vpx/vpx_dsp/mips/itrans4_dspr2.c
Kaustubh Raste afd2d797eb Fix mips dspr2 idct4x4 functions for large coefficient input
Change-Id: I06730eec80ca81e0b7436d26232465b79f447e89
2017-01-09 15:28:30 +05:30

375 lines
16 KiB
C

/*
* Copyright (c) 2015 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "./vpx_config.h"
#include "./vpx_dsp_rtcd.h"
#include "vpx_dsp/mips/inv_txfm_dspr2.h"
#include "vpx_dsp/txfm_common.h"
#if HAVE_DSPR2
void vpx_idct4_rows_dspr2(const int16_t *input, int16_t *output) {
int step_0, step_1, step_2, step_3;
int Temp0, Temp1, Temp2, Temp3;
const int const_2_power_13 = 8192;
int i;
for (i = 4; i--;) {
__asm__ __volatile__(
/*
temp_1 = (input[0] + input[2]) * cospi_16_64;
step_0 = dct_const_round_shift(temp_1);
temp_2 = (input[0] - input[2]) * cospi_16_64;
step_1 = dct_const_round_shift(temp_2);
*/
"lh %[Temp0], 0(%[input]) \n\t"
"lh %[Temp1], 4(%[input]) \n\t"
"mtlo %[const_2_power_13], $ac0 \n\t"
"mthi $zero, $ac0 \n\t"
"mtlo %[const_2_power_13], $ac1 \n\t"
"mthi $zero, $ac1 \n\t"
"add %[Temp2], %[Temp0], %[Temp1] \n\t"
"sub %[Temp3], %[Temp0], %[Temp1] \n\t"
"madd $ac0, %[Temp2], %[cospi_16_64] \n\t"
"lh %[Temp0], 2(%[input]) \n\t"
"lh %[Temp1], 6(%[input]) \n\t"
"extp %[step_0], $ac0, 31 \n\t"
"mtlo %[const_2_power_13], $ac0 \n\t"
"mthi $zero, $ac0 \n\t"
"madd $ac1, %[Temp3], %[cospi_16_64] \n\t"
"extp %[step_1], $ac1, 31 \n\t"
"mtlo %[const_2_power_13], $ac1 \n\t"
"mthi $zero, $ac1 \n\t"
/*
temp1 = input[1] * cospi_24_64 - input[3] * cospi_8_64;
step_2 = dct_const_round_shift(temp1);
*/
"madd $ac0, %[Temp0], %[cospi_24_64] \n\t"
"msub $ac0, %[Temp1], %[cospi_8_64] \n\t"
"extp %[step_2], $ac0, 31 \n\t"
/*
temp2 = input[1] * cospi_8_64 + input[3] * cospi_24_64;
step_3 = dct_const_round_shift(temp2);
*/
"madd $ac1, %[Temp0], %[cospi_8_64] \n\t"
"madd $ac1, %[Temp1], %[cospi_24_64] \n\t"
"extp %[step_3], $ac1, 31 \n\t"
/*
output[0] = step_0 + step_3;
output[4] = step_1 + step_2;
output[8] = step_1 - step_2;
output[12] = step_0 - step_3;
*/
"add %[Temp0], %[step_0], %[step_3] \n\t"
"sh %[Temp0], 0(%[output]) \n\t"
"add %[Temp1], %[step_1], %[step_2] \n\t"
"sh %[Temp1], 8(%[output]) \n\t"
"sub %[Temp2], %[step_1], %[step_2] \n\t"
"sh %[Temp2], 16(%[output]) \n\t"
"sub %[Temp3], %[step_0], %[step_3] \n\t"
"sh %[Temp3], 24(%[output]) \n\t"
: [Temp0] "=&r"(Temp0), [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2),
[Temp3] "=&r"(Temp3), [step_0] "=&r"(step_0), [step_1] "=&r"(step_1),
[step_2] "=&r"(step_2), [step_3] "=&r"(step_3), [output] "+r"(output)
: [const_2_power_13] "r"(const_2_power_13),
[cospi_8_64] "r"(cospi_8_64), [cospi_16_64] "r"(cospi_16_64),
[cospi_24_64] "r"(cospi_24_64), [input] "r"(input));
input += 4;
output += 1;
}
}
void vpx_idct4_columns_add_blk_dspr2(int16_t *input, uint8_t *dest,
int stride) {
int step_0, step_1, step_2, step_3;
int Temp0, Temp1, Temp2, Temp3;
const int const_2_power_13 = 8192;
const int const_255 = 255;
int i;
uint8_t *dest_pix;
for (i = 0; i < 4; ++i) {
dest_pix = (dest + i);
__asm__ __volatile__(
/*
temp_1 = (input[0] + input[2]) * cospi_16_64;
step_0 = dct_const_round_shift(temp_1);
temp_2 = (input[0] - input[2]) * cospi_16_64;
step_1 = dct_const_round_shift(temp_2);
*/
"lh %[Temp0], 0(%[input]) \n\t"
"lh %[Temp1], 4(%[input]) \n\t"
"mtlo %[const_2_power_13], $ac0 \n\t"
"mthi $zero, $ac0 \n\t"
"mtlo %[const_2_power_13], $ac1 \n\t"
"mthi $zero, $ac1 \n\t"
"add %[Temp2], %[Temp0], %[Temp1] \n\t"
"sub %[Temp3], %[Temp0], %[Temp1] \n\t"
"madd $ac0, %[Temp2], %[cospi_16_64] \n\t"
"lh %[Temp0], 2(%[input]) \n\t"
"lh %[Temp1], 6(%[input]) \n\t"
"extp %[step_0], $ac0, 31 \n\t"
"mtlo %[const_2_power_13], $ac0 \n\t"
"mthi $zero, $ac0 \n\t"
"madd $ac1, %[Temp3], %[cospi_16_64] \n\t"
"extp %[step_1], $ac1, 31 \n\t"
"mtlo %[const_2_power_13], $ac1 \n\t"
"mthi $zero, $ac1 \n\t"
/*
temp1 = input[1] * cospi_24_64 - input[3] * cospi_8_64;
step_2 = dct_const_round_shift(temp1);
*/
"madd $ac0, %[Temp0], %[cospi_24_64] \n\t"
"msub $ac0, %[Temp1], %[cospi_8_64] \n\t"
"extp %[step_2], $ac0, 31 \n\t"
/*
temp2 = input[1] * cospi_8_64 + input[3] * cospi_24_64;
step_3 = dct_const_round_shift(temp2);
*/
"madd $ac1, %[Temp0], %[cospi_8_64] \n\t"
"madd $ac1, %[Temp1], %[cospi_24_64] \n\t"
"extp %[step_3], $ac1, 31 \n\t"
/*
output[0] = step_0 + step_3;
output[4] = step_1 + step_2;
output[8] = step_1 - step_2;
output[12] = step_0 - step_3;
*/
"add %[Temp0], %[step_0], %[step_3] \n\t"
"addi %[Temp0], %[Temp0], 8 \n\t"
"sra %[Temp0], %[Temp0], 4 \n\t"
"lbu %[Temp1], 0(%[dest_pix]) \n\t"
"add %[Temp1], %[Temp1], %[Temp0] \n\t"
"slt %[Temp2], %[Temp1], %[const_255] \n\t"
"slt %[Temp3], $zero, %[Temp1] \n\t"
"movz %[Temp1], %[const_255], %[Temp2] \n\t"
"movz %[Temp1], $zero, %[Temp3] \n\t"
"sb %[Temp1], 0(%[dest_pix]) \n\t"
"addu %[dest_pix], %[dest_pix], %[stride] \n\t"
"add %[Temp0], %[step_1], %[step_2] \n\t"
"addi %[Temp0], %[Temp0], 8 \n\t"
"sra %[Temp0], %[Temp0], 4 \n\t"
"lbu %[Temp1], 0(%[dest_pix]) \n\t"
"add %[Temp1], %[Temp1], %[Temp0] \n\t"
"slt %[Temp2], %[Temp1], %[const_255] \n\t"
"slt %[Temp3], $zero, %[Temp1] \n\t"
"movz %[Temp1], %[const_255], %[Temp2] \n\t"
"movz %[Temp1], $zero, %[Temp3] \n\t"
"sb %[Temp1], 0(%[dest_pix]) \n\t"
"addu %[dest_pix], %[dest_pix], %[stride] \n\t"
"sub %[Temp0], %[step_1], %[step_2] \n\t"
"addi %[Temp0], %[Temp0], 8 \n\t"
"sra %[Temp0], %[Temp0], 4 \n\t"
"lbu %[Temp1], 0(%[dest_pix]) \n\t"
"add %[Temp1], %[Temp1], %[Temp0] \n\t"
"slt %[Temp2], %[Temp1], %[const_255] \n\t"
"slt %[Temp3], $zero, %[Temp1] \n\t"
"movz %[Temp1], %[const_255], %[Temp2] \n\t"
"movz %[Temp1], $zero, %[Temp3] \n\t"
"sb %[Temp1], 0(%[dest_pix]) \n\t"
"addu %[dest_pix], %[dest_pix], %[stride] \n\t"
"sub %[Temp0], %[step_0], %[step_3] \n\t"
"addi %[Temp0], %[Temp0], 8 \n\t"
"sra %[Temp0], %[Temp0], 4 \n\t"
"lbu %[Temp1], 0(%[dest_pix]) \n\t"
"add %[Temp1], %[Temp1], %[Temp0] \n\t"
"slt %[Temp2], %[Temp1], %[const_255] \n\t"
"slt %[Temp3], $zero, %[Temp1] \n\t"
"movz %[Temp1], %[const_255], %[Temp2] \n\t"
"movz %[Temp1], $zero, %[Temp3] \n\t"
"sb %[Temp1], 0(%[dest_pix]) \n\t"
: [Temp0] "=&r"(Temp0), [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2),
[Temp3] "=&r"(Temp3), [step_0] "=&r"(step_0), [step_1] "=&r"(step_1),
[step_2] "=&r"(step_2), [step_3] "=&r"(step_3),
[dest_pix] "+r"(dest_pix)
: [const_2_power_13] "r"(const_2_power_13), [const_255] "r"(const_255),
[cospi_8_64] "r"(cospi_8_64), [cospi_16_64] "r"(cospi_16_64),
[cospi_24_64] "r"(cospi_24_64), [input] "r"(input),
[stride] "r"(stride));
input += 4;
}
}
void vpx_idct4x4_16_add_dspr2(const int16_t *input, uint8_t *dest, int stride) {
DECLARE_ALIGNED(32, int16_t, out[4 * 4]);
int16_t *outptr = out;
uint32_t pos = 45;
/* bit positon for extract from acc */
__asm__ __volatile__("wrdsp %[pos], 1 \n\t"
:
: [pos] "r"(pos));
// Rows
vpx_idct4_rows_dspr2(input, outptr);
// Columns
vpx_idct4_columns_add_blk_dspr2(&out[0], dest, stride);
}
void vpx_idct4x4_1_add_dspr2(const int16_t *input, uint8_t *dest, int stride) {
int a1, absa1;
int r;
int32_t out;
int t2, vector_a1, vector_a;
uint32_t pos = 45;
int16_t input_dc = input[0];
/* bit positon for extract from acc */
__asm__ __volatile__("wrdsp %[pos], 1 \n\t"
:
: [pos] "r"(pos));
out = DCT_CONST_ROUND_SHIFT_TWICE_COSPI_16_64(input_dc);
__asm__ __volatile__(
"addi %[out], %[out], 8 \n\t"
"sra %[a1], %[out], 4 \n\t"
: [out] "+r"(out), [a1] "=r"(a1)
:);
if (a1 < 0) {
/* use quad-byte
* input and output memory are four byte aligned */
__asm__ __volatile__(
"abs %[absa1], %[a1] \n\t"
"replv.qb %[vector_a1], %[absa1] \n\t"
: [absa1] "=r"(absa1), [vector_a1] "=r"(vector_a1)
: [a1] "r"(a1));
for (r = 4; r--;) {
__asm__ __volatile__(
"lw %[t2], 0(%[dest]) \n\t"
"subu_s.qb %[vector_a], %[t2], %[vector_a1] \n\t"
"sw %[vector_a], 0(%[dest]) \n\t"
"add %[dest], %[dest], %[stride] \n\t"
: [t2] "=&r"(t2), [vector_a] "=&r"(vector_a), [dest] "+&r"(dest)
: [stride] "r"(stride), [vector_a1] "r"(vector_a1));
}
} else if (a1 > 255) {
int32_t a11, a12, vector_a11, vector_a12;
/* use quad-byte
* input and output memory are four byte aligned */
a11 = a1 >> 3;
a12 = a1 - (a11 * 7);
__asm__ __volatile__(
"replv.qb %[vector_a11], %[a11] \n\t"
"replv.qb %[vector_a12], %[a12] \n\t"
: [vector_a11] "=&r"(vector_a11), [vector_a12] "=&r"(vector_a12)
: [a11] "r"(a11), [a12] "r"(a12));
for (r = 4; r--;) {
__asm__ __volatile__(
"lw %[t2], 4(%[dest]) \n\t"
"addu_s.qb %[vector_a], %[t2], %[vector_a11] \n\t"
"addu_s.qb %[vector_a], %[vector_a], %[vector_a11] \n\t"
"addu_s.qb %[vector_a], %[vector_a], %[vector_a11] \n\t"
"addu_s.qb %[vector_a], %[vector_a], %[vector_a11] \n\t"
"addu_s.qb %[vector_a], %[vector_a], %[vector_a11] \n\t"
"addu_s.qb %[vector_a], %[vector_a], %[vector_a11] \n\t"
"addu_s.qb %[vector_a], %[vector_a], %[vector_a11] \n\t"
"addu_s.qb %[vector_a], %[vector_a], %[vector_a12] \n\t"
"sw %[vector_a], 0(%[dest]) \n\t"
"add %[dest], %[dest], %[stride] \n\t"
: [t2] "=&r"(t2), [vector_a] "=&r"(vector_a), [dest] "+&r"(dest)
: [stride] "r"(stride), [vector_a11] "r"(vector_a11),
[vector_a12] "r"(vector_a12));
}
} else {
/* use quad-byte
* input and output memory are four byte aligned */
__asm__ __volatile__("replv.qb %[vector_a1], %[a1] \n\t"
: [vector_a1] "=r"(vector_a1)
: [a1] "r"(a1));
for (r = 4; r--;) {
__asm__ __volatile__(
"lw %[t2], 0(%[dest]) \n\t"
"addu_s.qb %[vector_a], %[t2], %[vector_a1] \n\t"
"sw %[vector_a], 0(%[dest]) \n\t"
"add %[dest], %[dest], %[stride] \n\t"
: [t2] "=&r"(t2), [vector_a] "=&r"(vector_a), [dest] "+&r"(dest)
: [stride] "r"(stride), [vector_a1] "r"(vector_a1));
}
}
}
void iadst4_dspr2(const int16_t *input, int16_t *output) {
int s0, s1, s2, s3, s4, s5, s6, s7;
int x0, x1, x2, x3;
x0 = input[0];
x1 = input[1];
x2 = input[2];
x3 = input[3];
if (!(x0 | x1 | x2 | x3)) {
output[0] = output[1] = output[2] = output[3] = 0;
return;
}
s0 = sinpi_1_9 * x0;
s1 = sinpi_2_9 * x0;
s2 = sinpi_3_9 * x1;
s3 = sinpi_4_9 * x2;
s4 = sinpi_1_9 * x2;
s5 = sinpi_2_9 * x3;
s6 = sinpi_4_9 * x3;
s7 = x0 - x2 + x3;
x0 = s0 + s3 + s5;
x1 = s1 - s4 - s6;
x2 = sinpi_3_9 * s7;
x3 = s2;
s0 = x0 + x3;
s1 = x1 + x3;
s2 = x2;
s3 = x0 + x1 - x3;
// 1-D transform scaling factor is sqrt(2).
// The overall dynamic range is 14b (input) + 14b (multiplication scaling)
// + 1b (addition) = 29b.
// Hence the output bit depth is 15b.
output[0] = dct_const_round_shift(s0);
output[1] = dct_const_round_shift(s1);
output[2] = dct_const_round_shift(s2);
output[3] = dct_const_round_shift(s3);
}
#endif // #if HAVE_DSPR2