this matches style guidelines and stabilizes successive runs of clang-format across the tree. remaining types should be address in successive commits. Change-Id: I6ad3f69cf0a22cb9a9b895b272195f891f71170f
		
			
				
	
	
		
			599 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			599 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 | 
						|
 *
 | 
						|
 * This source code is subject to the terms of the BSD 2 Clause License and
 | 
						|
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 | 
						|
 * was not distributed with this source code in the LICENSE file, you can
 | 
						|
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 | 
						|
 * Media Patent License 1.0 was not distributed with this source code in the
 | 
						|
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef AV1_COMMON_RECONINTER_H_
 | 
						|
#define AV1_COMMON_RECONINTER_H_
 | 
						|
 | 
						|
#include "av1/common/filter.h"
 | 
						|
#include "av1/common/onyxc_int.h"
 | 
						|
#include "av1/common/av1_convolve.h"
 | 
						|
#include "aom/aom_integer.h"
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
extern "C" {
 | 
						|
#endif
 | 
						|
 | 
						|
static INLINE void inter_predictor(const uint8_t *src, int src_stride,
 | 
						|
                                   uint8_t *dst, int dst_stride,
 | 
						|
                                   const int subpel_x, const int subpel_y,
 | 
						|
                                   const struct scale_factors *sf, int w, int h,
 | 
						|
                                   int ref_idx,
 | 
						|
#if CONFIG_DUAL_FILTER
 | 
						|
                                   const InterpFilter *interp_filter,
 | 
						|
#else
 | 
						|
                                   const InterpFilter interp_filter,
 | 
						|
#endif
 | 
						|
                                   int xs, int ys) {
 | 
						|
#if CONFIG_DUAL_FILTER
 | 
						|
  InterpFilterParams interp_filter_params_x =
 | 
						|
      av1_get_interp_filter_params(interp_filter[1 + 2 * ref_idx]);
 | 
						|
  InterpFilterParams interp_filter_params_y =
 | 
						|
      av1_get_interp_filter_params(interp_filter[0 + 2 * ref_idx]);
 | 
						|
#else
 | 
						|
  InterpFilterParams interp_filter_params =
 | 
						|
      av1_get_interp_filter_params(interp_filter);
 | 
						|
#endif
 | 
						|
 | 
						|
#if CONFIG_DUAL_FILTER
 | 
						|
  if (interp_filter_params_x.taps == SUBPEL_TAPS &&
 | 
						|
      interp_filter_params_y.taps == SUBPEL_TAPS && w > 2 && h > 2) {
 | 
						|
    const int16_t *kernel_x =
 | 
						|
        av1_get_interp_filter_subpel_kernel(interp_filter_params_x, subpel_x);
 | 
						|
    const int16_t *kernel_y =
 | 
						|
        av1_get_interp_filter_subpel_kernel(interp_filter_params_y, subpel_y);
 | 
						|
#else
 | 
						|
  if (interp_filter_params.taps == SUBPEL_TAPS) {
 | 
						|
    const int16_t *kernel_x =
 | 
						|
        av1_get_interp_filter_subpel_kernel(interp_filter_params, subpel_x);
 | 
						|
    const int16_t *kernel_y =
 | 
						|
        av1_get_interp_filter_subpel_kernel(interp_filter_params, subpel_y);
 | 
						|
#endif
 | 
						|
#if CONFIG_EXT_INTERP && SUPPORT_NONINTERPOLATING_FILTERS
 | 
						|
    if (IsInterpolatingFilter(interp_filter)) {
 | 
						|
      // Interpolating filter
 | 
						|
      sf->predict[subpel_x != 0][subpel_y != 0][ref](
 | 
						|
          src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h);
 | 
						|
    } else {
 | 
						|
      sf->predict_ni[subpel_x != 0][subpel_y != 0][ref](
 | 
						|
          src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h);
 | 
						|
    }
 | 
						|
#else
 | 
						|
    sf->predict[subpel_x != 0][subpel_y != 0][ref_idx](
 | 
						|
        src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h);
 | 
						|
#endif  // CONFIG_EXT_INTERP && SUPPORT_NONINTERPOLATING_FILTERS
 | 
						|
  } else {
 | 
						|
    // ref_idx > 0 means this is the second reference frame
 | 
						|
    // first reference frame's prediction result is already in dst
 | 
						|
    // therefore we need to average the first and second results
 | 
						|
    av1_convolve(src, src_stride, dst, dst_stride, w, h, interp_filter,
 | 
						|
                 subpel_x, xs, subpel_y, ys, ref_idx);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
static INLINE void highbd_inter_predictor(const uint8_t *src, int src_stride,
 | 
						|
                                          uint8_t *dst, int dst_stride,
 | 
						|
                                          const int subpel_x,
 | 
						|
                                          const int subpel_y,
 | 
						|
                                          const struct scale_factors *sf, int w,
 | 
						|
                                          int h, int ref,
 | 
						|
#if CONFIG_DUAL_FILTER
 | 
						|
                                          const InterpFilter *interp_filter,
 | 
						|
#else
 | 
						|
                                          const InterpFilter interp_filter,
 | 
						|
#endif
 | 
						|
                                          int xs, int ys, int bd) {
 | 
						|
#if CONFIG_DUAL_FILTER
 | 
						|
  InterpFilterParams interp_filter_params_x =
 | 
						|
      av1_get_interp_filter_params(interp_filter[1 + 2 * ref]);
 | 
						|
  InterpFilterParams interp_filter_params_y =
 | 
						|
      av1_get_interp_filter_params(interp_filter[0 + 2 * ref]);
 | 
						|
#else
 | 
						|
  InterpFilterParams interp_filter_params =
 | 
						|
      av1_get_interp_filter_params(interp_filter);
 | 
						|
#endif
 | 
						|
 | 
						|
#if CONFIG_DUAL_FILTER
 | 
						|
  if (interp_filter_params_x.taps == SUBPEL_TAPS &&
 | 
						|
      interp_filter_params_y.taps == SUBPEL_TAPS && w > 2 && h > 2) {
 | 
						|
    const int16_t *kernel_x =
 | 
						|
        av1_get_interp_filter_subpel_kernel(interp_filter_params_x, subpel_x);
 | 
						|
    const int16_t *kernel_y =
 | 
						|
        av1_get_interp_filter_subpel_kernel(interp_filter_params_y, subpel_y);
 | 
						|
#else
 | 
						|
  if (interp_filter_params.taps == SUBPEL_TAPS) {
 | 
						|
    const int16_t *kernel_x =
 | 
						|
        av1_get_interp_filter_subpel_kernel(interp_filter_params, subpel_x);
 | 
						|
    const int16_t *kernel_y =
 | 
						|
        av1_get_interp_filter_subpel_kernel(interp_filter_params, subpel_y);
 | 
						|
#endif  // CONFIG_DUAL_FILTER
 | 
						|
#if CONFIG_EXT_INTERP && SUPPORT_NONINTERPOLATING_FILTERS
 | 
						|
    if (IsInterpolatingFilter(interp_filter)) {
 | 
						|
      // Interpolating filter
 | 
						|
      sf->highbd_predict[subpel_x != 0][subpel_y != 0][ref](
 | 
						|
          src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h,
 | 
						|
          bd);
 | 
						|
    } else {
 | 
						|
      sf->highbd_predict_ni[subpel_x != 0][subpel_y != 0][ref](
 | 
						|
          src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h,
 | 
						|
          bd);
 | 
						|
    }
 | 
						|
#else
 | 
						|
    sf->highbd_predict[subpel_x != 0][subpel_y != 0][ref](
 | 
						|
        src, src_stride, dst, dst_stride, kernel_x, xs, kernel_y, ys, w, h, bd);
 | 
						|
#endif  // CONFIG_EXT_INTERP && SUPPORT_NONINTERPOLATING_FILTERS
 | 
						|
  } else {
 | 
						|
    // ref > 0 means this is the second reference frame
 | 
						|
    // first reference frame's prediction result is already in dst
 | 
						|
    // therefore we need to average the first and second results
 | 
						|
    int avg = ref > 0;
 | 
						|
    av1_highbd_convolve(src, src_stride, dst, dst_stride, w, h, interp_filter,
 | 
						|
                        subpel_x, xs, subpel_y, ys, avg, bd);
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif  // CONFIG_AOM_HIGHBITDEPTH
 | 
						|
 | 
						|
#if CONFIG_EXT_INTER
 | 
						|
// Set to one to use larger codebooks
 | 
						|
#define USE_LARGE_WEDGE_CODEBOOK 0
 | 
						|
 | 
						|
#if USE_LARGE_WEDGE_CODEBOOK
 | 
						|
#define MAX_WEDGE_TYPES (1 << 5)
 | 
						|
#else
 | 
						|
#define MAX_WEDGE_TYPES (1 << 4)
 | 
						|
#endif
 | 
						|
 | 
						|
#define MAX_WEDGE_SIZE_LOG2 5  // 32x32
 | 
						|
#define MAX_WEDGE_SIZE (1 << MAX_WEDGE_SIZE_LOG2)
 | 
						|
#define MAX_WEDGE_SQUARE (MAX_WEDGE_SIZE * MAX_WEDGE_SIZE)
 | 
						|
 | 
						|
#define WEDGE_WEIGHT_BITS 6
 | 
						|
 | 
						|
#define WEDGE_NONE -1
 | 
						|
 | 
						|
// Angles are with respect to horizontal anti-clockwise
 | 
						|
typedef enum {
 | 
						|
  WEDGE_HORIZONTAL = 0,
 | 
						|
  WEDGE_VERTICAL = 1,
 | 
						|
  WEDGE_OBLIQUE27 = 2,
 | 
						|
  WEDGE_OBLIQUE63 = 3,
 | 
						|
  WEDGE_OBLIQUE117 = 4,
 | 
						|
  WEDGE_OBLIQUE153 = 5,
 | 
						|
  WEDGE_DIRECTIONS
 | 
						|
} WedgeDirectionType;
 | 
						|
 | 
						|
// 3-tuple: {direction, x_offset, y_offset}
 | 
						|
typedef struct {
 | 
						|
  WedgeDirectionType direction;
 | 
						|
  int x_offset;
 | 
						|
  int y_offset;
 | 
						|
} wedge_code_type;
 | 
						|
 | 
						|
typedef uint8_t *wedge_masks_type[MAX_WEDGE_TYPES];
 | 
						|
 | 
						|
typedef struct {
 | 
						|
  int bits;
 | 
						|
  const wedge_code_type *codebook;
 | 
						|
  uint8_t *signflip;
 | 
						|
  int smoother;
 | 
						|
  wedge_masks_type *masks;
 | 
						|
} wedge_params_type;
 | 
						|
 | 
						|
extern const wedge_params_type wedge_params_lookup[BLOCK_SIZES];
 | 
						|
 | 
						|
static INLINE int get_wedge_bits_lookup(BLOCK_SIZE sb_type) {
 | 
						|
  return wedge_params_lookup[sb_type].bits;
 | 
						|
}
 | 
						|
 | 
						|
static INLINE int is_interinter_wedge_used(BLOCK_SIZE sb_type) {
 | 
						|
  (void)sb_type;
 | 
						|
  return wedge_params_lookup[sb_type].bits > 0;
 | 
						|
}
 | 
						|
 | 
						|
static INLINE int get_interinter_wedge_bits(BLOCK_SIZE sb_type) {
 | 
						|
  const int wbits = wedge_params_lookup[sb_type].bits;
 | 
						|
  return (wbits > 0) ? wbits + 1 : 0;
 | 
						|
}
 | 
						|
 | 
						|
static INLINE int is_interintra_wedge_used(BLOCK_SIZE sb_type) {
 | 
						|
  (void)sb_type;
 | 
						|
  return wedge_params_lookup[sb_type].bits > 0;
 | 
						|
}
 | 
						|
 | 
						|
static INLINE int get_interintra_wedge_bits(BLOCK_SIZE sb_type) {
 | 
						|
  return wedge_params_lookup[sb_type].bits;
 | 
						|
}
 | 
						|
#endif  // CONFIG_EXT_INTER
 | 
						|
 | 
						|
void build_inter_predictors(MACROBLOCKD *xd, int plane,
 | 
						|
#if CONFIG_OBMC
 | 
						|
                            int mi_col_offset, int mi_row_offset,
 | 
						|
#endif  // CONFIG_OBMC
 | 
						|
                            int block, int bw, int bh, int x, int y, int w,
 | 
						|
                            int h,
 | 
						|
#if CONFIG_SUPERTX && CONFIG_EXT_INTER
 | 
						|
                            int wedge_offset_x, int wedge_offset_y,
 | 
						|
#endif  // CONFIG_SUPERTX && CONFIG_EXT_INTER
 | 
						|
                            int mi_x, int mi_y);
 | 
						|
 | 
						|
static INLINE void av1_make_inter_predictor(
 | 
						|
    const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride,
 | 
						|
    const int subpel_x, const int subpel_y, const struct scale_factors *sf,
 | 
						|
    int w, int h, int ref,
 | 
						|
#if CONFIG_DUAL_FILTER
 | 
						|
    const InterpFilter *interp_filter,
 | 
						|
#else
 | 
						|
    const InterpFilter interp_filter,
 | 
						|
#endif
 | 
						|
    int xs, int ys, const MACROBLOCKD *xd) {
 | 
						|
  (void)xd;
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
 | 
						|
    highbd_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y,
 | 
						|
                           sf, w, h, ref, interp_filter, xs, ys, xd->bd);
 | 
						|
  else
 | 
						|
#endif  // CONFIG_AOM_HIGHBITDEPTH
 | 
						|
    inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w,
 | 
						|
                    h, ref, interp_filter, xs, ys);
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_EXT_INTER
 | 
						|
void av1_make_masked_inter_predictor(const uint8_t *pre, int pre_stride,
 | 
						|
                                     uint8_t *dst, int dst_stride,
 | 
						|
                                     const int subpel_x, const int subpel_y,
 | 
						|
                                     const struct scale_factors *sf, int w,
 | 
						|
                                     int h,
 | 
						|
#if CONFIG_DUAL_FILTER
 | 
						|
                                     const InterpFilter *interp_filter,
 | 
						|
#else
 | 
						|
                                     const InterpFilter interp_filter,
 | 
						|
#endif
 | 
						|
                                     int xs, int ys,
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
                                     int wedge_offset_x, int wedge_offset_y,
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
                                     const MACROBLOCKD *xd);
 | 
						|
#endif  // CONFIG_EXT_INTER
 | 
						|
 | 
						|
static INLINE int round_mv_comp_q4(int value) {
 | 
						|
  return (value < 0 ? value - 2 : value + 2) / 4;
 | 
						|
}
 | 
						|
 | 
						|
static MV mi_mv_pred_q4(const MODE_INFO *mi, int idx) {
 | 
						|
  MV res = {
 | 
						|
    round_mv_comp_q4(
 | 
						|
        mi->bmi[0].as_mv[idx].as_mv.row + mi->bmi[1].as_mv[idx].as_mv.row +
 | 
						|
        mi->bmi[2].as_mv[idx].as_mv.row + mi->bmi[3].as_mv[idx].as_mv.row),
 | 
						|
    round_mv_comp_q4(
 | 
						|
        mi->bmi[0].as_mv[idx].as_mv.col + mi->bmi[1].as_mv[idx].as_mv.col +
 | 
						|
        mi->bmi[2].as_mv[idx].as_mv.col + mi->bmi[3].as_mv[idx].as_mv.col)
 | 
						|
  };
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
static INLINE int round_mv_comp_q2(int value) {
 | 
						|
  return (value < 0 ? value - 1 : value + 1) / 2;
 | 
						|
}
 | 
						|
 | 
						|
static MV mi_mv_pred_q2(const MODE_INFO *mi, int idx, int block0, int block1) {
 | 
						|
  MV res = { round_mv_comp_q2(mi->bmi[block0].as_mv[idx].as_mv.row +
 | 
						|
                              mi->bmi[block1].as_mv[idx].as_mv.row),
 | 
						|
             round_mv_comp_q2(mi->bmi[block0].as_mv[idx].as_mv.col +
 | 
						|
                              mi->bmi[block1].as_mv[idx].as_mv.col) };
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
// TODO(jkoleszar): yet another mv clamping function :-(
 | 
						|
static INLINE MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd,
 | 
						|
                                           const MV *src_mv, int bw, int bh,
 | 
						|
                                           int ss_x, int ss_y) {
 | 
						|
  // If the MV points so far into the UMV border that no visible pixels
 | 
						|
  // are used for reconstruction, the subpel part of the MV can be
 | 
						|
  // discarded and the MV limited to 16 pixels with equivalent results.
 | 
						|
  const int spel_left = (AOM_INTERP_EXTEND + bw) << SUBPEL_BITS;
 | 
						|
  const int spel_right = spel_left - SUBPEL_SHIFTS;
 | 
						|
  const int spel_top = (AOM_INTERP_EXTEND + bh) << SUBPEL_BITS;
 | 
						|
  const int spel_bottom = spel_top - SUBPEL_SHIFTS;
 | 
						|
  MV clamped_mv = { src_mv->row * (1 << (1 - ss_y)),
 | 
						|
                    src_mv->col * (1 << (1 - ss_x)) };
 | 
						|
  assert(ss_x <= 1);
 | 
						|
  assert(ss_y <= 1);
 | 
						|
 | 
						|
  clamp_mv(&clamped_mv, xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left,
 | 
						|
           xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right,
 | 
						|
           xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top,
 | 
						|
           xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom);
 | 
						|
 | 
						|
  return clamped_mv;
 | 
						|
}
 | 
						|
 | 
						|
static INLINE MV average_split_mvs(const struct macroblockd_plane *pd,
 | 
						|
                                   const MODE_INFO *mi, int ref, int block) {
 | 
						|
  const int ss_idx = ((pd->subsampling_x > 0) << 1) | (pd->subsampling_y > 0);
 | 
						|
  MV res = { 0, 0 };
 | 
						|
  switch (ss_idx) {
 | 
						|
    case 0: res = mi->bmi[block].as_mv[ref].as_mv; break;
 | 
						|
    case 1: res = mi_mv_pred_q2(mi, ref, block, block + 2); break;
 | 
						|
    case 2: res = mi_mv_pred_q2(mi, ref, block, block + 1); break;
 | 
						|
    case 3: res = mi_mv_pred_q4(mi, ref); break;
 | 
						|
    default: assert(ss_idx <= 3 && ss_idx >= 0);
 | 
						|
  }
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
void av1_build_inter_predictor_sub8x8(MACROBLOCKD *xd, int plane, int i, int ir,
 | 
						|
                                      int ic, int mi_row, int mi_col);
 | 
						|
 | 
						|
void av1_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col,
 | 
						|
                                    BLOCK_SIZE bsize);
 | 
						|
 | 
						|
void av1_build_inter_predictors_sbp(MACROBLOCKD *xd, int mi_row, int mi_col,
 | 
						|
                                    BLOCK_SIZE bsize, int plane);
 | 
						|
 | 
						|
void av1_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col,
 | 
						|
                                     BLOCK_SIZE bsize);
 | 
						|
 | 
						|
void av1_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col,
 | 
						|
                                   BLOCK_SIZE bsize);
 | 
						|
 | 
						|
#if CONFIG_SUPERTX
 | 
						|
void av1_build_inter_predictors_sb_sub8x8_extend(MACROBLOCKD *xd,
 | 
						|
#if CONFIG_EXT_INTER
 | 
						|
                                                 int mi_row_ori, int mi_col_ori,
 | 
						|
#endif  // CONFIG_EXT_INTER
 | 
						|
                                                 int mi_row, int mi_col,
 | 
						|
                                                 BLOCK_SIZE bsize, int block);
 | 
						|
 | 
						|
void av1_build_inter_predictors_sb_extend(MACROBLOCKD *xd,
 | 
						|
#if CONFIG_EXT_INTER
 | 
						|
                                          int mi_row_ori, int mi_col_ori,
 | 
						|
#endif  // CONFIG_EXT_INTER
 | 
						|
                                          int mi_row, int mi_col,
 | 
						|
                                          BLOCK_SIZE bsize);
 | 
						|
struct macroblockd_plane;
 | 
						|
void av1_build_masked_inter_predictor_complex(
 | 
						|
    MACROBLOCKD *xd, uint8_t *dst, int dst_stride, const uint8_t *pre,
 | 
						|
    int pre_stride, int mi_row, int mi_col, int mi_row_ori, int mi_col_ori,
 | 
						|
    BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, PARTITION_TYPE partition,
 | 
						|
    int plane);
 | 
						|
#endif  // CONFIG_SUPERTX
 | 
						|
 | 
						|
void av1_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst,
 | 
						|
                               int dst_stride, const MV *mv_q3,
 | 
						|
                               const struct scale_factors *sf, int w, int h,
 | 
						|
                               int do_avg,
 | 
						|
#if CONFIG_DUAL_FILTER
 | 
						|
                               const InterpFilter *interp_filter,
 | 
						|
#else
 | 
						|
                               const InterpFilter interp_filter,
 | 
						|
#endif
 | 
						|
                               enum mv_precision precision, int x, int y);
 | 
						|
 | 
						|
#if CONFIG_AOM_HIGHBITDEPTH
 | 
						|
void av1_highbd_build_inter_predictor(
 | 
						|
    const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride,
 | 
						|
    const MV *mv_q3, const struct scale_factors *sf, int w, int h, int do_avg,
 | 
						|
#if CONFIG_DUAL_FILTER
 | 
						|
    const InterpFilter *interp_filter,
 | 
						|
#else
 | 
						|
    const InterpFilter interp_filter,
 | 
						|
#endif
 | 
						|
    enum mv_precision precision, int x, int y, int bd);
 | 
						|
#endif
 | 
						|
 | 
						|
static INLINE int scaled_buffer_offset(int x_offset, int y_offset, int stride,
 | 
						|
                                       const struct scale_factors *sf) {
 | 
						|
  const int x = sf ? sf->scale_value_x(x_offset, sf) : x_offset;
 | 
						|
  const int y = sf ? sf->scale_value_y(y_offset, sf) : y_offset;
 | 
						|
  return y * stride + x;
 | 
						|
}
 | 
						|
 | 
						|
static INLINE void setup_pred_plane(struct buf_2d *dst, uint8_t *src, int width,
 | 
						|
                                    int height, int stride, int mi_row,
 | 
						|
                                    int mi_col,
 | 
						|
                                    const struct scale_factors *scale,
 | 
						|
                                    int subsampling_x, int subsampling_y) {
 | 
						|
  const int x = (MI_SIZE * mi_col) >> subsampling_x;
 | 
						|
  const int y = (MI_SIZE * mi_row) >> subsampling_y;
 | 
						|
  dst->buf = src + scaled_buffer_offset(x, y, stride, scale);
 | 
						|
  dst->buf0 = src;
 | 
						|
  dst->width = width;
 | 
						|
  dst->height = height;
 | 
						|
  dst->stride = stride;
 | 
						|
}
 | 
						|
 | 
						|
void av1_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE],
 | 
						|
                          const YV12_BUFFER_CONFIG *src, int mi_row,
 | 
						|
                          int mi_col);
 | 
						|
 | 
						|
void av1_setup_pre_planes(MACROBLOCKD *xd, int idx,
 | 
						|
                          const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
 | 
						|
                          const struct scale_factors *sf);
 | 
						|
 | 
						|
#if CONFIG_DUAL_FILTER
 | 
						|
// Detect if the block have sub-pixel level motion vectors
 | 
						|
// per component.
 | 
						|
static INLINE int has_subpel_mv_component(const MODE_INFO *const mi,
 | 
						|
                                          const MACROBLOCKD *const xd,
 | 
						|
                                          int dir) {
 | 
						|
  const MB_MODE_INFO *const mbmi = &mi->mbmi;
 | 
						|
  const BLOCK_SIZE bsize = mbmi->sb_type;
 | 
						|
  int plane;
 | 
						|
  int ref = (dir >> 1);
 | 
						|
 | 
						|
  if (bsize >= BLOCK_8X8) {
 | 
						|
    if (dir & 0x01) {
 | 
						|
      if (mbmi->mv[ref].as_mv.col & SUBPEL_MASK) return 1;
 | 
						|
    } else {
 | 
						|
      if (mbmi->mv[ref].as_mv.row & SUBPEL_MASK) return 1;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
 | 
						|
      const PARTITION_TYPE bp = BLOCK_8X8 - bsize;
 | 
						|
      const struct macroblockd_plane *const pd = &xd->plane[plane];
 | 
						|
      const int have_vsplit = bp != PARTITION_HORZ;
 | 
						|
      const int have_hsplit = bp != PARTITION_VERT;
 | 
						|
      const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x);
 | 
						|
      const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y);
 | 
						|
 | 
						|
      int x, y;
 | 
						|
      for (y = 0; y < num_4x4_h; ++y) {
 | 
						|
        for (x = 0; x < num_4x4_w; ++x) {
 | 
						|
          const MV mv = average_split_mvs(pd, mi, ref, y * 2 + x);
 | 
						|
          if (dir & 0x01) {
 | 
						|
            if (mv.col & SUBPEL_MASK) return 1;
 | 
						|
          } else {
 | 
						|
            if (mv.row & SUBPEL_MASK) return 1;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if CONFIG_EXT_INTERP
 | 
						|
static INLINE int av1_is_interp_needed(const MACROBLOCKD *const xd) {
 | 
						|
  MODE_INFO *const mi = xd->mi[0];
 | 
						|
  MB_MODE_INFO *const mbmi = &mi->mbmi;
 | 
						|
  const BLOCK_SIZE bsize = mbmi->sb_type;
 | 
						|
  const int is_compound = has_second_ref(mbmi);
 | 
						|
  int intpel_mv = 1;
 | 
						|
  int plane;
 | 
						|
 | 
						|
#if SUPPORT_NONINTERPOLATING_FILTERS
 | 
						|
  // TODO(debargha): This is is currently only for experimentation
 | 
						|
  // with non-interpolating filters. Remove later.
 | 
						|
  // If any of the filters are non-interpolating, then indicate the
 | 
						|
  // interpolation filter always.
 | 
						|
  int i;
 | 
						|
  for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
 | 
						|
    if (!IsInterpolatingFilter(i)) return 1;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  // For scaled references, interpolation filter is indicated all the time.
 | 
						|
  if (av1_is_scaled(&xd->block_refs[0]->sf)) return 1;
 | 
						|
  if (is_compound && av1_is_scaled(&xd->block_refs[1]->sf)) return 1;
 | 
						|
 | 
						|
  if (bsize < BLOCK_8X8) {
 | 
						|
    for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
 | 
						|
      const PARTITION_TYPE bp = BLOCK_8X8 - bsize;
 | 
						|
      const struct macroblockd_plane *const pd = &xd->plane[plane];
 | 
						|
      const int have_vsplit = bp != PARTITION_HORZ;
 | 
						|
      const int have_hsplit = bp != PARTITION_VERT;
 | 
						|
      const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x);
 | 
						|
      const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y);
 | 
						|
      int ref;
 | 
						|
      for (ref = 0; ref < 1 + is_compound; ++ref) {
 | 
						|
        int x, y;
 | 
						|
        for (y = 0; y < num_4x4_h; ++y)
 | 
						|
          for (x = 0; x < num_4x4_w; ++x) {
 | 
						|
            const MV mv = average_split_mvs(pd, mi, ref, y * 2 + x);
 | 
						|
            if (mv_has_subpel(&mv)) return 1;
 | 
						|
          }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
  } else {
 | 
						|
    intpel_mv = !mv_has_subpel(&mbmi->mv[0].as_mv);
 | 
						|
    if (is_compound && intpel_mv) {
 | 
						|
      intpel_mv &= !mv_has_subpel(&mbmi->mv[1].as_mv);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return !intpel_mv;
 | 
						|
}
 | 
						|
#endif  // CONFIG_EXT_INTERP
 | 
						|
 | 
						|
#if CONFIG_OBMC
 | 
						|
const uint8_t *av1_get_obmc_mask(int length);
 | 
						|
void av1_build_obmc_inter_prediction(AV1_COMMON *cm, MACROBLOCKD *xd,
 | 
						|
                                     int mi_row, int mi_col,
 | 
						|
                                     uint8_t *above[MAX_MB_PLANE],
 | 
						|
                                     int above_stride[MAX_MB_PLANE],
 | 
						|
                                     uint8_t *left[MAX_MB_PLANE],
 | 
						|
                                     int left_stride[MAX_MB_PLANE]);
 | 
						|
void av1_build_prediction_by_above_preds(AV1_COMMON *cm, MACROBLOCKD *xd,
 | 
						|
                                         int mi_row, int mi_col,
 | 
						|
                                         uint8_t *tmp_buf[MAX_MB_PLANE],
 | 
						|
                                         int tmp_width[MAX_MB_PLANE],
 | 
						|
                                         int tmp_height[MAX_MB_PLANE],
 | 
						|
                                         int tmp_stride[MAX_MB_PLANE]);
 | 
						|
void av1_build_prediction_by_left_preds(AV1_COMMON *cm, MACROBLOCKD *xd,
 | 
						|
                                        int mi_row, int mi_col,
 | 
						|
                                        uint8_t *tmp_buf[MAX_MB_PLANE],
 | 
						|
                                        int tmp_width[MAX_MB_PLANE],
 | 
						|
                                        int tmp_height[MAX_MB_PLANE],
 | 
						|
                                        int tmp_stride[MAX_MB_PLANE]);
 | 
						|
#endif  // CONFIG_OBMC
 | 
						|
 | 
						|
#if CONFIG_EXT_INTER
 | 
						|
#define MASK_MASTER_SIZE (2 * MAX_SB_SIZE)
 | 
						|
#define MASK_MASTER_STRIDE (2 * MAX_SB_SIZE)
 | 
						|
 | 
						|
void av1_init_wedge_masks();
 | 
						|
 | 
						|
static INLINE const uint8_t *av1_get_contiguous_soft_mask(int wedge_index,
 | 
						|
                                                          int wedge_sign,
 | 
						|
                                                          BLOCK_SIZE sb_type) {
 | 
						|
  return wedge_params_lookup[sb_type].masks[wedge_sign][wedge_index];
 | 
						|
}
 | 
						|
 | 
						|
const uint8_t *av1_get_soft_mask(int wedge_index, int wedge_sign,
 | 
						|
                                 BLOCK_SIZE sb_type, int wedge_offset_x,
 | 
						|
                                 int wedge_offset_y);
 | 
						|
 | 
						|
void av1_build_interintra_predictors(MACROBLOCKD *xd, uint8_t *ypred,
 | 
						|
                                     uint8_t *upred, uint8_t *vpred,
 | 
						|
                                     int ystride, int ustride, int vstride,
 | 
						|
                                     BLOCK_SIZE bsize);
 | 
						|
void av1_build_interintra_predictors_sby(MACROBLOCKD *xd, uint8_t *ypred,
 | 
						|
                                         int ystride, BLOCK_SIZE bsize);
 | 
						|
void av1_build_interintra_predictors_sbc(MACROBLOCKD *xd, uint8_t *upred,
 | 
						|
                                         int ustride, int plane,
 | 
						|
                                         BLOCK_SIZE bsize);
 | 
						|
void av1_build_interintra_predictors_sbuv(MACROBLOCKD *xd, uint8_t *upred,
 | 
						|
                                          uint8_t *vpred, int ustride,
 | 
						|
                                          int vstride, BLOCK_SIZE bsize);
 | 
						|
 | 
						|
void av1_build_intra_predictors_for_interintra(MACROBLOCKD *xd,
 | 
						|
                                               BLOCK_SIZE bsize, int plane,
 | 
						|
                                               uint8_t *intra_pred,
 | 
						|
                                               int intra_stride);
 | 
						|
void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane,
 | 
						|
                            const uint8_t *inter_pred, int inter_stride,
 | 
						|
                            const uint8_t *intra_pred, int intra_stride);
 | 
						|
void av1_build_interintra_predictors_sbuv(MACROBLOCKD *xd, uint8_t *upred,
 | 
						|
                                          uint8_t *vpred, int ustride,
 | 
						|
                                          int vstride, BLOCK_SIZE bsize);
 | 
						|
void av1_build_interintra_predictors_sby(MACROBLOCKD *xd, uint8_t *ypred,
 | 
						|
                                         int ystride, BLOCK_SIZE bsize);
 | 
						|
 | 
						|
// Encoder only
 | 
						|
void av1_build_inter_predictors_for_planes_single_buf(
 | 
						|
    MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, int mi_row,
 | 
						|
    int mi_col, int ref, uint8_t *ext_dst[3], int ext_dst_stride[3]);
 | 
						|
void av1_build_wedge_inter_predictor_from_buf(MACROBLOCKD *xd, BLOCK_SIZE bsize,
 | 
						|
                                              int plane_from, int plane_to,
 | 
						|
                                              uint8_t *ext_dst0[3],
 | 
						|
                                              int ext_dst_stride0[3],
 | 
						|
                                              uint8_t *ext_dst1[3],
 | 
						|
                                              int ext_dst_stride1[3]);
 | 
						|
#endif  // CONFIG_EXT_INTER
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
}  // extern "C"
 | 
						|
#endif
 | 
						|
 | 
						|
#endif  // AV1_COMMON_RECONINTER_H_
 |