vpx/vp8/common/reconinter.c
Deb Mukherjee 00f9eb6590 New motion vector entropy coding
Adds a new experiment with redesigned/refactored motion vector entropy
coding. The patch also takes a first step towards separating the
integer and fractional pel components of a MV. However the fractional
pel encoding still depends on the integer pel part and so they are
not fully independent. Further experiments are in progress to see
how much they can be decoupled without affecting performance.
All components including entropy coding/decoding, costing for MV
search, forward updates and backward updates to probability tables,
have been implemented.

Results so far:
derf: +0.19%
std-hd: +0.28%
yt: +0.80%
hd: +1.15%

Patch: Simplifies the fractional pel models:
derf: +0.284%
std-hd: +0.289%
yt: +0.849%
hd: +1.254%

Patch: Some changes in the models, rebased.
derf: +0.330%
std-hd: +0.306%
yt: +0.816%
hd: +1.225%

Change-Id: I646b3c48f3587f4cc909639b78c3798da6402678
2012-09-06 08:28:21 -07:00

1168 lines
38 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_ports/config.h"
#include "vpx/vpx_integer.h"
#include "recon.h"
#include "subpixel.h"
#include "blockd.h"
#include "reconinter.h"
#if CONFIG_RUNTIME_CPU_DETECT
#include "onyxc_int.h"
#endif
void vp8_setup_interp_filters(MACROBLOCKD *xd,
INTERPOLATIONFILTERTYPE mcomp_filter_type,
VP8_COMMON *cm) {
if (mcomp_filter_type == SIXTAP) {
xd->subpixel_predict = SUBPIX_INVOKE(
&cm->rtcd.subpix, sixtap4x4);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(
&cm->rtcd.subpix, sixtap8x4);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(
&cm->rtcd.subpix, sixtap8x8);
xd->subpixel_predict16x16 = SUBPIX_INVOKE(
&cm->rtcd.subpix, sixtap16x16);
xd->subpixel_predict_avg = SUBPIX_INVOKE(
&cm->rtcd.subpix, sixtap_avg4x4);
xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(
&cm->rtcd.subpix, sixtap_avg8x8);
xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(
&cm->rtcd.subpix, sixtap_avg16x16);
}
else if (mcomp_filter_type == EIGHTTAP
#if CONFIG_SWITCHABLE_INTERP
||
mcomp_filter_type == SWITCHABLE
#endif
) {
xd->subpixel_predict = SUBPIX_INVOKE(
&cm->rtcd.subpix, eighttap4x4);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(
&cm->rtcd.subpix, eighttap8x4);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(
&cm->rtcd.subpix, eighttap8x8);
xd->subpixel_predict16x16 = SUBPIX_INVOKE(
&cm->rtcd.subpix, eighttap16x16);
xd->subpixel_predict_avg = SUBPIX_INVOKE(
&cm->rtcd.subpix, eighttap_avg4x4);
xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(
&cm->rtcd.subpix, eighttap_avg8x8);
xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(
&cm->rtcd.subpix, eighttap_avg16x16);
} else if (mcomp_filter_type == EIGHTTAP_SHARP) {
xd->subpixel_predict = SUBPIX_INVOKE(
&cm->rtcd.subpix, eighttap4x4_sharp);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(
&cm->rtcd.subpix, eighttap8x4_sharp);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(
&cm->rtcd.subpix, eighttap8x8_sharp);
xd->subpixel_predict16x16 = SUBPIX_INVOKE(
&cm->rtcd.subpix, eighttap16x16_sharp);
xd->subpixel_predict_avg = SUBPIX_INVOKE(
&cm->rtcd.subpix, eighttap_avg4x4_sharp);
xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(
&cm->rtcd.subpix, eighttap_avg8x8_sharp);
xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(
&cm->rtcd.subpix, eighttap_avg16x16_sharp);
}
else {
xd->subpixel_predict = SUBPIX_INVOKE(
&cm->rtcd.subpix, bilinear4x4);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(
&cm->rtcd.subpix, bilinear8x4);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(
&cm->rtcd.subpix, bilinear8x8);
xd->subpixel_predict16x16 = SUBPIX_INVOKE(
&cm->rtcd.subpix, bilinear16x16);
xd->subpixel_predict_avg = SUBPIX_INVOKE(
&cm->rtcd.subpix, bilinear_avg4x4);
xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(
&cm->rtcd.subpix, bilinear_avg8x8);
xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(
&cm->rtcd.subpix, bilinear_avg16x16);
}
}
void vp8_copy_mem16x16_c(
unsigned char *src,
int src_stride,
unsigned char *dst,
int dst_stride) {
int r;
for (r = 0; r < 16; r++) {
#if !(CONFIG_FAST_UNALIGNED)
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
dst[8] = src[8];
dst[9] = src[9];
dst[10] = src[10];
dst[11] = src[11];
dst[12] = src[12];
dst[13] = src[13];
dst[14] = src[14];
dst[15] = src[15];
#else
((uint32_t *)dst)[0] = ((uint32_t *)src)[0];
((uint32_t *)dst)[1] = ((uint32_t *)src)[1];
((uint32_t *)dst)[2] = ((uint32_t *)src)[2];
((uint32_t *)dst)[3] = ((uint32_t *)src)[3];
#endif
src += src_stride;
dst += dst_stride;
}
}
void vp8_avg_mem16x16_c(
unsigned char *src,
int src_stride,
unsigned char *dst,
int dst_stride) {
int r;
for (r = 0; r < 16; r++) {
int n;
for (n = 0; n < 16; n++) {
dst[n] = (dst[n] + src[n] + 1) >> 1;
}
src += src_stride;
dst += dst_stride;
}
}
void vp8_copy_mem8x8_c(
unsigned char *src,
int src_stride,
unsigned char *dst,
int dst_stride) {
int r;
for (r = 0; r < 8; r++) {
#if !(CONFIG_FAST_UNALIGNED)
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
#else
((uint32_t *)dst)[0] = ((uint32_t *)src)[0];
((uint32_t *)dst)[1] = ((uint32_t *)src)[1];
#endif
src += src_stride;
dst += dst_stride;
}
}
void vp8_avg_mem8x8_c(
unsigned char *src,
int src_stride,
unsigned char *dst,
int dst_stride) {
int r;
for (r = 0; r < 8; r++) {
int n;
for (n = 0; n < 8; n++) {
dst[n] = (dst[n] + src[n] + 1) >> 1;
}
src += src_stride;
dst += dst_stride;
}
}
void vp8_copy_mem8x4_c(
unsigned char *src,
int src_stride,
unsigned char *dst,
int dst_stride) {
int r;
for (r = 0; r < 4; r++) {
#if !(CONFIG_FAST_UNALIGNED)
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
#else
((uint32_t *)dst)[0] = ((uint32_t *)src)[0];
((uint32_t *)dst)[1] = ((uint32_t *)src)[1];
#endif
src += src_stride;
dst += dst_stride;
}
}
void vp8_build_inter_predictors_b(BLOCKD *d, int pitch, vp8_subpix_fn_t sppf) {
int r;
unsigned char *ptr_base;
unsigned char *ptr;
unsigned char *pred_ptr = d->predictor;
int_mv mv;
ptr_base = *(d->base_pre);
mv.as_int = d->bmi.as_mv.first.as_int;
if (mv.as_mv.row & 7 || mv.as_mv.col & 7) {
ptr = ptr_base + d->pre + (mv.as_mv.row >> 3) * d->pre_stride + (mv.as_mv.col >> 3);
sppf(ptr, d->pre_stride, (mv.as_mv.col & 7) << 1, (mv.as_mv.row & 7) << 1, pred_ptr, pitch);
} else {
ptr_base += d->pre + (mv.as_mv.row >> 3) * d->pre_stride + (mv.as_mv.col >> 3);
ptr = ptr_base;
for (r = 0; r < 4; r++) {
#if !(CONFIG_FAST_UNALIGNED)
pred_ptr[0] = ptr[0];
pred_ptr[1] = ptr[1];
pred_ptr[2] = ptr[2];
pred_ptr[3] = ptr[3];
#else
*(uint32_t *)pred_ptr = *(uint32_t *)ptr;
#endif
pred_ptr += pitch;
ptr += d->pre_stride;
}
}
}
/*
* Similar to vp8_build_inter_predictors_b(), but instead of storing the
* results in d->predictor, we average the contents of d->predictor (which
* come from an earlier call to vp8_build_inter_predictors_b()) with the
* predictor of the second reference frame / motion vector.
*/
void vp8_build_2nd_inter_predictors_b(BLOCKD *d, int pitch, vp8_subpix_fn_t sppf) {
int r;
unsigned char *ptr_base;
unsigned char *ptr;
unsigned char *pred_ptr = d->predictor;
int_mv mv;
ptr_base = *(d->base_second_pre);
mv.as_int = d->bmi.as_mv.second.as_int;
if (mv.as_mv.row & 7 || mv.as_mv.col & 7) {
ptr = ptr_base + d->pre + (mv.as_mv.row >> 3) * d->pre_stride + (mv.as_mv.col >> 3);
sppf(ptr, d->pre_stride, (mv.as_mv.col & 7) << 1, (mv.as_mv.row & 7) << 1, pred_ptr, pitch);
} else {
ptr_base += d->pre + (mv.as_mv.row >> 3) * d->pre_stride + (mv.as_mv.col >> 3);
ptr = ptr_base;
for (r = 0; r < 4; r++) {
pred_ptr[0] = (pred_ptr[0] + ptr[0] + 1) >> 1;
pred_ptr[1] = (pred_ptr[1] + ptr[1] + 1) >> 1;
pred_ptr[2] = (pred_ptr[2] + ptr[2] + 1) >> 1;
pred_ptr[3] = (pred_ptr[3] + ptr[3] + 1) >> 1;
pred_ptr += pitch;
ptr += d->pre_stride;
}
}
}
static void build_inter_predictors4b(MACROBLOCKD *xd, BLOCKD *d, int pitch) {
unsigned char *ptr_base;
unsigned char *ptr;
unsigned char *pred_ptr = d->predictor;
int_mv mv;
ptr_base = *(d->base_pre);
mv.as_int = d->bmi.as_mv.first.as_int;
ptr = ptr_base + d->pre + (mv.as_mv.row >> 3) * d->pre_stride +
(mv.as_mv.col >> 3);
if (mv.as_mv.row & 7 || mv.as_mv.col & 7) {
xd->subpixel_predict8x8(ptr, d->pre_stride, (mv.as_mv.col & 7) << 1,
(mv.as_mv.row & 7) << 1, pred_ptr, pitch);
} else {
RECON_INVOKE(&xd->rtcd->recon, copy8x8)
(ptr, d->pre_stride, pred_ptr, pitch);
}
}
/*
* Similar to build_inter_predictors_4b(), but instead of storing the
* results in d->predictor, we average the contents of d->predictor (which
* come from an earlier call to build_inter_predictors_4b()) with the
* predictor of the second reference frame / motion vector.
*/
static void build_2nd_inter_predictors4b(MACROBLOCKD *xd,
BLOCKD *d, int pitch) {
unsigned char *ptr_base;
unsigned char *ptr;
unsigned char *pred_ptr = d->predictor;
int_mv mv;
ptr_base = *(d->base_second_pre);
mv.as_int = d->bmi.as_mv.second.as_int;
ptr = ptr_base + d->pre + (mv.as_mv.row >> 3) * d->pre_stride +
(mv.as_mv.col >> 3);
if (mv.as_mv.row & 7 || mv.as_mv.col & 7) {
xd->subpixel_predict_avg8x8(ptr, d->pre_stride, (mv.as_mv.col & 7) << 1,
(mv.as_mv.row & 7) << 1, pred_ptr, pitch);
} else {
RECON_INVOKE(&xd->rtcd->recon, avg8x8)
(ptr, d->pre_stride, pred_ptr, pitch);
}
}
static void build_inter_predictors2b(MACROBLOCKD *xd, BLOCKD *d, int pitch) {
unsigned char *ptr_base;
unsigned char *ptr;
unsigned char *pred_ptr = d->predictor;
int_mv mv;
ptr_base = *(d->base_pre);
mv.as_int = d->bmi.as_mv.first.as_int;
ptr = ptr_base + d->pre + (mv.as_mv.row >> 3) * d->pre_stride +
(mv.as_mv.col >> 3);
if (mv.as_mv.row & 7 || mv.as_mv.col & 7) {
xd->subpixel_predict8x4(ptr, d->pre_stride, (mv.as_mv.col & 7) << 1,
(mv.as_mv.row & 7) << 1, pred_ptr, pitch);
} else {
RECON_INVOKE(&xd->rtcd->recon, copy8x4)(ptr, d->pre_stride, pred_ptr, pitch);
}
}
/*encoder only*/
#if CONFIG_PRED_FILTER
// Select the thresholded or non-thresholded filter
#define USE_THRESH_FILTER 0
#define PRED_FILT_LEN 5
static const int filt_shift = 4;
static const int pred_filter[PRED_FILT_LEN] = {1, 2, 10, 2, 1};
// Alternative filter {1, 1, 4, 1, 1}
#if !USE_THRESH_FILTER
void filter_mb(unsigned char *src, int src_stride,
unsigned char *dst, int dst_stride,
int width, int height) {
int i, j, k;
unsigned int Temp[32 * 32];
unsigned int *pTmp = Temp;
unsigned char *pSrc = src - (1 + src_stride) * (PRED_FILT_LEN / 2);
// Horizontal
for (i = 0; i < height + PRED_FILT_LEN - 1; i++) {
for (j = 0; j < width; j++) {
int sum = 0;
for (k = 0; k < PRED_FILT_LEN; k++)
sum += pSrc[j + k] * pred_filter[k];
pTmp[j] = sum;
}
pSrc += src_stride;
pTmp += width;
}
// Vertical
pTmp = Temp;
for (i = 0; i < width; i++) {
unsigned char *pDst = dst + i;
for (j = 0; j < height; j++) {
int sum = 0;
for (k = 0; k < PRED_FILT_LEN; k++)
sum += pTmp[(j + k) * width] * pred_filter[k];
// Round
sum = (sum + ((1 << (filt_shift << 1)) >> 1)) >> (filt_shift << 1);
pDst[j * dst_stride] = (sum < 0 ? 0 : sum > 255 ? 255 : sum);
}
++pTmp;
}
}
#else
// Based on vp8_post_proc_down_and_across_c (postproc.c)
void filter_mb(unsigned char *src, int src_stride,
unsigned char *dst, int dst_stride,
int width, int height) {
unsigned char *pSrc, *pDst;
int row;
int col;
int i;
int v;
unsigned char d[8];
/* TODO flimit should be linked to the quantizer value */
int flimit = 7;
for (row = 0; row < height; row++) {
/* post_proc_down for one row */
pSrc = src;
pDst = dst;
for (col = 0; col < width; col++) {
int kernel = (1 << (filt_shift - 1));
int v = pSrc[col];
for (i = -2; i <= 2; i++) {
if (abs(v - pSrc[col + i * src_stride]) > flimit)
goto down_skip_convolve;
kernel += pred_filter[2 + i] * pSrc[col + i * src_stride];
}
v = (kernel >> filt_shift);
down_skip_convolve:
pDst[col] = v;
}
/* now post_proc_across */
pSrc = dst;
pDst = dst;
for (i = 0; i < 8; i++)
d[i] = pSrc[i];
for (col = 0; col < width; col++) {
int kernel = (1 << (filt_shift - 1));
v = pSrc[col];
d[col & 7] = v;
for (i = -2; i <= 2; i++) {
if (abs(v - pSrc[col + i]) > flimit)
goto across_skip_convolve;
kernel += pred_filter[2 + i] * pSrc[col + i];
}
d[col & 7] = (kernel >> filt_shift);
across_skip_convolve:
if (col >= 2)
pDst[col - 2] = d[(col - 2) & 7];
}
/* handle the last two pixels */
pDst[col - 2] = d[(col - 2) & 7];
pDst[col - 1] = d[(col - 1) & 7];
/* next row */
src += src_stride;
dst += dst_stride;
}
}
#endif // !USE_THRESH_FILTER
#endif // CONFIG_PRED_FILTER
/*encoder only*/
void vp8_build_inter4x4_predictors_mbuv(MACROBLOCKD *xd) {
int i, j;
BLOCKD *blockd = xd->block;
/* build uv mvs */
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++) {
int yoffset = i * 8 + j * 2;
int uoffset = 16 + i * 2 + j;
int voffset = 20 + i * 2 + j;
int temp;
temp = blockd[yoffset ].bmi.as_mv.first.as_mv.row
+ blockd[yoffset + 1].bmi.as_mv.first.as_mv.row
+ blockd[yoffset + 4].bmi.as_mv.first.as_mv.row
+ blockd[yoffset + 5].bmi.as_mv.first.as_mv.row;
if (temp < 0) temp -= 4;
else temp += 4;
xd->block[uoffset].bmi.as_mv.first.as_mv.row = (temp / 8) &
xd->fullpixel_mask;
temp = blockd[yoffset ].bmi.as_mv.first.as_mv.col
+ blockd[yoffset + 1].bmi.as_mv.first.as_mv.col
+ blockd[yoffset + 4].bmi.as_mv.first.as_mv.col
+ blockd[yoffset + 5].bmi.as_mv.first.as_mv.col;
if (temp < 0) temp -= 4;
else temp += 4;
blockd[uoffset].bmi.as_mv.first.as_mv.col = (temp / 8) &
xd->fullpixel_mask;
blockd[voffset].bmi.as_mv.first.as_mv.row =
blockd[uoffset].bmi.as_mv.first.as_mv.row;
blockd[voffset].bmi.as_mv.first.as_mv.col =
blockd[uoffset].bmi.as_mv.first.as_mv.col;
if (xd->mode_info_context->mbmi.second_ref_frame) {
temp = blockd[yoffset ].bmi.as_mv.second.as_mv.row
+ blockd[yoffset + 1].bmi.as_mv.second.as_mv.row
+ blockd[yoffset + 4].bmi.as_mv.second.as_mv.row
+ blockd[yoffset + 5].bmi.as_mv.second.as_mv.row;
if (temp < 0) {
temp -= 4;
} else {
temp += 4;
}
blockd[uoffset].bmi.as_mv.second.as_mv.row = (temp / 8) &
xd->fullpixel_mask;
temp = blockd[yoffset ].bmi.as_mv.second.as_mv.col
+ blockd[yoffset + 1].bmi.as_mv.second.as_mv.col
+ blockd[yoffset + 4].bmi.as_mv.second.as_mv.col
+ blockd[yoffset + 5].bmi.as_mv.second.as_mv.col;
if (temp < 0) {
temp -= 4;
} else {
temp += 4;
}
blockd[uoffset].bmi.as_mv.second.as_mv.col = (temp / 8) &
xd->fullpixel_mask;
blockd[voffset].bmi.as_mv.second.as_mv.row =
blockd[uoffset].bmi.as_mv.second.as_mv.row;
blockd[voffset].bmi.as_mv.second.as_mv.col =
blockd[uoffset].bmi.as_mv.second.as_mv.col;
}
}
}
for (i = 16; i < 24; i += 2) {
BLOCKD *d0 = &blockd[i];
BLOCKD *d1 = &blockd[i + 1];
if (d0->bmi.as_mv.first.as_int == d1->bmi.as_mv.first.as_int)
build_inter_predictors2b(xd, d0, 8);
else {
vp8_build_inter_predictors_b(d0, 8, xd->subpixel_predict);
vp8_build_inter_predictors_b(d1, 8, xd->subpixel_predict);
}
if (xd->mode_info_context->mbmi.second_ref_frame) {
vp8_build_2nd_inter_predictors_b(d0, 8, xd->subpixel_predict_avg);
vp8_build_2nd_inter_predictors_b(d1, 8, xd->subpixel_predict_avg);
}
}
}
static void clamp_mv_to_umv_border(MV *mv, const MACROBLOCKD *xd) {
/* If the MV points so far into the UMV border that no visible pixels
* are used for reconstruction, the subpel part of the MV can be
* discarded and the MV limited to 16 pixels with equivalent results.
*
* This limit kicks in at 19 pixels for the top and left edges, for
* the 16 pixels plus 3 taps right of the central pixel when subpel
* filtering. The bottom and right edges use 16 pixels plus 2 pixels
* left of the central pixel when filtering.
*/
if (mv->col < (xd->mb_to_left_edge - ((16 + INTERP_EXTEND) << 3)))
mv->col = xd->mb_to_left_edge - (16 << 3);
else if (mv->col > xd->mb_to_right_edge + ((15 + INTERP_EXTEND) << 3))
mv->col = xd->mb_to_right_edge + (16 << 3);
if (mv->row < (xd->mb_to_top_edge - ((16 + INTERP_EXTEND) << 3)))
mv->row = xd->mb_to_top_edge - (16 << 3);
else if (mv->row > xd->mb_to_bottom_edge + ((15 + INTERP_EXTEND) << 3))
mv->row = xd->mb_to_bottom_edge + (16 << 3);
}
/* A version of the above function for chroma block MVs.*/
static void clamp_uvmv_to_umv_border(MV *mv, const MACROBLOCKD *xd) {
mv->col = (2 * mv->col < (xd->mb_to_left_edge - ((16 + INTERP_EXTEND) << 3))) ?
(xd->mb_to_left_edge - (16 << 3)) >> 1 : mv->col;
mv->col = (2 * mv->col > xd->mb_to_right_edge + ((15 + INTERP_EXTEND) << 3)) ?
(xd->mb_to_right_edge + (16 << 3)) >> 1 : mv->col;
mv->row = (2 * mv->row < (xd->mb_to_top_edge - ((16 + INTERP_EXTEND) << 3))) ?
(xd->mb_to_top_edge - (16 << 3)) >> 1 : mv->row;
mv->row = (2 * mv->row > xd->mb_to_bottom_edge + ((15 + INTERP_EXTEND) << 3)) ?
(xd->mb_to_bottom_edge + (16 << 3)) >> 1 : mv->row;
}
/*encoder only*/
void vp8_build_1st_inter16x16_predictors_mby(MACROBLOCKD *xd,
unsigned char *dst_y,
int dst_ystride,
int clamp_mvs) {
unsigned char *ptr_base = xd->pre.y_buffer;
unsigned char *ptr;
int pre_stride = xd->block[0].pre_stride;
int_mv ymv;
ymv.as_int = xd->mode_info_context->mbmi.mv[0].as_int;
if (clamp_mvs)
clamp_mv_to_umv_border(&ymv.as_mv, xd);
ptr = ptr_base + (ymv.as_mv.row >> 3) * pre_stride + (ymv.as_mv.col >> 3);
#if CONFIG_PRED_FILTER
if (xd->mode_info_context->mbmi.pred_filter_enabled) {
if ((ymv.as_mv.row | ymv.as_mv.col) & 7) {
// Sub-pel filter needs extended input
int len = 15 + (INTERP_EXTEND << 1);
unsigned char Temp[32 * 32]; // Data required by sub-pel filter
unsigned char *pTemp = Temp + (INTERP_EXTEND - 1) * (len + 1);
// Copy extended MB into Temp array, applying the spatial filter
filter_mb(ptr - (INTERP_EXTEND - 1) * (pre_stride + 1), pre_stride,
Temp, len, len, len);
// Sub-pel interpolation
xd->subpixel_predict16x16(pTemp, len,
(ymv.as_mv.col & 7) << 1,
(ymv.as_mv.row & 7) << 1,
dst_y, dst_ystride);
} else {
// Apply spatial filter to create the prediction directly
filter_mb(ptr, pre_stride, dst_y, dst_ystride, 16, 16);
}
} else
#endif
if ((ymv.as_mv.row | ymv.as_mv.col) & 7) {
xd->subpixel_predict16x16(ptr, pre_stride,
(ymv.as_mv.col & 7) << 1,
(ymv.as_mv.row & 7) << 1,
dst_y, dst_ystride);
} else {
RECON_INVOKE(&xd->rtcd->recon, copy16x16)
(ptr, pre_stride, dst_y, dst_ystride);
}
}
void vp8_build_1st_inter16x16_predictors_mbuv(MACROBLOCKD *xd,
unsigned char *dst_u,
unsigned char *dst_v,
int dst_uvstride) {
int offset;
unsigned char *uptr, *vptr;
int pre_stride = xd->block[0].pre_stride;
int_mv _o16x16mv;
int_mv _16x16mv;
_16x16mv.as_int = xd->mode_info_context->mbmi.mv[0].as_int;
if (xd->mode_info_context->mbmi.need_to_clamp_mvs)
clamp_mv_to_umv_border(&_16x16mv.as_mv, xd);
_o16x16mv = _16x16mv;
/* calc uv motion vectors */
if (_16x16mv.as_mv.row < 0)
_16x16mv.as_mv.row -= 1;
else
_16x16mv.as_mv.row += 1;
if (_16x16mv.as_mv.col < 0)
_16x16mv.as_mv.col -= 1;
else
_16x16mv.as_mv.col += 1;
_16x16mv.as_mv.row /= 2;
_16x16mv.as_mv.col /= 2;
_16x16mv.as_mv.row &= xd->fullpixel_mask;
_16x16mv.as_mv.col &= xd->fullpixel_mask;
pre_stride >>= 1;
offset = (_16x16mv.as_mv.row >> 3) * pre_stride + (_16x16mv.as_mv.col >> 3);
uptr = xd->pre.u_buffer + offset;
vptr = xd->pre.v_buffer + offset;
#if CONFIG_PRED_FILTER
if (xd->mode_info_context->mbmi.pred_filter_enabled) {
int i;
unsigned char *pSrc = uptr;
unsigned char *pDst = dst_u;
int len = 7 + (INTERP_EXTEND << 1);
unsigned char Temp[32 * 32]; // Data required by the sub-pel filter
unsigned char *pTemp = Temp + (INTERP_EXTEND - 1) * (len + 1);
// U & V
for (i = 0; i < 2; i++) {
if (_o16x16mv.as_int & 0x000f000f) {
// Copy extended MB into Temp array, applying the spatial filter
filter_mb(pSrc - (INTERP_EXTEND - 1) * (pre_stride + 1), pre_stride,
Temp, len, len, len);
// Sub-pel filter
xd->subpixel_predict8x8(pTemp, len,
_o16x16mv.as_mv.col & 15,
_o16x16mv.as_mv.row & 15,
pDst, dst_uvstride);
} else {
filter_mb(pSrc, pre_stride, pDst, dst_uvstride, 8, 8);
}
// V
pSrc = vptr;
pDst = dst_v;
}
} else
#endif
if (_o16x16mv.as_int & 0x000f000f) {
xd->subpixel_predict8x8(uptr, pre_stride, _o16x16mv.as_mv.col & 15,
_o16x16mv.as_mv.row & 15, dst_u, dst_uvstride);
xd->subpixel_predict8x8(vptr, pre_stride, _o16x16mv.as_mv.col & 15,
_o16x16mv.as_mv.row & 15, dst_v, dst_uvstride);
} else {
RECON_INVOKE(&xd->rtcd->recon, copy8x8)
(uptr, pre_stride, dst_u, dst_uvstride);
RECON_INVOKE(&xd->rtcd->recon, copy8x8)
(vptr, pre_stride, dst_v, dst_uvstride);
}
}
void vp8_build_1st_inter16x16_predictors_mb(MACROBLOCKD *xd,
unsigned char *dst_y,
unsigned char *dst_u,
unsigned char *dst_v,
int dst_ystride, int dst_uvstride) {
vp8_build_1st_inter16x16_predictors_mby(xd, dst_y, dst_ystride,
xd->mode_info_context->mbmi.need_to_clamp_mvs);
vp8_build_1st_inter16x16_predictors_mbuv(xd, dst_u, dst_v, dst_uvstride);
}
#if CONFIG_SUPERBLOCKS
void vp8_build_inter32x32_predictors_sb(MACROBLOCKD *x,
unsigned char *dst_y,
unsigned char *dst_u,
unsigned char *dst_v,
int dst_ystride,
int dst_uvstride) {
uint8_t *y1 = x->pre.y_buffer, *u1 = x->pre.u_buffer, *v1 = x->pre.v_buffer;
uint8_t *y2 = x->second_pre.y_buffer, *u2 = x->second_pre.u_buffer,
*v2 = x->second_pre.v_buffer;
int n;
for (n = 0; n < 4; n++)
{
const int x_idx = n & 1, y_idx = n >> 1;
x->pre.y_buffer = y1 + y_idx * 16 * x->pre.y_stride + x_idx * 16;
x->pre.u_buffer = u1 + y_idx * 8 * x->pre.uv_stride + x_idx * 8;
x->pre.v_buffer = v1 + y_idx * 8 * x->pre.uv_stride + x_idx * 8;
vp8_build_1st_inter16x16_predictors_mb(x,
dst_y + y_idx * 16 * dst_ystride + x_idx * 16,
dst_u + y_idx * 8 * dst_uvstride + x_idx * 8,
dst_v + y_idx * 8 * dst_uvstride + x_idx * 8,
dst_ystride, dst_uvstride);
if (x->mode_info_context->mbmi.second_ref_frame) {
x->second_pre.y_buffer = y2 + y_idx * 16 * x->pre.y_stride + x_idx * 16;
x->second_pre.u_buffer = u2 + y_idx * 8 * x->pre.uv_stride + x_idx * 8;
x->second_pre.v_buffer = v2 + y_idx * 8 * x->pre.uv_stride + x_idx * 8;
vp8_build_2nd_inter16x16_predictors_mb(x,
dst_y + y_idx * 16 * dst_ystride + x_idx * 16,
dst_u + y_idx * 8 * dst_uvstride + x_idx * 8,
dst_v + y_idx * 8 * dst_uvstride + x_idx * 8,
dst_ystride, dst_uvstride);
}
}
x->pre.y_buffer = y1;
x->pre.u_buffer = u1;
x->pre.v_buffer = v1;
if (x->mode_info_context->mbmi.second_ref_frame) {
x->second_pre.y_buffer = y2;
x->second_pre.u_buffer = u2;
x->second_pre.v_buffer = v2;
}
}
#endif
/*
* The following functions should be called after an initial
* call to vp8_build_inter16x16_predictors_mb() or _mby()/_mbuv().
* It will run a second sixtap filter on a (different) ref
* frame and average the result with the output of the
* first sixtap filter. The second reference frame is stored
* in x->second_pre (the reference frame index is in
* x->mode_info_context->mbmi.second_ref_frame). The second
* motion vector is x->mode_info_context->mbmi.second_mv.
*
* This allows blending prediction from two reference frames
* which sometimes leads to better prediction than from a
* single reference framer.
*/
void vp8_build_2nd_inter16x16_predictors_mby(MACROBLOCKD *xd,
unsigned char *dst_y,
int dst_ystride) {
unsigned char *ptr;
int_mv _16x16mv;
int mv_row;
int mv_col;
unsigned char *ptr_base = xd->second_pre.y_buffer;
int pre_stride = xd->block[0].pre_stride;
_16x16mv.as_int = xd->mode_info_context->mbmi.mv[1].as_int;
if (xd->mode_info_context->mbmi.need_to_clamp_secondmv)
clamp_mv_to_umv_border(&_16x16mv.as_mv, xd);
mv_row = _16x16mv.as_mv.row;
mv_col = _16x16mv.as_mv.col;
ptr = ptr_base + (mv_row >> 3) * pre_stride + (mv_col >> 3);
#if CONFIG_PRED_FILTER
if (xd->mode_info_context->mbmi.pred_filter_enabled) {
if ((mv_row | mv_col) & 7) {
// Sub-pel filter needs extended input
int len = 15 + (INTERP_EXTEND << 1);
unsigned char Temp[32 * 32]; // Data required by sub-pel filter
unsigned char *pTemp = Temp + (INTERP_EXTEND - 1) * (len + 1);
// Copy extended MB into Temp array, applying the spatial filter
filter_mb(ptr - (INTERP_EXTEND - 1) * (pre_stride + 1), pre_stride,
Temp, len, len, len);
// Sub-pel filter
xd->subpixel_predict_avg16x16(pTemp, len, (mv_col & 7) << 1,
(mv_row & 7) << 1, dst_y, dst_ystride);
} else {
// TODO Needs to AVERAGE with the dst_y
// For now, do not apply the prediction filter in these cases!
RECON_INVOKE(&xd->rtcd->recon, avg16x16)(ptr, pre_stride, dst_y,
dst_ystride);
}
} else
#endif // CONFIG_PRED_FILTER
{
if ((mv_row | mv_col) & 7) {
xd->subpixel_predict_avg16x16(ptr, pre_stride, (mv_col & 7) << 1,
(mv_row & 7) << 1, dst_y, dst_ystride);
} else {
RECON_INVOKE(&xd->rtcd->recon, avg16x16)(ptr, pre_stride, dst_y,
dst_ystride);
}
}
}
void vp8_build_2nd_inter16x16_predictors_mbuv(MACROBLOCKD *xd,
unsigned char *dst_u,
unsigned char *dst_v,
int dst_uvstride) {
int offset;
unsigned char *uptr, *vptr;
int_mv _16x16mv;
int mv_row;
int mv_col;
int omv_row, omv_col;
int pre_stride = xd->block[0].pre_stride;
_16x16mv.as_int = xd->mode_info_context->mbmi.mv[1].as_int;
if (xd->mode_info_context->mbmi.need_to_clamp_secondmv)
clamp_mv_to_umv_border(&_16x16mv.as_mv, xd);
mv_row = _16x16mv.as_mv.row;
mv_col = _16x16mv.as_mv.col;
/* calc uv motion vectors */
omv_row = mv_row;
omv_col = mv_col;
mv_row = (mv_row + (mv_row > 0)) >> 1;
mv_col = (mv_col + (mv_col > 0)) >> 1;
mv_row &= xd->fullpixel_mask;
mv_col &= xd->fullpixel_mask;
pre_stride >>= 1;
offset = (mv_row >> 3) * pre_stride + (mv_col >> 3);
uptr = xd->second_pre.u_buffer + offset;
vptr = xd->second_pre.v_buffer + offset;
#if CONFIG_PRED_FILTER
if (xd->mode_info_context->mbmi.pred_filter_enabled) {
int i;
int len = 7 + (INTERP_EXTEND << 1);
unsigned char Temp[32 * 32]; // Data required by sub-pel filter
unsigned char *pTemp = Temp + (INTERP_EXTEND - 1) * (len + 1);
unsigned char *pSrc = uptr;
unsigned char *pDst = dst_u;
// U & V
for (i = 0; i < 2; i++) {
if ((omv_row | omv_col) & 15) {
// Copy extended MB into Temp array, applying the spatial filter
filter_mb(pSrc - (INTERP_EXTEND - 1) * (pre_stride + 1), pre_stride,
Temp, len, len, len);
// Sub-pel filter
xd->subpixel_predict_avg8x8(pTemp, len, omv_col & 15,
omv_row & 15, pDst, dst_uvstride);
} else {
// TODO Needs to AVERAGE with the dst_[u|v]
// For now, do not apply the prediction filter here!
RECON_INVOKE(&xd->rtcd->recon, avg8x8)(pSrc, pre_stride, pDst,
dst_uvstride);
}
// V
pSrc = vptr;
pDst = dst_v;
}
} else
#endif // CONFIG_PRED_FILTER
if ((omv_row | omv_col) & 15) {
xd->subpixel_predict_avg8x8(uptr, pre_stride, omv_col & 15,
omv_row & 15, dst_u, dst_uvstride);
xd->subpixel_predict_avg8x8(vptr, pre_stride, omv_col & 15,
omv_row & 15, dst_v, dst_uvstride);
} else {
RECON_INVOKE(&xd->rtcd->recon, avg8x8)(uptr, pre_stride, dst_u, dst_uvstride);
RECON_INVOKE(&xd->rtcd->recon, avg8x8)(vptr, pre_stride, dst_v, dst_uvstride);
}
}
void vp8_build_2nd_inter16x16_predictors_mb(MACROBLOCKD *xd,
unsigned char *dst_y,
unsigned char *dst_u,
unsigned char *dst_v,
int dst_ystride,
int dst_uvstride) {
vp8_build_2nd_inter16x16_predictors_mby(xd, dst_y, dst_ystride);
vp8_build_2nd_inter16x16_predictors_mbuv(xd, dst_u, dst_v, dst_uvstride);
}
static void build_inter4x4_predictors_mb(MACROBLOCKD *xd) {
int i;
MB_MODE_INFO * mbmi = &xd->mode_info_context->mbmi;
BLOCKD *blockd = xd->block;
if (xd->mode_info_context->mbmi.partitioning < 3) {
blockd[ 0].bmi = xd->mode_info_context->bmi[ 0];
blockd[ 2].bmi = xd->mode_info_context->bmi[ 2];
blockd[ 8].bmi = xd->mode_info_context->bmi[ 8];
blockd[10].bmi = xd->mode_info_context->bmi[10];
if (mbmi->need_to_clamp_mvs) {
clamp_mv_to_umv_border(&blockd[ 0].bmi.as_mv.first.as_mv, xd);
clamp_mv_to_umv_border(&blockd[ 2].bmi.as_mv.first.as_mv, xd);
clamp_mv_to_umv_border(&blockd[ 8].bmi.as_mv.first.as_mv, xd);
clamp_mv_to_umv_border(&blockd[10].bmi.as_mv.first.as_mv, xd);
if (mbmi->second_ref_frame) {
clamp_mv_to_umv_border(&blockd[ 0].bmi.as_mv.second.as_mv, xd);
clamp_mv_to_umv_border(&blockd[ 2].bmi.as_mv.second.as_mv, xd);
clamp_mv_to_umv_border(&blockd[ 8].bmi.as_mv.second.as_mv, xd);
clamp_mv_to_umv_border(&blockd[10].bmi.as_mv.second.as_mv, xd);
}
}
build_inter_predictors4b(xd, &blockd[ 0], 16);
build_inter_predictors4b(xd, &blockd[ 2], 16);
build_inter_predictors4b(xd, &blockd[ 8], 16);
build_inter_predictors4b(xd, &blockd[10], 16);
if (mbmi->second_ref_frame) {
build_2nd_inter_predictors4b(xd, &blockd[ 0], 16);
build_2nd_inter_predictors4b(xd, &blockd[ 2], 16);
build_2nd_inter_predictors4b(xd, &blockd[ 8], 16);
build_2nd_inter_predictors4b(xd, &blockd[10], 16);
}
} else {
for (i = 0; i < 16; i += 2) {
BLOCKD *d0 = &blockd[i];
BLOCKD *d1 = &blockd[i + 1];
blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0];
blockd[i + 1].bmi = xd->mode_info_context->bmi[i + 1];
if (mbmi->need_to_clamp_mvs) {
clamp_mv_to_umv_border(&blockd[i + 0].bmi.as_mv.first.as_mv, xd);
clamp_mv_to_umv_border(&blockd[i + 1].bmi.as_mv.first.as_mv, xd);
if (mbmi->second_ref_frame) {
clamp_mv_to_umv_border(&blockd[i + 0].bmi.as_mv.second.as_mv, xd);
clamp_mv_to_umv_border(&blockd[i + 1].bmi.as_mv.second.as_mv, xd);
}
}
if (d0->bmi.as_mv.first.as_int == d1->bmi.as_mv.first.as_int)
build_inter_predictors2b(xd, d0, 16);
else {
vp8_build_inter_predictors_b(d0, 16, xd->subpixel_predict);
vp8_build_inter_predictors_b(d1, 16, xd->subpixel_predict);
}
if (mbmi->second_ref_frame) {
vp8_build_2nd_inter_predictors_b(d0, 16, xd->subpixel_predict_avg);
vp8_build_2nd_inter_predictors_b(d1, 16, xd->subpixel_predict_avg);
}
}
}
for (i = 16; i < 24; i += 2) {
BLOCKD *d0 = &blockd[i];
BLOCKD *d1 = &blockd[i + 1];
if (d0->bmi.as_mv.first.as_int == d1->bmi.as_mv.first.as_int)
build_inter_predictors2b(xd, d0, 8);
else {
vp8_build_inter_predictors_b(d0, 8, xd->subpixel_predict);
vp8_build_inter_predictors_b(d1, 8, xd->subpixel_predict);
}
if (mbmi->second_ref_frame) {
vp8_build_2nd_inter_predictors_b(d0, 8, xd->subpixel_predict_avg);
vp8_build_2nd_inter_predictors_b(d1, 8, xd->subpixel_predict_avg);
}
}
}
static
void build_4x4uvmvs(MACROBLOCKD *xd) {
int i, j;
BLOCKD *blockd = xd->block;
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++) {
int yoffset = i * 8 + j * 2;
int uoffset = 16 + i * 2 + j;
int voffset = 20 + i * 2 + j;
int temp;
temp = xd->mode_info_context->bmi[yoffset + 0].as_mv.first.as_mv.row
+ xd->mode_info_context->bmi[yoffset + 1].as_mv.first.as_mv.row
+ xd->mode_info_context->bmi[yoffset + 4].as_mv.first.as_mv.row
+ xd->mode_info_context->bmi[yoffset + 5].as_mv.first.as_mv.row;
if (temp < 0) temp -= 4;
else temp += 4;
blockd[uoffset].bmi.as_mv.first.as_mv.row = (temp / 8) &
xd->fullpixel_mask;
temp = xd->mode_info_context->bmi[yoffset + 0].as_mv.first.as_mv.col
+ xd->mode_info_context->bmi[yoffset + 1].as_mv.first.as_mv.col
+ xd->mode_info_context->bmi[yoffset + 4].as_mv.first.as_mv.col
+ xd->mode_info_context->bmi[yoffset + 5].as_mv.first.as_mv.col;
if (temp < 0) temp -= 4;
else temp += 4;
blockd[uoffset].bmi.as_mv.first.as_mv.col = (temp / 8) &
xd->fullpixel_mask;
// if (x->mode_info_context->mbmi.need_to_clamp_mvs)
clamp_uvmv_to_umv_border(&blockd[uoffset].bmi.as_mv.first.as_mv, xd);
// if (x->mode_info_context->mbmi.need_to_clamp_mvs)
clamp_uvmv_to_umv_border(&blockd[uoffset].bmi.as_mv.first.as_mv, xd);
blockd[voffset].bmi.as_mv.first.as_mv.row =
blockd[uoffset].bmi.as_mv.first.as_mv.row;
blockd[voffset].bmi.as_mv.first.as_mv.col =
blockd[uoffset].bmi.as_mv.first.as_mv.col;
if (xd->mode_info_context->mbmi.second_ref_frame) {
temp = xd->mode_info_context->bmi[yoffset + 0].as_mv.second.as_mv.row
+ xd->mode_info_context->bmi[yoffset + 1].as_mv.second.as_mv.row
+ xd->mode_info_context->bmi[yoffset + 4].as_mv.second.as_mv.row
+ xd->mode_info_context->bmi[yoffset + 5].as_mv.second.as_mv.row;
if (temp < 0) {
temp -= 4;
} else {
temp += 4;
}
blockd[uoffset].bmi.as_mv.second.as_mv.row = (temp / 8) &
xd->fullpixel_mask;
temp = xd->mode_info_context->bmi[yoffset + 0].as_mv.second.as_mv.col
+ xd->mode_info_context->bmi[yoffset + 1].as_mv.second.as_mv.col
+ xd->mode_info_context->bmi[yoffset + 4].as_mv.second.as_mv.col
+ xd->mode_info_context->bmi[yoffset + 5].as_mv.second.as_mv.col;
if (temp < 0) {
temp -= 4;
} else {
temp += 4;
}
blockd[uoffset].bmi.as_mv.second.as_mv.col = (temp / 8) &
xd->fullpixel_mask;
// if (mbmi->need_to_clamp_mvs)
clamp_uvmv_to_umv_border(
&blockd[uoffset].bmi.as_mv.second.as_mv, xd);
// if (mbmi->need_to_clamp_mvs)
clamp_uvmv_to_umv_border(
&blockd[uoffset].bmi.as_mv.second.as_mv, xd);
blockd[voffset].bmi.as_mv.second.as_mv.row =
blockd[uoffset].bmi.as_mv.second.as_mv.row;
blockd[voffset].bmi.as_mv.second.as_mv.col =
blockd[uoffset].bmi.as_mv.second.as_mv.col;
}
}
}
}
void vp8_build_inter_predictors_mb(MACROBLOCKD *xd) {
if (xd->mode_info_context->mbmi.mode != SPLITMV) {
vp8_build_1st_inter16x16_predictors_mb(xd, xd->predictor,
&xd->predictor[256],
&xd->predictor[320], 16, 8);
if (xd->mode_info_context->mbmi.second_ref_frame) {
/* 256 = offset of U plane in Y+U+V buffer;
* 320 = offset of V plane in Y+U+V buffer.
* (256=16x16, 320=16x16+8x8). */
vp8_build_2nd_inter16x16_predictors_mb(xd, xd->predictor,
&xd->predictor[256],
&xd->predictor[320], 16, 8);
}
} else {
build_4x4uvmvs(xd);
build_inter4x4_predictors_mb(xd);
}
}