf_active_ptr += offset_unextended;
x->partition_info += offset_extended;
xd->mode_info_context += offset_extended;
xd->prev_mode_info_context += offset_extended;
#if CONFIG_DEBUG
assert((xd->prev_mode_info_context - cpi->common.prev_mip) ==
(xd->mode_info_context - cpi->common.mip));
#endif
continue;
}
xd->mb_index = i;
// Restore MB state to that when it was picked
#if CONFIG_SUPERBLOCKS
if (xd->mode_info_context->mbmi.encoded_as_sb) {
update_state(cpi, x, &x->sb_context[i]);
cpi->sb_count++;
} else
#endif
update_state(cpi, x, &x->mb_context[i]);
map_index = (mb_row * cpi->common.mb_cols) + mb_col;
x->mb_activity_ptr = &cpi->mb_activity_map[map_index];
// reset above block coeffs
xd->above_context = cm->above_context + mb_col;
xd->left_context = cm->left_context + (i >> 1);
// Set up distance of MB to edge of the frame in 1/8th pel units
// Set up limit values for MV components to prevent them from
// extending beyond the UMV borders assuming 32x32 block size
x->mv_row_min = -((mb_row * 16) + VP9BORDERINPIXELS - VP9_INTERP_EXTEND);
x->mv_col_min = -((mb_col * 16) + VP9BORDERINPIXELS - VP9_INTERP_EXTEND);
xd->mb_to_top_edge = -((mb_row * 16) << 3);
xd->mb_to_left_edge = -((mb_col * 16) << 3);
#if CONFIG_SUPERBLOCKS
if (xd->mode_info_context->mbmi.encoded_as_sb) {
x->mv_row_max = ((cm->mb_rows - mb_row) * 16 +
(VP9BORDERINPIXELS - 32 - VP9_INTERP_EXTEND));
x->mv_col_max = ((cm->mb_cols - mb_col) * 16 +
(VP9BORDERINPIXELS - 32 - VP9_INTERP_EXTEND));
xd->mb_to_bottom_edge = ((cm->mb_rows - 2 - mb_row) * 16) << 3;
xd->mb_to_right_edge = ((cm->mb_cols - 2 - mb_col) * 16) << 3;
} else {
#endif
x->mv_row_max = ((cm->mb_rows - mb_row) * 16 +
(VP9BORDERINPIXELS - 16 - VP9_INTERP_EXTEND));
x->mv_col_max = ((cm->mb_cols - mb_col) * 16 +
(VP9BORDERINPIXELS - 16 - VP9_INTERP_EXTEND));
xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3;
xd->mb_to_right_edge = ((cm->mb_cols - 1 - mb_col) * 16) << 3;
#if CONFIG_SUPERBLOCKS
}
#endif
xd->up_available = (mb_row != 0);
xd->left_available = (mb_col != 0);
recon_yoffset = (mb_row * recon_y_stride * 16) + (mb_col * 16);
recon_uvoffset = (mb_row * recon_uv_stride * 8) + (mb_col * 8);
xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset;
xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset;
xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset;
#if !CONFIG_SUPERBLOCKS
// Copy current MB to a work buffer
vp9_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16);
#endif
if (cpi->oxcf.tuning == VP8_TUNE_SSIM)
vp9_activity_masking(cpi, x);
// Is segmentation enabled
if (xd->segmentation_enabled) {
vp9_mb_init_quantizer(cpi, x);
}
x->active_ptr = cpi->active_map + map_index;
cpi->update_context = 0;
#if CONFIG_SUPERBLOCKS
if (!xd->mode_info_context->mbmi.encoded_as_sb)
#endif
vp9_intra_prediction_down_copy(xd);
if (cm->frame_type == KEY_FRAME) {
#if CONFIG_SUPERBLOCKS
if (xd->mode_info_context->mbmi.encoded_as_sb)
encode_superblock(cpi, x, tp, recon_yoffset, recon_uvoffset,
mb_col, mb_row);
else
#endif
encode_macroblock(cpi, x, tp, recon_yoffset, recon_uvoffset, 1,
mb_col, mb_row);
// Note the encoder may have changed the segment_id
#ifdef MODE_STATS
y_modes[mbmi->mode]++;
#endif
} else {
unsigned char *segment_id;
int seg_ref_active;
if (xd->mode_info_context->mbmi.ref_frame) {
unsigned char pred_context;
pred_context = vp9_get_pred_context(cm, xd, PRED_COMP);
if (xd->mode_info_context->mbmi.second_ref_frame <= INTRA_FRAME)
cpi->single_pred_count[pred_context]++;
else
cpi->comp_pred_count[pred_context]++;
}
#if CONFIG_SUPERBLOCKS
if (xd->mode_info_context->mbmi.encoded_as_sb)
encode_superblock(cpi, x, tp, recon_yoffset, recon_uvoffset,
mb_col, mb_row);
else
#endif
encode_macroblock(cpi, x, tp, recon_yoffset, recon_uvoffset, 1,
mb_col, mb_row);
// Note the encoder may have changed the segment_id
#ifdef MODE_STATS
inter_y_modes[mbmi->mode]++;
if (mbmi->mode == SPLITMV) {
int b;
for (b = 0; b < x->partition_info->count; b++) {
inter_b_modes[x->partition_info->bmi[b].mode]++;
}
}
#endif
// If we have just a single reference frame coded for a segment then
// exclude from the reference frame counts used to work out
// probabilities. NOTE: At the moment we dont support custom trees
// for the reference frame coding for each segment but this is a
// possible future action.
segment_id = &mbmi->segment_id;
seg_ref_active = vp9_segfeature_active(xd, *segment_id,
SEG_LVL_REF_FRAME);
if (!seg_ref_active ||
((vp9_check_segref(xd, *segment_id, INTRA_FRAME) +
vp9_check_segref(xd, *segment_id, LAST_FRAME) +
vp9_check_segref(xd, *segment_id, GOLDEN_FRAME) +
vp9_check_segref(xd, *segment_id, ALTREF_FRAME)) > 1)) {
{
cpi->count_mb_ref_frame_usage[mbmi->ref_frame]++;
}
}
// Count of last ref frame 0,0 usage
if ((mbmi->mode == ZEROMV) && (mbmi->ref_frame == LAST_FRAME))
cpi->inter_zz_count++;
}
#if CONFIG_SUPERBLOCKS
if (xd->mode_info_context->mbmi.encoded_as_sb) {
x->src.y_buffer += 32;
x->src.u_buffer += 16;
x->src.v_buffer += 16;
x->gf_active_ptr += 2;
x->partition_info += 2;
xd->mode_info_context += 2;
xd->prev_mode_info_context += 2;
(*tp)->Token = EOSB_TOKEN;
(*tp)++;
if (mb_row < cm->mb_rows) cpi->tplist[mb_row].stop = *tp;
break;
}
#endif
// Next MB
mb_row += dy;
mb_col += dx;
x->src.y_buffer += 16 * (dx + dy * x->src.y_stride);
x->src.u_buffer += 8 * (dx + dy * x->src.uv_stride);
x->src.v_buffer += 8 * (dx + dy * x->src.uv_stride);
x->gf_active_ptr += offset_unextended;
x->partition_info += offset_extended;
xd->mode_info_context += offset_extended;
xd->prev_mode_info_context += offset_extended;
#if CONFIG_DEBUG
assert((xd->prev_mode_info_context - cpi->common.prev_mip) ==
(xd->mode_info_context - cpi->common.mip));
#endif
(*tp)->Token = EOSB_TOKEN;
(*tp)++;
if (mb_row < cm->mb_rows) cpi->tplist[mb_row].stop = *tp;
}
// debug output
#if DBG_PRNT_SEGMAP
{
FILE *statsfile;
statsfile = fopen("segmap2.stt", "a");
fprintf(statsfile, "\n");
fclose(statsfile);
}
#endif
}
static
void encode_sb_row(VP9_COMP *cpi,
VP9_COMMON *cm,
int mb_row,
MACROBLOCK *x,
MACROBLOCKD *xd,
TOKENEXTRA **tp,
int *totalrate) {
int mb_col;
int mb_cols = cm->mb_cols;
// Initialize the left context for the new SB row
vpx_memset(cm->left_context, 0, sizeof(cm->left_context));
// Code each SB in the row
for (mb_col = 0; mb_col < mb_cols; mb_col += 2) {
int mb_rate = 0, mb_dist = 0;
#if CONFIG_SUPERBLOCKS
int sb_rate = INT_MAX, sb_dist;
#endif
#if CONFIG_DEBUG
MODE_INFO *mic = xd->mode_info_context;
PARTITION_INFO *pi = x->partition_info;
signed char *gfa = x->gf_active_ptr;
uint8_t *yb = x->src.y_buffer;
uint8_t *ub = x->src.u_buffer;
uint8_t *vb = x->src.v_buffer;
#endif
#if CONFIG_SUPERBLOCKS
// Pick modes assuming the SB is coded as 4 independent MBs
xd->mode_info_context->mbmi.encoded_as_sb = 0;
#endif
pick_mb_modes(cpi, cm, mb_row, mb_col, x, xd, tp, &mb_rate, &mb_dist);
#if CONFIG_SUPERBLOCKS
mb_rate += vp9_cost_bit(cm->sb_coded, 0);
#endif
x->src.y_buffer -= 32;
x->src.u_buffer -= 16;
x->src.v_buffer -= 16;
x->gf_active_ptr -= 2;
x->partition_info -= 2;
xd->mode_info_context -= 2;
xd->prev_mode_info_context -= 2;
#if CONFIG_DEBUG
assert(x->gf_active_ptr == gfa);
assert(x->partition_info == pi);
assert(xd->mode_info_context == mic);
assert(x->src.y_buffer == yb);
assert(x->src.u_buffer == ub);
assert(x->src.v_buffer == vb);
#endif
#if CONFIG_SUPERBLOCKS
if (!((( mb_cols & 1) && mb_col == mb_cols - 1) ||
((cm->mb_rows & 1) && mb_row == cm->mb_rows - 1))) {
/* Pick a mode assuming that it applies to all 4 of the MBs in the SB */
xd->mode_info_context->mbmi.encoded_as_sb = 1;
pick_sb_modes(cpi, cm, mb_row, mb_col, x, xd, tp, &sb_rate, &sb_dist);
sb_rate += vp9_cost_bit(cm->sb_coded, 1);
}
/* Decide whether to encode as a SB or 4xMBs */
if (sb_rate < INT_MAX &&
RDCOST(x->rdmult, x->rddiv, sb_rate, sb_dist) <
RDCOST(x->rdmult, x->rddiv, mb_rate, mb_dist)) {
xd->mode_info_context->mbmi.encoded_as_sb = 1;
xd->mode_info_context[1].mbmi.encoded_as_sb = 1;
xd->mode_info_context[cm->mode_info_stride].mbmi.encoded_as_sb = 1;
xd->mode_info_context[1 + cm->mode_info_stride].mbmi.encoded_as_sb = 1;
*totalrate += sb_rate;
} else
#endif
{
#if CONFIG_SUPERBLOCKS
xd->mode_info_context->mbmi.encoded_as_sb = 0;
if (cm->mb_cols - 1 > mb_col)
xd->mode_info_context[1].mbmi.encoded_as_sb = 0;
if (cm->mb_rows - 1 > mb_row) {
xd->mode_info_context[cm->mode_info_stride].mbmi.encoded_as_sb = 0;
if (cm->mb_cols - 1 > mb_col)
xd->mode_info_context[1 + cm->mode_info_stride].mbmi.encoded_as_sb = 0;
}
#endif
*totalrate += mb_rate;
}
/* Encode SB using best computed mode(s) */
encode_sb(cpi, cm, mb_row, mb_col, x, xd, tp);
#if CONFIG_DEBUG
assert(x->gf_active_ptr == gfa + 2);
assert(x->partition_info == pi + 2);
assert(xd->mode_info_context == mic + 2);
assert(x->src.y_buffer == yb + 32);
assert(x->src.u_buffer == ub + 16);
assert(x->src.v_buffer == vb + 16);
#endif
}
// this is to account for the border
x->gf_active_ptr += mb_cols - (mb_cols & 0x1);
x->partition_info += xd->mode_info_stride + 1 - (mb_cols & 0x1);
xd->mode_info_context += xd->mode_info_stride + 1 - (mb_cols & 0x1);
xd->prev_mode_info_context += xd->mode_info_stride + 1 - (mb_cols & 0x1);
#if CONFIG_DEBUG
assert((xd->prev_mode_info_context - cpi->common.prev_mip) ==
(xd->mode_info_context - cpi->common.mip));
#endif
}
static void init_encode_frame_mb_context(VP9_COMP *cpi) {
MACROBLOCK *const x = &cpi->mb;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
// GF active flags data structure
x->gf_active_ptr = (signed char *)cpi->gf_active_flags;
// Activity map pointer
x->mb_activity_ptr = cpi->mb_activity_map;
x->act_zbin_adj = 0;
cpi->seg0_idx = 0;
vpx_memset(cpi->ref_pred_count, 0, sizeof(cpi->ref_pred_count));
x->partition_info = x->pi;
xd->mode_info_context = cm->mi;
xd->mode_info_stride = cm->mode_info_stride;
xd->prev_mode_info_context = cm->prev_mi;
xd->frame_type = cm->frame_type;
xd->frames_since_golden = cm->frames_since_golden;
xd->frames_till_alt_ref_frame = cm->frames_till_alt_ref_frame;
// reset intra mode contexts
if (cm->frame_type == KEY_FRAME)
vp9_init_mbmode_probs(cm);
// Copy data over into macro block data structures.
x->src = * cpi->Source;
xd->pre = cm->yv12_fb[cm->lst_fb_idx];
xd->dst = cm->yv12_fb[cm->new_fb_idx];
// set up frame for intra coded blocks
vp9_setup_intra_recon(&cm->yv12_fb[cm->new_fb_idx]);
vp9_build_block_offsets(x);
vp9_setup_block_dptrs(&x->e_mbd);
vp9_setup_block_ptrs(x);
xd->mode_info_context->mbmi.mode = DC_PRED;
xd->mode_info_context->mbmi.uv_mode = DC_PRED;
vp9_zero(cpi->count_mb_ref_frame_usage)
vp9_zero(cpi->bmode_count)
vp9_zero(cpi->ymode_count)
vp9_zero(cpi->i8x8_mode_count)
vp9_zero(cpi->y_uv_mode_count)
vp9_zero(cpi->sub_mv_ref_count)
vp9_zero(cpi->mbsplit_count)
vp9_zero(cpi->common.fc.mv_ref_ct)
#if CONFIG_SUPERBLOCKS
vp9_zero(cpi->sb_ymode_count)
cpi->sb_count = 0;
#endif
#if CONFIG_COMP_INTERINTRA_PRED
vp9_zero(cpi->interintra_count);
vp9_zero(cpi->interintra_select_count);
#endif
vpx_memset(cm->above_context, 0,
sizeof(ENTROPY_CONTEXT_PLANES) * cm->mb_cols);
xd->fullpixel_mask = 0xffffffff;
if (cm->full_pixel)
xd->fullpixel_mask = 0xfffffff8;
}
static void encode_frame_internal(VP9_COMP *cpi) {
int mb_row;
MACROBLOCK *const x = &cpi->mb;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
TOKENEXTRA *tp = cpi->tok;
int totalrate;
// printf("encode_frame_internal frame %d (%d)\n",
// cpi->common.current_video_frame, cpi->common.show_frame);
// Compute a modified set of reference frame probabilities to use when
// prediction fails. These are based on the current general estimates for
// this frame which may be updated with each iteration of the recode loop.
vp9_compute_mod_refprobs(cm);
#if CONFIG_NEW_MVREF
// temp stats reset
vp9_zero( cpi->best_ref_index_counts );
#endif
// debug output
#if DBG_PRNT_SEGMAP
{
FILE *statsfile;
statsfile = fopen("segmap2.stt", "a");
fprintf(statsfile, "\n");
fclose(statsfile);
}
#endif
totalrate = 0;
// Functions setup for all frame types so we can use MC in AltRef
vp9_setup_interp_filters(xd, cm->mcomp_filter_type, cm);
// Reset frame count of inter 0,0 motion vector usage.
cpi->inter_zz_count = 0;
cpi->prediction_error = 0;
cpi->intra_error = 0;
cpi->skip_true_count[0] = cpi->skip_true_count[1] = cpi->skip_true_count[2] = 0;
cpi->skip_false_count[0] = cpi->skip_false_count[1] = cpi->skip_false_count[2] = 0;
#if CONFIG_PRED_FILTER
if (cm->current_video_frame == 0) {
// Initially assume that we'll signal the prediction filter
// state at the frame level and that it is off.
cpi->common.pred_filter_mode = 0;
cpi->common.prob_pred_filter_off = 128;
}
cpi->pred_filter_on_count = 0;
cpi->pred_filter_off_count = 0;
#endif
vp9_zero(cpi->switchable_interp_count);
xd->mode_info_context = cm->mi;
xd->prev_mode_info_context = cm->prev_mi;
vp9_zero(cpi->NMVcount);
vp9_zero(cpi->coef_counts_4x4);
vp9_zero(cpi->hybrid_coef_counts_4x4);
vp9_zero(cpi->coef_counts_8x8);
vp9_zero(cpi->hybrid_coef_counts_8x8);
vp9_zero(cpi->coef_counts_16x16);
vp9_zero(cpi->hybrid_coef_counts_16x16);
#if CONFIG_TX32X32 && CONFIG_SUPERBLOCKS
vp9_zero(cpi->coef_counts_32x32);
#endif
vp9_frame_init_quantizer(cpi);
vp9_initialize_rd_consts(cpi, cm->base_qindex + cm->y1dc_delta_q);
vp9_initialize_me_consts(cpi, cm->base_qindex);
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
// Initialize encode frame context.
init_encode_frame_mb_context(cpi);
// Build a frame level activity map
build_activity_map(cpi);
}
// re-initencode frame context.
init_encode_frame_mb_context(cpi);
vpx_memset(cpi->rd_comp_pred_diff, 0, sizeof(cpi->rd_comp_pred_diff));
vpx_memset(cpi->single_pred_count, 0, sizeof(cpi->single_pred_count));
vpx_memset(cpi->comp_pred_count, 0, sizeof(cpi->comp_pred_count));
vpx_memset(cpi->txfm_count_32x32p, 0, sizeof(cpi->txfm_count_32x32p));
vpx_memset(cpi->txfm_count_16x16p, 0, sizeof(cpi->txfm_count_16x16p));
vpx_memset(cpi->txfm_count_8x8p, 0, sizeof(cpi->txfm_count_8x8p));
vpx_memset(cpi->rd_tx_select_diff, 0, sizeof(cpi->rd_tx_select_diff));
{
struct vpx_usec_timer emr_timer;
vpx_usec_timer_start(&emr_timer);
{
// For each row of SBs in the frame
for (mb_row = 0; mb_row < cm->mb_rows; mb_row += 2) {
int offset = (cm->mb_cols + 1) & ~0x1;
encode_sb_row(cpi, cm, mb_row, x, xd, &tp, &totalrate);
// adjust to the next row of SBs
x->src.y_buffer += 32 * x->src.y_stride - 16 * offset;
x->src.u_buffer += 16 * x->src.uv_stride - 8 * offset;
x->src.v_buffer += 16 * x->src.uv_stride - 8 * offset;
}
cpi->tok_count = (unsigned int)(tp - cpi->tok);
}
vpx_usec_timer_mark(&emr_timer);
cpi->time_encode_mb_row += vpx_usec_timer_elapsed(&emr_timer);
}
// 256 rate units to the bit,
// projected_frame_size in units of BYTES
cpi->projected_frame_size = totalrate >> 8;
#if 0
// Keep record of the total distortion this time around for future use
cpi->last_frame_distortion = cpi->frame_distortion;
#endif
}
static int check_dual_ref_flags(VP9_COMP *cpi) {
MACROBLOCKD *xd = &cpi->mb.e_mbd;
int ref_flags = cpi->ref_frame_flags;
if (vp9_segfeature_active(xd, 1, SEG_LVL_REF_FRAME)) {
if ((ref_flags & (VP9_LAST_FLAG | VP9_GOLD_FLAG)) == (VP9_LAST_FLAG | VP9_GOLD_FLAG) &&
vp9_check_segref(xd, 1, LAST_FRAME))
return 1;
if ((ref_flags & (VP9_GOLD_FLAG | VP9_ALT_FLAG)) == (VP9_GOLD_FLAG | VP9_ALT_FLAG) &&
vp9_check_segref(xd, 1, GOLDEN_FRAME))
return 1;
if ((ref_flags & (VP9_ALT_FLAG | VP9_LAST_FLAG)) == (VP9_ALT_FLAG | VP9_LAST_FLAG) &&
vp9_check_segref(xd, 1, ALTREF_FRAME))
return 1;
return 0;
} else {
return (!!(ref_flags & VP9_GOLD_FLAG) +
!!(ref_flags & VP9_LAST_FLAG) +
!!(ref_flags & VP9_ALT_FLAG)) >= 2;
}
}
static void reset_skip_txfm_size(VP9_COMP *cpi, TX_SIZE txfm_max) {
VP9_COMMON *cm = &cpi->common;
int mb_row, mb_col, mis = cm->mode_info_stride, segment_id;
MODE_INFO *mi, *mi_ptr = cm->mi;
#if CONFIG_SUPERBLOCKS
int skip;
MODE_INFO *sb_mi_ptr = cm->mi, *sb_mi;
MB_MODE_INFO *sb_mbmi;
#endif
MB_MODE_INFO *mbmi;
MACROBLOCK *x = &cpi->mb;
MACROBLOCKD *xd = &x->e_mbd;
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++, mi_ptr += mis) {
mi = mi_ptr;
#if CONFIG_SUPERBLOCKS
sb_mi = sb_mi_ptr;
#endif
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++, mi++) {
mbmi = &mi->mbmi;
#if CONFIG_SUPERBLOCKS
sb_mbmi = &sb_mi->mbmi;
#endif
if (mbmi->txfm_size > txfm_max) {
#if CONFIG_SUPERBLOCKS
if (sb_mbmi->encoded_as_sb) {
if (!((mb_col & 1) || (mb_row & 1))) {
segment_id = mbmi->segment_id;
skip = mbmi->mb_skip_coeff;
if (mb_col < cm->mb_cols - 1) {
segment_id = segment_id && mi[1].mbmi.segment_id;
skip = skip && mi[1].mbmi.mb_skip_coeff;
}
if (mb_row < cm->mb_rows - 1) {
segment_id = segment_id &&
mi[cm->mode_info_stride].mbmi.segment_id;
skip = skip && mi[cm->mode_info_stride].mbmi.mb_skip_coeff;
if (mb_col < cm->mb_cols - 1) {
segment_id = segment_id &&
mi[cm->mode_info_stride + 1].mbmi.segment_id;
skip = skip && mi[cm->mode_info_stride + 1].mbmi.mb_skip_coeff;
}
}
xd->mode_info_context = mi;
assert((vp9_segfeature_active(xd, segment_id, SEG_LVL_EOB) &&
vp9_get_segdata(xd, segment_id, SEG_LVL_EOB) == 0) ||
(cm->mb_no_coeff_skip && skip));
mbmi->txfm_size = txfm_max;
} else {
mbmi->txfm_size = sb_mbmi->txfm_size;
}
} else {
#endif
segment_id = mbmi->segment_id;
xd->mode_info_context = mi;
assert((vp9_segfeature_active(xd, segment_id, SEG_LVL_EOB) &&
vp9_get_segdata(xd, segment_id, SEG_LVL_EOB) == 0) ||
(cm->mb_no_coeff_skip && mbmi->mb_skip_coeff));
mbmi->txfm_size = txfm_max;
#if CONFIG_SUPERBLOCKS
}
#endif
}
#if CONFIG_SUPERBLOCKS
if (mb_col & 1)
sb_mi += 2;
#endif
}
#if CONFIG_SUPERBLOCKS
if (mb_row & 1)
sb_mi_ptr += 2 * mis;
#endif
}
}
void vp9_encode_frame(VP9_COMP *cpi) {
if (cpi->sf.RD) {
int i, frame_type, pred_type;
TXFM_MODE txfm_type;
/*
* This code does a single RD pass over the whole frame assuming
* either compound, single or hybrid prediction as per whatever has
* worked best for that type of frame in the past.
* It also predicts whether another coding mode would have worked
* better that this coding mode. If that is the case, it remembers
* that for subsequent frames.
* It does the same analysis for transform size selection also.
*/
if (cpi->common.frame_type == KEY_FRAME)
frame_type = 0;
else if (cpi->is_src_frame_alt_ref && cpi->common.refresh_golden_frame)
frame_type = 3;
else if (cpi->common.refresh_golden_frame || cpi->common.refresh_alt_ref_frame)
frame_type = 1;
else
frame_type = 2;
/* prediction (compound, single or hybrid) mode selection */
if (frame_type == 3)
pred_type = SINGLE_PREDICTION_ONLY;
else if (cpi->rd_prediction_type_threshes[frame_type][1] >
cpi->rd_prediction_type_threshes[frame_type][0] &&
cpi->rd_prediction_type_threshes[frame_type][1] >
cpi->rd_prediction_type_threshes[frame_type][2] &&
check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100)
pred_type = COMP_PREDICTION_ONLY;
else if (cpi->rd_prediction_type_threshes[frame_type][0] >
cpi->rd_prediction_type_threshes[frame_type][2])
pred_type = SINGLE_PREDICTION_ONLY;
else
pred_type = HYBRID_PREDICTION;
/* transform size (4x4, 8x8, 16x16 or select-per-mb) selection */
#if CONFIG_LOSSLESS
if (cpi->oxcf.lossless) {
txfm_type = ONLY_4X4;
} else
#endif
/* FIXME (rbultje)
* this is a hack (no really), basically to work around the complete
* nonsense coefficient cost prediction for keyframes. The probabilities
* are reset to defaults, and thus we basically have no idea how expensive
* a 4x4 vs. 8x8 will really be. The result is that any estimate at which
* of the two is better is utterly bogus.
* I'd like to eventually remove this hack, but in order to do that, we
* need to move the frame reset code from the frame encode init to the
* bitstream write code, or alternatively keep a backup of the previous
* keyframe's probabilities as an estimate of what the current keyframe's
* coefficient cost distributions may look like. */
if (frame_type == 0) {
#if CONFIG_TX32X32 && CONFIG_SUPERBLOCKS
txfm_type = ALLOW_32X32;
#else
txfm_type = ALLOW_16X16;
#endif
} else
#if 0
/* FIXME (rbultje)
* this code is disabled for a similar reason as the code above; the
* problem is that each time we "revert" to 4x4 only (or even 8x8 only),
* the coefficient probabilities for 16x16 (and 8x8) start lagging behind,
* thus leading to them lagging further behind and not being chosen for
* subsequent frames either. This is essentially a local minimum problem
* that we can probably fix by estimating real costs more closely within
* a frame, perhaps by re-calculating costs on-the-fly as frame encoding
* progresses. */
if (cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] >
cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] &&
cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] >
cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16] &&
cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] >
cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8]) {
txfm_type = TX_MODE_SELECT;
} else if (cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] >
cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8]
&& cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] >
cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16]
) {
txfm_type = ONLY_4X4;
} else if (cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16] >=
cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8]) {
txfm_type = ALLOW_16X16;
} else
txfm_type = ALLOW_8X8;
#else
#if CONFIG_TX32X32 && CONFIG_SUPERBLOCKS
txfm_type = cpi->rd_tx_select_threshes[frame_type][ALLOW_32X32] >=
cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] ?
ALLOW_32X32 : TX_MODE_SELECT;
#else
txfm_type = cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16] >=
cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] ?
ALLOW_16X16 : TX_MODE_SELECT;
#endif
#endif
cpi->common.txfm_mode = txfm_type;
if (txfm_type != TX_MODE_SELECT) {
cpi->common.prob_tx[0] = 128;
cpi->common.prob_tx[1] = 128;
}
cpi->common.comp_pred_mode = pred_type;
encode_frame_internal(cpi);
for (i = 0; i < NB_PREDICTION_TYPES; ++i) {
const int diff = (int)(cpi->rd_comp_pred_diff[i] / cpi->common.MBs);
cpi->rd_prediction_type_threshes[frame_type][i] += diff;
cpi->rd_prediction_type_threshes[frame_type][i] >>= 1;
}
for (i = 0; i < NB_TXFM_MODES; ++i) {
int64_t pd = cpi->rd_tx_select_diff[i];
int diff;
if (i == TX_MODE_SELECT)
pd -= RDCOST(cpi->mb.rdmult, cpi->mb.rddiv,
2048 * (TX_SIZE_MAX_SB - 1), 0);
diff = (int)(pd / cpi->common.MBs);
cpi->rd_tx_select_threshes[frame_type][i] += diff;
cpi->rd_tx_select_threshes[frame_type][i] /= 2;
}
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
int single_count_zero = 0;
int comp_count_zero = 0;
for (i = 0; i < COMP_PRED_CONTEXTS; i++) {
single_count_zero += cpi->single_pred_count[i];
comp_count_zero += cpi->comp_pred_count[i];
}
if (comp_count_zero == 0) {
cpi->common.comp_pred_mode = SINGLE_PREDICTION_ONLY;
} else if (single_count_zero == 0) {
cpi->common.comp_pred_mode = COMP_PREDICTION_ONLY;
}
}
if (cpi->common.txfm_mode == TX_MODE_SELECT) {
const int count4x4 = cpi->txfm_count_16x16p[TX_4X4] +
cpi->txfm_count_32x32p[TX_4X4] +
cpi->txfm_count_8x8p[TX_4X4];
const int count8x8_lp = cpi->txfm_count_32x32p[TX_8X8] +
cpi->txfm_count_16x16p[TX_8X8];
const int count8x8_8x8p = cpi->txfm_count_8x8p[TX_8X8];
const int count16x16_16x16p = cpi->txfm_count_16x16p[TX_16X16];
const int count16x16_lp = cpi->txfm_count_32x32p[TX_16X16];
#if CONFIG_TX32X32 && CONFIG_SUPERBLOCKS
const int count32x32 = cpi->txfm_count_32x32p[TX_32X32];
#else
const int count32x32 = 0;
#endif
if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
count32x32 == 0) {
cpi->common.txfm_mode = ALLOW_8X8;
reset_skip_txfm_size(cpi, TX_8X8);
} else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
cpi->common.txfm_mode = ONLY_4X4;
reset_skip_txfm_size(cpi, TX_4X4);
#if CONFIG_TX32X32 && CONFIG_SUPERBLOCKS
} else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
cpi->common.txfm_mode = ALLOW_32X32;
#endif
} else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
cpi->common.txfm_mode = ALLOW_16X16;
#if CONFIG_TX32X32 && CONFIG_SUPERBLOCKS
reset_skip_txfm_size(cpi, TX_16X16);
#endif
}
}
} else {
encode_frame_internal(cpi);
}
}
void vp9_setup_block_ptrs(MACROBLOCK *x) {
int r, c;
int i;
for (r = 0; r < 4; r++) {
for (c = 0; c < 4; c++) {
x->block[r * 4 + c].src_diff = x->src_diff + r * 4 * 16 + c * 4;
}
}
for (r = 0; r < 2; r++) {
for (c = 0; c < 2; c++) {
x->block[16 + r * 2 + c].src_diff = x->src_diff + 256 + r * 4 * 8 + c * 4;
}
}
for (r = 0; r < 2; r++) {
for (c = 0; c < 2; c++) {
x->block[20 + r * 2 + c].src_diff = x->src_diff + 320 + r * 4 * 8 + c * 4;
}
}
x->block[24].src_diff = x->src_diff + 384;
for (i = 0; i < 25; i++) {
x->block[i].coeff = x->coeff + i * 16;
}
}
void vp9_build_block_offsets(MACROBLOCK *x) {
int block = 0;
int br, bc;
vp9_build_block_doffsets(&x->e_mbd);
#if !CONFIG_SUPERBLOCKS
// y blocks
x->thismb_ptr = &x->thismb[0];
for (br = 0; br < 4; br++) {
for (bc = 0; bc < 4; bc++) {
BLOCK *this_block = &x->block[block];
// this_block->base_src = &x->src.y_buffer;
// this_block->src_stride = x->src.y_stride;
// this_block->src = 4 * br * this_block->src_stride + 4 * bc;
this_block->base_src = &x->thismb_ptr;
this_block->src_stride = 16;
this_block->src = 4 * br * 16 + 4 * bc;
++block;
}
}
#else
for (br = 0; br < 4; br++) {
for (bc = 0; bc < 4; bc++) {
BLOCK *this_block = &x->block[block];
// this_block->base_src = &x->src.y_buffer;
// this_block->src_stride = x->src.y_stride;
// this_block->src = 4 * br * this_block->src_stride + 4 * bc;
this_block->base_src = &x->src.y_buffer;
this_block->src_stride = x->src.y_stride;
this_block->src = 4 * br * this_block->src_stride + 4 * bc;
++block;
}
}
#endif
// u blocks
for (br = 0; br < 2; br++) {
for (bc = 0; bc < 2; bc++) {
BLOCK *this_block = &x->block[block];
this_block->base_src = &x->src.u_buffer;
this_block->src_stride = x->src.uv_stride;
this_block->src = 4 * br * this_block->src_stride + 4 * bc;
++block;
}
}
// v blocks
for (br = 0; br < 2; br++) {
for (bc = 0; bc < 2; bc++) {
BLOCK *this_block = &x->block[block];
this_block->base_src = &x->src.v_buffer;
this_block->src_stride = x->src.uv_stride;
this_block->src = 4 * br * this_block->src_stride + 4 * bc;
++block;
}
}
}
static void sum_intra_stats(VP9_COMP *cpi, MACROBLOCK *x) {
const MACROBLOCKD *xd = &x->e_mbd;
const MB_PREDICTION_MODE m = xd->mode_info_context->mbmi.mode;
const MB_PREDICTION_MODE uvm = xd->mode_info_context->mbmi.uv_mode;
#ifdef MODE_STATS
const int is_key = cpi->common.frame_type == KEY_FRAME;
++ (is_key ? uv_modes : inter_uv_modes)[uvm];
++ uv_modes_y[m][uvm];
if (m == B_PRED) {
unsigned int *const bct = is_key ? b_modes : inter_b_modes;
int b = 0;
do {
++ bct[xd->block[b].bmi.as_mode.first];
} while (++b < 16);
}
if (m == I8X8_PRED) {
i8x8_modes[xd->block[0].bmi.as_mode.first]++;
i8x8_modes[xd->block[2].bmi.as_mode.first]++;
i8x8_modes[xd->block[8].bmi.as_mode.first]++;
i8x8_modes[xd->block[10].bmi.as_mode.first]++;
}
#endif
#if CONFIG_SUPERBLOCKS
if (xd->mode_info_context->mbmi.encoded_as_sb) {
++cpi->sb_ymode_count[m];
} else
#endif
++cpi->ymode_count[m];
if (m != I8X8_PRED)
++cpi->y_uv_mode_count[m][uvm];
else {
cpi->i8x8_mode_count[xd->block[0].bmi.as_mode.first]++;
cpi->i8x8_mode_count[xd->block[2].bmi.as_mode.first]++;
cpi->i8x8_mode_count[xd->block[8].bmi.as_mode.first]++;
cpi->i8x8_mode_count[xd->block[10].bmi.as_mode.first]++;
}
if (m == B_PRED) {
int b = 0;
do {
int m = xd->block[b].bmi.as_mode.first;
#if CONFIG_NEWBINTRAMODES
if (m == B_CONTEXT_PRED) m -= CONTEXT_PRED_REPLACEMENTS;
#endif
++cpi->bmode_count[m];
} while (++b < 16);
}
}
// Experimental stub function to create a per MB zbin adjustment based on
// some previously calculated measure of MB activity.
static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x) {
#if USE_ACT_INDEX
x->act_zbin_adj = *(x->mb_activity_ptr);
#else
int64_t a;
int64_t b;
int64_t act = *(x->mb_activity_ptr);
// Apply the masking to the RD multiplier.
a = act + 4 * cpi->activity_avg;
b = 4 * act + cpi->activity_avg;
if (act > cpi->activity_avg)
x->act_zbin_adj = (int)(((int64_t)b + (a >> 1)) / a) - 1;
else
x->act_zbin_adj = 1 - (int)(((int64_t)a + (b >> 1)) / b);
#endif
}
#if CONFIG_SUPERBLOCKS
static void update_sb_skip_coeff_state(VP9_COMP *cpi,
MACROBLOCK *x,
ENTROPY_CONTEXT_PLANES ta[4],
ENTROPY_CONTEXT_PLANES tl[4],
TOKENEXTRA *t[4],
TOKENEXTRA **tp,
int skip[4])
{
TOKENEXTRA tokens[4][16 * 24];
int n_tokens[4], n;
// if there were no skips, we don't need to do anything
if (!skip[0] && !skip[1] && !skip[2] && !skip[3])
return;
// if we don't do coeff skipping for this frame, we don't
// need to do anything here
if (!cpi->common.mb_no_coeff_skip)
return;
// if all 4 MBs skipped coeff coding, nothing to be done
if (skip[0] && skip[1] && skip[2] && skip[3])
return;
// so the situation now is that we want to skip coeffs
// for some MBs, but not all, and we didn't code EOB
// coefficients for them. However, the skip flag for this
// SB will be 0 overall, so we need to insert EOBs in the
// middle of the token tree. Do so here.
n_tokens[0] = t[1] - t[0];
n_tokens[1] = t[2] - t[1];
n_tokens[2] = t[3] - t[2];
n_tokens[3] = *tp - t[3];
if (n_tokens[0])
memcpy(tokens[0], t[0], n_tokens[0] * sizeof(*t[0]));
if (n_tokens[1])
memcpy(tokens[1], t[1], n_tokens[1] * sizeof(*t[0]));
if (n_tokens[2])
memcpy(tokens[2], t[2], n_tokens[2] * sizeof(*t[0]));
if (n_tokens[3])
memcpy(tokens[3], t[3], n_tokens[3] * sizeof(*t[0]));
// reset pointer, stuff EOBs where necessary
*tp = t[0];
for (n = 0; n < 4; n++) {
if (skip[n]) {
x->e_mbd.above_context = &ta[n];
x->e_mbd.left_context = &tl[n];
vp9_stuff_mb(cpi, &x->e_mbd, tp, 0);
} else {
if (n_tokens[n]) {
memcpy(*tp, tokens[n], sizeof(*t[0]) * n_tokens[n]);
}
(*tp) += n_tokens[n];
}
}
}
#endif /* CONFIG_SUPERBLOCKS */
static void encode_macroblock(VP9_COMP *cpi, MACROBLOCK *x,
TOKENEXTRA **t, int recon_yoffset,
int recon_uvoffset, int output_enabled,
int mb_col, int mb_row) {
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO * mbmi = &xd->mode_info_context->mbmi;
unsigned char *segment_id = &mbmi->segment_id;
int seg_ref_active;
unsigned char ref_pred_flag;
x->skip = 0;
#if CONFIG_SUPERBLOCKS
assert(!xd->mode_info_context->mbmi.encoded_as_sb);
#endif
#ifdef ENC_DEBUG
enc_debug = (cpi->common.current_video_frame == 46 &&
mb_row == 5 && mb_col == 2);
if (enc_debug)
printf("Encode MB %d %d output %d\n", mb_row, mb_col, output_enabled);
#endif
if (cm->frame_type == KEY_FRAME) {
if (cpi->oxcf.tuning == VP8_TUNE_SSIM && output_enabled) {
// Adjust the zbin based on this MB rate.
adjust_act_zbin(cpi, x);
vp9_update_zbin_extra(cpi, x);
}
} else {
vp9_setup_interp_filters(xd, mbmi->interp_filter, cm);
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
// Adjust the zbin based on this MB rate.
adjust_act_zbin(cpi, x);
}
// Experimental code. Special case for gf and arf zeromv modes.
// Increase zbin size to suppress noise
cpi->zbin_mode_boost = 0;
if (cpi->zbin_mode_boost_enabled) {
if (mbmi->ref_frame != INTRA_FRAME) {
if (mbmi->mode == ZEROMV) {
if (mbmi->ref_frame != LAST_FRAME)
cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST;
else
cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST;
} else if (mbmi->mode == SPLITMV)
cpi->zbin_mode_boost = 0;
else
cpi->zbin_mode_boost = MV_ZBIN_BOOST;
}
}
vp9_update_zbin_extra(cpi, x);
seg_ref_active = vp9_segfeature_active(xd, *segment_id, SEG_LVL_REF_FRAME);
// SET VARIOUS PREDICTION FLAGS
// Did the chosen reference frame match its predicted value.
ref_pred_flag = ((mbmi->ref_frame == vp9_get_pred_ref(cm, xd)));
vp9_set_pred_flag(xd, PRED_REF, ref_pred_flag);
}
assert(mbmi->txfm_size <= TX_16X16);
if (mbmi->ref_frame == INTRA_FRAME) {
#ifdef ENC_DEBUG
if (enc_debug) {
printf("Mode %d skip %d tx_size %d\n", mbmi->mode, x->skip,
mbmi->txfm_size);
}
#endif
if (mbmi->mode == B_PRED) {
vp9_encode_intra16x16mbuv(x);
vp9_encode_intra4x4mby(x);
} else if (mbmi->mode == I8X8_PRED) {
vp9_encode_intra8x8mby(x);
vp9_encode_intra8x8mbuv(x);
} else {
vp9_encode_intra16x16mbuv(x);
vp9_encode_intra16x16mby(x);
}
if (output_enabled)
sum_intra_stats(cpi, x);
} else {
int ref_fb_idx;
#ifdef ENC_DEBUG
if (enc_debug)
printf("Mode %d skip %d tx_size %d ref %d ref2 %d mv %d %d interp %d\n",
mbmi->mode, x->skip, mbmi->txfm_size,
mbmi->ref_frame, mbmi->second_ref_frame,
mbmi->mv[0].as_mv.row, mbmi->mv[0].as_mv.col,
mbmi->interp_filter);
#endif
assert(cm->frame_type != KEY_FRAME);
if (mbmi->ref_frame == LAST_FRAME)
ref_fb_idx = cpi->common.lst_fb_idx;
else if (mbmi->ref_frame == GOLDEN_FRAME)
ref_fb_idx = cpi->common.gld_fb_idx;
else
ref_fb_idx = cpi->common.alt_fb_idx;
xd->pre.y_buffer = cpi->common.yv12_fb[ref_fb_idx].y_buffer + recon_yoffset;
xd->pre.u_buffer = cpi->common.yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset;
xd->pre.v_buffer = cpi->common.yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset;
if (mbmi->second_ref_frame > 0) {
int second_ref_fb_idx;
if (mbmi->second_ref_frame == LAST_FRAME)
second_ref_fb_idx = cpi->common.lst_fb_idx;
else if (mbmi->second_ref_frame == GOLDEN_FRAME)
second_ref_fb_idx = cpi->common.gld_fb_idx;
else
second_ref_fb_idx = cpi->common.alt_fb_idx;
xd->second_pre.y_buffer = cpi->common.yv12_fb[second_ref_fb_idx].y_buffer +
recon_yoffset;
xd->second_pre.u_buffer = cpi->common.yv12_fb[second_ref_fb_idx].u_buffer +
recon_uvoffset;
xd->second_pre.v_buffer = cpi->common.yv12_fb[second_ref_fb_idx].v_buffer +
recon_uvoffset;
}
if (!x->skip) {
vp9_encode_inter16x16(x);
// Clear mb_skip_coeff if mb_no_coeff_skip is not set
if (!cpi->common.mb_no_coeff_skip)
mbmi->mb_skip_coeff = 0;
} else {
vp9_build_1st_inter16x16_predictors_mb(xd,
xd->dst.y_buffer,
xd->dst.u_buffer,
xd->dst.v_buffer,
xd->dst.y_stride,
xd->dst.uv_stride);
if (xd->mode_info_context->mbmi.second_ref_frame > 0) {
vp9_build_2nd_inter16x16_predictors_mb(xd,
xd->dst.y_buffer,
xd->dst.u_buffer,
xd->dst.v_buffer,
xd->dst.y_stride,
xd->dst.uv_stride);
}
#if CONFIG_COMP_INTERINTRA_PRED
else if (xd->mode_info_context->mbmi.second_ref_frame == INTRA_FRAME) {
vp9_build_interintra_16x16_predictors_mb(xd,
xd->dst.y_buffer,
xd->dst.u_buffer,
xd->dst.v_buffer,
xd->dst.y_stride,
xd->dst.uv_stride);
}
#endif
}
}
if (!x->skip) {
#ifdef ENC_DEBUG
if (enc_debug) {
int i, j;
printf("\n");
printf("qcoeff\n");
for (i = 0; i < 400; i++) {
printf("%3d ", xd->qcoeff[i]);
if (i % 16 == 15) printf("\n");
}
printf("\n");
printf("predictor\n");
for (i = 0; i < 384; i++) {
printf("%3d ", xd->predictor[i]);
if (i % 16 == 15) printf("\n");
}
printf("\n");
printf("src_diff\n");
for (i = 0; i < 384; i++) {
printf("%3d ", x->src_diff[i]);
if (i % 16 == 15) printf("\n");
}
printf("\n");
printf("diff\n");
for (i = 0; i < 384; i++) {
printf("%3d ", xd->block[0].diff[i]);
if (i % 16 == 15) printf("\n");
}
printf("\n");
printf("final y\n");
for (i = 0; i < 16; i++) {
for (j = 0; j < 16; j++)
printf("%3d ", xd->dst.y_buffer[i * xd->dst.y_stride + j]);
printf("\n");
}
printf("\n");
printf("final u\n");
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++)
printf("%3d ", xd->dst.u_buffer[i * xd->dst.uv_stride + j]);
printf("\n");
}
printf("\n");
printf("final v\n");
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++)
printf("%3d ", xd->dst.v_buffer[i * xd->dst.uv_stride + j]);
printf("\n");
}
fflush(stdout);
}
#endif
vp9_tokenize_mb(cpi, xd, t, !output_enabled);
} else {
int mb_skip_context =
cpi->common.mb_no_coeff_skip ?
(x->e_mbd.mode_info_context - 1)->mbmi.mb_skip_coeff +
(x->e_mbd.mode_info_context - cpi->common.mode_info_stride)->mbmi.mb_skip_coeff :
0;
if (cpi->common.mb_no_coeff_skip) {
mbmi->mb_skip_coeff = 1;
if (output_enabled)
cpi->skip_true_count[mb_skip_context]++;
vp9_reset_mb_tokens_context(xd);
} else {
vp9_stuff_mb(cpi, xd, t, !output_enabled);
mbmi->mb_skip_coeff = 0;
if (output_enabled)
cpi->skip_false_count[mb_skip_context]++;
}
}
if (output_enabled) {
int segment_id = mbmi->segment_id;
if (cpi->common.txfm_mode == TX_MODE_SELECT &&
!((cpi->common.mb_no_coeff_skip && mbmi->mb_skip_coeff) ||
(vp9_segfeature_active(&x->e_mbd, segment_id, SEG_LVL_EOB) &&
vp9_get_segdata(&x->e_mbd, segment_id, SEG_LVL_EOB) == 0))) {
if (mbmi->mode != B_PRED && mbmi->mode != I8X8_PRED &&
mbmi->mode != SPLITMV) {
cpi->txfm_count_16x16p[mbmi->txfm_size]++;
} else if (mbmi->mode == I8X8_PRED ||
(mbmi->mode == SPLITMV &&
mbmi->partitioning != PARTITIONING_4X4)) {
cpi->txfm_count_8x8p[mbmi->txfm_size]++;
}
} else if (mbmi->mode != B_PRED && mbmi->mode != I8X8_PRED &&
mbmi->mode != SPLITMV && cpi->common.txfm_mode >= ALLOW_16X16) {
mbmi->txfm_size = TX_16X16;
} else if (mbmi->mode != B_PRED &&
!(mbmi->mode == SPLITMV &&
mbmi->partitioning == PARTITIONING_4X4) &&
cpi->common.txfm_mode >= ALLOW_8X8) {
mbmi->txfm_size = TX_8X8;
} else {
mbmi->txfm_size = TX_4X4;
}
}
}
#if CONFIG_SUPERBLOCKS
static void encode_superblock(VP9_COMP *cpi, MACROBLOCK *x,
TOKENEXTRA **t, int recon_yoffset,
int recon_uvoffset, int mb_col, int mb_row) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
const uint8_t *src = x->src.y_buffer;
uint8_t *dst = xd->dst.y_buffer;
const uint8_t *usrc = x->src.u_buffer;
uint8_t *udst = xd->dst.u_buffer;
const uint8_t *vsrc = x->src.v_buffer;
uint8_t *vdst = xd->dst.v_buffer;
int src_y_stride = x->src.y_stride, dst_y_stride = xd->dst.y_stride;
int src_uv_stride = x->src.uv_stride, dst_uv_stride = xd->dst.uv_stride;
int seg_ref_active;
unsigned char ref_pred_flag;
int n;
TOKENEXTRA *tp[4];
int skip[4];
MODE_INFO *mi = x->e_mbd.mode_info_context;
unsigned int segment_id = mi->mbmi.segment_id;
ENTROPY_CONTEXT_PLANES ta[4], tl[4];
const int mis = cm->mode_info_stride;
x->skip = 0;
if (cm->frame_type == KEY_FRAME) {
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
adjust_act_zbin(cpi, x);
vp9_update_zbin_extra(cpi, x);
}
} else {
vp9_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter, cm);
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
// Adjust the zbin based on this MB rate.
adjust_act_zbin(cpi, x);
}
// Experimental code. Special case for gf and arf zeromv modes.
// Increase zbin size to suppress noise
cpi->zbin_mode_boost = 0;
if (cpi->zbin_mode_boost_enabled) {
if (xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME) {
if (xd->mode_info_context->mbmi.mode == ZEROMV) {
if (xd->mode_info_context->mbmi.ref_frame != LAST_FRAME)
cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST;
else
cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST;
} else if (xd->mode_info_context->mbmi.mode == SPLITMV)
cpi->zbin_mode_boost = 0;
else
cpi->zbin_mode_boost = MV_ZBIN_BOOST;
}
}
vp9_update_zbin_extra(cpi, x);
seg_ref_active = vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME);
// SET VARIOUS PREDICTION FLAGS
// Did the chosen reference frame match its predicted value.
ref_pred_flag = ((xd->mode_info_context->mbmi.ref_frame ==
vp9_get_pred_ref(cm, xd)));
vp9_set_pred_flag(xd, PRED_REF, ref_pred_flag);
}
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) {
vp9_build_intra_predictors_sby_s(&x->e_mbd);
vp9_build_intra_predictors_sbuv_s(&x->e_mbd);
sum_intra_stats(cpi, x);
} else {
int ref_fb_idx;
assert(cm->frame_type != KEY_FRAME);
if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)
ref_fb_idx = cpi->common.lst_fb_idx;
else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME)
ref_fb_idx = cpi->common.gld_fb_idx;
else
ref_fb_idx = cpi->common.alt_fb_idx;
xd->pre.y_buffer = cpi->common.yv12_fb[ref_fb_idx].y_buffer + recon_yoffset;
xd->pre.u_buffer = cpi->common.yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset;
xd->pre.v_buffer = cpi->common.yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset;
if (xd->mode_info_context->mbmi.second_ref_frame > 0) {
int second_ref_fb_idx;
if (xd->mode_info_context->mbmi.second_ref_frame == LAST_FRAME)
second_ref_fb_idx = cpi->common.lst_fb_idx;
else if (xd->mode_info_context->mbmi.second_ref_frame == GOLDEN_FRAME)
second_ref_fb_idx = cpi->common.gld_fb_idx;
else
second_ref_fb_idx = cpi->common.alt_fb_idx;
xd->second_pre.y_buffer = cpi->common.yv12_fb[second_ref_fb_idx].y_buffer +
recon_yoffset;
xd->second_pre.u_buffer = cpi->common.yv12_fb[second_ref_fb_idx].u_buffer +
recon_uvoffset;
xd->second_pre.v_buffer = cpi->common.yv12_fb[second_ref_fb_idx].v_buffer +
recon_uvoffset;
}
vp9_build_inter32x32_predictors_sb(xd, xd->dst.y_buffer,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.y_stride, xd->dst.uv_stride);
}
#if CONFIG_TX32X32
if (xd->mode_info_context->mbmi.txfm_size == TX_32X32) {
vp9_subtract_sby_s_c(x->sb_coeff_data.src_diff, src, src_y_stride,
dst, dst_y_stride);
vp9_subtract_sbuv_s_c(x->sb_coeff_data.src_diff,
usrc, vsrc, src_uv_stride,
udst, vdst, dst_uv_stride);
vp9_transform_sby_32x32(x);
vp9_transform_sbuv_16x16(x);
vp9_quantize_sby_32x32(x);
vp9_quantize_sbuv_16x16(x);
// TODO(rbultje): trellis optimize
vp9_inverse_transform_sbuv_16x16(&x->e_mbd.sb_coeff_data);
vp9_inverse_transform_sby_32x32(&x->e_mbd.sb_coeff_data);
vp9_recon_sby_s_c(&x->e_mbd, dst);
vp9_recon_sbuv_s_c(&x->e_mbd, udst, vdst);
if (!x->skip) {
vp9_tokenize_sb(cpi, &x->e_mbd, t, 0);
} else {
int mb_skip_context =
cpi->common.mb_no_coeff_skip ?
(mi - 1)->mbmi.mb_skip_coeff +
(mi - mis)->mbmi.mb_skip_coeff :
0;
mi->mbmi.mb_skip_coeff = 1;
if (cm->mb_no_coeff_skip) {
cpi->skip_true_count[mb_skip_context]++;
vp9_fix_contexts_sb(xd);
} else {
vp9_stuff_sb(cpi, xd, t, 0);
cpi->skip_false_count[mb_skip_context]++;
}
}
// copy skip flag on all mb_mode_info contexts in this SB
// if this was a skip at this txfm size
if (mb_col < cm->mb_cols - 1)
mi[1].mbmi.mb_skip_coeff = mi->mbmi.mb_skip_coeff;
if (mb_row < cm->mb_rows - 1) {
mi[mis].mbmi.mb_skip_coeff = mi->mbmi.mb_skip_coeff;
if (mb_col < cm->mb_cols - 1)
mi[mis + 1].mbmi.mb_skip_coeff = mi->mbmi.mb_skip_coeff;
}
skip[0] = skip[2] = skip[1] = skip[3] = mi->mbmi.mb_skip_coeff;
} else {
#endif
for (n = 0; n < 4; n++) {
int x_idx = n & 1, y_idx = n >> 1;
xd->left_context = cm->left_context + y_idx;
xd->above_context = cm->above_context + mb_col + x_idx;
memcpy(&ta[n], xd->above_context, sizeof(ta[n]));
memcpy(&tl[n], xd->left_context, sizeof(tl[n]));
tp[n] = *t;
xd->mode_info_context = mi + x_idx + y_idx * mis;
vp9_subtract_mby_s_c(x->src_diff,
src + x_idx * 16 + y_idx * 16 * src_y_stride,
src_y_stride,
dst + x_idx * 16 + y_idx * 16 * dst_y_stride,
dst_y_stride);
vp9_subtract_mbuv_s_c(x->src_diff,
usrc + x_idx * 8 + y_idx * 8 * src_uv_stride,
vsrc + x_idx * 8 + y_idx * 8 * src_uv_stride,
src_uv_stride,
udst + x_idx * 8 + y_idx * 8 * dst_uv_stride,
vdst + x_idx * 8 + y_idx * 8 * dst_uv_stride,
dst_uv_stride);
vp9_fidct_mb(x);
vp9_recon_mby_s_c(&x->e_mbd,
dst + x_idx * 16 + y_idx * 16 * dst_y_stride);
vp9_recon_mbuv_s_c(&x->e_mbd,
udst + x_idx * 8 + y_idx * 8 * dst_uv_stride,
vdst + x_idx * 8 + y_idx * 8 * dst_uv_stride);
if (!x->skip) {
vp9_tokenize_mb(cpi, &x->e_mbd, t, 0);
skip[n] = xd->mode_info_context->mbmi.mb_skip_coeff;
} else {
int mb_skip_context =
cpi->common.mb_no_coeff_skip ?
(x->e_mbd.mode_info_context - 1)->mbmi.mb_skip_coeff +
(x->e_mbd.mode_info_context - mis)->mbmi.mb_skip_coeff :
0;
xd->mode_info_context->mbmi.mb_skip_coeff = skip[n] = 1;
if (cpi->common.mb_no_coeff_skip) {
// TODO(rbultje) this should be done per-sb instead of per-mb?
cpi->skip_true_count[mb_skip_context]++;
vp9_reset_mb_tokens_context(xd);
} else {
vp9_stuff_mb(cpi, xd, t, 0);
// TODO(rbultje) this should be done per-sb instead of per-mb?
cpi->skip_false_count[mb_skip_context]++;
}
}
}
xd->mode_info_context = mi;
update_sb_skip_coeff_state(cpi, x, ta, tl, tp, t, skip);
#if CONFIG_TX32X32
}
#endif
if (cm->txfm_mode == TX_MODE_SELECT &&
!((cm->mb_no_coeff_skip && skip[0] && skip[1] && skip[2] && skip[3]) ||
(vp9_segfeature_active(xd, segment_id, SEG_LVL_EOB) &&
vp9_get_segdata(xd, segment_id, SEG_LVL_EOB) == 0))) {
cpi->txfm_count_32x32p[mi->mbmi.txfm_size]++;
} else {
TX_SIZE sz = (cm->txfm_mode == TX_MODE_SELECT) ?
#if CONFIG_TX32X32
TX_32X32 :
#else
TX_16X16 :
#endif
cm->txfm_mode;
mi->mbmi.txfm_size = sz;
if (mb_col < cm->mb_cols - 1)
mi[1].mbmi.txfm_size = sz;
if (mb_row < cm->mb_rows - 1) {
mi[mis].mbmi.txfm_size = sz;
if (mb_col < cm->mb_cols - 1)
mi[mis + 1].mbmi.txfm_size = sz;
}
}
}
#endif