vpx/vp9/common/vp9_reconinter.c
John Koleszar a37ee9d2e8 Fix non-4:2:0 chroma MV calculation for SPLITMV
The previous code was somewhat vestigial for 16x16 MI units, but was
incorrect when called with chroma blocks larger than 4x4 because the
block index caused a reference to a non-existent BMI. This patch uses
the same MV for all chroma subblocks in SPLITMV mode, which is
suboptimal for non-4:2:0 subsamplings, but as SPLITMV may be removed
in the near future, will use this as a stop gap.

Change-Id: I3211cee5ccf1cfb426e5eef5353b0ce5bb92b4cd
2013-05-09 20:14:39 -07:00

427 lines
16 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include "./vpx_config.h"
#include "vpx/vpx_integer.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_filter.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
void vp9_setup_scale_factors_for_frame(struct scale_factors *scale,
int other_w, int other_h,
int this_w, int this_h) {
scale->x_num = other_w;
scale->x_den = this_w;
scale->x_offset_q4 = 0; // calculated per-mb
scale->x_step_q4 = 16 * other_w / this_w;
scale->y_num = other_h;
scale->y_den = this_h;
scale->y_offset_q4 = 0; // calculated per-mb
scale->y_step_q4 = 16 * other_h / this_h;
if (scale->x_num == scale->x_den && scale->y_num == scale->y_den) {
scale->scale_value_x = unscaled_value;
scale->scale_value_y = unscaled_value;
scale->set_scaled_offsets = set_offsets_without_scaling;
scale->scale_motion_vector_q3_to_q4 =
motion_vector_q3_to_q4_without_scaling;
scale->scale_motion_vector_component_q4 =
motion_vector_component_q4_without_scaling;
} else {
scale->scale_value_x = scale_value_x_with_scaling;
scale->scale_value_y = scale_value_y_with_scaling;
scale->set_scaled_offsets = set_offsets_with_scaling;
scale->scale_motion_vector_q3_to_q4 =
motion_vector_q3_to_q4_with_scaling;
scale->scale_motion_vector_component_q4 =
motion_vector_component_q4_with_scaling;
}
// TODO(agrange): Investigate the best choice of functions to use here
// for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what
// to do at full-pel offsets. The current selection, where the filter is
// applied in one direction only, and not at all for 0,0, seems to give the
// best quality, but it may be worth trying an additional mode that does
// do the filtering on full-pel.
if (scale->x_step_q4 == 16) {
if (scale->y_step_q4 == 16) {
// No scaling in either direction.
scale->predict[0][0][0] = vp9_convolve_copy;
scale->predict[0][0][1] = vp9_convolve_avg;
scale->predict[0][1][0] = vp9_convolve8_vert;
scale->predict[0][1][1] = vp9_convolve8_avg_vert;
scale->predict[1][0][0] = vp9_convolve8_horiz;
scale->predict[1][0][1] = vp9_convolve8_avg_horiz;
} else {
// No scaling in x direction. Must always scale in the y direction.
scale->predict[0][0][0] = vp9_convolve8_vert;
scale->predict[0][0][1] = vp9_convolve8_avg_vert;
scale->predict[0][1][0] = vp9_convolve8_vert;
scale->predict[0][1][1] = vp9_convolve8_avg_vert;
scale->predict[1][0][0] = vp9_convolve8;
scale->predict[1][0][1] = vp9_convolve8_avg;
}
} else {
if (scale->y_step_q4 == 16) {
// No scaling in the y direction. Must always scale in the x direction.
scale->predict[0][0][0] = vp9_convolve8_horiz;
scale->predict[0][0][1] = vp9_convolve8_avg_horiz;
scale->predict[0][1][0] = vp9_convolve8;
scale->predict[0][1][1] = vp9_convolve8_avg;
scale->predict[1][0][0] = vp9_convolve8_horiz;
scale->predict[1][0][1] = vp9_convolve8_avg_horiz;
} else {
// Must always scale in both directions.
scale->predict[0][0][0] = vp9_convolve8;
scale->predict[0][0][1] = vp9_convolve8_avg;
scale->predict[0][1][0] = vp9_convolve8;
scale->predict[0][1][1] = vp9_convolve8_avg;
scale->predict[1][0][0] = vp9_convolve8;
scale->predict[1][0][1] = vp9_convolve8_avg;
}
}
// 2D subpel motion always gets filtered in both directions
scale->predict[1][1][0] = vp9_convolve8;
scale->predict[1][1][1] = vp9_convolve8_avg;
}
void vp9_setup_interp_filters(MACROBLOCKD *xd,
INTERPOLATIONFILTERTYPE mcomp_filter_type,
VP9_COMMON *cm) {
if (xd->mode_info_context) {
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
set_scale_factors(xd,
mbmi->ref_frame - 1,
mbmi->second_ref_frame - 1,
cm->active_ref_scale);
}
switch (mcomp_filter_type) {
case EIGHTTAP:
case SWITCHABLE:
xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8;
break;
case EIGHTTAP_SMOOTH:
xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8lp;
break;
case EIGHTTAP_SHARP:
xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8s;
break;
case BILINEAR:
xd->subpix.filter_x = xd->subpix.filter_y = vp9_bilinear_filters;
break;
}
assert(((intptr_t)xd->subpix.filter_x & 0xff) == 0);
}
void vp9_copy_mem16x16_c(const uint8_t *src,
int src_stride,
uint8_t *dst,
int dst_stride) {
int r;
for (r = 0; r < 16; r++) {
#if !(CONFIG_FAST_UNALIGNED)
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
dst[8] = src[8];
dst[9] = src[9];
dst[10] = src[10];
dst[11] = src[11];
dst[12] = src[12];
dst[13] = src[13];
dst[14] = src[14];
dst[15] = src[15];
#else
((uint32_t *)dst)[0] = ((const uint32_t *)src)[0];
((uint32_t *)dst)[1] = ((const uint32_t *)src)[1];
((uint32_t *)dst)[2] = ((const uint32_t *)src)[2];
((uint32_t *)dst)[3] = ((const uint32_t *)src)[3];
#endif
src += src_stride;
dst += dst_stride;
}
}
void vp9_copy_mem8x8_c(const uint8_t *src,
int src_stride,
uint8_t *dst,
int dst_stride) {
int r;
for (r = 0; r < 8; r++) {
#if !(CONFIG_FAST_UNALIGNED)
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
#else
((uint32_t *)dst)[0] = ((const uint32_t *)src)[0];
((uint32_t *)dst)[1] = ((const uint32_t *)src)[1];
#endif
src += src_stride;
dst += dst_stride;
}
}
void vp9_copy_mem8x4_c(const uint8_t *src,
int src_stride,
uint8_t *dst,
int dst_stride) {
int r;
for (r = 0; r < 4; r++) {
#if !(CONFIG_FAST_UNALIGNED)
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
#else
((uint32_t *)dst)[0] = ((const uint32_t *)src)[0];
((uint32_t *)dst)[1] = ((const uint32_t *)src)[1];
#endif
src += src_stride;
dst += dst_stride;
}
}
void vp9_build_inter_predictor(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
const int_mv *mv_q3,
const struct scale_factors *scale,
int w, int h, int weight,
const struct subpix_fn_table *subpix) {
int_mv32 mv = scale->scale_motion_vector_q3_to_q4(mv_q3, scale);
src += (mv.as_mv.row >> 4) * src_stride + (mv.as_mv.col >> 4);
scale->predict[!!(mv.as_mv.col & 15)][!!(mv.as_mv.row & 15)][weight](
src, src_stride, dst, dst_stride,
subpix->filter_x[mv.as_mv.col & 15], scale->x_step_q4,
subpix->filter_y[mv.as_mv.row & 15], scale->y_step_q4,
w, h);
}
void vp9_build_inter_predictor_q4(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
const int_mv *mv_q4,
const struct scale_factors *scale,
int w, int h, int weight,
const struct subpix_fn_table *subpix) {
const int scaled_mv_row_q4 =
scale->scale_motion_vector_component_q4(mv_q4->as_mv.row,
scale->y_num, scale->y_den,
scale->y_offset_q4);
const int scaled_mv_col_q4 =
scale->scale_motion_vector_component_q4(mv_q4->as_mv.col,
scale->x_num, scale->x_den,
scale->x_offset_q4);
const int subpel_x = scaled_mv_col_q4 & 15;
const int subpel_y = scaled_mv_row_q4 & 15;
src += (scaled_mv_row_q4 >> 4) * src_stride + (scaled_mv_col_q4 >> 4);
scale->predict[!!subpel_x][!!subpel_y][weight](
src, src_stride, dst, dst_stride,
subpix->filter_x[subpel_x], scale->x_step_q4,
subpix->filter_y[subpel_y], scale->y_step_q4,
w, h);
}
static INLINE int round_mv_comp_q4(int value) {
return (value < 0 ? value - 2 : value + 2) / 4;
}
static int mi_mv_pred_row_q4(MACROBLOCKD *mb, int idx) {
const int temp = mb->mode_info_context->bmi[0].as_mv[idx].as_mv.row +
mb->mode_info_context->bmi[1].as_mv[idx].as_mv.row +
mb->mode_info_context->bmi[2].as_mv[idx].as_mv.row +
mb->mode_info_context->bmi[3].as_mv[idx].as_mv.row;
return round_mv_comp_q4(temp);
}
static int mi_mv_pred_col_q4(MACROBLOCKD *mb, int idx) {
const int temp = mb->mode_info_context->bmi[0].as_mv[idx].as_mv.col +
mb->mode_info_context->bmi[1].as_mv[idx].as_mv.col +
mb->mode_info_context->bmi[2].as_mv[idx].as_mv.col +
mb->mode_info_context->bmi[3].as_mv[idx].as_mv.col;
return round_mv_comp_q4(temp);
}
// TODO(jkoleszar): yet another mv clamping function :-(
MV clamp_mv_to_umv_border_sb(const MV *src_mv,
int bwl, int bhl, int ss_x, int ss_y,
int mb_to_left_edge, int mb_to_top_edge,
int mb_to_right_edge, int mb_to_bottom_edge) {
/* If the MV points so far into the UMV border that no visible pixels
* are used for reconstruction, the subpel part of the MV can be
* discarded and the MV limited to 16 pixels with equivalent results.
*/
const int spel_left = (VP9_INTERP_EXTEND + (4 << bwl)) << 4;
const int spel_right = spel_left - (1 << 4);
const int spel_top = (VP9_INTERP_EXTEND + (4 << bhl)) << 4;
const int spel_bottom = spel_top - (1 << 4);
MV clamped_mv;
assert(ss_x <= 1);
assert(ss_y <= 1);
clamped_mv.col = clamp(src_mv->col << (1 - ss_x),
(mb_to_left_edge << (1 - ss_x)) - spel_left,
(mb_to_right_edge << (1 - ss_x)) + spel_right);
clamped_mv.row = clamp(src_mv->row << (1 - ss_y),
(mb_to_top_edge << (1 - ss_y)) - spel_top,
(mb_to_bottom_edge << (1 - ss_y)) + spel_bottom);
return clamped_mv;
}
struct build_inter_predictors_args {
MACROBLOCKD *xd;
int x;
int y;
uint8_t* dst[MAX_MB_PLANE];
int dst_stride[MAX_MB_PLANE];
uint8_t* pre[2][MAX_MB_PLANE];
int pre_stride[2][MAX_MB_PLANE];
};
static void build_inter_predictors(int plane, int block,
BLOCK_SIZE_TYPE bsize,
int pred_w, int pred_h,
void *argv) {
const struct build_inter_predictors_args* const arg = argv;
MACROBLOCKD * const xd = arg->xd;
const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y;
const int bh = 4 << bhl, bw = 4 << bwl;
const int x_idx = block & ((1 << bwl) - 1), y_idx = block >> bwl;
const int x = x_idx * 4, y = y_idx * 4;
const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0;
int which_mv;
assert(x < bw);
assert(y < bh);
assert(xd->mode_info_context->mbmi.mode == SPLITMV || 4 << pred_w == bw);
assert(xd->mode_info_context->mbmi.mode == SPLITMV || 4 << pred_h == bh);
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
// source
const uint8_t * const base_pre = arg->pre[which_mv][plane];
const int pre_stride = arg->pre_stride[which_mv][plane];
const uint8_t *const pre = base_pre +
scaled_buffer_offset(x, y, pre_stride, &xd->scale_factor[which_mv]);
struct scale_factors * const scale =
plane == 0 ? &xd->scale_factor[which_mv] : &xd->scale_factor_uv[which_mv];
// dest
uint8_t *const dst = arg->dst[plane] + arg->dst_stride[plane] * y + x;
// motion vector
const MV *mv;
MV split_chroma_mv;
int_mv clamped_mv;
if (xd->mode_info_context->mbmi.mode == SPLITMV) {
if (plane == 0) {
mv = &xd->mode_info_context->bmi[block].as_mv[which_mv].as_mv;
} else {
// TODO(jkoleszar): All chroma MVs in SPLITMV mode are taken as the
// same MV (the average of the 4 luma MVs) but we could do something
// smarter for non-4:2:0. Just punt for now, pending the changes to get
// rid of SPLITMV mode entirely.
split_chroma_mv.row = mi_mv_pred_row_q4(xd, which_mv);
split_chroma_mv.col = mi_mv_pred_col_q4(xd, which_mv);
mv = &split_chroma_mv;
}
} else {
mv = &xd->mode_info_context->mbmi.mv[which_mv].as_mv;
}
/* TODO(jkoleszar): This clamping is done in the incorrect place for the
* scaling case. It needs to be done on the scaled MV, not the pre-scaling
* MV. Note however that it performs the subsampling aware scaling so
* that the result is always q4.
*/
clamped_mv.as_mv = clamp_mv_to_umv_border_sb(mv, bwl, bhl,
xd->plane[plane].subsampling_x,
xd->plane[plane].subsampling_y,
xd->mb_to_left_edge,
xd->mb_to_top_edge,
xd->mb_to_right_edge,
xd->mb_to_bottom_edge);
scale->set_scaled_offsets(scale, arg->y + y, arg->x + x);
vp9_build_inter_predictor_q4(pre, pre_stride,
dst, arg->dst_stride[plane],
&clamped_mv, &xd->scale_factor[which_mv],
4 << pred_w, 4 << pred_h, which_mv,
&xd->subpix);
}
}
void vp9_build_inter_predictors_sby(MACROBLOCKD *xd,
int mi_row,
int mi_col,
BLOCK_SIZE_TYPE bsize) {
struct build_inter_predictors_args args = {
xd, mi_col * MI_SIZE, mi_row * MI_SIZE,
{xd->plane[0].dst.buf, NULL, NULL}, {xd->plane[0].dst.stride, 0, 0},
{{xd->plane[0].pre[0].buf, NULL, NULL},
{xd->plane[0].pre[1].buf, NULL, NULL}},
{{xd->plane[0].pre[0].stride, 0, 0}, {xd->plane[0].pre[1].stride, 0, 0}},
};
foreach_predicted_block_in_plane(xd, bsize, 0, build_inter_predictors, &args);
}
void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd,
int mi_row,
int mi_col,
BLOCK_SIZE_TYPE bsize) {
struct build_inter_predictors_args args = {
xd, mi_col * MI_SIZE, mi_row * MI_SIZE,
{NULL, xd->plane[1].dst.buf, xd->plane[2].dst.buf},
{0, xd->plane[1].dst.stride, xd->plane[1].dst.stride},
{{NULL, xd->plane[1].pre[0].buf, xd->plane[2].pre[0].buf},
{NULL, xd->plane[1].pre[1].buf, xd->plane[2].pre[1].buf}},
{{0, xd->plane[1].pre[0].stride, xd->plane[1].pre[0].stride},
{0, xd->plane[1].pre[1].stride, xd->plane[1].pre[1].stride}},
};
foreach_predicted_block_uv(xd, bsize, build_inter_predictors, &args);
}
void vp9_build_inter_predictors_sb(MACROBLOCKD *xd,
int mi_row, int mi_col,
BLOCK_SIZE_TYPE bsize) {
vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, bsize);
}
/*encoder only*/
void vp9_build_inter4x4_predictors_mbuv(MACROBLOCKD *xd,
int mb_row, int mb_col) {
vp9_build_inter_predictors_sbuv(xd, mb_row, mb_col,
BLOCK_SIZE_MB16X16);
}