vpx/test/convolve_test.cc
Parag Salasakar ca90d4fd96 mips msa vp9 convolve8 horiz optimization
average improvement ~6x-8x

Change-Id: I7c91eec41aada3b0a5231dda7869b3b968f3ad18
2015-04-21 12:31:26 +05:30

1841 lines
73 KiB
C++

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <string.h>
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "./vpx_config.h"
#include "./vp9_rtcd.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_filter.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem.h"
namespace {
static const unsigned int kMaxDimension = 64;
typedef void (*ConvolveFunc)(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int filter_x_stride,
const int16_t *filter_y, int filter_y_stride,
int w, int h);
struct ConvolveFunctions {
ConvolveFunctions(ConvolveFunc copy, ConvolveFunc avg,
ConvolveFunc h8, ConvolveFunc h8_avg,
ConvolveFunc v8, ConvolveFunc v8_avg,
ConvolveFunc hv8, ConvolveFunc hv8_avg,
int bd)
: copy_(copy), avg_(avg), h8_(h8), v8_(v8), hv8_(hv8), h8_avg_(h8_avg),
v8_avg_(v8_avg), hv8_avg_(hv8_avg), use_highbd_(bd) {}
ConvolveFunc copy_;
ConvolveFunc avg_;
ConvolveFunc h8_;
ConvolveFunc v8_;
ConvolveFunc hv8_;
ConvolveFunc h8_avg_;
ConvolveFunc v8_avg_;
ConvolveFunc hv8_avg_;
int use_highbd_; // 0 if high bitdepth not used, else the actual bit depth.
};
typedef std::tr1::tuple<int, int, const ConvolveFunctions *> ConvolveParam;
// Reference 8-tap subpixel filter, slightly modified to fit into this test.
#define VP9_FILTER_WEIGHT 128
#define VP9_FILTER_SHIFT 7
uint8_t clip_pixel(int x) {
return x < 0 ? 0 :
x > 255 ? 255 :
x;
}
void filter_block2d_8_c(const uint8_t *src_ptr,
const unsigned int src_stride,
const int16_t *HFilter,
const int16_t *VFilter,
uint8_t *dst_ptr,
unsigned int dst_stride,
unsigned int output_width,
unsigned int output_height) {
// Between passes, we use an intermediate buffer whose height is extended to
// have enough horizontally filtered values as input for the vertical pass.
// This buffer is allocated to be big enough for the largest block type we
// support.
const int kInterp_Extend = 4;
const unsigned int intermediate_height =
(kInterp_Extend - 1) + output_height + kInterp_Extend;
unsigned int i, j;
// Size of intermediate_buffer is max_intermediate_height * filter_max_width,
// where max_intermediate_height = (kInterp_Extend - 1) + filter_max_height
// + kInterp_Extend
// = 3 + 16 + 4
// = 23
// and filter_max_width = 16
//
uint8_t intermediate_buffer[71 * kMaxDimension];
const int intermediate_next_stride = 1 - intermediate_height * output_width;
// Horizontal pass (src -> transposed intermediate).
uint8_t *output_ptr = intermediate_buffer;
const int src_next_row_stride = src_stride - output_width;
src_ptr -= (kInterp_Extend - 1) * src_stride + (kInterp_Extend - 1);
for (i = 0; i < intermediate_height; ++i) {
for (j = 0; j < output_width; ++j) {
// Apply filter...
const int temp = (src_ptr[0] * HFilter[0]) +
(src_ptr[1] * HFilter[1]) +
(src_ptr[2] * HFilter[2]) +
(src_ptr[3] * HFilter[3]) +
(src_ptr[4] * HFilter[4]) +
(src_ptr[5] * HFilter[5]) +
(src_ptr[6] * HFilter[6]) +
(src_ptr[7] * HFilter[7]) +
(VP9_FILTER_WEIGHT >> 1); // Rounding
// Normalize back to 0-255...
*output_ptr = clip_pixel(temp >> VP9_FILTER_SHIFT);
++src_ptr;
output_ptr += intermediate_height;
}
src_ptr += src_next_row_stride;
output_ptr += intermediate_next_stride;
}
// Vertical pass (transposed intermediate -> dst).
src_ptr = intermediate_buffer;
const int dst_next_row_stride = dst_stride - output_width;
for (i = 0; i < output_height; ++i) {
for (j = 0; j < output_width; ++j) {
// Apply filter...
const int temp = (src_ptr[0] * VFilter[0]) +
(src_ptr[1] * VFilter[1]) +
(src_ptr[2] * VFilter[2]) +
(src_ptr[3] * VFilter[3]) +
(src_ptr[4] * VFilter[4]) +
(src_ptr[5] * VFilter[5]) +
(src_ptr[6] * VFilter[6]) +
(src_ptr[7] * VFilter[7]) +
(VP9_FILTER_WEIGHT >> 1); // Rounding
// Normalize back to 0-255...
*dst_ptr++ = clip_pixel(temp >> VP9_FILTER_SHIFT);
src_ptr += intermediate_height;
}
src_ptr += intermediate_next_stride;
dst_ptr += dst_next_row_stride;
}
}
void block2d_average_c(uint8_t *src,
unsigned int src_stride,
uint8_t *output_ptr,
unsigned int output_stride,
unsigned int output_width,
unsigned int output_height) {
unsigned int i, j;
for (i = 0; i < output_height; ++i) {
for (j = 0; j < output_width; ++j) {
output_ptr[j] = (output_ptr[j] + src[i * src_stride + j] + 1) >> 1;
}
output_ptr += output_stride;
}
}
void filter_average_block2d_8_c(const uint8_t *src_ptr,
const unsigned int src_stride,
const int16_t *HFilter,
const int16_t *VFilter,
uint8_t *dst_ptr,
unsigned int dst_stride,
unsigned int output_width,
unsigned int output_height) {
uint8_t tmp[kMaxDimension * kMaxDimension];
assert(output_width <= kMaxDimension);
assert(output_height <= kMaxDimension);
filter_block2d_8_c(src_ptr, src_stride, HFilter, VFilter, tmp, 64,
output_width, output_height);
block2d_average_c(tmp, 64, dst_ptr, dst_stride,
output_width, output_height);
}
#if CONFIG_VP9_HIGHBITDEPTH
void highbd_filter_block2d_8_c(const uint16_t *src_ptr,
const unsigned int src_stride,
const int16_t *HFilter,
const int16_t *VFilter,
uint16_t *dst_ptr,
unsigned int dst_stride,
unsigned int output_width,
unsigned int output_height,
int bd) {
// Between passes, we use an intermediate buffer whose height is extended to
// have enough horizontally filtered values as input for the vertical pass.
// This buffer is allocated to be big enough for the largest block type we
// support.
const int kInterp_Extend = 4;
const unsigned int intermediate_height =
(kInterp_Extend - 1) + output_height + kInterp_Extend;
/* Size of intermediate_buffer is max_intermediate_height * filter_max_width,
* where max_intermediate_height = (kInterp_Extend - 1) + filter_max_height
* + kInterp_Extend
* = 3 + 16 + 4
* = 23
* and filter_max_width = 16
*/
uint16_t intermediate_buffer[71 * kMaxDimension];
const int intermediate_next_stride = 1 - intermediate_height * output_width;
// Horizontal pass (src -> transposed intermediate).
{
uint16_t *output_ptr = intermediate_buffer;
const int src_next_row_stride = src_stride - output_width;
unsigned int i, j;
src_ptr -= (kInterp_Extend - 1) * src_stride + (kInterp_Extend - 1);
for (i = 0; i < intermediate_height; ++i) {
for (j = 0; j < output_width; ++j) {
// Apply filter...
const int temp = (src_ptr[0] * HFilter[0]) +
(src_ptr[1] * HFilter[1]) +
(src_ptr[2] * HFilter[2]) +
(src_ptr[3] * HFilter[3]) +
(src_ptr[4] * HFilter[4]) +
(src_ptr[5] * HFilter[5]) +
(src_ptr[6] * HFilter[6]) +
(src_ptr[7] * HFilter[7]) +
(VP9_FILTER_WEIGHT >> 1); // Rounding
// Normalize back to 0-255...
*output_ptr = clip_pixel_highbd(temp >> VP9_FILTER_SHIFT, bd);
++src_ptr;
output_ptr += intermediate_height;
}
src_ptr += src_next_row_stride;
output_ptr += intermediate_next_stride;
}
}
// Vertical pass (transposed intermediate -> dst).
{
uint16_t *src_ptr = intermediate_buffer;
const int dst_next_row_stride = dst_stride - output_width;
unsigned int i, j;
for (i = 0; i < output_height; ++i) {
for (j = 0; j < output_width; ++j) {
// Apply filter...
const int temp = (src_ptr[0] * VFilter[0]) +
(src_ptr[1] * VFilter[1]) +
(src_ptr[2] * VFilter[2]) +
(src_ptr[3] * VFilter[3]) +
(src_ptr[4] * VFilter[4]) +
(src_ptr[5] * VFilter[5]) +
(src_ptr[6] * VFilter[6]) +
(src_ptr[7] * VFilter[7]) +
(VP9_FILTER_WEIGHT >> 1); // Rounding
// Normalize back to 0-255...
*dst_ptr++ = clip_pixel_highbd(temp >> VP9_FILTER_SHIFT, bd);
src_ptr += intermediate_height;
}
src_ptr += intermediate_next_stride;
dst_ptr += dst_next_row_stride;
}
}
}
void highbd_block2d_average_c(uint16_t *src,
unsigned int src_stride,
uint16_t *output_ptr,
unsigned int output_stride,
unsigned int output_width,
unsigned int output_height,
int bd) {
unsigned int i, j;
for (i = 0; i < output_height; ++i) {
for (j = 0; j < output_width; ++j) {
output_ptr[j] = (output_ptr[j] + src[i * src_stride + j] + 1) >> 1;
}
output_ptr += output_stride;
}
}
void highbd_filter_average_block2d_8_c(const uint16_t *src_ptr,
const unsigned int src_stride,
const int16_t *HFilter,
const int16_t *VFilter,
uint16_t *dst_ptr,
unsigned int dst_stride,
unsigned int output_width,
unsigned int output_height,
int bd) {
uint16_t tmp[kMaxDimension * kMaxDimension];
assert(output_width <= kMaxDimension);
assert(output_height <= kMaxDimension);
highbd_filter_block2d_8_c(src_ptr, src_stride, HFilter, VFilter, tmp, 64,
output_width, output_height, bd);
highbd_block2d_average_c(tmp, 64, dst_ptr, dst_stride,
output_width, output_height, bd);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
class ConvolveTest : public ::testing::TestWithParam<ConvolveParam> {
public:
static void SetUpTestCase() {
// Force input_ to be unaligned, output to be 16 byte aligned.
input_ = reinterpret_cast<uint8_t*>(
vpx_memalign(kDataAlignment, kInputBufferSize + 1)) + 1;
output_ = reinterpret_cast<uint8_t*>(
vpx_memalign(kDataAlignment, kOutputBufferSize));
output_ref_ = reinterpret_cast<uint8_t*>(
vpx_memalign(kDataAlignment, kOutputBufferSize));
#if CONFIG_VP9_HIGHBITDEPTH
input16_ = reinterpret_cast<uint16_t*>(
vpx_memalign(kDataAlignment,
(kInputBufferSize + 1) * sizeof(uint16_t))) + 1;
output16_ = reinterpret_cast<uint16_t*>(
vpx_memalign(kDataAlignment, (kOutputBufferSize) * sizeof(uint16_t)));
output16_ref_ = reinterpret_cast<uint16_t*>(
vpx_memalign(kDataAlignment, (kOutputBufferSize) * sizeof(uint16_t)));
#endif
}
virtual void TearDown() { libvpx_test::ClearSystemState(); }
static void TearDownTestCase() {
vpx_free(input_ - 1);
input_ = NULL;
vpx_free(output_);
output_ = NULL;
vpx_free(output_ref_);
output_ref_ = NULL;
#if CONFIG_VP9_HIGHBITDEPTH
vpx_free(input16_ - 1);
input16_ = NULL;
vpx_free(output16_);
output16_ = NULL;
vpx_free(output16_ref_);
output16_ref_ = NULL;
#endif
}
protected:
static const int kDataAlignment = 16;
static const int kOuterBlockSize = 256;
static const int kInputStride = kOuterBlockSize;
static const int kOutputStride = kOuterBlockSize;
static const int kInputBufferSize = kOuterBlockSize * kOuterBlockSize;
static const int kOutputBufferSize = kOuterBlockSize * kOuterBlockSize;
int Width() const { return GET_PARAM(0); }
int Height() const { return GET_PARAM(1); }
int BorderLeft() const {
const int center = (kOuterBlockSize - Width()) / 2;
return (center + (kDataAlignment - 1)) & ~(kDataAlignment - 1);
}
int BorderTop() const { return (kOuterBlockSize - Height()) / 2; }
bool IsIndexInBorder(int i) {
return (i < BorderTop() * kOuterBlockSize ||
i >= (BorderTop() + Height()) * kOuterBlockSize ||
i % kOuterBlockSize < BorderLeft() ||
i % kOuterBlockSize >= (BorderLeft() + Width()));
}
virtual void SetUp() {
UUT_ = GET_PARAM(2);
#if CONFIG_VP9_HIGHBITDEPTH
if (UUT_->use_highbd_ != 0)
mask_ = (1 << UUT_->use_highbd_) - 1;
else
mask_ = 255;
#endif
/* Set up guard blocks for an inner block centered in the outer block */
for (int i = 0; i < kOutputBufferSize; ++i) {
if (IsIndexInBorder(i))
output_[i] = 255;
else
output_[i] = 0;
}
::libvpx_test::ACMRandom prng;
for (int i = 0; i < kInputBufferSize; ++i) {
if (i & 1) {
input_[i] = 255;
#if CONFIG_VP9_HIGHBITDEPTH
input16_[i] = mask_;
#endif
} else {
input_[i] = prng.Rand8Extremes();
#if CONFIG_VP9_HIGHBITDEPTH
input16_[i] = prng.Rand16() & mask_;
#endif
}
}
}
void SetConstantInput(int value) {
memset(input_, value, kInputBufferSize);
#if CONFIG_VP9_HIGHBITDEPTH
vpx_memset16(input16_, value, kInputBufferSize);
#endif
}
void CopyOutputToRef() {
vpx_memcpy(output_ref_, output_, kOutputBufferSize);
#if CONFIG_VP9_HIGHBITDEPTH
vpx_memcpy(output16_ref_, output16_, kOutputBufferSize);
#endif
}
void CheckGuardBlocks() {
for (int i = 0; i < kOutputBufferSize; ++i) {
if (IsIndexInBorder(i))
EXPECT_EQ(255, output_[i]);
}
}
uint8_t *input() const {
#if CONFIG_VP9_HIGHBITDEPTH
if (UUT_->use_highbd_ == 0) {
return input_ + BorderTop() * kOuterBlockSize + BorderLeft();
} else {
return CONVERT_TO_BYTEPTR(input16_ + BorderTop() * kOuterBlockSize +
BorderLeft());
}
#else
return input_ + BorderTop() * kOuterBlockSize + BorderLeft();
#endif
}
uint8_t *output() const {
#if CONFIG_VP9_HIGHBITDEPTH
if (UUT_->use_highbd_ == 0) {
return output_ + BorderTop() * kOuterBlockSize + BorderLeft();
} else {
return CONVERT_TO_BYTEPTR(output16_ + BorderTop() * kOuterBlockSize +
BorderLeft());
}
#else
return output_ + BorderTop() * kOuterBlockSize + BorderLeft();
#endif
}
uint8_t *output_ref() const {
#if CONFIG_VP9_HIGHBITDEPTH
if (UUT_->use_highbd_ == 0) {
return output_ref_ + BorderTop() * kOuterBlockSize + BorderLeft();
} else {
return CONVERT_TO_BYTEPTR(output16_ref_ + BorderTop() * kOuterBlockSize +
BorderLeft());
}
#else
return output_ref_ + BorderTop() * kOuterBlockSize + BorderLeft();
#endif
}
uint16_t lookup(uint8_t *list, int index) const {
#if CONFIG_VP9_HIGHBITDEPTH
if (UUT_->use_highbd_ == 0) {
return list[index];
} else {
return CONVERT_TO_SHORTPTR(list)[index];
}
#else
return list[index];
#endif
}
void assign_val(uint8_t *list, int index, uint16_t val) const {
#if CONFIG_VP9_HIGHBITDEPTH
if (UUT_->use_highbd_ == 0) {
list[index] = (uint8_t) val;
} else {
CONVERT_TO_SHORTPTR(list)[index] = val;
}
#else
list[index] = (uint8_t) val;
#endif
}
void wrapper_filter_average_block2d_8_c(const uint8_t *src_ptr,
const unsigned int src_stride,
const int16_t *HFilter,
const int16_t *VFilter,
uint8_t *dst_ptr,
unsigned int dst_stride,
unsigned int output_width,
unsigned int output_height) {
#if CONFIG_VP9_HIGHBITDEPTH
if (UUT_->use_highbd_ == 0) {
filter_average_block2d_8_c(src_ptr, src_stride, HFilter, VFilter,
dst_ptr, dst_stride, output_width,
output_height);
} else {
highbd_filter_average_block2d_8_c(CONVERT_TO_SHORTPTR(src_ptr),
src_stride, HFilter, VFilter,
CONVERT_TO_SHORTPTR(dst_ptr),
dst_stride, output_width, output_height,
UUT_->use_highbd_);
}
#else
filter_average_block2d_8_c(src_ptr, src_stride, HFilter, VFilter,
dst_ptr, dst_stride, output_width,
output_height);
#endif
}
void wrapper_filter_block2d_8_c(const uint8_t *src_ptr,
const unsigned int src_stride,
const int16_t *HFilter,
const int16_t *VFilter,
uint8_t *dst_ptr,
unsigned int dst_stride,
unsigned int output_width,
unsigned int output_height) {
#if CONFIG_VP9_HIGHBITDEPTH
if (UUT_->use_highbd_ == 0) {
filter_block2d_8_c(src_ptr, src_stride, HFilter, VFilter,
dst_ptr, dst_stride, output_width, output_height);
} else {
highbd_filter_block2d_8_c(CONVERT_TO_SHORTPTR(src_ptr), src_stride,
HFilter, VFilter,
CONVERT_TO_SHORTPTR(dst_ptr), dst_stride,
output_width, output_height, UUT_->use_highbd_);
}
#else
filter_block2d_8_c(src_ptr, src_stride, HFilter, VFilter,
dst_ptr, dst_stride, output_width, output_height);
#endif
}
const ConvolveFunctions* UUT_;
static uint8_t* input_;
static uint8_t* output_;
static uint8_t* output_ref_;
#if CONFIG_VP9_HIGHBITDEPTH
static uint16_t* input16_;
static uint16_t* output16_;
static uint16_t* output16_ref_;
int mask_;
#endif
};
uint8_t* ConvolveTest::input_ = NULL;
uint8_t* ConvolveTest::output_ = NULL;
uint8_t* ConvolveTest::output_ref_ = NULL;
#if CONFIG_VP9_HIGHBITDEPTH
uint16_t* ConvolveTest::input16_ = NULL;
uint16_t* ConvolveTest::output16_ = NULL;
uint16_t* ConvolveTest::output16_ref_ = NULL;
#endif
TEST_P(ConvolveTest, GuardBlocks) {
CheckGuardBlocks();
}
TEST_P(ConvolveTest, Copy) {
uint8_t* const in = input();
uint8_t* const out = output();
ASM_REGISTER_STATE_CHECK(
UUT_->copy_(in, kInputStride, out, kOutputStride, NULL, 0, NULL, 0,
Width(), Height()));
CheckGuardBlocks();
for (int y = 0; y < Height(); ++y)
for (int x = 0; x < Width(); ++x)
ASSERT_EQ(lookup(out, y * kOutputStride + x),
lookup(in, y * kInputStride + x))
<< "(" << x << "," << y << ")";
}
TEST_P(ConvolveTest, Avg) {
uint8_t* const in = input();
uint8_t* const out = output();
uint8_t* const out_ref = output_ref();
CopyOutputToRef();
ASM_REGISTER_STATE_CHECK(
UUT_->avg_(in, kInputStride, out, kOutputStride, NULL, 0, NULL, 0,
Width(), Height()));
CheckGuardBlocks();
for (int y = 0; y < Height(); ++y)
for (int x = 0; x < Width(); ++x)
ASSERT_EQ(lookup(out, y * kOutputStride + x),
ROUND_POWER_OF_TWO(lookup(in, y * kInputStride + x) +
lookup(out_ref, y * kOutputStride + x), 1))
<< "(" << x << "," << y << ")";
}
TEST_P(ConvolveTest, CopyHoriz) {
uint8_t* const in = input();
uint8_t* const out = output();
DECLARE_ALIGNED(256, const int16_t, filter8[8]) = {0, 0, 0, 128, 0, 0, 0, 0};
ASM_REGISTER_STATE_CHECK(
UUT_->h8_(in, kInputStride, out, kOutputStride, filter8, 16, filter8, 16,
Width(), Height()));
CheckGuardBlocks();
for (int y = 0; y < Height(); ++y)
for (int x = 0; x < Width(); ++x)
ASSERT_EQ(lookup(out, y * kOutputStride + x),
lookup(in, y * kInputStride + x))
<< "(" << x << "," << y << ")";
}
TEST_P(ConvolveTest, CopyVert) {
uint8_t* const in = input();
uint8_t* const out = output();
DECLARE_ALIGNED(256, const int16_t, filter8[8]) = {0, 0, 0, 128, 0, 0, 0, 0};
ASM_REGISTER_STATE_CHECK(
UUT_->v8_(in, kInputStride, out, kOutputStride, filter8, 16, filter8, 16,
Width(), Height()));
CheckGuardBlocks();
for (int y = 0; y < Height(); ++y)
for (int x = 0; x < Width(); ++x)
ASSERT_EQ(lookup(out, y * kOutputStride + x),
lookup(in, y * kInputStride + x))
<< "(" << x << "," << y << ")";
}
TEST_P(ConvolveTest, Copy2D) {
uint8_t* const in = input();
uint8_t* const out = output();
DECLARE_ALIGNED(256, const int16_t, filter8[8]) = {0, 0, 0, 128, 0, 0, 0, 0};
ASM_REGISTER_STATE_CHECK(
UUT_->hv8_(in, kInputStride, out, kOutputStride, filter8, 16, filter8, 16,
Width(), Height()));
CheckGuardBlocks();
for (int y = 0; y < Height(); ++y)
for (int x = 0; x < Width(); ++x)
ASSERT_EQ(lookup(out, y * kOutputStride + x),
lookup(in, y * kInputStride + x))
<< "(" << x << "," << y << ")";
}
const int kNumFilterBanks = 4;
const int kNumFilters = 16;
TEST(ConvolveTest, FiltersWontSaturateWhenAddedPairwise) {
for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) {
const InterpKernel *filters =
vp9_get_interp_kernel(static_cast<INTERP_FILTER>(filter_bank));
for (int i = 0; i < kNumFilters; i++) {
const int p0 = filters[i][0] + filters[i][1];
const int p1 = filters[i][2] + filters[i][3];
const int p2 = filters[i][4] + filters[i][5];
const int p3 = filters[i][6] + filters[i][7];
EXPECT_LE(p0, 128);
EXPECT_LE(p1, 128);
EXPECT_LE(p2, 128);
EXPECT_LE(p3, 128);
EXPECT_LE(p0 + p3, 128);
EXPECT_LE(p0 + p3 + p1, 128);
EXPECT_LE(p0 + p3 + p1 + p2, 128);
EXPECT_EQ(p0 + p1 + p2 + p3, 128);
}
}
}
const int16_t kInvalidFilter[8] = { 0 };
TEST_P(ConvolveTest, MatchesReferenceSubpixelFilter) {
uint8_t* const in = input();
uint8_t* const out = output();
#if CONFIG_VP9_HIGHBITDEPTH
uint8_t ref8[kOutputStride * kMaxDimension];
uint16_t ref16[kOutputStride * kMaxDimension];
uint8_t* ref;
if (UUT_->use_highbd_ == 0) {
ref = ref8;
} else {
ref = CONVERT_TO_BYTEPTR(ref16);
}
#else
uint8_t ref[kOutputStride * kMaxDimension];
#endif
for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) {
const InterpKernel *filters =
vp9_get_interp_kernel(static_cast<INTERP_FILTER>(filter_bank));
const InterpKernel *const eighttap_smooth =
vp9_get_interp_kernel(EIGHTTAP_SMOOTH);
for (int filter_x = 0; filter_x < kNumFilters; ++filter_x) {
for (int filter_y = 0; filter_y < kNumFilters; ++filter_y) {
wrapper_filter_block2d_8_c(in, kInputStride,
filters[filter_x], filters[filter_y],
ref, kOutputStride,
Width(), Height());
if (filters == eighttap_smooth || (filter_x && filter_y))
ASM_REGISTER_STATE_CHECK(
UUT_->hv8_(in, kInputStride, out, kOutputStride,
filters[filter_x], 16, filters[filter_y], 16,
Width(), Height()));
else if (filter_y)
ASM_REGISTER_STATE_CHECK(
UUT_->v8_(in, kInputStride, out, kOutputStride,
kInvalidFilter, 16, filters[filter_y], 16,
Width(), Height()));
else
ASM_REGISTER_STATE_CHECK(
UUT_->h8_(in, kInputStride, out, kOutputStride,
filters[filter_x], 16, kInvalidFilter, 16,
Width(), Height()));
CheckGuardBlocks();
for (int y = 0; y < Height(); ++y)
for (int x = 0; x < Width(); ++x)
ASSERT_EQ(lookup(ref, y * kOutputStride + x),
lookup(out, y * kOutputStride + x))
<< "mismatch at (" << x << "," << y << "), "
<< "filters (" << filter_bank << ","
<< filter_x << "," << filter_y << ")";
}
}
}
}
TEST_P(ConvolveTest, MatchesReferenceAveragingSubpixelFilter) {
uint8_t* const in = input();
uint8_t* const out = output();
#if CONFIG_VP9_HIGHBITDEPTH
uint8_t ref8[kOutputStride * kMaxDimension];
uint16_t ref16[kOutputStride * kMaxDimension];
uint8_t* ref;
if (UUT_->use_highbd_ == 0) {
ref = ref8;
} else {
ref = CONVERT_TO_BYTEPTR(ref16);
}
#else
uint8_t ref[kOutputStride * kMaxDimension];
#endif
// Populate ref and out with some random data
::libvpx_test::ACMRandom prng;
for (int y = 0; y < Height(); ++y) {
for (int x = 0; x < Width(); ++x) {
uint16_t r;
#if CONFIG_VP9_HIGHBITDEPTH
if (UUT_->use_highbd_ == 0 || UUT_->use_highbd_ == 8) {
r = prng.Rand8Extremes();
} else {
r = prng.Rand16() & mask_;
}
#else
r = prng.Rand8Extremes();
#endif
assign_val(out, y * kOutputStride + x, r);
assign_val(ref, y * kOutputStride + x, r);
}
}
for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) {
const InterpKernel *filters =
vp9_get_interp_kernel(static_cast<INTERP_FILTER>(filter_bank));
const InterpKernel *const eighttap_smooth =
vp9_get_interp_kernel(EIGHTTAP_SMOOTH);
for (int filter_x = 0; filter_x < kNumFilters; ++filter_x) {
for (int filter_y = 0; filter_y < kNumFilters; ++filter_y) {
wrapper_filter_average_block2d_8_c(in, kInputStride,
filters[filter_x], filters[filter_y],
ref, kOutputStride,
Width(), Height());
if (filters == eighttap_smooth || (filter_x && filter_y))
ASM_REGISTER_STATE_CHECK(
UUT_->hv8_avg_(in, kInputStride, out, kOutputStride,
filters[filter_x], 16, filters[filter_y], 16,
Width(), Height()));
else if (filter_y)
ASM_REGISTER_STATE_CHECK(
UUT_->v8_avg_(in, kInputStride, out, kOutputStride,
filters[filter_x], 16, filters[filter_y], 16,
Width(), Height()));
else
ASM_REGISTER_STATE_CHECK(
UUT_->h8_avg_(in, kInputStride, out, kOutputStride,
filters[filter_x], 16, filters[filter_y], 16,
Width(), Height()));
CheckGuardBlocks();
for (int y = 0; y < Height(); ++y)
for (int x = 0; x < Width(); ++x)
ASSERT_EQ(lookup(ref, y * kOutputStride + x),
lookup(out, y * kOutputStride + x))
<< "mismatch at (" << x << "," << y << "), "
<< "filters (" << filter_bank << ","
<< filter_x << "," << filter_y << ")";
}
}
}
}
TEST_P(ConvolveTest, FilterExtremes) {
uint8_t *const in = input();
uint8_t *const out = output();
#if CONFIG_VP9_HIGHBITDEPTH
uint8_t ref8[kOutputStride * kMaxDimension];
uint16_t ref16[kOutputStride * kMaxDimension];
uint8_t *ref;
if (UUT_->use_highbd_ == 0) {
ref = ref8;
} else {
ref = CONVERT_TO_BYTEPTR(ref16);
}
#else
uint8_t ref[kOutputStride * kMaxDimension];
#endif
// Populate ref and out with some random data
::libvpx_test::ACMRandom prng;
for (int y = 0; y < Height(); ++y) {
for (int x = 0; x < Width(); ++x) {
uint16_t r;
#if CONFIG_VP9_HIGHBITDEPTH
if (UUT_->use_highbd_ == 0 || UUT_->use_highbd_ == 8) {
r = prng.Rand8Extremes();
} else {
r = prng.Rand16() & mask_;
}
#else
r = prng.Rand8Extremes();
#endif
assign_val(out, y * kOutputStride + x, r);
assign_val(ref, y * kOutputStride + x, r);
}
}
for (int axis = 0; axis < 2; axis++) {
int seed_val = 0;
while (seed_val < 256) {
for (int y = 0; y < 8; ++y) {
for (int x = 0; x < 8; ++x) {
#if CONFIG_VP9_HIGHBITDEPTH
assign_val(in, y * kOutputStride + x - SUBPEL_TAPS / 2 + 1,
((seed_val >> (axis ? y : x)) & 1) * mask_);
#else
assign_val(in, y * kOutputStride + x - SUBPEL_TAPS / 2 + 1,
((seed_val >> (axis ? y : x)) & 1) * 255);
#endif
if (axis) seed_val++;
}
if (axis)
seed_val-= 8;
else
seed_val++;
}
if (axis) seed_val += 8;
for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) {
const InterpKernel *filters =
vp9_get_interp_kernel(static_cast<INTERP_FILTER>(filter_bank));
const InterpKernel *const eighttap_smooth =
vp9_get_interp_kernel(EIGHTTAP_SMOOTH);
for (int filter_x = 0; filter_x < kNumFilters; ++filter_x) {
for (int filter_y = 0; filter_y < kNumFilters; ++filter_y) {
wrapper_filter_block2d_8_c(in, kInputStride,
filters[filter_x], filters[filter_y],
ref, kOutputStride,
Width(), Height());
if (filters == eighttap_smooth || (filter_x && filter_y))
ASM_REGISTER_STATE_CHECK(
UUT_->hv8_(in, kInputStride, out, kOutputStride,
filters[filter_x], 16, filters[filter_y], 16,
Width(), Height()));
else if (filter_y)
ASM_REGISTER_STATE_CHECK(
UUT_->v8_(in, kInputStride, out, kOutputStride,
kInvalidFilter, 16, filters[filter_y], 16,
Width(), Height()));
else
ASM_REGISTER_STATE_CHECK(
UUT_->h8_(in, kInputStride, out, kOutputStride,
filters[filter_x], 16, kInvalidFilter, 16,
Width(), Height()));
for (int y = 0; y < Height(); ++y)
for (int x = 0; x < Width(); ++x)
ASSERT_EQ(lookup(ref, y * kOutputStride + x),
lookup(out, y * kOutputStride + x))
<< "mismatch at (" << x << "," << y << "), "
<< "filters (" << filter_bank << ","
<< filter_x << "," << filter_y << ")";
}
}
}
}
}
}
DECLARE_ALIGNED(256, const int16_t, kChangeFilters[16][8]) = {
{ 0, 0, 0, 0, 0, 0, 0, 128},
{ 0, 0, 0, 0, 0, 0, 128},
{ 0, 0, 0, 0, 0, 128},
{ 0, 0, 0, 0, 128},
{ 0, 0, 0, 128},
{ 0, 0, 128},
{ 0, 128},
{ 128},
{ 0, 0, 0, 0, 0, 0, 0, 128},
{ 0, 0, 0, 0, 0, 0, 128},
{ 0, 0, 0, 0, 0, 128},
{ 0, 0, 0, 0, 128},
{ 0, 0, 0, 128},
{ 0, 0, 128},
{ 0, 128},
{ 128}
};
/* This test exercises the horizontal and vertical filter functions. */
TEST_P(ConvolveTest, ChangeFilterWorks) {
uint8_t* const in = input();
uint8_t* const out = output();
/* Assume that the first input sample is at the 8/16th position. */
const int kInitialSubPelOffset = 8;
/* Filters are 8-tap, so the first filter tap will be applied to the pixel
* at position -3 with respect to the current filtering position. Since
* kInitialSubPelOffset is set to 8, we first select sub-pixel filter 8,
* which is non-zero only in the last tap. So, applying the filter at the
* current input position will result in an output equal to the pixel at
* offset +4 (-3 + 7) with respect to the current filtering position.
*/
const int kPixelSelected = 4;
/* Assume that each output pixel requires us to step on by 17/16th pixels in
* the input.
*/
const int kInputPixelStep = 17;
/* The filters are setup in such a way that the expected output produces
* sets of 8 identical output samples. As the filter position moves to the
* next 1/16th pixel position the only active (=128) filter tap moves one
* position to the left, resulting in the same input pixel being replicated
* in to the output for 8 consecutive samples. After each set of 8 positions
* the filters select a different input pixel. kFilterPeriodAdjust below
* computes which input pixel is written to the output for a specified
* x or y position.
*/
/* Test the horizontal filter. */
ASM_REGISTER_STATE_CHECK(
UUT_->h8_(in, kInputStride, out, kOutputStride,
kChangeFilters[kInitialSubPelOffset],
kInputPixelStep, NULL, 0, Width(), Height()));
for (int x = 0; x < Width(); ++x) {
const int kFilterPeriodAdjust = (x >> 3) << 3;
const int ref_x =
kPixelSelected + ((kInitialSubPelOffset
+ kFilterPeriodAdjust * kInputPixelStep)
>> SUBPEL_BITS);
ASSERT_EQ(lookup(in, ref_x), lookup(out, x))
<< "x == " << x << "width = " << Width();
}
/* Test the vertical filter. */
ASM_REGISTER_STATE_CHECK(
UUT_->v8_(in, kInputStride, out, kOutputStride,
NULL, 0, kChangeFilters[kInitialSubPelOffset],
kInputPixelStep, Width(), Height()));
for (int y = 0; y < Height(); ++y) {
const int kFilterPeriodAdjust = (y >> 3) << 3;
const int ref_y =
kPixelSelected + ((kInitialSubPelOffset
+ kFilterPeriodAdjust * kInputPixelStep)
>> SUBPEL_BITS);
ASSERT_EQ(lookup(in, ref_y * kInputStride), lookup(out, y * kInputStride))
<< "y == " << y;
}
/* Test the horizontal and vertical filters in combination. */
ASM_REGISTER_STATE_CHECK(
UUT_->hv8_(in, kInputStride, out, kOutputStride,
kChangeFilters[kInitialSubPelOffset], kInputPixelStep,
kChangeFilters[kInitialSubPelOffset], kInputPixelStep,
Width(), Height()));
for (int y = 0; y < Height(); ++y) {
const int kFilterPeriodAdjustY = (y >> 3) << 3;
const int ref_y =
kPixelSelected + ((kInitialSubPelOffset
+ kFilterPeriodAdjustY * kInputPixelStep)
>> SUBPEL_BITS);
for (int x = 0; x < Width(); ++x) {
const int kFilterPeriodAdjustX = (x >> 3) << 3;
const int ref_x =
kPixelSelected + ((kInitialSubPelOffset
+ kFilterPeriodAdjustX * kInputPixelStep)
>> SUBPEL_BITS);
ASSERT_EQ(lookup(in, ref_y * kInputStride + ref_x),
lookup(out, y * kOutputStride + x))
<< "x == " << x << ", y == " << y;
}
}
}
/* This test exercises that enough rows and columns are filtered with every
possible initial fractional positions and scaling steps. */
TEST_P(ConvolveTest, CheckScalingFiltering) {
uint8_t* const in = input();
uint8_t* const out = output();
const InterpKernel *const eighttap = vp9_get_interp_kernel(EIGHTTAP);
SetConstantInput(127);
for (int frac = 0; frac < 16; ++frac) {
for (int step = 1; step <= 32; ++step) {
/* Test the horizontal and vertical filters in combination. */
ASM_REGISTER_STATE_CHECK(UUT_->hv8_(in, kInputStride, out, kOutputStride,
eighttap[frac], step,
eighttap[frac], step,
Width(), Height()));
CheckGuardBlocks();
for (int y = 0; y < Height(); ++y) {
for (int x = 0; x < Width(); ++x) {
ASSERT_EQ(lookup(in, y * kInputStride + x),
lookup(out, y * kOutputStride + x))
<< "x == " << x << ", y == " << y
<< ", frac == " << frac << ", step == " << step;
}
}
}
}
}
using std::tr1::make_tuple;
#if CONFIG_VP9_HIGHBITDEPTH
#if HAVE_SSE2 && ARCH_X86_64
void wrap_convolve8_horiz_sse2_8(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_horiz_sse2(src, src_stride, dst, dst_stride, filter_x,
filter_x_stride, filter_y, filter_y_stride,
w, h, 8);
}
void wrap_convolve8_avg_horiz_sse2_8(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_avg_horiz_sse2(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 8);
}
void wrap_convolve8_vert_sse2_8(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_vert_sse2(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 8);
}
void wrap_convolve8_avg_vert_sse2_8(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_avg_vert_sse2(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 8);
}
void wrap_convolve8_sse2_8(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_sse2(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 8);
}
void wrap_convolve8_avg_sse2_8(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_avg_sse2(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 8);
}
void wrap_convolve8_horiz_sse2_10(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_horiz_sse2(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 10);
}
void wrap_convolve8_avg_horiz_sse2_10(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_avg_horiz_sse2(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 10);
}
void wrap_convolve8_vert_sse2_10(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_vert_sse2(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 10);
}
void wrap_convolve8_avg_vert_sse2_10(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_avg_vert_sse2(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 10);
}
void wrap_convolve8_sse2_10(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_sse2(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 10);
}
void wrap_convolve8_avg_sse2_10(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_avg_sse2(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 10);
}
void wrap_convolve8_horiz_sse2_12(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_horiz_sse2(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 12);
}
void wrap_convolve8_avg_horiz_sse2_12(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_avg_horiz_sse2(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 12);
}
void wrap_convolve8_vert_sse2_12(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_vert_sse2(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 12);
}
void wrap_convolve8_avg_vert_sse2_12(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_avg_vert_sse2(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 12);
}
void wrap_convolve8_sse2_12(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_sse2(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 12);
}
void wrap_convolve8_avg_sse2_12(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_avg_sse2(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 12);
}
#endif // HAVE_SSE2 && ARCH_X86_64
void wrap_convolve_copy_c_8(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve_copy_c(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 8);
}
void wrap_convolve_avg_c_8(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve_avg_c(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 8);
}
void wrap_convolve8_horiz_c_8(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_horiz_c(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 8);
}
void wrap_convolve8_avg_horiz_c_8(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_avg_horiz_c(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 8);
}
void wrap_convolve8_vert_c_8(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_vert_c(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 8);
}
void wrap_convolve8_avg_vert_c_8(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_avg_vert_c(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 8);
}
void wrap_convolve8_c_8(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_c(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 8);
}
void wrap_convolve8_avg_c_8(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_avg_c(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 8);
}
void wrap_convolve_copy_c_10(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve_copy_c(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 10);
}
void wrap_convolve_avg_c_10(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve_avg_c(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 10);
}
void wrap_convolve8_horiz_c_10(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_horiz_c(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 10);
}
void wrap_convolve8_avg_horiz_c_10(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_avg_horiz_c(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 10);
}
void wrap_convolve8_vert_c_10(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_vert_c(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 10);
}
void wrap_convolve8_avg_vert_c_10(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_avg_vert_c(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 10);
}
void wrap_convolve8_c_10(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_c(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 10);
}
void wrap_convolve8_avg_c_10(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_avg_c(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 10);
}
void wrap_convolve_copy_c_12(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve_copy_c(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 12);
}
void wrap_convolve_avg_c_12(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve_avg_c(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 12);
}
void wrap_convolve8_horiz_c_12(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_horiz_c(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 12);
}
void wrap_convolve8_avg_horiz_c_12(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_avg_horiz_c(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 12);
}
void wrap_convolve8_vert_c_12(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_vert_c(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 12);
}
void wrap_convolve8_avg_vert_c_12(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_avg_vert_c(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 12);
}
void wrap_convolve8_c_12(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_c(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 12);
}
void wrap_convolve8_avg_c_12(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x,
int filter_x_stride,
const int16_t *filter_y,
int filter_y_stride,
int w, int h) {
vp9_highbd_convolve8_avg_c(src, src_stride, dst, dst_stride,
filter_x, filter_x_stride,
filter_y, filter_y_stride, w, h, 12);
}
const ConvolveFunctions convolve8_c(
wrap_convolve_copy_c_8, wrap_convolve_avg_c_8,
wrap_convolve8_horiz_c_8, wrap_convolve8_avg_horiz_c_8,
wrap_convolve8_vert_c_8, wrap_convolve8_avg_vert_c_8,
wrap_convolve8_c_8, wrap_convolve8_avg_c_8, 8);
INSTANTIATE_TEST_CASE_P(C_8, ConvolveTest, ::testing::Values(
make_tuple(4, 4, &convolve8_c),
make_tuple(8, 4, &convolve8_c),
make_tuple(4, 8, &convolve8_c),
make_tuple(8, 8, &convolve8_c),
make_tuple(16, 8, &convolve8_c),
make_tuple(8, 16, &convolve8_c),
make_tuple(16, 16, &convolve8_c),
make_tuple(32, 16, &convolve8_c),
make_tuple(16, 32, &convolve8_c),
make_tuple(32, 32, &convolve8_c),
make_tuple(64, 32, &convolve8_c),
make_tuple(32, 64, &convolve8_c),
make_tuple(64, 64, &convolve8_c)));
const ConvolveFunctions convolve10_c(
wrap_convolve_copy_c_10, wrap_convolve_avg_c_10,
wrap_convolve8_horiz_c_10, wrap_convolve8_avg_horiz_c_10,
wrap_convolve8_vert_c_10, wrap_convolve8_avg_vert_c_10,
wrap_convolve8_c_10, wrap_convolve8_avg_c_10, 10);
INSTANTIATE_TEST_CASE_P(C_10, ConvolveTest, ::testing::Values(
make_tuple(4, 4, &convolve10_c),
make_tuple(8, 4, &convolve10_c),
make_tuple(4, 8, &convolve10_c),
make_tuple(8, 8, &convolve10_c),
make_tuple(16, 8, &convolve10_c),
make_tuple(8, 16, &convolve10_c),
make_tuple(16, 16, &convolve10_c),
make_tuple(32, 16, &convolve10_c),
make_tuple(16, 32, &convolve10_c),
make_tuple(32, 32, &convolve10_c),
make_tuple(64, 32, &convolve10_c),
make_tuple(32, 64, &convolve10_c),
make_tuple(64, 64, &convolve10_c)));
const ConvolveFunctions convolve12_c(
wrap_convolve_copy_c_12, wrap_convolve_avg_c_12,
wrap_convolve8_horiz_c_12, wrap_convolve8_avg_horiz_c_12,
wrap_convolve8_vert_c_12, wrap_convolve8_avg_vert_c_12,
wrap_convolve8_c_12, wrap_convolve8_avg_c_12, 12);
INSTANTIATE_TEST_CASE_P(C_12, ConvolveTest, ::testing::Values(
make_tuple(4, 4, &convolve12_c),
make_tuple(8, 4, &convolve12_c),
make_tuple(4, 8, &convolve12_c),
make_tuple(8, 8, &convolve12_c),
make_tuple(16, 8, &convolve12_c),
make_tuple(8, 16, &convolve12_c),
make_tuple(16, 16, &convolve12_c),
make_tuple(32, 16, &convolve12_c),
make_tuple(16, 32, &convolve12_c),
make_tuple(32, 32, &convolve12_c),
make_tuple(64, 32, &convolve12_c),
make_tuple(32, 64, &convolve12_c),
make_tuple(64, 64, &convolve12_c)));
#else
const ConvolveFunctions convolve8_c(
vp9_convolve_copy_c, vp9_convolve_avg_c,
vp9_convolve8_horiz_c, vp9_convolve8_avg_horiz_c,
vp9_convolve8_vert_c, vp9_convolve8_avg_vert_c,
vp9_convolve8_c, vp9_convolve8_avg_c, 0);
INSTANTIATE_TEST_CASE_P(C, ConvolveTest, ::testing::Values(
make_tuple(4, 4, &convolve8_c),
make_tuple(8, 4, &convolve8_c),
make_tuple(4, 8, &convolve8_c),
make_tuple(8, 8, &convolve8_c),
make_tuple(16, 8, &convolve8_c),
make_tuple(8, 16, &convolve8_c),
make_tuple(16, 16, &convolve8_c),
make_tuple(32, 16, &convolve8_c),
make_tuple(16, 32, &convolve8_c),
make_tuple(32, 32, &convolve8_c),
make_tuple(64, 32, &convolve8_c),
make_tuple(32, 64, &convolve8_c),
make_tuple(64, 64, &convolve8_c)));
#endif
#if HAVE_SSE2 && ARCH_X86_64
#if CONFIG_VP9_HIGHBITDEPTH
const ConvolveFunctions convolve8_sse2(
wrap_convolve_copy_c_8, wrap_convolve_avg_c_8,
wrap_convolve8_horiz_sse2_8, wrap_convolve8_avg_horiz_sse2_8,
wrap_convolve8_vert_sse2_8, wrap_convolve8_avg_vert_sse2_8,
wrap_convolve8_sse2_8, wrap_convolve8_avg_sse2_8, 8);
const ConvolveFunctions convolve10_sse2(
wrap_convolve_copy_c_10, wrap_convolve_avg_c_10,
wrap_convolve8_horiz_sse2_10, wrap_convolve8_avg_horiz_sse2_10,
wrap_convolve8_vert_sse2_10, wrap_convolve8_avg_vert_sse2_10,
wrap_convolve8_sse2_10, wrap_convolve8_avg_sse2_10, 10);
const ConvolveFunctions convolve12_sse2(
wrap_convolve_copy_c_12, wrap_convolve_avg_c_12,
wrap_convolve8_horiz_sse2_12, wrap_convolve8_avg_horiz_sse2_12,
wrap_convolve8_vert_sse2_12, wrap_convolve8_avg_vert_sse2_12,
wrap_convolve8_sse2_12, wrap_convolve8_avg_sse2_12, 12);
INSTANTIATE_TEST_CASE_P(SSE2, ConvolveTest, ::testing::Values(
make_tuple(4, 4, &convolve8_sse2),
make_tuple(8, 4, &convolve8_sse2),
make_tuple(4, 8, &convolve8_sse2),
make_tuple(8, 8, &convolve8_sse2),
make_tuple(16, 8, &convolve8_sse2),
make_tuple(8, 16, &convolve8_sse2),
make_tuple(16, 16, &convolve8_sse2),
make_tuple(32, 16, &convolve8_sse2),
make_tuple(16, 32, &convolve8_sse2),
make_tuple(32, 32, &convolve8_sse2),
make_tuple(64, 32, &convolve8_sse2),
make_tuple(32, 64, &convolve8_sse2),
make_tuple(64, 64, &convolve8_sse2),
make_tuple(4, 4, &convolve10_sse2),
make_tuple(8, 4, &convolve10_sse2),
make_tuple(4, 8, &convolve10_sse2),
make_tuple(8, 8, &convolve10_sse2),
make_tuple(16, 8, &convolve10_sse2),
make_tuple(8, 16, &convolve10_sse2),
make_tuple(16, 16, &convolve10_sse2),
make_tuple(32, 16, &convolve10_sse2),
make_tuple(16, 32, &convolve10_sse2),
make_tuple(32, 32, &convolve10_sse2),
make_tuple(64, 32, &convolve10_sse2),
make_tuple(32, 64, &convolve10_sse2),
make_tuple(64, 64, &convolve10_sse2),
make_tuple(4, 4, &convolve12_sse2),
make_tuple(8, 4, &convolve12_sse2),
make_tuple(4, 8, &convolve12_sse2),
make_tuple(8, 8, &convolve12_sse2),
make_tuple(16, 8, &convolve12_sse2),
make_tuple(8, 16, &convolve12_sse2),
make_tuple(16, 16, &convolve12_sse2),
make_tuple(32, 16, &convolve12_sse2),
make_tuple(16, 32, &convolve12_sse2),
make_tuple(32, 32, &convolve12_sse2),
make_tuple(64, 32, &convolve12_sse2),
make_tuple(32, 64, &convolve12_sse2),
make_tuple(64, 64, &convolve12_sse2)));
#else
const ConvolveFunctions convolve8_sse2(
vp9_convolve_copy_sse2, vp9_convolve_avg_sse2,
vp9_convolve8_horiz_sse2, vp9_convolve8_avg_horiz_sse2,
vp9_convolve8_vert_sse2, vp9_convolve8_avg_vert_sse2,
vp9_convolve8_sse2, vp9_convolve8_avg_sse2, 0);
INSTANTIATE_TEST_CASE_P(SSE2, ConvolveTest, ::testing::Values(
make_tuple(4, 4, &convolve8_sse2),
make_tuple(8, 4, &convolve8_sse2),
make_tuple(4, 8, &convolve8_sse2),
make_tuple(8, 8, &convolve8_sse2),
make_tuple(16, 8, &convolve8_sse2),
make_tuple(8, 16, &convolve8_sse2),
make_tuple(16, 16, &convolve8_sse2),
make_tuple(32, 16, &convolve8_sse2),
make_tuple(16, 32, &convolve8_sse2),
make_tuple(32, 32, &convolve8_sse2),
make_tuple(64, 32, &convolve8_sse2),
make_tuple(32, 64, &convolve8_sse2),
make_tuple(64, 64, &convolve8_sse2)));
#endif // CONFIG_VP9_HIGHBITDEPTH
#endif
#if HAVE_SSSE3
const ConvolveFunctions convolve8_ssse3(
vp9_convolve_copy_c, vp9_convolve_avg_c,
vp9_convolve8_horiz_ssse3, vp9_convolve8_avg_horiz_ssse3,
vp9_convolve8_vert_ssse3, vp9_convolve8_avg_vert_ssse3,
vp9_convolve8_ssse3, vp9_convolve8_avg_ssse3, 0);
INSTANTIATE_TEST_CASE_P(SSSE3, ConvolveTest, ::testing::Values(
make_tuple(4, 4, &convolve8_ssse3),
make_tuple(8, 4, &convolve8_ssse3),
make_tuple(4, 8, &convolve8_ssse3),
make_tuple(8, 8, &convolve8_ssse3),
make_tuple(16, 8, &convolve8_ssse3),
make_tuple(8, 16, &convolve8_ssse3),
make_tuple(16, 16, &convolve8_ssse3),
make_tuple(32, 16, &convolve8_ssse3),
make_tuple(16, 32, &convolve8_ssse3),
make_tuple(32, 32, &convolve8_ssse3),
make_tuple(64, 32, &convolve8_ssse3),
make_tuple(32, 64, &convolve8_ssse3),
make_tuple(64, 64, &convolve8_ssse3)));
#endif
#if HAVE_AVX2 && HAVE_SSSE3
const ConvolveFunctions convolve8_avx2(
vp9_convolve_copy_c, vp9_convolve_avg_c,
vp9_convolve8_horiz_avx2, vp9_convolve8_avg_horiz_ssse3,
vp9_convolve8_vert_avx2, vp9_convolve8_avg_vert_ssse3,
vp9_convolve8_avx2, vp9_convolve8_avg_ssse3, 0);
INSTANTIATE_TEST_CASE_P(AVX2, ConvolveTest, ::testing::Values(
make_tuple(4, 4, &convolve8_avx2),
make_tuple(8, 4, &convolve8_avx2),
make_tuple(4, 8, &convolve8_avx2),
make_tuple(8, 8, &convolve8_avx2),
make_tuple(8, 16, &convolve8_avx2),
make_tuple(16, 8, &convolve8_avx2),
make_tuple(16, 16, &convolve8_avx2),
make_tuple(32, 16, &convolve8_avx2),
make_tuple(16, 32, &convolve8_avx2),
make_tuple(32, 32, &convolve8_avx2),
make_tuple(64, 32, &convolve8_avx2),
make_tuple(32, 64, &convolve8_avx2),
make_tuple(64, 64, &convolve8_avx2)));
#endif // HAVE_AVX2 && HAVE_SSSE3
#if HAVE_NEON
#if HAVE_NEON_ASM
const ConvolveFunctions convolve8_neon(
vp9_convolve_copy_neon, vp9_convolve_avg_neon,
vp9_convolve8_horiz_neon, vp9_convolve8_avg_horiz_neon,
vp9_convolve8_vert_neon, vp9_convolve8_avg_vert_neon,
vp9_convolve8_neon, vp9_convolve8_avg_neon, 0);
#else // HAVE_NEON
const ConvolveFunctions convolve8_neon(
vp9_convolve_copy_neon, vp9_convolve_avg_neon,
vp9_convolve8_horiz_neon, vp9_convolve8_avg_horiz_neon,
vp9_convolve8_vert_neon, vp9_convolve8_avg_vert_neon,
vp9_convolve8_neon, vp9_convolve8_avg_neon, 0);
#endif // HAVE_NEON_ASM
INSTANTIATE_TEST_CASE_P(NEON, ConvolveTest, ::testing::Values(
make_tuple(4, 4, &convolve8_neon),
make_tuple(8, 4, &convolve8_neon),
make_tuple(4, 8, &convolve8_neon),
make_tuple(8, 8, &convolve8_neon),
make_tuple(16, 8, &convolve8_neon),
make_tuple(8, 16, &convolve8_neon),
make_tuple(16, 16, &convolve8_neon),
make_tuple(32, 16, &convolve8_neon),
make_tuple(16, 32, &convolve8_neon),
make_tuple(32, 32, &convolve8_neon),
make_tuple(64, 32, &convolve8_neon),
make_tuple(32, 64, &convolve8_neon),
make_tuple(64, 64, &convolve8_neon)));
#endif // HAVE_NEON
#if HAVE_DSPR2
const ConvolveFunctions convolve8_dspr2(
vp9_convolve_copy_dspr2, vp9_convolve_avg_dspr2,
vp9_convolve8_horiz_dspr2, vp9_convolve8_avg_horiz_dspr2,
vp9_convolve8_vert_dspr2, vp9_convolve8_avg_vert_dspr2,
vp9_convolve8_dspr2, vp9_convolve8_avg_dspr2, 0);
INSTANTIATE_TEST_CASE_P(DSPR2, ConvolveTest, ::testing::Values(
make_tuple(4, 4, &convolve8_dspr2),
make_tuple(8, 4, &convolve8_dspr2),
make_tuple(4, 8, &convolve8_dspr2),
make_tuple(8, 8, &convolve8_dspr2),
make_tuple(16, 8, &convolve8_dspr2),
make_tuple(8, 16, &convolve8_dspr2),
make_tuple(16, 16, &convolve8_dspr2),
make_tuple(32, 16, &convolve8_dspr2),
make_tuple(16, 32, &convolve8_dspr2),
make_tuple(32, 32, &convolve8_dspr2),
make_tuple(64, 32, &convolve8_dspr2),
make_tuple(32, 64, &convolve8_dspr2),
make_tuple(64, 64, &convolve8_dspr2)));
#endif
#if HAVE_MSA
const ConvolveFunctions convolve8_msa(
vp9_convolve_copy_c, vp9_convolve_avg_c,
vp9_convolve8_horiz_msa, vp9_convolve8_avg_horiz_c,
vp9_convolve8_vert_msa, vp9_convolve8_avg_vert_c,
vp9_convolve8_msa, vp9_convolve8_avg_c, 0);
INSTANTIATE_TEST_CASE_P(MSA, ConvolveTest, ::testing::Values(
make_tuple(4, 4, &convolve8_msa),
make_tuple(8, 4, &convolve8_msa),
make_tuple(4, 8, &convolve8_msa),
make_tuple(8, 8, &convolve8_msa),
make_tuple(16, 8, &convolve8_msa),
make_tuple(8, 16, &convolve8_msa),
make_tuple(16, 16, &convolve8_msa),
make_tuple(32, 16, &convolve8_msa),
make_tuple(16, 32, &convolve8_msa),
make_tuple(32, 32, &convolve8_msa),
make_tuple(64, 32, &convolve8_msa),
make_tuple(32, 64, &convolve8_msa),
make_tuple(64, 64, &convolve8_msa)));
#endif // HAVE_MSA
} // namespace