vpx/vp8/encoder/encodemb.c
Ronald S. Bultje 41e3a9ef14 Add and consistently use PLANE_TYPE.
Change the macros PLANE_TYPE_{Y_NO_DC,Y2,UV,Y_WITH_DC} to a typed enum,
and use this typed enum consistently across all places where relevant.
In places where the type is implied (e.g. in functions that only handle
second order planes or chroma planes), remove it as a function argument
and instead hardcode the proper enum in the code directly.

Change-Id: I93652b4a36aa43163d49c732b0bf5c4442738c47
2012-10-15 07:57:16 -07:00

943 lines
28 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_ports/config.h"
#include "encodemb.h"
#include "vp8/common/reconinter.h"
#include "quantize.h"
#include "tokenize.h"
#include "vp8/common/invtrans.h"
#include "vp8/common/recon.h"
#include "vp8/common/reconintra.h"
#include "dct.h"
#include "vpx_mem/vpx_mem.h"
#include "rdopt.h"
#include "vp8/common/systemdependent.h"
#if CONFIG_RUNTIME_CPU_DETECT
#define IF_RTCD(x) (x)
#else
#define IF_RTCD(x) NULL
#endif
#ifdef ENC_DEBUG
extern int enc_debug;
#endif
void vp8_subtract_b_c(BLOCK *be, BLOCKD *bd, int pitch) {
unsigned char *src_ptr = (*(be->base_src) + be->src);
short *diff_ptr = be->src_diff;
unsigned char *pred_ptr = bd->predictor;
int src_stride = be->src_stride;
int r, c;
for (r = 0; r < 4; r++) {
for (c = 0; c < 4; c++) {
diff_ptr[c] = src_ptr[c] - pred_ptr[c];
}
diff_ptr += pitch;
pred_ptr += pitch;
src_ptr += src_stride;
}
}
void vp8_subtract_4b_c(BLOCK *be, BLOCKD *bd, int pitch) {
unsigned char *src_ptr = (*(be->base_src) + be->src);
short *diff_ptr = be->src_diff;
unsigned char *pred_ptr = bd->predictor;
int src_stride = be->src_stride;
int r, c;
for (r = 0; r < 8; r++) {
for (c = 0; c < 8; c++) {
diff_ptr[c] = src_ptr[c] - pred_ptr[c];
}
diff_ptr += pitch;
pred_ptr += pitch;
src_ptr += src_stride;
}
}
void vp8_subtract_mbuv_s_c(short *diff, const unsigned char *usrc,
const unsigned char *vsrc, int src_stride,
const unsigned char *upred,
const unsigned char *vpred, int dst_stride) {
short *udiff = diff + 256;
short *vdiff = diff + 320;
int r, c;
for (r = 0; r < 8; r++) {
for (c = 0; c < 8; c++) {
udiff[c] = usrc[c] - upred[c];
}
udiff += 8;
upred += dst_stride;
usrc += src_stride;
}
for (r = 0; r < 8; r++) {
for (c = 0; c < 8; c++) {
vdiff[c] = vsrc[c] - vpred[c];
}
vdiff += 8;
vpred += dst_stride;
vsrc += src_stride;
}
}
void vp8_subtract_mbuv_c(short *diff, unsigned char *usrc,
unsigned char *vsrc, unsigned char *pred, int stride) {
unsigned char *upred = pred + 256;
unsigned char *vpred = pred + 320;
vp8_subtract_mbuv_s_c(diff, usrc, vsrc, stride, upred, vpred, 8);
}
void vp8_subtract_mby_s_c(short *diff, const unsigned char *src, int src_stride,
const unsigned char *pred, int dst_stride) {
int r, c;
for (r = 0; r < 16; r++) {
for (c = 0; c < 16; c++) {
diff[c] = src[c] - pred[c];
}
diff += 16;
pred += dst_stride;
src += src_stride;
}
}
void vp8_subtract_mby_c(short *diff, unsigned char *src,
unsigned char *pred, int stride) {
vp8_subtract_mby_s_c(diff, src, stride, pred, 16);
}
static void vp8_subtract_mb(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *x) {
BLOCK *b = &x->block[0];
ENCODEMB_INVOKE(&rtcd->encodemb, submby)(x->src_diff, *(b->base_src), x->e_mbd.predictor, b->src_stride);
ENCODEMB_INVOKE(&rtcd->encodemb, submbuv)(x->src_diff, x->src.u_buffer, x->src.v_buffer, x->e_mbd.predictor, x->src.uv_stride);
}
static void build_dcblock_4x4(MACROBLOCK *x) {
short *src_diff_ptr = &x->src_diff[384];
int i;
for (i = 0; i < 16; i++) {
src_diff_ptr[i] = x->coeff[i * 16];
}
}
void vp8_transform_mby_4x4(MACROBLOCK *x) {
int i;
for (i = 0; i < 16; i += 2) {
x->vp8_short_fdct8x4(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 32);
}
if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV) {
// build dc block from 16 y dc values
build_dcblock_4x4(x);
// do 2nd order transform on the dc block
x->short_walsh4x4(&x->block[24].src_diff[0],
&x->block[24].coeff[0], 8);
}
}
void vp8_transform_mbuv_4x4(MACROBLOCK *x) {
int i;
for (i = 16; i < 24; i += 2) {
x->vp8_short_fdct8x4(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 16);
}
}
static void transform_mb_4x4(MACROBLOCK *x) {
vp8_transform_mby_4x4(x);
vp8_transform_mbuv_4x4(x);
}
void vp8_build_dcblock_8x8(MACROBLOCK *x) {
int16_t *src_diff_ptr = x->block[24].src_diff;
int i;
for (i = 0; i < 16; i++) {
src_diff_ptr[i] = 0;
}
src_diff_ptr[0] = x->coeff[0 * 16];
src_diff_ptr[1] = x->coeff[4 * 16];
src_diff_ptr[4] = x->coeff[8 * 16];
src_diff_ptr[8] = x->coeff[12 * 16];
}
void vp8_transform_mby_8x8(MACROBLOCK *x) {
int i;
for (i = 0; i < 9; i += 8) {
x->vp8_short_fdct8x8(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 32);
}
for (i = 2; i < 11; i += 8) {
x->vp8_short_fdct8x8(&x->block[i].src_diff[0],
&x->block[i + 2].coeff[0], 32);
}
if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV) {
// build dc block from 2x2 y dc values
vp8_build_dcblock_8x8(x);
// do 2nd order transform on the dc block
x->short_fhaar2x2(&x->block[24].src_diff[0],
&x->block[24].coeff[0], 8);
}
}
void vp8_transform_mbuv_8x8(MACROBLOCK *x) {
int i;
for (i = 16; i < 24; i += 4) {
x->vp8_short_fdct8x8(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 16);
}
}
void vp8_transform_mb_8x8(MACROBLOCK *x) {
vp8_transform_mby_8x8(x);
vp8_transform_mbuv_8x8(x);
}
void vp8_transform_mby_16x16(MACROBLOCK *x) {
vp8_clear_system_state();
x->vp8_short_fdct16x16(&x->block[0].src_diff[0],
&x->block[0].coeff[0], 32);
}
void vp8_transform_mb_16x16(MACROBLOCK *x) {
vp8_transform_mby_16x16(x);
vp8_transform_mbuv_8x8(x);
}
#define RDTRUNC(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF )
#define RDTRUNC_8x8(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF )
typedef struct vp8_token_state vp8_token_state;
struct vp8_token_state {
int rate;
int error;
int next;
signed char token;
short qc;
};
// TODO: experiments to find optimal multiple numbers
#define Y1_RD_MULT 4
#define UV_RD_MULT 2
#define Y2_RD_MULT 4
static const int plane_rd_mult[4] = {
Y1_RD_MULT,
Y2_RD_MULT,
UV_RD_MULT,
Y1_RD_MULT
};
#define UPDATE_RD_COST()\
{\
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);\
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);\
if (rd_cost0 == rd_cost1) {\
rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);\
rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);\
}\
}
void optimize_b(MACROBLOCK *mb, int i, PLANE_TYPE type,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
const VP8_ENCODER_RTCD *rtcd, int tx_type) {
BLOCK *b;
BLOCKD *d;
vp8_token_state tokens[65][2];
uint64_t best_mask[2];
const short *dequant_ptr;
const short *coeff_ptr;
short *qcoeff_ptr;
short *dqcoeff_ptr;
int eob;
int i0;
int rc;
int x;
int sz = 0;
int next;
int rdmult;
int rddiv;
int final_eob;
int64_t rd_cost0, rd_cost1;
int rate0, rate1;
int error0, error1;
int t0, t1;
int best;
int band;
int pt;
int err_mult = plane_rd_mult[type];
int default_eob;
int const *scan, *bands;
b = &mb->block[i];
d = &mb->e_mbd.block[i];
switch (tx_type) {
default:
case TX_4X4:
scan = vp8_default_zig_zag1d;
bands = vp8_coef_bands;
default_eob = 16;
#if CONFIG_HYBRIDTRANSFORM
// TODO: this isn't called (for intra4x4 modes), but will be left in
// since it could be used later
{
int active_ht = (mb->q_index < ACTIVE_HT) &&
(mb->e_mbd.mode_info_context->mbmi.mode == B_PRED);
if((type == PLANE_TYPE_Y_WITH_DC) && active_ht) {
switch (d->bmi.as_mode.tx_type) {
case ADST_DCT:
scan = vp8_row_scan;
break;
case DCT_ADST:
scan = vp8_col_scan;
break;
default:
scan = vp8_default_zig_zag1d;
break;
}
} else
scan = vp8_default_zig_zag1d;
}
#endif
break;
case TX_8X8:
scan = vp8_default_zig_zag1d_8x8;
bands = vp8_coef_bands_8x8;
default_eob = 64;
break;
}
dequant_ptr = d->dequant;
coeff_ptr = b->coeff;
qcoeff_ptr = d->qcoeff;
dqcoeff_ptr = d->dqcoeff;
i0 = (type == PLANE_TYPE_Y_NO_DC);
eob = d->eob;
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
rdmult = mb->rdmult * err_mult;
if (mb->e_mbd.mode_info_context->mbmi.ref_frame == INTRA_FRAME)
rdmult = (rdmult * 9) >> 4;
rddiv = mb->rddiv;
best_mask[0] = best_mask[1] = 0;
/* Initialize the sentinel node of the trellis. */
tokens[eob][0].rate = 0;
tokens[eob][0].error = 0;
tokens[eob][0].next = default_eob;
tokens[eob][0].token = DCT_EOB_TOKEN;
tokens[eob][0].qc = 0;
*(tokens[eob] + 1) = *(tokens[eob] + 0);
next = eob;
for (i = eob; i-- > i0;) {
int base_bits;
int d2;
int dx;
rc = scan[i];
x = qcoeff_ptr[rc];
/* Only add a trellis state for non-zero coefficients. */
if (x) {
int shortcut = 0;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
/* Evaluate the first possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
t0 = (vp8_dct_value_tokens_ptr + x)->Token;
/* Consider both possible successor states. */
if (next < default_eob) {
band = bands[i + 1];
pt = vp8_prev_token_class[t0];
rate0 +=
mb->token_costs[tx_type][type][band][pt][tokens[next][0].token];
rate1 +=
mb->token_costs[tx_type][type][band][pt][tokens[next][1].token];
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp8_dct_value_cost_ptr + x);
dx = dqcoeff_ptr[rc] - coeff_ptr[rc];
d2 = dx * dx;
tokens[i][0].rate = base_bits + (best ? rate1 : rate0);
tokens[i][0].error = d2 + (best ? error1 : error0);
tokens[i][0].next = next;
tokens[i][0].token = t0;
tokens[i][0].qc = x;
best_mask[0] |= best << i;
/* Evaluate the second possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
if ((abs(x)*dequant_ptr[rc != 0] > abs(coeff_ptr[rc])) &&
(abs(x)*dequant_ptr[rc != 0] < abs(coeff_ptr[rc]) + dequant_ptr[rc != 0]))
shortcut = 1;
else
shortcut = 0;
if (shortcut) {
sz = -(x < 0);
x -= 2 * sz + 1;
}
/* Consider both possible successor states. */
if (!x) {
/* If we reduced this coefficient to zero, check to see if
* we need to move the EOB back here.
*/
t0 = tokens[next][0].token == DCT_EOB_TOKEN ?
DCT_EOB_TOKEN : ZERO_TOKEN;
t1 = tokens[next][1].token == DCT_EOB_TOKEN ?
DCT_EOB_TOKEN : ZERO_TOKEN;
} else {
t0 = t1 = (vp8_dct_value_tokens_ptr + x)->Token;
}
if (next < default_eob) {
band = bands[i + 1];
if (t0 != DCT_EOB_TOKEN) {
pt = vp8_prev_token_class[t0];
rate0 += mb->token_costs[tx_type][type][band][pt][
tokens[next][0].token];
}
if (t1 != DCT_EOB_TOKEN) {
pt = vp8_prev_token_class[t1];
rate1 += mb->token_costs[tx_type][type][band][pt][
tokens[next][1].token];
}
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp8_dct_value_cost_ptr + x);
if (shortcut) {
dx -= (dequant_ptr[rc != 0] + sz) ^ sz;
d2 = dx * dx;
}
tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
tokens[i][1].error = d2 + (best ? error1 : error0);
tokens[i][1].next = next;
tokens[i][1].token = best ? t1 : t0;
tokens[i][1].qc = x;
best_mask[1] |= best << i;
/* Finally, make this the new head of the trellis. */
next = i;
}
/* There's no choice to make for a zero coefficient, so we don't
* add a new trellis node, but we do need to update the costs.
*/
else {
band = bands[i + 1];
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
/* Update the cost of each path if we're past the EOB token. */
if (t0 != DCT_EOB_TOKEN) {
tokens[next][0].rate += mb->token_costs[tx_type][type][band][0][t0];
tokens[next][0].token = ZERO_TOKEN;
}
if (t1 != DCT_EOB_TOKEN) {
tokens[next][1].rate += mb->token_costs[tx_type][type][band][0][t1];
tokens[next][1].token = ZERO_TOKEN;
}
/* Don't update next, because we didn't add a new node. */
}
}
/* Now pick the best path through the whole trellis. */
band = bands[i + 1];
VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l);
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
rate0 += mb->token_costs[tx_type][type][band][pt][t0];
rate1 += mb->token_costs[tx_type][type][band][pt][t1];
UPDATE_RD_COST();
best = rd_cost1 < rd_cost0;
final_eob = i0 - 1;
for (i = next; i < eob; i = next) {
x = tokens[i][best].qc;
if (x)
final_eob = i;
rc = scan[i];
qcoeff_ptr[rc] = x;
dqcoeff_ptr[rc] = (x * dequant_ptr[rc != 0]);
next = tokens[i][best].next;
best = (best_mask[best] >> i) & 1;
}
final_eob++;
d->eob = final_eob;
*a = *l = (d->eob != !type);
}
/**************************************************************************
our inverse hadamard transform effectively is weighted sum of all 16 inputs
with weight either 1 or -1. It has a last stage scaling of (sum+1)>>2. And
dc only idct is (dc+16)>>5. So if all the sums are between -65 and 63 the
output after inverse wht and idct will be all zero. A sum of absolute value
smaller than 65 guarantees all 16 different (+1/-1) weighted sums in wht
fall between -65 and +65.
**************************************************************************/
#define SUM_2ND_COEFF_THRESH 65
static void check_reset_2nd_coeffs(MACROBLOCKD *xd,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) {
int sum = 0;
int i;
BLOCKD *bd = &xd->block[24];
if (bd->dequant[0] >= SUM_2ND_COEFF_THRESH
&& bd->dequant[1] >= SUM_2ND_COEFF_THRESH)
return;
for (i = 0; i < bd->eob; i++) {
int coef = bd->dqcoeff[vp8_default_zig_zag1d[i]];
sum += (coef >= 0) ? coef : -coef;
if (sum >= SUM_2ND_COEFF_THRESH)
return;
}
if (sum < SUM_2ND_COEFF_THRESH) {
for (i = 0; i < bd->eob; i++) {
int rc = vp8_default_zig_zag1d[i];
bd->qcoeff[rc] = 0;
bd->dqcoeff[rc] = 0;
}
bd->eob = 0;
*a = *l = (bd->eob != 0);
}
}
#define SUM_2ND_COEFF_THRESH_8X8 32
static void check_reset_8x8_2nd_coeffs(MACROBLOCKD *xd,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) {
int sum = 0;
BLOCKD *bd = &xd->block[24];
int coef;
coef = bd->dqcoeff[0];
sum += (coef >= 0) ? coef : -coef;
coef = bd->dqcoeff[1];
sum += (coef >= 0) ? coef : -coef;
coef = bd->dqcoeff[4];
sum += (coef >= 0) ? coef : -coef;
coef = bd->dqcoeff[8];
sum += (coef >= 0) ? coef : -coef;
if (sum < SUM_2ND_COEFF_THRESH_8X8) {
bd->qcoeff[0] = 0;
bd->dqcoeff[0] = 0;
bd->qcoeff[1] = 0;
bd->dqcoeff[1] = 0;
bd->qcoeff[4] = 0;
bd->dqcoeff[4] = 0;
bd->qcoeff[8] = 0;
bd->dqcoeff[8] = 0;
bd->eob = 0;
*a = *l = (bd->eob != 0);
}
}
void vp8_optimize_mby_4x4(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) {
int b;
PLANE_TYPE type;
int has_2nd_order;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
MB_PREDICTION_MODE mode = x->e_mbd.mode_info_context->mbmi.mode;
if (!x->e_mbd.above_context || !x->e_mbd.left_context)
return;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
has_2nd_order = (mode != B_PRED && mode != I8X8_PRED && mode != SPLITMV);
type = has_2nd_order ? PLANE_TYPE_Y_NO_DC : PLANE_TYPE_Y_WITH_DC;
for (b = 0; b < 16; b++) {
optimize_b(x, b, type,
ta + vp8_block2above[b], tl + vp8_block2left[b], rtcd, TX_4X4);
}
if (has_2nd_order) {
b = 24;
optimize_b(x, b, PLANE_TYPE_Y2,
ta + vp8_block2above[b], tl + vp8_block2left[b], rtcd, TX_4X4);
check_reset_2nd_coeffs(&x->e_mbd,
ta + vp8_block2above[b], tl + vp8_block2left[b]);
}
}
void vp8_optimize_mbuv_4x4(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) {
int b;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
if (!x->e_mbd.above_context || !x->e_mbd.left_context)
return;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
for (b = 16; b < 24; b++) {
optimize_b(x, b, PLANE_TYPE_UV,
ta + vp8_block2above[b], tl + vp8_block2left[b], rtcd, TX_4X4);
}
}
static void optimize_mb_4x4(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) {
vp8_optimize_mby_4x4(x, rtcd);
vp8_optimize_mbuv_4x4(x, rtcd);
}
void vp8_optimize_mby_8x8(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) {
int b;
PLANE_TYPE type;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
if (!x->e_mbd.above_context || !x->e_mbd.left_context)
return;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
type = PLANE_TYPE_Y_NO_DC;
for (b = 0; b < 16; b += 4) {
optimize_b(x, b, type,
ta + vp8_block2above[b], tl + vp8_block2left[b],
rtcd, TX_8X8);
*(ta + vp8_block2above_8x8[b] + 1) = *(ta + vp8_block2above_8x8[b]);
*(tl + vp8_block2left_8x8[b] + 1) = *(tl + vp8_block2left_8x8[b]);
}
// 8x8 always have 2nd roder haar block
check_reset_8x8_2nd_coeffs(&x->e_mbd,
ta + vp8_block2above_8x8[24], tl + vp8_block2left_8x8[24]);
}
void vp8_optimize_mbuv_8x8(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) {
int b;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
if (!x->e_mbd.above_context || !x->e_mbd.left_context)
return;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
for (b = 16; b < 24; b += 4) {
optimize_b(x, b, PLANE_TYPE_UV,
ta + vp8_block2above_8x8[b], tl + vp8_block2left_8x8[b],
rtcd, TX_8X8);
*(ta + vp8_block2above_8x8[b] + 1) = *(ta + vp8_block2above_8x8[b]);
*(tl + vp8_block2left_8x8[b] + 1) = *(tl + vp8_block2left_8x8[b]);
}
}
void optimize_mb_8x8(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) {
vp8_optimize_mby_8x8(x, rtcd);
vp8_optimize_mbuv_8x8(x, rtcd);
}
void optimize_b_16x16(MACROBLOCK *mb, int i, PLANE_TYPE type,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
const VP8_ENCODER_RTCD *rtcd) {
BLOCK *b = &mb->block[i];
BLOCKD *d = &mb->e_mbd.block[i];
vp8_token_state tokens[257][2];
unsigned best_index[257][2];
const short *dequant_ptr = d->dequant, *coeff_ptr = b->coeff;
short *qcoeff_ptr = qcoeff_ptr = d->qcoeff;
short *dqcoeff_ptr = dqcoeff_ptr = d->dqcoeff;
int eob = d->eob, final_eob, sz = 0;
int rc, x, next;
int64_t rdmult, rddiv, rd_cost0, rd_cost1;
int rate0, rate1, error0, error1, t0, t1;
int best, band, pt;
int err_mult = plane_rd_mult[type];
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
rdmult = mb->rdmult * err_mult;
if (mb->e_mbd.mode_info_context->mbmi.ref_frame == INTRA_FRAME)
rdmult = (rdmult * 9)>>4;
rddiv = mb->rddiv;
memset(best_index, 0, sizeof(best_index));
/* Initialize the sentinel node of the trellis. */
tokens[eob][0].rate = 0;
tokens[eob][0].error = 0;
tokens[eob][0].next = 256;
tokens[eob][0].token = DCT_EOB_TOKEN;
tokens[eob][0].qc = 0;
*(tokens[eob] + 1) = *(tokens[eob] + 0);
next = eob;
for (i = eob; i-- > 0;) {
int base_bits, d2, dx;
rc = vp8_default_zig_zag1d_16x16[i];
x = qcoeff_ptr[rc];
/* Only add a trellis state for non-zero coefficients. */
if (x) {
int shortcut = 0;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
/* Evaluate the first possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
t0 = (vp8_dct_value_tokens_ptr + x)->Token;
/* Consider both possible successor states. */
if (next < 256) {
band = vp8_coef_bands_16x16[i + 1];
pt = vp8_prev_token_class[t0];
rate0 += mb->token_costs[TX_16X16][type][band][pt][tokens[next][0].token];
rate1 += mb->token_costs[TX_16X16][type][band][pt][tokens[next][1].token];
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp8_dct_value_cost_ptr + x);
dx = dqcoeff_ptr[rc] - coeff_ptr[rc];
d2 = dx*dx;
tokens[i][0].rate = base_bits + (best ? rate1 : rate0);
tokens[i][0].error = d2 + (best ? error1 : error0);
tokens[i][0].next = next;
tokens[i][0].token = t0;
tokens[i][0].qc = x;
best_index[i][0] = best;
/* Evaluate the second possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
if((abs(x)*dequant_ptr[rc!=0]>abs(coeff_ptr[rc])) &&
(abs(x)*dequant_ptr[rc!=0]<abs(coeff_ptr[rc])+dequant_ptr[rc!=0]))
shortcut = 1;
else
shortcut = 0;
if (shortcut) {
sz = -(x < 0);
x -= 2*sz + 1;
}
/* Consider both possible successor states. */
if (!x) {
/* If we reduced this coefficient to zero, check to see if
* we need to move the EOB back here.
*/
t0 = tokens[next][0].token == DCT_EOB_TOKEN ?
DCT_EOB_TOKEN : ZERO_TOKEN;
t1 = tokens[next][1].token == DCT_EOB_TOKEN ?
DCT_EOB_TOKEN : ZERO_TOKEN;
}
else
t0=t1 = (vp8_dct_value_tokens_ptr + x)->Token;
if (next < 256) {
band = vp8_coef_bands_16x16[i + 1];
if (t0 != DCT_EOB_TOKEN) {
pt = vp8_prev_token_class[t0];
rate0 += mb->token_costs[TX_16X16][type][band][pt]
[tokens[next][0].token];
}
if (t1!=DCT_EOB_TOKEN) {
pt = vp8_prev_token_class[t1];
rate1 += mb->token_costs[TX_16X16][type][band][pt]
[tokens[next][1].token];
}
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp8_dct_value_cost_ptr + x);
if(shortcut) {
dx -= (dequant_ptr[rc!=0] + sz) ^ sz;
d2 = dx*dx;
}
tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
tokens[i][1].error = d2 + (best ? error1 : error0);
tokens[i][1].next = next;
tokens[i][1].token = best ? t1 : t0;
tokens[i][1].qc = x;
best_index[i][1] = best;
/* Finally, make this the new head of the trellis. */
next = i;
}
/* There's no choice to make for a zero coefficient, so we don't
* add a new trellis node, but we do need to update the costs.
*/
else {
band = vp8_coef_bands_16x16[i + 1];
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
/* Update the cost of each path if we're past the EOB token. */
if (t0 != DCT_EOB_TOKEN) {
tokens[next][0].rate += mb->token_costs[TX_16X16][type][band][0][t0];
tokens[next][0].token = ZERO_TOKEN;
}
if (t1 != DCT_EOB_TOKEN) {
tokens[next][1].rate += mb->token_costs[TX_16X16][type][band][0][t1];
tokens[next][1].token = ZERO_TOKEN;
}
/* Don't update next, because we didn't add a new node. */
}
}
/* Now pick the best path through the whole trellis. */
band = vp8_coef_bands_16x16[i + 1];
VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l);
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
rate0 += mb->token_costs[TX_16X16][type][band][pt][t0];
rate1 += mb->token_costs[TX_16X16][type][band][pt][t1];
UPDATE_RD_COST();
best = rd_cost1 < rd_cost0;
final_eob = -1;
for (i = next; i < eob; i = next) {
x = tokens[i][best].qc;
if (x)
final_eob = i;
rc = vp8_default_zig_zag1d_16x16[i];
qcoeff_ptr[rc] = x;
dqcoeff_ptr[rc] = (x * dequant_ptr[rc!=0]);
next = tokens[i][best].next;
best = best_index[i][best];
}
final_eob++;
d->eob = final_eob;
*a = *l = (d->eob != !type);
}
void vp8_optimize_mby_16x16(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) {
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta, *tl;
if (!x->e_mbd.above_context || !x->e_mbd.left_context)
return;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
optimize_b_16x16(x, 0, PLANE_TYPE_Y_WITH_DC, ta, tl, rtcd);
}
static void optimize_mb_16x16(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) {
vp8_optimize_mby_16x16(x, rtcd);
vp8_optimize_mbuv_8x8(x, rtcd);
}
void vp8_encode_inter16x16(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *x) {
MACROBLOCKD *xd = &x->e_mbd;
TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size;
vp8_build_inter_predictors_mb(xd);
vp8_subtract_mb(rtcd, x);
if (tx_size == TX_16X16) {
vp8_transform_mb_16x16(x);
vp8_quantize_mb_16x16(x);
if (x->optimize)
optimize_mb_16x16(x, rtcd);
vp8_inverse_transform_mb_16x16(IF_RTCD(&rtcd->common->idct), xd);
} else if (tx_size == TX_8X8) {
vp8_transform_mb_8x8(x);
vp8_quantize_mb_8x8(x);
if (x->optimize)
optimize_mb_8x8(x, rtcd);
vp8_inverse_transform_mb_8x8(IF_RTCD(&rtcd->common->idct), xd);
} else {
transform_mb_4x4(x);
vp8_quantize_mb_4x4(x);
if (x->optimize)
optimize_mb_4x4(x, rtcd);
vp8_inverse_transform_mb_4x4(IF_RTCD(&rtcd->common->idct), xd);
}
RECON_INVOKE(&rtcd->common->recon, recon_mb)(IF_RTCD(&rtcd->common->recon),
xd);
}
/* this function is used by first pass only */
void vp8_encode_inter16x16y(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *x) {
MACROBLOCKD *xd = &x->e_mbd;
BLOCK *b = &x->block[0];
#if CONFIG_PRED_FILTER
// Disable the prediction filter for firstpass
xd->mode_info_context->mbmi.pred_filter_enabled = 0;
#endif
vp8_build_1st_inter16x16_predictors_mby(xd, xd->predictor, 16, 0);
ENCODEMB_INVOKE(&rtcd->encodemb, submby)(x->src_diff, *(b->base_src),
xd->predictor, b->src_stride);
vp8_transform_mby_4x4(x);
vp8_quantize_mby_4x4(x);
vp8_inverse_transform_mby_4x4(IF_RTCD(&rtcd->common->idct), xd);
RECON_INVOKE(&rtcd->common->recon, recon_mby)(IF_RTCD(&rtcd->common->recon),
xd);
}