4f857bacd2
For very large size video image, the scaling calculation may need use value beyond the range of int. This commit upgrade the value to 64bit to make sure the calculation do not wrap around INT_MAX. The change corrected the decoder behavior. The bug affects only very large resolution video because the scaling calculation was sufficient for image size smaller than 2^13. This resolves issue: https://code.google.com/p/webm/issues/detail?id=750 Change-Id: I2d2ed303ca6482f31f819f3c07d6d3e98ef3adc5
123 lines
4.6 KiB
C
123 lines
4.6 KiB
C
/*
|
|
* Copyright (c) 2013 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "./vp9_rtcd.h"
|
|
#include "vp9/common/vp9_filter.h"
|
|
#include "vp9/common/vp9_scale.h"
|
|
|
|
static INLINE int scaled_x(int val, const struct scale_factors *sf) {
|
|
return (int)((int64_t)val * sf->x_scale_fp >> REF_SCALE_SHIFT);
|
|
}
|
|
|
|
static INLINE int scaled_y(int val, const struct scale_factors *sf) {
|
|
return (int)((int64_t)val * sf->y_scale_fp >> REF_SCALE_SHIFT);
|
|
}
|
|
|
|
static int unscaled_value(int val, const struct scale_factors *sf) {
|
|
(void) sf;
|
|
return val;
|
|
}
|
|
|
|
static int get_fixed_point_scale_factor(int other_size, int this_size) {
|
|
// Calculate scaling factor once for each reference frame
|
|
// and use fixed point scaling factors in decoding and encoding routines.
|
|
// Hardware implementations can calculate scale factor in device driver
|
|
// and use multiplication and shifting on hardware instead of division.
|
|
return (other_size << REF_SCALE_SHIFT) / this_size;
|
|
}
|
|
|
|
static int check_scale_factors(int other_w, int other_h,
|
|
int this_w, int this_h) {
|
|
return 2 * this_w >= other_w &&
|
|
2 * this_h >= other_h &&
|
|
this_w <= 16 * other_w &&
|
|
this_h <= 16 * other_h;
|
|
}
|
|
|
|
MV32 vp9_scale_mv(const MV *mv, int x, int y, const struct scale_factors *sf) {
|
|
const int x_off_q4 = scaled_x(x << SUBPEL_BITS, sf) & SUBPEL_MASK;
|
|
const int y_off_q4 = scaled_y(y << SUBPEL_BITS, sf) & SUBPEL_MASK;
|
|
const MV32 res = {
|
|
scaled_y(mv->row, sf) + y_off_q4,
|
|
scaled_x(mv->col, sf) + x_off_q4
|
|
};
|
|
return res;
|
|
}
|
|
|
|
void vp9_setup_scale_factors_for_frame(struct scale_factors *sf,
|
|
int other_w, int other_h,
|
|
int this_w, int this_h) {
|
|
if (!check_scale_factors(other_w, other_h, this_w, this_h)) {
|
|
sf->x_scale_fp = REF_INVALID_SCALE;
|
|
sf->y_scale_fp = REF_INVALID_SCALE;
|
|
return;
|
|
}
|
|
|
|
sf->x_scale_fp = get_fixed_point_scale_factor(other_w, this_w);
|
|
sf->y_scale_fp = get_fixed_point_scale_factor(other_h, this_h);
|
|
sf->x_step_q4 = scaled_x(16, sf);
|
|
sf->y_step_q4 = scaled_y(16, sf);
|
|
|
|
if (vp9_is_scaled(sf)) {
|
|
sf->scale_value_x = scaled_x;
|
|
sf->scale_value_y = scaled_y;
|
|
} else {
|
|
sf->scale_value_x = unscaled_value;
|
|
sf->scale_value_y = unscaled_value;
|
|
}
|
|
|
|
// TODO(agrange): Investigate the best choice of functions to use here
|
|
// for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what
|
|
// to do at full-pel offsets. The current selection, where the filter is
|
|
// applied in one direction only, and not at all for 0,0, seems to give the
|
|
// best quality, but it may be worth trying an additional mode that does
|
|
// do the filtering on full-pel.
|
|
if (sf->x_step_q4 == 16) {
|
|
if (sf->y_step_q4 == 16) {
|
|
// No scaling in either direction.
|
|
sf->predict[0][0][0] = vp9_convolve_copy;
|
|
sf->predict[0][0][1] = vp9_convolve_avg;
|
|
sf->predict[0][1][0] = vp9_convolve8_vert;
|
|
sf->predict[0][1][1] = vp9_convolve8_avg_vert;
|
|
sf->predict[1][0][0] = vp9_convolve8_horiz;
|
|
sf->predict[1][0][1] = vp9_convolve8_avg_horiz;
|
|
} else {
|
|
// No scaling in x direction. Must always scale in the y direction.
|
|
sf->predict[0][0][0] = vp9_convolve8_vert;
|
|
sf->predict[0][0][1] = vp9_convolve8_avg_vert;
|
|
sf->predict[0][1][0] = vp9_convolve8_vert;
|
|
sf->predict[0][1][1] = vp9_convolve8_avg_vert;
|
|
sf->predict[1][0][0] = vp9_convolve8;
|
|
sf->predict[1][0][1] = vp9_convolve8_avg;
|
|
}
|
|
} else {
|
|
if (sf->y_step_q4 == 16) {
|
|
// No scaling in the y direction. Must always scale in the x direction.
|
|
sf->predict[0][0][0] = vp9_convolve8_horiz;
|
|
sf->predict[0][0][1] = vp9_convolve8_avg_horiz;
|
|
sf->predict[0][1][0] = vp9_convolve8;
|
|
sf->predict[0][1][1] = vp9_convolve8_avg;
|
|
sf->predict[1][0][0] = vp9_convolve8_horiz;
|
|
sf->predict[1][0][1] = vp9_convolve8_avg_horiz;
|
|
} else {
|
|
// Must always scale in both directions.
|
|
sf->predict[0][0][0] = vp9_convolve8;
|
|
sf->predict[0][0][1] = vp9_convolve8_avg;
|
|
sf->predict[0][1][0] = vp9_convolve8;
|
|
sf->predict[0][1][1] = vp9_convolve8_avg;
|
|
sf->predict[1][0][0] = vp9_convolve8;
|
|
sf->predict[1][0][1] = vp9_convolve8_avg;
|
|
}
|
|
}
|
|
// 2D subpel motion always gets filtered in both directions
|
|
sf->predict[1][1][0] = vp9_convolve8;
|
|
sf->predict[1][1][1] = vp9_convolve8_avg;
|
|
}
|