vpx/vp9/encoder/vp9_encodeframe.c
2014-10-21 07:02:13 -07:00

3773 lines
136 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "./vp9_rtcd.h"
#include "./vpx_config.h"
#include "vpx_ports/vpx_timer.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_idct.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9/encoder/vp9_aq_complexity.h"
#include "vp9/encoder/vp9_aq_cyclicrefresh.h"
#include "vp9/encoder/vp9_aq_variance.h"
#include "vp9/encoder/vp9_encodeframe.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/encoder/vp9_extend.h"
#include "vp9/encoder/vp9_pickmode.h"
#include "vp9/encoder/vp9_rd.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/encoder/vp9_tokenize.h"
#define GF_ZEROMV_ZBIN_BOOST 0
#define LF_ZEROMV_ZBIN_BOOST 0
#define MV_ZBIN_BOOST 0
#define SPLIT_MV_ZBIN_BOOST 0
#define INTRA_ZBIN_BOOST 0
static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled,
int mi_row, int mi_col, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx);
// Motion vector component magnitude threshold for defining fast motion.
#define FAST_MOTION_MV_THRESH 24
// This is used as a reference when computing the source variance for the
// purposes of activity masking.
// Eventually this should be replaced by custom no-reference routines,
// which will be faster.
static const uint8_t VP9_VAR_OFFS[64] = {
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128
};
#if CONFIG_VP9_HIGHBITDEPTH
static const uint16_t VP9_HIGH_VAR_OFFS_8[64] = {
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128
};
static const uint16_t VP9_HIGH_VAR_OFFS_10[64] = {
128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4,
128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4, 128*4
};
static const uint16_t VP9_HIGH_VAR_OFFS_12[64] = {
128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16,
128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16, 128*16
};
#endif // CONFIG_VP9_HIGHBITDEPTH
static unsigned int get_sby_perpixel_variance(VP9_COMP *cpi,
const struct buf_2d *ref,
BLOCK_SIZE bs) {
unsigned int sse;
const unsigned int var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
VP9_VAR_OFFS, 0, &sse);
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
}
#if CONFIG_VP9_HIGHBITDEPTH
static unsigned int high_get_sby_perpixel_variance(
VP9_COMP *cpi, const struct buf_2d *ref, BLOCK_SIZE bs, int bd) {
unsigned int var, sse;
switch (bd) {
case 10:
var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10),
0, &sse);
break;
case 12:
var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12),
0, &sse);
break;
case 8:
default:
var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8),
0, &sse);
break;
}
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
static unsigned int get_sby_perpixel_diff_variance(VP9_COMP *cpi,
const struct buf_2d *ref,
int mi_row, int mi_col,
BLOCK_SIZE bs) {
const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME);
const uint8_t* last_y = &last->y_buffer[mi_row * MI_SIZE * last->y_stride +
mi_col * MI_SIZE];
unsigned int sse;
const unsigned int var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
last_y, last->y_stride, &sse);
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
}
static BLOCK_SIZE get_rd_var_based_fixed_partition(VP9_COMP *cpi,
int mi_row,
int mi_col) {
unsigned int var = get_sby_perpixel_diff_variance(cpi, &cpi->mb.plane[0].src,
mi_row, mi_col,
BLOCK_64X64);
if (var < 8)
return BLOCK_64X64;
else if (var < 128)
return BLOCK_32X32;
else if (var < 2048)
return BLOCK_16X16;
else
return BLOCK_8X8;
}
static BLOCK_SIZE get_nonrd_var_based_fixed_partition(VP9_COMP *cpi,
int mi_row,
int mi_col) {
unsigned int var = get_sby_perpixel_diff_variance(cpi, &cpi->mb.plane[0].src,
mi_row, mi_col,
BLOCK_64X64);
if (var < 4)
return BLOCK_64X64;
else if (var < 10)
return BLOCK_32X32;
else
return BLOCK_16X16;
}
// Lighter version of set_offsets that only sets the mode info
// pointers.
static INLINE void set_modeinfo_offsets(VP9_COMMON *const cm,
MACROBLOCKD *const xd,
int mi_row,
int mi_col) {
const int idx_str = xd->mi_stride * mi_row + mi_col;
xd->mi = cm->mi + idx_str;
xd->mi[0].src_mi = &xd->mi[0];
}
static void set_offsets(VP9_COMP *cpi, const TileInfo *const tile,
int mi_row, int mi_col, BLOCK_SIZE bsize) {
MACROBLOCK *const x = &cpi->mb;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
const struct segmentation *const seg = &cm->seg;
set_skip_context(xd, mi_row, mi_col);
set_modeinfo_offsets(cm, xd, mi_row, mi_col);
mbmi = &xd->mi[0].src_mi->mbmi;
// Set up destination pointers.
vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
// Set up limit values for MV components.
// Mv beyond the range do not produce new/different prediction block.
x->mv_row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND);
x->mv_col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND);
x->mv_row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND;
x->mv_col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND;
// Set up distance of MB to edge of frame in 1/8th pel units.
assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width,
cm->mi_rows, cm->mi_cols);
// Set up source buffers.
vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
// R/D setup.
x->rddiv = cpi->rd.RDDIV;
x->rdmult = cpi->rd.RDMULT;
// Setup segment ID.
if (seg->enabled) {
if (cpi->oxcf.aq_mode != VARIANCE_AQ) {
const uint8_t *const map = seg->update_map ? cpi->segmentation_map
: cm->last_frame_seg_map;
mbmi->segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col);
}
vp9_init_plane_quantizers(cpi, x);
x->encode_breakout = cpi->segment_encode_breakout[mbmi->segment_id];
} else {
mbmi->segment_id = 0;
x->encode_breakout = cpi->encode_breakout;
}
}
static void duplicate_mode_info_in_sb(VP9_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col,
BLOCK_SIZE bsize) {
const int block_width = num_8x8_blocks_wide_lookup[bsize];
const int block_height = num_8x8_blocks_high_lookup[bsize];
int i, j;
for (j = 0; j < block_height; ++j)
for (i = 0; i < block_width; ++i) {
if (mi_row + j < cm->mi_rows && mi_col + i < cm->mi_cols)
xd->mi[j * xd->mi_stride + i].src_mi = &xd->mi[0];
}
}
static void set_block_size(VP9_COMP * const cpi,
int mi_row, int mi_col,
BLOCK_SIZE bsize) {
if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) {
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
set_modeinfo_offsets(&cpi->common, xd, mi_row, mi_col);
xd->mi[0].src_mi->mbmi.sb_type = bsize;
duplicate_mode_info_in_sb(&cpi->common, xd, mi_row, mi_col, bsize);
}
}
typedef struct {
int64_t sum_square_error;
int64_t sum_error;
int count;
int variance;
} var;
typedef struct {
var none;
var horz[2];
var vert[2];
} partition_variance;
typedef struct {
partition_variance part_variances;
var split[4];
} v8x8;
typedef struct {
partition_variance part_variances;
v8x8 split[4];
} v16x16;
typedef struct {
partition_variance part_variances;
v16x16 split[4];
} v32x32;
typedef struct {
partition_variance part_variances;
v32x32 split[4];
} v64x64;
typedef struct {
partition_variance *part_variances;
var *split[4];
} variance_node;
typedef enum {
V16X16,
V32X32,
V64X64,
} TREE_LEVEL;
static void tree_to_node(void *data, BLOCK_SIZE bsize, variance_node *node) {
int i;
node->part_variances = NULL;
vpx_memset(node->split, 0, sizeof(node->split));
switch (bsize) {
case BLOCK_64X64: {
v64x64 *vt = (v64x64 *) data;
node->part_variances = &vt->part_variances;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i].part_variances.none;
break;
}
case BLOCK_32X32: {
v32x32 *vt = (v32x32 *) data;
node->part_variances = &vt->part_variances;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i].part_variances.none;
break;
}
case BLOCK_16X16: {
v16x16 *vt = (v16x16 *) data;
node->part_variances = &vt->part_variances;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i].part_variances.none;
break;
}
case BLOCK_8X8: {
v8x8 *vt = (v8x8 *) data;
node->part_variances = &vt->part_variances;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i];
break;
}
default: {
assert(0);
break;
}
}
}
// Set variance values given sum square error, sum error, count.
static void fill_variance(int64_t s2, int64_t s, int c, var *v) {
v->sum_square_error = s2;
v->sum_error = s;
v->count = c;
if (c > 0)
v->variance = (int)(256 *
(v->sum_square_error - v->sum_error * v->sum_error /
v->count) / v->count);
else
v->variance = 0;
}
void sum_2_variances(const var *a, const var *b, var *r) {
fill_variance(a->sum_square_error + b->sum_square_error,
a->sum_error + b->sum_error, a->count + b->count, r);
}
static void fill_variance_tree(void *data, BLOCK_SIZE bsize) {
variance_node node;
tree_to_node(data, bsize, &node);
sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]);
sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]);
sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]);
sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]);
sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1],
&node.part_variances->none);
}
static int set_vt_partitioning(VP9_COMP *cpi,
void *data,
BLOCK_SIZE bsize,
int mi_row,
int mi_col) {
VP9_COMMON * const cm = &cpi->common;
variance_node vt;
const int block_width = num_8x8_blocks_wide_lookup[bsize];
const int block_height = num_8x8_blocks_high_lookup[bsize];
// TODO(debargha): Choose this more intelligently.
const int threshold_multiplier = cm->frame_type == KEY_FRAME ? 64 : 4;
int64_t threshold =
(int64_t)(threshold_multiplier *
vp9_convert_qindex_to_q(cm->base_qindex, cm->bit_depth));
assert(block_height == block_width);
tree_to_node(data, bsize, &vt);
// Split none is available only if we have more than half a block size
// in width and height inside the visible image.
if (mi_col + block_width / 2 < cm->mi_cols &&
mi_row + block_height / 2 < cm->mi_rows &&
vt.part_variances->none.variance < threshold) {
set_block_size(cpi, mi_row, mi_col, bsize);
return 1;
}
// Only allow split for blocks above 16x16.
if (bsize > BLOCK_16X16) {
// Vertical split is available on all but the bottom border.
if (mi_row + block_height / 2 < cm->mi_rows &&
vt.part_variances->vert[0].variance < threshold &&
vt.part_variances->vert[1].variance < threshold) {
BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_VERT);
set_block_size(cpi, mi_row, mi_col, subsize);
set_block_size(cpi, mi_row, mi_col + block_width / 2, subsize);
return 1;
}
// Horizontal split is available on all but the right border.
if (mi_col + block_width / 2 < cm->mi_cols &&
vt.part_variances->horz[0].variance < threshold &&
vt.part_variances->horz[1].variance < threshold) {
BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_HORZ);
set_block_size(cpi, mi_row, mi_col, subsize);
set_block_size(cpi, mi_row + block_height / 2, mi_col, subsize);
return 1;
}
}
// This will only allow 8x8 if the 16x16 variance is very large.
if (bsize == BLOCK_16X16) {
if (mi_col + block_width / 2 < cm->mi_cols &&
mi_row + block_height / 2 < cm->mi_rows &&
vt.part_variances->none.variance < (threshold << 6)) {
set_block_size(cpi, mi_row, mi_col, bsize);
return 1;
}
}
return 0;
}
// This function chooses partitioning based on the variance
// between source and reconstructed last, where variance is
// computed for 8x8 downsampled inputs. Some things to check:
// using the last source rather than reconstructed last, and
// allowing for small downsampling (4x4 or 2x2) for selection
// of smaller block sizes (i.e., < 16x16).
static void choose_partitioning(VP9_COMP *cpi,
const TileInfo *const tile,
int mi_row, int mi_col) {
VP9_COMMON * const cm = &cpi->common;
MACROBLOCK *x = &cpi->mb;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
int i, j, k;
v64x64 vt;
uint8_t *s;
const uint8_t *d;
int sp;
int dp;
int pixels_wide = 64, pixels_high = 64;
int_mv nearest_mv, near_mv;
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
const struct scale_factors *const sf = &cm->frame_refs[LAST_FRAME - 1].sf;
vp9_clear_system_state();
vp9_zero(vt);
set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
if (xd->mb_to_right_edge < 0)
pixels_wide += (xd->mb_to_right_edge >> 3);
if (xd->mb_to_bottom_edge < 0)
pixels_high += (xd->mb_to_bottom_edge >> 3);
s = x->plane[0].src.buf;
sp = x->plane[0].src.stride;
if (cm->frame_type != KEY_FRAME) {
vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, sf);
xd->mi[0].src_mi->mbmi.ref_frame[0] = LAST_FRAME;
xd->mi[0].src_mi->mbmi.sb_type = BLOCK_64X64;
vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv,
xd->mi[0].src_mi->mbmi.ref_mvs[LAST_FRAME],
&nearest_mv, &near_mv);
xd->mi[0].src_mi->mbmi.mv[0] = nearest_mv;
vp9_build_inter_predictors_sby(xd, mi_row, mi_col, BLOCK_64X64);
d = xd->plane[0].dst.buf;
dp = xd->plane[0].dst.stride;
} else {
d = VP9_VAR_OFFS;
dp = 0;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
switch (xd->bd) {
case 10:
d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10);
break;
case 12:
d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12);
break;
case 8:
default:
d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8);
break;
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
}
// Fill in the entire tree of 8x8 variances for splits.
for (i = 0; i < 4; i++) {
const int x32_idx = ((i & 1) << 5);
const int y32_idx = ((i >> 1) << 5);
for (j = 0; j < 4; j++) {
const int x16_idx = x32_idx + ((j & 1) << 4);
const int y16_idx = y32_idx + ((j >> 1) << 4);
v16x16 *vst = &vt.split[i].split[j];
for (k = 0; k < 4; k++) {
int x_idx = x16_idx + ((k & 1) << 3);
int y_idx = y16_idx + ((k >> 1) << 3);
unsigned int sse = 0;
int sum = 0;
if (x_idx < pixels_wide && y_idx < pixels_high) {
int s_avg, d_avg;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
s_avg = vp9_highbd_avg_8x8(s + y_idx * sp + x_idx, sp);
d_avg = vp9_highbd_avg_8x8(d + y_idx * dp + x_idx, dp);
} else {
s_avg = vp9_avg_8x8(s + y_idx * sp + x_idx, sp);
d_avg = vp9_avg_8x8(d + y_idx * dp + x_idx, dp);
}
#else
s_avg = vp9_avg_8x8(s + y_idx * sp + x_idx, sp);
d_avg = vp9_avg_8x8(d + y_idx * dp + x_idx, dp);
#endif
sum = s_avg - d_avg;
sse = sum * sum;
}
// For an 8x8 block we have just one value the average of all 64
// pixels, so use 1. This means of course that there is no variance
// in an 8x8 block.
fill_variance(sse, sum, 1, &vst->split[k].part_variances.none);
}
}
}
// Fill the rest of the variance tree by summing split partition values.
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
fill_variance_tree(&vt.split[i].split[j], BLOCK_16X16);
}
fill_variance_tree(&vt.split[i], BLOCK_32X32);
}
fill_variance_tree(&vt, BLOCK_64X64);
// Now go through the entire structure, splitting every block size until
// we get to one that's got a variance lower than our threshold, or we
// hit 8x8.
if ( mi_col + 8 > cm->mi_cols || mi_row + 8 > cm->mi_rows ||
!set_vt_partitioning(cpi, &vt, BLOCK_64X64, mi_row, mi_col)) {
for (i = 0; i < 4; ++i) {
const int x32_idx = ((i & 1) << 2);
const int y32_idx = ((i >> 1) << 2);
if (!set_vt_partitioning(cpi, &vt.split[i], BLOCK_32X32,
(mi_row + y32_idx), (mi_col + x32_idx))) {
for (j = 0; j < 4; ++j) {
const int x16_idx = ((j & 1) << 1);
const int y16_idx = ((j >> 1) << 1);
// NOTE: Since this uses 8x8 downsampling for variance calculation
// we cannot really select block size 8x8 (or even 8x16/16x8),
// since we do not sufficient samples for variance.
// For now, 8x8 partition is only set if the variance of the 16x16
// block is very high. This is controlled in set_vt_partitioning.
if (!set_vt_partitioning(cpi, &vt.split[i].split[j],
BLOCK_16X16,
mi_row + y32_idx + y16_idx,
mi_col + x32_idx + x16_idx)) {
for (k = 0; k < 4; ++k) {
const int x8_idx = (k & 1);
const int y8_idx = (k >> 1);
set_block_size(cpi,
(mi_row + y32_idx + y16_idx + y8_idx),
(mi_col + x32_idx + x16_idx + x8_idx),
BLOCK_8X8);
}
}
}
}
}
}
}
static void update_state(VP9_COMP *cpi, PICK_MODE_CONTEXT *ctx,
int mi_row, int mi_col, BLOCK_SIZE bsize,
int output_enabled) {
int i, x_idx, y;
VP9_COMMON *const cm = &cpi->common;
RD_OPT *const rd_opt = &cpi->rd;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
MODE_INFO *mi = &ctx->mic;
MB_MODE_INFO *const mbmi = &xd->mi[0].src_mi->mbmi;
MODE_INFO *mi_addr = &xd->mi[0];
const struct segmentation *const seg = &cm->seg;
const int mis = cm->mi_stride;
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
int max_plane;
assert(mi->mbmi.sb_type == bsize);
*mi_addr = *mi;
mi_addr->src_mi = mi_addr;
// If segmentation in use
if (seg->enabled && output_enabled) {
// For in frame complexity AQ copy the segment id from the segment map.
if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
const uint8_t *const map = seg->update_map ? cpi->segmentation_map
: cm->last_frame_seg_map;
mi_addr->mbmi.segment_id =
vp9_get_segment_id(cm, map, bsize, mi_row, mi_col);
}
// Else for cyclic refresh mode update the segment map, set the segment id
// and then update the quantizer.
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
vp9_cyclic_refresh_update_segment(cpi, &xd->mi[0].src_mi->mbmi,
mi_row, mi_col, bsize, 1);
}
}
max_plane = is_inter_block(mbmi) ? MAX_MB_PLANE : 1;
for (i = 0; i < max_plane; ++i) {
p[i].coeff = ctx->coeff_pbuf[i][1];
p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
p[i].eobs = ctx->eobs_pbuf[i][1];
}
for (i = max_plane; i < MAX_MB_PLANE; ++i) {
p[i].coeff = ctx->coeff_pbuf[i][2];
p[i].qcoeff = ctx->qcoeff_pbuf[i][2];
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][2];
p[i].eobs = ctx->eobs_pbuf[i][2];
}
// Restore the coding context of the MB to that that was in place
// when the mode was picked for it
for (y = 0; y < mi_height; y++)
for (x_idx = 0; x_idx < mi_width; x_idx++)
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx
&& (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
xd->mi[x_idx + y * mis].src_mi = mi_addr;
}
if (cpi->oxcf.aq_mode)
vp9_init_plane_quantizers(cpi, x);
// FIXME(rbultje) I'm pretty sure this should go to the end of this block
// (i.e. after the output_enabled)
if (bsize < BLOCK_32X32) {
if (bsize < BLOCK_16X16)
ctx->tx_rd_diff[ALLOW_16X16] = ctx->tx_rd_diff[ALLOW_8X8];
ctx->tx_rd_diff[ALLOW_32X32] = ctx->tx_rd_diff[ALLOW_16X16];
}
if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8) {
mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
}
x->skip = ctx->skip;
vpx_memcpy(x->zcoeff_blk[mbmi->tx_size], ctx->zcoeff_blk,
sizeof(uint8_t) * ctx->num_4x4_blk);
if (!output_enabled)
return;
if (!vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
for (i = 0; i < TX_MODES; i++)
rd_opt->tx_select_diff[i] += ctx->tx_rd_diff[i];
}
#if CONFIG_INTERNAL_STATS
if (frame_is_intra_only(cm)) {
static const int kf_mode_index[] = {
THR_DC /*DC_PRED*/,
THR_V_PRED /*V_PRED*/,
THR_H_PRED /*H_PRED*/,
THR_D45_PRED /*D45_PRED*/,
THR_D135_PRED /*D135_PRED*/,
THR_D117_PRED /*D117_PRED*/,
THR_D153_PRED /*D153_PRED*/,
THR_D207_PRED /*D207_PRED*/,
THR_D63_PRED /*D63_PRED*/,
THR_TM /*TM_PRED*/,
};
++cpi->mode_chosen_counts[kf_mode_index[mbmi->mode]];
} else {
// Note how often each mode chosen as best
++cpi->mode_chosen_counts[ctx->best_mode_index];
}
#endif
if (!frame_is_intra_only(cm)) {
if (is_inter_block(mbmi)) {
vp9_update_mv_count(cm, xd);
if (cm->interp_filter == SWITCHABLE) {
const int ctx = vp9_get_pred_context_switchable_interp(xd);
++cm->counts.switchable_interp[ctx][mbmi->interp_filter];
}
}
rd_opt->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
rd_opt->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
rd_opt->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
rd_opt->filter_diff[i] += ctx->best_filter_diff[i];
}
}
void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
int mi_row, int mi_col) {
uint8_t *const buffers[3] = {src->y_buffer, src->u_buffer, src->v_buffer };
const int strides[3] = {src->y_stride, src->uv_stride, src->uv_stride };
int i;
// Set current frame pointer.
x->e_mbd.cur_buf = src;
for (i = 0; i < MAX_MB_PLANE; i++)
setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mi_row, mi_col,
NULL, x->e_mbd.plane[i].subsampling_x,
x->e_mbd.plane[i].subsampling_y);
}
static void set_mode_info_seg_skip(MACROBLOCK *x, TX_MODE tx_mode, int *rate,
int64_t *dist, BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0].src_mi->mbmi;
INTERP_FILTER filter_ref;
if (xd->up_available)
filter_ref = xd->mi[-xd->mi_stride].src_mi->mbmi.interp_filter;
else if (xd->left_available)
filter_ref = xd->mi[-1].src_mi->mbmi.interp_filter;
else
filter_ref = EIGHTTAP;
mbmi->sb_type = bsize;
mbmi->mode = ZEROMV;
mbmi->tx_size = MIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[tx_mode]);
mbmi->skip = 1;
mbmi->uv_mode = DC_PRED;
mbmi->ref_frame[0] = LAST_FRAME;
mbmi->ref_frame[1] = NONE;
mbmi->mv[0].as_int = 0;
mbmi->interp_filter = filter_ref;
xd->mi[0].src_mi->bmi[0].as_mv[0].as_int = 0;
x->skip = 1;
*rate = 0;
*dist = 0;
}
static void rd_pick_sb_modes(VP9_COMP *cpi, const TileInfo *const tile,
int mi_row, int mi_col, RD_COST *rd_cost,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
int64_t best_rd) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
int i, orig_rdmult;
double rdmult_ratio;
vp9_clear_system_state();
rdmult_ratio = 1.0; // avoid uninitialized warnings
// Use the lower precision, but faster, 32x32 fdct for mode selection.
x->use_lp32x32fdct = 1;
set_offsets(cpi, tile, mi_row, mi_col, bsize);
mbmi = &xd->mi[0].src_mi->mbmi;
mbmi->sb_type = bsize;
for (i = 0; i < MAX_MB_PLANE; ++i) {
p[i].coeff = ctx->coeff_pbuf[i][0];
p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
p[i].eobs = ctx->eobs_pbuf[i][0];
}
ctx->is_coded = 0;
ctx->skippable = 0;
x->skip_recode = 0;
// Set to zero to make sure we do not use the previous encoded frame stats
mbmi->skip = 0;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
x->source_variance =
high_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize, xd->bd);
} else {
x->source_variance =
get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
}
#else
x->source_variance = get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
#endif // CONFIG_VP9_HIGHBITDEPTH
// Save rdmult before it might be changed, so it can be restored later.
orig_rdmult = x->rdmult;
if (aq_mode == VARIANCE_AQ) {
const int energy = bsize <= BLOCK_16X16 ? x->mb_energy
: vp9_block_energy(cpi, x, bsize);
if (cm->frame_type == KEY_FRAME ||
cpi->refresh_alt_ref_frame ||
(cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) {
mbmi->segment_id = vp9_vaq_segment_id(energy);
} else {
const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map
: cm->last_frame_seg_map;
mbmi->segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col);
}
rdmult_ratio = vp9_vaq_rdmult_ratio(energy);
vp9_init_plane_quantizers(cpi, x);
vp9_clear_system_state();
x->rdmult = (int)round(x->rdmult * rdmult_ratio);
} else if (aq_mode == COMPLEXITY_AQ) {
const int mi_offset = mi_row * cm->mi_cols + mi_col;
unsigned char complexity = cpi->complexity_map[mi_offset];
const int is_edge = (mi_row <= 1) || (mi_row >= (cm->mi_rows - 2)) ||
(mi_col <= 1) || (mi_col >= (cm->mi_cols - 2));
if (!is_edge && (complexity > 128))
x->rdmult += ((x->rdmult * (complexity - 128)) / 256);
} else if (aq_mode == CYCLIC_REFRESH_AQ) {
const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map
: cm->last_frame_seg_map;
// If segment 1, use rdmult for that segment.
if (vp9_get_segment_id(cm, map, bsize, mi_row, mi_col))
x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
}
// Find best coding mode & reconstruct the MB so it is available
// as a predictor for MBs that follow in the SB
if (frame_is_intra_only(cm)) {
vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd);
} else {
if (bsize >= BLOCK_8X8) {
if (vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP))
vp9_rd_pick_inter_mode_sb_seg_skip(cpi, x, rd_cost, bsize,
ctx, best_rd);
else
vp9_rd_pick_inter_mode_sb(cpi, x, tile, mi_row, mi_col,
rd_cost, bsize, ctx, best_rd);
} else {
vp9_rd_pick_inter_mode_sub8x8(cpi, x, tile, mi_row, mi_col, rd_cost,
bsize, ctx, best_rd);
}
}
if (aq_mode == VARIANCE_AQ && rd_cost->rate != INT_MAX) {
vp9_clear_system_state();
rd_cost->rate = (int)round(rd_cost->rate * rdmult_ratio);
rd_cost->rdcost = RDCOST(x->rdmult, x->rddiv, rd_cost->rate, rd_cost->dist);
}
x->rdmult = orig_rdmult;
// TODO(jingning) The rate-distortion optimization flow needs to be
// refactored to provide proper exit/return handle.
if (rd_cost->rate == INT_MAX)
rd_cost->rdcost = INT64_MAX;
}
static void update_stats(VP9_COMMON *cm, const MACROBLOCK *x) {
const MACROBLOCKD *const xd = &x->e_mbd;
const MODE_INFO *const mi = xd->mi[0].src_mi;
const MB_MODE_INFO *const mbmi = &mi->mbmi;
if (!frame_is_intra_only(cm)) {
const int seg_ref_active = vp9_segfeature_active(&cm->seg, mbmi->segment_id,
SEG_LVL_REF_FRAME);
if (!seg_ref_active) {
FRAME_COUNTS *const counts = &cm->counts;
const int inter_block = is_inter_block(mbmi);
counts->intra_inter[vp9_get_intra_inter_context(xd)][inter_block]++;
// If the segment reference feature is enabled we have only a single
// reference frame allowed for the segment so exclude it from
// the reference frame counts used to work out probabilities.
if (inter_block) {
const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0];
if (cm->reference_mode == REFERENCE_MODE_SELECT)
counts->comp_inter[vp9_get_reference_mode_context(cm, xd)]
[has_second_ref(mbmi)]++;
if (has_second_ref(mbmi)) {
counts->comp_ref[vp9_get_pred_context_comp_ref_p(cm, xd)]
[ref0 == GOLDEN_FRAME]++;
} else {
counts->single_ref[vp9_get_pred_context_single_ref_p1(xd)][0]
[ref0 != LAST_FRAME]++;
if (ref0 != LAST_FRAME)
counts->single_ref[vp9_get_pred_context_single_ref_p2(xd)][1]
[ref0 != GOLDEN_FRAME]++;
}
}
}
}
}
static void restore_context(VP9_COMP *cpi, int mi_row, int mi_col,
ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
BLOCK_SIZE bsize) {
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
int p;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int mi_width = num_8x8_blocks_wide_lookup[bsize];
int mi_height = num_8x8_blocks_high_lookup[bsize];
for (p = 0; p < MAX_MB_PLANE; p++) {
vpx_memcpy(
xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x),
a + num_4x4_blocks_wide * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
xd->plane[p].subsampling_x);
vpx_memcpy(
xd->left_context[p]
+ ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
l + num_4x4_blocks_high * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
xd->plane[p].subsampling_y);
}
vpx_memcpy(xd->above_seg_context + mi_col, sa,
sizeof(*xd->above_seg_context) * mi_width);
vpx_memcpy(xd->left_seg_context + (mi_row & MI_MASK), sl,
sizeof(xd->left_seg_context[0]) * mi_height);
}
static void save_context(VP9_COMP *cpi, int mi_row, int mi_col,
ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
BLOCK_SIZE bsize) {
const MACROBLOCK *const x = &cpi->mb;
const MACROBLOCKD *const xd = &x->e_mbd;
int p;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int mi_width = num_8x8_blocks_wide_lookup[bsize];
int mi_height = num_8x8_blocks_high_lookup[bsize];
// buffer the above/left context information of the block in search.
for (p = 0; p < MAX_MB_PLANE; ++p) {
vpx_memcpy(
a + num_4x4_blocks_wide * p,
xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x),
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
xd->plane[p].subsampling_x);
vpx_memcpy(
l + num_4x4_blocks_high * p,
xd->left_context[p]
+ ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
xd->plane[p].subsampling_y);
}
vpx_memcpy(sa, xd->above_seg_context + mi_col,
sizeof(*xd->above_seg_context) * mi_width);
vpx_memcpy(sl, xd->left_seg_context + (mi_row & MI_MASK),
sizeof(xd->left_seg_context[0]) * mi_height);
}
static void encode_b(VP9_COMP *cpi, const TileInfo *const tile,
TOKENEXTRA **tp, int mi_row, int mi_col,
int output_enabled, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx) {
set_offsets(cpi, tile, mi_row, mi_col, bsize);
update_state(cpi, ctx, mi_row, mi_col, bsize, output_enabled);
encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize, ctx);
if (output_enabled) {
update_stats(&cpi->common, &cpi->mb);
(*tp)->token = EOSB_TOKEN;
(*tp)++;
}
}
static void encode_sb(VP9_COMP *cpi, const TileInfo *const tile,
TOKENEXTRA **tp, int mi_row, int mi_col,
int output_enabled, BLOCK_SIZE bsize,
PC_TREE *pc_tree) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
int ctx;
PARTITION_TYPE partition;
BLOCK_SIZE subsize = bsize;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
if (bsize >= BLOCK_8X8) {
ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
subsize = get_subsize(bsize, pc_tree->partitioning);
} else {
ctx = 0;
subsize = BLOCK_4X4;
}
partition = partition_lookup[bsl][subsize];
if (output_enabled && bsize != BLOCK_4X4)
cm->counts.partition[ctx][partition]++;
switch (partition) {
case PARTITION_NONE:
encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
&pc_tree->none);
break;
case PARTITION_VERT:
encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
&pc_tree->vertical[0]);
if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
encode_b(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled, subsize,
&pc_tree->vertical[1]);
}
break;
case PARTITION_HORZ:
encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
&pc_tree->horizontal[0]);
if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
encode_b(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled, subsize,
&pc_tree->horizontal[1]);
}
break;
case PARTITION_SPLIT:
if (bsize == BLOCK_8X8) {
encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
pc_tree->leaf_split[0]);
} else {
encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
pc_tree->split[0]);
encode_sb(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled, subsize,
pc_tree->split[1]);
encode_sb(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled, subsize,
pc_tree->split[2]);
encode_sb(cpi, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled,
subsize, pc_tree->split[3]);
}
break;
default:
assert("Invalid partition type.");
break;
}
if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
}
// Check to see if the given partition size is allowed for a specified number
// of 8x8 block rows and columns remaining in the image.
// If not then return the largest allowed partition size
static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize,
int rows_left, int cols_left,
int *bh, int *bw) {
if (rows_left <= 0 || cols_left <= 0) {
return MIN(bsize, BLOCK_8X8);
} else {
for (; bsize > 0; bsize -= 3) {
*bh = num_8x8_blocks_high_lookup[bsize];
*bw = num_8x8_blocks_wide_lookup[bsize];
if ((*bh <= rows_left) && (*bw <= cols_left)) {
break;
}
}
}
return bsize;
}
static void set_partial_b64x64_partition(MODE_INFO *mi, int mis,
int bh_in, int bw_in, int row8x8_remaining, int col8x8_remaining,
BLOCK_SIZE bsize, MODE_INFO *mi_8x8) {
int bh = bh_in;
int r, c;
for (r = 0; r < MI_BLOCK_SIZE; r += bh) {
int bw = bw_in;
for (c = 0; c < MI_BLOCK_SIZE; c += bw) {
const int index = r * mis + c;
mi_8x8[index].src_mi = mi + index;
mi_8x8[index].src_mi->mbmi.sb_type = find_partition_size(bsize,
row8x8_remaining - r, col8x8_remaining - c, &bh, &bw);
}
}
}
// This function attempts to set all mode info entries in a given SB64
// to the same block partition size.
// However, at the bottom and right borders of the image the requested size
// may not be allowed in which case this code attempts to choose the largest
// allowable partition.
static void set_fixed_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
MODE_INFO *mi_8x8, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
VP9_COMMON *const cm = &cpi->common;
const int mis = cm->mi_stride;
const int row8x8_remaining = tile->mi_row_end - mi_row;
const int col8x8_remaining = tile->mi_col_end - mi_col;
int block_row, block_col;
MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
int bh = num_8x8_blocks_high_lookup[bsize];
int bw = num_8x8_blocks_wide_lookup[bsize];
assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
// Apply the requested partition size to the SB64 if it is all "in image"
if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
(row8x8_remaining >= MI_BLOCK_SIZE)) {
for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
int index = block_row * mis + block_col;
mi_8x8[index].src_mi = mi_upper_left + index;
mi_8x8[index].src_mi->mbmi.sb_type = bsize;
}
}
} else {
// Else this is a partial SB64.
set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining,
col8x8_remaining, bsize, mi_8x8);
}
}
static void copy_partitioning(VP9_COMMON *cm, MODE_INFO *mi_8x8,
MODE_INFO *prev_mi_8x8) {
const int mis = cm->mi_stride;
int block_row, block_col;
for (block_row = 0; block_row < 8; ++block_row) {
for (block_col = 0; block_col < 8; ++block_col) {
MODE_INFO *const prev_mi =
prev_mi_8x8[block_row * mis + block_col].src_mi;
const BLOCK_SIZE sb_type = prev_mi ? prev_mi->mbmi.sb_type : 0;
if (prev_mi) {
const ptrdiff_t offset = prev_mi - cm->prev_mi;
mi_8x8[block_row * mis + block_col].src_mi = cm->mi + offset;
mi_8x8[block_row * mis + block_col].src_mi->mbmi.sb_type = sb_type;
}
}
}
}
static void constrain_copy_partitioning(VP9_COMP *const cpi,
const TileInfo *const tile,
MODE_INFO *mi_8x8,
MODE_INFO *prev_mi_8x8,
int mi_row, int mi_col,
BLOCK_SIZE bsize) {
VP9_COMMON *const cm = &cpi->common;
const int mis = cm->mi_stride;
const int row8x8_remaining = tile->mi_row_end - mi_row;
const int col8x8_remaining = tile->mi_col_end - mi_col;
MODE_INFO *const mi_upper_left = cm->mi + mi_row * mis + mi_col;
const int bh = num_8x8_blocks_high_lookup[bsize];
const int bw = num_8x8_blocks_wide_lookup[bsize];
int block_row, block_col;
assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
// If the SB64 if it is all "in image".
if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
(row8x8_remaining >= MI_BLOCK_SIZE)) {
for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
const int index = block_row * mis + block_col;
MODE_INFO *prev_mi = prev_mi_8x8[index].src_mi;
const BLOCK_SIZE sb_type = prev_mi ? prev_mi->mbmi.sb_type : 0;
// Use previous partition if block size is not larger than bsize.
if (prev_mi && sb_type <= bsize) {
int block_row2, block_col2;
for (block_row2 = 0; block_row2 < bh; ++block_row2) {
for (block_col2 = 0; block_col2 < bw; ++block_col2) {
const int index2 = (block_row + block_row2) * mis +
block_col + block_col2;
prev_mi = prev_mi_8x8[index2].src_mi;
if (prev_mi) {
const ptrdiff_t offset = prev_mi - cm->prev_mi;
mi_8x8[index2].src_mi = cm->mi + offset;
mi_8x8[index2].src_mi->mbmi.sb_type = prev_mi->mbmi.sb_type;
}
}
}
} else {
// Otherwise, use fixed partition of size bsize.
mi_8x8[index].src_mi = mi_upper_left + index;
mi_8x8[index].src_mi->mbmi.sb_type = bsize;
}
}
}
} else {
// Else this is a partial SB64, copy previous partition.
copy_partitioning(cm, mi_8x8, prev_mi_8x8);
}
}
const struct {
int row;
int col;
} coord_lookup[16] = {
// 32x32 index = 0
{0, 0}, {0, 2}, {2, 0}, {2, 2},
// 32x32 index = 1
{0, 4}, {0, 6}, {2, 4}, {2, 6},
// 32x32 index = 2
{4, 0}, {4, 2}, {6, 0}, {6, 2},
// 32x32 index = 3
{4, 4}, {4, 6}, {6, 4}, {6, 6},
};
static void set_source_var_based_partition(VP9_COMP *cpi,
const TileInfo *const tile,
MODE_INFO *mi_8x8,
int mi_row, int mi_col) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
const int mis = cm->mi_stride;
const int row8x8_remaining = tile->mi_row_end - mi_row;
const int col8x8_remaining = tile->mi_col_end - mi_col;
MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
// In-image SB64
if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
(row8x8_remaining >= MI_BLOCK_SIZE)) {
int i, j;
int index;
diff d32[4];
const int offset = (mi_row >> 1) * cm->mb_cols + (mi_col >> 1);
int is_larger_better = 0;
int use32x32 = 0;
unsigned int thr = cpi->source_var_thresh;
vpx_memset(d32, 0, 4 * sizeof(diff));
for (i = 0; i < 4; i++) {
diff *d16[4];
for (j = 0; j < 4; j++) {
int b_mi_row = coord_lookup[i * 4 + j].row;
int b_mi_col = coord_lookup[i * 4 + j].col;
int boffset = b_mi_row / 2 * cm->mb_cols +
b_mi_col / 2;
d16[j] = cpi->source_diff_var + offset + boffset;
index = b_mi_row * mis + b_mi_col;
mi_8x8[index].src_mi = mi_upper_left + index;
mi_8x8[index].src_mi->mbmi.sb_type = BLOCK_16X16;
// TODO(yunqingwang): If d16[j].var is very large, use 8x8 partition
// size to further improve quality.
}
is_larger_better = (d16[0]->var < thr) && (d16[1]->var < thr) &&
(d16[2]->var < thr) && (d16[3]->var < thr);
// Use 32x32 partition
if (is_larger_better) {
use32x32 += 1;
for (j = 0; j < 4; j++) {
d32[i].sse += d16[j]->sse;
d32[i].sum += d16[j]->sum;
}
d32[i].var = d32[i].sse - (((int64_t)d32[i].sum * d32[i].sum) >> 10);
index = coord_lookup[i*4].row * mis + coord_lookup[i*4].col;
mi_8x8[index].src_mi = mi_upper_left + index;
mi_8x8[index].src_mi->mbmi.sb_type = BLOCK_32X32;
}
}
if (use32x32 == 4) {
thr <<= 1;
is_larger_better = (d32[0].var < thr) && (d32[1].var < thr) &&
(d32[2].var < thr) && (d32[3].var < thr);
// Use 64x64 partition
if (is_larger_better) {
mi_8x8[0].src_mi = mi_upper_left;
mi_8x8[0].src_mi->mbmi.sb_type = BLOCK_64X64;
}
}
} else { // partial in-image SB64
int bh = num_8x8_blocks_high_lookup[BLOCK_16X16];
int bw = num_8x8_blocks_wide_lookup[BLOCK_16X16];
set_partial_b64x64_partition(mi_upper_left, mis, bh, bw,
row8x8_remaining, col8x8_remaining, BLOCK_16X16, mi_8x8);
}
}
static int is_background(const VP9_COMP *cpi, const TileInfo *const tile,
int mi_row, int mi_col) {
// This assumes the input source frames are of the same dimension.
const int row8x8_remaining = tile->mi_row_end - mi_row;
const int col8x8_remaining = tile->mi_col_end - mi_col;
const int x = mi_col * MI_SIZE;
const int y = mi_row * MI_SIZE;
const int src_stride = cpi->Source->y_stride;
const uint8_t *const src = &cpi->Source->y_buffer[y * src_stride + x];
const int pre_stride = cpi->Last_Source->y_stride;
const uint8_t *const pre = &cpi->Last_Source->y_buffer[y * pre_stride + x];
int this_sad = 0;
int threshold = 0;
if (row8x8_remaining >= MI_BLOCK_SIZE &&
col8x8_remaining >= MI_BLOCK_SIZE) {
this_sad = cpi->fn_ptr[BLOCK_64X64].sdf(src, src_stride, pre, pre_stride);
threshold = (1 << 12);
} else {
int r, c;
for (r = 0; r < row8x8_remaining; r += 2)
for (c = 0; c < col8x8_remaining; c += 2)
this_sad += cpi->fn_ptr[BLOCK_16X16].sdf(src, src_stride,
pre, pre_stride);
threshold = (row8x8_remaining * col8x8_remaining) << 6;
}
return this_sad < 2 * threshold;
}
static int sb_has_motion(const VP9_COMMON *cm, MODE_INFO *prev_mi_8x8,
const int motion_thresh) {
const int mis = cm->mi_stride;
int block_row, block_col;
if (cm->prev_mi) {
for (block_row = 0; block_row < 8; ++block_row) {
for (block_col = 0; block_col < 8; ++block_col) {
const MODE_INFO *prev_mi =
prev_mi_8x8[block_row * mis + block_col].src_mi;
if (prev_mi) {
if (abs(prev_mi->mbmi.mv[0].as_mv.row) > motion_thresh ||
abs(prev_mi->mbmi.mv[0].as_mv.col) > motion_thresh)
return 1;
}
}
}
}
return 0;
}
static void update_state_rt(VP9_COMP *cpi, PICK_MODE_CONTEXT *ctx,
int mi_row, int mi_col, int bsize) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0].src_mi->mbmi;
const struct segmentation *const seg = &cm->seg;
*(xd->mi[0].src_mi) = ctx->mic;
xd->mi[0].src_mi = &xd->mi[0];
if (seg->enabled && cpi->oxcf.aq_mode) {
// For in frame complexity AQ or variance AQ, copy segment_id from
// segmentation_map.
if (cpi->oxcf.aq_mode == COMPLEXITY_AQ ||
cpi->oxcf.aq_mode == VARIANCE_AQ ) {
const uint8_t *const map = seg->update_map ? cpi->segmentation_map
: cm->last_frame_seg_map;
mbmi->segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col);
} else {
// Setting segmentation map for cyclic_refresh
vp9_cyclic_refresh_update_segment(cpi, mbmi, mi_row, mi_col, bsize, 1);
}
vp9_init_plane_quantizers(cpi, x);
}
if (is_inter_block(mbmi)) {
vp9_update_mv_count(cm, xd);
if (cm->interp_filter == SWITCHABLE) {
const int pred_ctx = vp9_get_pred_context_switchable_interp(xd);
++cm->counts.switchable_interp[pred_ctx][mbmi->interp_filter];
}
}
x->skip = ctx->skip;
x->skip_txfm[0] = mbmi->segment_id ? 0 : ctx->skip_txfm[0];
}
static void encode_b_rt(VP9_COMP *cpi, const TileInfo *const tile,
TOKENEXTRA **tp, int mi_row, int mi_col,
int output_enabled, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx) {
set_offsets(cpi, tile, mi_row, mi_col, bsize);
update_state_rt(cpi, ctx, mi_row, mi_col, bsize);
#if CONFIG_VP9_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity > 0 && output_enabled) {
vp9_denoiser_denoise(&cpi->denoiser, &cpi->mb, mi_row, mi_col,
MAX(BLOCK_8X8, bsize), ctx);
}
#endif
encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize, ctx);
update_stats(&cpi->common, &cpi->mb);
(*tp)->token = EOSB_TOKEN;
(*tp)++;
}
static void encode_sb_rt(VP9_COMP *cpi, const TileInfo *const tile,
TOKENEXTRA **tp, int mi_row, int mi_col,
int output_enabled, BLOCK_SIZE bsize,
PC_TREE *pc_tree) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
int ctx;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
if (bsize >= BLOCK_8X8) {
const int idx_str = xd->mi_stride * mi_row + mi_col;
MODE_INFO *mi_8x8 = cm->mi[idx_str].src_mi;
ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
subsize = mi_8x8[0].src_mi->mbmi.sb_type;
} else {
ctx = 0;
subsize = BLOCK_4X4;
}
partition = partition_lookup[bsl][subsize];
if (output_enabled && bsize != BLOCK_4X4)
cm->counts.partition[ctx][partition]++;
switch (partition) {
case PARTITION_NONE:
encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
&pc_tree->none);
break;
case PARTITION_VERT:
encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
&pc_tree->vertical[0]);
if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
encode_b_rt(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled,
subsize, &pc_tree->vertical[1]);
}
break;
case PARTITION_HORZ:
encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
&pc_tree->horizontal[0]);
if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
encode_b_rt(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled,
subsize, &pc_tree->horizontal[1]);
}
break;
case PARTITION_SPLIT:
subsize = get_subsize(bsize, PARTITION_SPLIT);
encode_sb_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
pc_tree->split[0]);
encode_sb_rt(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled,
subsize, pc_tree->split[1]);
encode_sb_rt(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled,
subsize, pc_tree->split[2]);
encode_sb_rt(cpi, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled,
subsize, pc_tree->split[3]);
break;
default:
assert("Invalid partition type.");
break;
}
if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
}
static void rd_use_partition(VP9_COMP *cpi, const TileInfo *const tile,
MODE_INFO *mi_8x8, TOKENEXTRA **tp,
int mi_row, int mi_col,
BLOCK_SIZE bsize, int *rate, int64_t *dist,
int do_recon, PC_TREE *pc_tree) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int mis = cm->mi_stride;
const int bsl = b_width_log2_lookup[bsize];
const int mi_step = num_4x4_blocks_wide_lookup[bsize] / 2;
const int bss = (1 << bsl) / 4;
int i, pl;
PARTITION_TYPE partition = PARTITION_NONE;
BLOCK_SIZE subsize;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
RD_COST last_part_rdc, none_rdc, chosen_rdc;
BLOCK_SIZE sub_subsize = BLOCK_4X4;
int splits_below = 0;
BLOCK_SIZE bs_type = mi_8x8[0].src_mi->mbmi.sb_type;
int do_partition_search = 1;
PICK_MODE_CONTEXT *ctx = &pc_tree->none;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
assert(num_4x4_blocks_wide_lookup[bsize] ==
num_4x4_blocks_high_lookup[bsize]);
vp9_rd_cost_reset(&last_part_rdc);
vp9_rd_cost_reset(&none_rdc);
vp9_rd_cost_reset(&chosen_rdc);
partition = partition_lookup[bsl][bs_type];
subsize = get_subsize(bsize, partition);
pc_tree->partitioning = partition;
save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode) {
set_offsets(cpi, tile, mi_row, mi_col, bsize);
x->mb_energy = vp9_block_energy(cpi, x, bsize);
}
if (do_partition_search &&
cpi->sf.partition_search_type == SEARCH_PARTITION &&
cpi->sf.adjust_partitioning_from_last_frame) {
// Check if any of the sub blocks are further split.
if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
splits_below = 1;
for (i = 0; i < 4; i++) {
int jj = i >> 1, ii = i & 0x01;
MODE_INFO *this_mi = mi_8x8[jj * bss * mis + ii * bss].src_mi;
if (this_mi && this_mi->mbmi.sb_type >= sub_subsize) {
splits_below = 0;
}
}
}
// If partition is not none try none unless each of the 4 splits are split
// even further..
if (partition != PARTITION_NONE && !splits_below &&
mi_row + (mi_step >> 1) < cm->mi_rows &&
mi_col + (mi_step >> 1) < cm->mi_cols) {
pc_tree->partitioning = PARTITION_NONE;
rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &none_rdc, bsize,
ctx, INT64_MAX);
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
if (none_rdc.rate < INT_MAX) {
none_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
none_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, none_rdc.rate,
none_rdc.dist);
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
mi_8x8[0].src_mi->mbmi.sb_type = bs_type;
pc_tree->partitioning = partition;
}
}
switch (partition) {
case PARTITION_NONE:
rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rdc,
bsize, ctx, INT64_MAX);
break;
case PARTITION_HORZ:
rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rdc,
subsize, &pc_tree->horizontal[0],
INT64_MAX);
if (last_part_rdc.rate != INT_MAX &&
bsize >= BLOCK_8X8 && mi_row + (mi_step >> 1) < cm->mi_rows) {
RD_COST tmp_rdc;
PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
vp9_rd_cost_init(&tmp_rdc);
update_state(cpi, ctx, mi_row, mi_col, subsize, 0);
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize, ctx);
rd_pick_sb_modes(cpi, tile, mi_row + (mi_step >> 1), mi_col, &tmp_rdc,
subsize, &pc_tree->horizontal[1], INT64_MAX);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
vp9_rd_cost_reset(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
last_part_rdc.rdcost += tmp_rdc.rdcost;
}
break;
case PARTITION_VERT:
rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rdc,
subsize, &pc_tree->vertical[0], INT64_MAX);
if (last_part_rdc.rate != INT_MAX &&
bsize >= BLOCK_8X8 && mi_col + (mi_step >> 1) < cm->mi_cols) {
RD_COST tmp_rdc;
PICK_MODE_CONTEXT *ctx = &pc_tree->vertical[0];
vp9_rd_cost_init(&tmp_rdc);
update_state(cpi, ctx, mi_row, mi_col, subsize, 0);
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize, ctx);
rd_pick_sb_modes(cpi, tile, mi_row, mi_col + (mi_step >> 1), &tmp_rdc,
subsize, &pc_tree->vertical[bsize > BLOCK_8X8],
INT64_MAX);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
vp9_rd_cost_reset(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
last_part_rdc.rdcost += tmp_rdc.rdcost;
}
break;
case PARTITION_SPLIT:
if (bsize == BLOCK_8X8) {
rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rdc,
subsize, pc_tree->leaf_split[0], INT64_MAX);
break;
}
last_part_rdc.rate = 0;
last_part_rdc.dist = 0;
last_part_rdc.rdcost = 0;
for (i = 0; i < 4; i++) {
int x_idx = (i & 1) * (mi_step >> 1);
int y_idx = (i >> 1) * (mi_step >> 1);
int jj = i >> 1, ii = i & 0x01;
RD_COST tmp_rdc;
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
continue;
vp9_rd_cost_init(&tmp_rdc);
rd_use_partition(cpi, tile, mi_8x8 + jj * bss * mis + ii * bss, tp,
mi_row + y_idx, mi_col + x_idx, subsize,
&tmp_rdc.rate, &tmp_rdc.dist,
i != 3, pc_tree->split[i]);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
vp9_rd_cost_reset(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
}
break;
default:
assert(0);
break;
}
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
if (last_part_rdc.rate < INT_MAX) {
last_part_rdc.rate += cpi->partition_cost[pl][partition];
last_part_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
last_part_rdc.rate, last_part_rdc.dist);
}
if (do_partition_search
&& cpi->sf.adjust_partitioning_from_last_frame
&& cpi->sf.partition_search_type == SEARCH_PARTITION
&& partition != PARTITION_SPLIT && bsize > BLOCK_8X8
&& (mi_row + mi_step < cm->mi_rows ||
mi_row + (mi_step >> 1) == cm->mi_rows)
&& (mi_col + mi_step < cm->mi_cols ||
mi_col + (mi_step >> 1) == cm->mi_cols)) {
BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
chosen_rdc.rate = 0;
chosen_rdc.dist = 0;
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
pc_tree->partitioning = PARTITION_SPLIT;
// Split partition.
for (i = 0; i < 4; i++) {
int x_idx = (i & 1) * (mi_step >> 1);
int y_idx = (i >> 1) * (mi_step >> 1);
RD_COST tmp_rdc;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
continue;
save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
pc_tree->split[i]->partitioning = PARTITION_NONE;
rd_pick_sb_modes(cpi, tile, mi_row + y_idx, mi_col + x_idx, &tmp_rdc,
split_subsize, &pc_tree->split[i]->none, INT64_MAX);
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
vp9_rd_cost_reset(&chosen_rdc);
break;
}
chosen_rdc.rate += tmp_rdc.rate;
chosen_rdc.dist += tmp_rdc.dist;
if (i != 3)
encode_sb(cpi, tile, tp, mi_row + y_idx, mi_col + x_idx, 0,
split_subsize, pc_tree->split[i]);
pl = partition_plane_context(xd, mi_row + y_idx, mi_col + x_idx,
split_subsize);
chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
}
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
if (chosen_rdc.rate < INT_MAX) {
chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
chosen_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
chosen_rdc.rate, chosen_rdc.dist);
}
}
// If last_part is better set the partitioning to that.
if (last_part_rdc.rdcost < chosen_rdc.rdcost) {
mi_8x8[0].src_mi->mbmi.sb_type = bsize;
if (bsize >= BLOCK_8X8)
pc_tree->partitioning = partition;
chosen_rdc = last_part_rdc;
}
// If none was better set the partitioning to that.
if (none_rdc.rdcost < chosen_rdc.rdcost) {
if (bsize >= BLOCK_8X8)
pc_tree->partitioning = PARTITION_NONE;
chosen_rdc = none_rdc;
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
// We must have chosen a partitioning and encoding or we'll fail later on.
// No other opportunities for success.
if (bsize == BLOCK_64X64)
assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX);
if (do_recon) {
int output_enabled = (bsize == BLOCK_64X64);
// Check the projected output rate for this SB against it's target
// and and if necessary apply a Q delta using segmentation to get
// closer to the target.
if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) && cm->seg.update_map) {
vp9_select_in_frame_q_segment(cpi, mi_row, mi_col,
output_enabled, chosen_rdc.rate);
}
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh,
chosen_rdc.rate, chosen_rdc.dist);
encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize,
pc_tree);
}
*rate = chosen_rdc.rate;
*dist = chosen_rdc.dist;
}
static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = {
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
BLOCK_8X8, BLOCK_8X8, BLOCK_8X8,
BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
BLOCK_16X16
};
static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = {
BLOCK_8X8, BLOCK_16X16, BLOCK_16X16,
BLOCK_16X16, BLOCK_32X32, BLOCK_32X32,
BLOCK_32X32, BLOCK_64X64, BLOCK_64X64,
BLOCK_64X64, BLOCK_64X64, BLOCK_64X64,
BLOCK_64X64
};
// Look at all the mode_info entries for blocks that are part of this
// partition and find the min and max values for sb_type.
// At the moment this is designed to work on a 64x64 SB but could be
// adjusted to use a size parameter.
//
// The min and max are assumed to have been initialized prior to calling this
// function so repeat calls can accumulate a min and max of more than one sb64.
static void get_sb_partition_size_range(MACROBLOCKD *xd, MODE_INFO *mi_8x8,
BLOCK_SIZE *min_block_size,
BLOCK_SIZE *max_block_size,
int bs_hist[BLOCK_SIZES]) {
int sb_width_in_blocks = MI_BLOCK_SIZE;
int sb_height_in_blocks = MI_BLOCK_SIZE;
int i, j;
int index = 0;
// Check the sb_type for each block that belongs to this region.
for (i = 0; i < sb_height_in_blocks; ++i) {
for (j = 0; j < sb_width_in_blocks; ++j) {
MODE_INFO *mi = mi_8x8[index+j].src_mi;
BLOCK_SIZE sb_type = mi ? mi->mbmi.sb_type : 0;
bs_hist[sb_type]++;
*min_block_size = MIN(*min_block_size, sb_type);
*max_block_size = MAX(*max_block_size, sb_type);
}
index += xd->mi_stride;
}
}
// Next square block size less or equal than current block size.
static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = {
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
BLOCK_8X8, BLOCK_8X8, BLOCK_8X8,
BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
BLOCK_32X32, BLOCK_32X32, BLOCK_32X32,
BLOCK_64X64
};
// Look at neighboring blocks and set a min and max partition size based on
// what they chose.
static void rd_auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile,
int mi_row, int mi_col,
BLOCK_SIZE *min_block_size,
BLOCK_SIZE *max_block_size) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
MODE_INFO *mi = xd->mi[0].src_mi;
const int left_in_image = xd->left_available && mi[-1].src_mi;
const int above_in_image = xd->up_available && mi[-xd->mi_stride].src_mi;
const int row8x8_remaining = tile->mi_row_end - mi_row;
const int col8x8_remaining = tile->mi_col_end - mi_col;
int bh, bw;
BLOCK_SIZE min_size = BLOCK_4X4;
BLOCK_SIZE max_size = BLOCK_64X64;
int i = 0;
int bs_hist[BLOCK_SIZES] = {0};
// Trap case where we do not have a prediction.
if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) {
// Default "min to max" and "max to min"
min_size = BLOCK_64X64;
max_size = BLOCK_4X4;
// NOTE: each call to get_sb_partition_size_range() uses the previous
// passed in values for min and max as a starting point.
// Find the min and max partition used in previous frame at this location
if (cm->frame_type != KEY_FRAME) {
MODE_INFO *prev_mi =
cm->prev_mip + cm->mi_stride + 1 + mi_row * xd->mi_stride + mi_col;
get_sb_partition_size_range(xd, prev_mi, &min_size, &max_size, bs_hist);
}
// Find the min and max partition sizes used in the left SB64
if (left_in_image) {
MODE_INFO *left_sb64_mi = mi[-MI_BLOCK_SIZE].src_mi;
get_sb_partition_size_range(xd, left_sb64_mi, &min_size, &max_size,
bs_hist);
}
// Find the min and max partition sizes used in the above SB64.
if (above_in_image) {
MODE_INFO *above_sb64_mi = mi[-xd->mi_stride * MI_BLOCK_SIZE].src_mi;
get_sb_partition_size_range(xd, above_sb64_mi, &min_size, &max_size,
bs_hist);
}
// adjust observed min and max
if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) {
min_size = min_partition_size[min_size];
max_size = max_partition_size[max_size];
} else if (cpi->sf.auto_min_max_partition_size ==
CONSTRAIN_NEIGHBORING_MIN_MAX) {
// adjust the search range based on the histogram of the observed
// partition sizes from left, above the previous co-located blocks
int sum = 0;
int first_moment = 0;
int second_moment = 0;
int var_unnormalized = 0;
for (i = 0; i < BLOCK_SIZES; i++) {
sum += bs_hist[i];
first_moment += bs_hist[i] * i;
second_moment += bs_hist[i] * i * i;
}
// if variance is small enough,
// adjust the range around its mean size, which gives a tighter range
var_unnormalized = second_moment - first_moment * first_moment / sum;
if (var_unnormalized <= 4 * sum) {
int mean = first_moment / sum;
min_size = min_partition_size[mean];
max_size = max_partition_size[mean];
} else {
min_size = min_partition_size[min_size];
max_size = max_partition_size[max_size];
}
}
}
// Check border cases where max and min from neighbors may not be legal.
max_size = find_partition_size(max_size,
row8x8_remaining, col8x8_remaining,
&bh, &bw);
min_size = MIN(min_size, max_size);
// When use_square_partition_only is true, make sure at least one square
// partition is allowed by selecting the next smaller square size as
// *min_block_size.
if (cpi->sf.use_square_partition_only &&
next_square_size[max_size] < min_size) {
min_size = next_square_size[max_size];
}
*min_block_size = min_size;
*max_block_size = max_size;
}
static void auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile,
int mi_row, int mi_col,
BLOCK_SIZE *min_block_size,
BLOCK_SIZE *max_block_size) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
MODE_INFO *mi_8x8 = xd->mi;
const int left_in_image = xd->left_available && mi_8x8[-1].src_mi;
const int above_in_image = xd->up_available &&
mi_8x8[-xd->mi_stride].src_mi;
int row8x8_remaining = tile->mi_row_end - mi_row;
int col8x8_remaining = tile->mi_col_end - mi_col;
int bh, bw;
BLOCK_SIZE min_size = BLOCK_32X32;
BLOCK_SIZE max_size = BLOCK_8X8;
int bsl = mi_width_log2_lookup[BLOCK_64X64];
const int search_range_ctrl = (((mi_row + mi_col) >> bsl) +
get_chessboard_index(cm->current_video_frame)) & 0x1;
// Trap case where we do not have a prediction.
if (search_range_ctrl &&
(left_in_image || above_in_image || cm->frame_type != KEY_FRAME)) {
int block;
MODE_INFO *mi;
BLOCK_SIZE sb_type;
// Find the min and max partition sizes used in the left SB64.
if (left_in_image) {
MODE_INFO *cur_mi;
mi = mi_8x8[-1].src_mi;
for (block = 0; block < MI_BLOCK_SIZE; ++block) {
cur_mi = mi[block * xd->mi_stride].src_mi;
sb_type = cur_mi ? cur_mi->mbmi.sb_type : 0;
min_size = MIN(min_size, sb_type);
max_size = MAX(max_size, sb_type);
}
}
// Find the min and max partition sizes used in the above SB64.
if (above_in_image) {
mi = mi_8x8[-xd->mi_stride * MI_BLOCK_SIZE].src_mi;
for (block = 0; block < MI_BLOCK_SIZE; ++block) {
sb_type = mi[block].src_mi ? mi[block].src_mi->mbmi.sb_type : 0;
min_size = MIN(min_size, sb_type);
max_size = MAX(max_size, sb_type);
}
}
min_size = min_partition_size[min_size];
max_size = find_partition_size(max_size, row8x8_remaining, col8x8_remaining,
&bh, &bw);
min_size = MIN(min_size, max_size);
min_size = MAX(min_size, BLOCK_8X8);
max_size = MIN(max_size, BLOCK_32X32);
} else {
min_size = BLOCK_8X8;
max_size = BLOCK_32X32;
}
*min_block_size = min_size;
*max_block_size = max_size;
}
// TODO(jingning) refactor functions setting partition search range
static void set_partition_range(VP9_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col, BLOCK_SIZE bsize,
BLOCK_SIZE *min_bs, BLOCK_SIZE *max_bs) {
int mi_width = num_8x8_blocks_wide_lookup[bsize];
int mi_height = num_8x8_blocks_high_lookup[bsize];
int idx, idy;
MODE_INFO *mi;
const int idx_str = cm->mi_stride * mi_row + mi_col;
MODE_INFO *prev_mi = (cm->prev_mip + cm->mi_stride + 1 + idx_str)->src_mi;
BLOCK_SIZE bs, min_size, max_size;
min_size = BLOCK_64X64;
max_size = BLOCK_4X4;
if (prev_mi) {
for (idy = 0; idy < mi_height; ++idy) {
for (idx = 0; idx < mi_width; ++idx) {
mi = prev_mi[idy * cm->mi_stride + idx].src_mi;
bs = mi ? mi->mbmi.sb_type : bsize;
min_size = MIN(min_size, bs);
max_size = MAX(max_size, bs);
}
}
}
if (xd->left_available) {
for (idy = 0; idy < mi_height; ++idy) {
mi = xd->mi[idy * cm->mi_stride - 1].src_mi;
bs = mi ? mi->mbmi.sb_type : bsize;
min_size = MIN(min_size, bs);
max_size = MAX(max_size, bs);
}
}
if (xd->up_available) {
for (idx = 0; idx < mi_width; ++idx) {
mi = xd->mi[idx - cm->mi_stride].src_mi;
bs = mi ? mi->mbmi.sb_type : bsize;
min_size = MIN(min_size, bs);
max_size = MAX(max_size, bs);
}
}
if (min_size == max_size) {
min_size = min_partition_size[min_size];
max_size = max_partition_size[max_size];
}
*min_bs = min_size;
*max_bs = max_size;
}
static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
vpx_memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
}
static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
vpx_memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
}
#if CONFIG_FP_MB_STATS
const int num_16x16_blocks_wide_lookup[BLOCK_SIZES] =
{1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 4};
const int num_16x16_blocks_high_lookup[BLOCK_SIZES] =
{1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 4, 2, 4};
const int qindex_skip_threshold_lookup[BLOCK_SIZES] =
{0, 10, 10, 30, 40, 40, 60, 80, 80, 90, 100, 100, 120};
const int qindex_split_threshold_lookup[BLOCK_SIZES] =
{0, 3, 3, 7, 15, 15, 30, 40, 40, 60, 80, 80, 120};
const int complexity_16x16_blocks_threshold[BLOCK_SIZES] =
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 6};
typedef enum {
MV_ZERO = 0,
MV_LEFT = 1,
MV_UP = 2,
MV_RIGHT = 3,
MV_DOWN = 4,
MV_INVALID
} MOTION_DIRECTION;
static INLINE MOTION_DIRECTION get_motion_direction_fp(uint8_t fp_byte) {
if (fp_byte & FPMB_MOTION_ZERO_MASK) {
return MV_ZERO;
} else if (fp_byte & FPMB_MOTION_LEFT_MASK) {
return MV_LEFT;
} else if (fp_byte & FPMB_MOTION_RIGHT_MASK) {
return MV_RIGHT;
} else if (fp_byte & FPMB_MOTION_UP_MASK) {
return MV_UP;
} else {
return MV_DOWN;
}
}
static INLINE int get_motion_inconsistency(MOTION_DIRECTION this_mv,
MOTION_DIRECTION that_mv) {
if (this_mv == that_mv) {
return 0;
} else {
return abs(this_mv - that_mv) == 2 ? 2 : 1;
}
}
#endif
// TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
// unlikely to be selected depending on previous rate-distortion optimization
// results, for encoding speed-up.
static void rd_pick_partition(VP9_COMP *cpi, const TileInfo *const tile,
TOKENEXTRA **tp, int mi_row, int mi_col,
BLOCK_SIZE bsize, RD_COST *rd_cost,
int64_t best_rd, PC_TREE *pc_tree) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int mi_step = num_8x8_blocks_wide_lookup[bsize] / 2;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
TOKENEXTRA *tp_orig = *tp;
PICK_MODE_CONTEXT *ctx = &pc_tree->none;
int i, pl;
BLOCK_SIZE subsize;
RD_COST this_rdc, sum_rdc, best_rdc;
int do_split = bsize >= BLOCK_8X8;
int do_rect = 1;
// Override skipping rectangular partition operations for edge blocks
const int force_horz_split = (mi_row + mi_step >= cm->mi_rows);
const int force_vert_split = (mi_col + mi_step >= cm->mi_cols);
const int xss = x->e_mbd.plane[1].subsampling_x;
const int yss = x->e_mbd.plane[1].subsampling_y;
BLOCK_SIZE min_size = cpi->sf.min_partition_size;
BLOCK_SIZE max_size = cpi->sf.max_partition_size;
#if CONFIG_FP_MB_STATS
unsigned int src_diff_var = UINT_MAX;
int none_complexity = 0;
#endif
int partition_none_allowed = !force_horz_split && !force_vert_split;
int partition_horz_allowed = !force_vert_split && yss <= xss &&
bsize >= BLOCK_8X8;
int partition_vert_allowed = !force_horz_split && xss <= yss &&
bsize >= BLOCK_8X8;
(void) *tp_orig;
assert(num_8x8_blocks_wide_lookup[bsize] ==
num_8x8_blocks_high_lookup[bsize]);
vp9_rd_cost_init(&this_rdc);
vp9_rd_cost_init(&sum_rdc);
vp9_rd_cost_reset(&best_rdc);
best_rdc.rdcost = best_rd;
set_offsets(cpi, tile, mi_row, mi_col, bsize);
if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode)
x->mb_energy = vp9_block_energy(cpi, x, bsize);
if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) {
int cb_partition_search_ctrl = ((pc_tree->index == 0 || pc_tree->index == 3)
+ get_chessboard_index(cm->current_video_frame)) & 0x1;
if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size)
set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size);
}
// Determine partition types in search according to the speed features.
// The threshold set here has to be of square block size.
if (cpi->sf.auto_min_max_partition_size) {
partition_none_allowed &= (bsize <= max_size && bsize >= min_size);
partition_horz_allowed &= ((bsize <= max_size && bsize > min_size) ||
force_horz_split);
partition_vert_allowed &= ((bsize <= max_size && bsize > min_size) ||
force_vert_split);
do_split &= bsize > min_size;
}
if (cpi->sf.use_square_partition_only) {
partition_horz_allowed &= force_horz_split;
partition_vert_allowed &= force_vert_split;
}
save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
set_offsets(cpi, tile, mi_row, mi_col, bsize);
src_diff_var = get_sby_perpixel_diff_variance(cpi, &cpi->mb.plane[0].src,
mi_row, mi_col, bsize);
}
#endif
#if CONFIG_FP_MB_STATS
// Decide whether we shall split directly and skip searching NONE by using
// the first pass block statistics
if (cpi->use_fp_mb_stats && bsize >= BLOCK_32X32 && do_split &&
partition_none_allowed && src_diff_var > 4 &&
cm->base_qindex < qindex_split_threshold_lookup[bsize]) {
int mb_row = mi_row >> 1;
int mb_col = mi_col >> 1;
int mb_row_end =
MIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
int mb_col_end =
MIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
int r, c;
// compute a complexity measure, basically measure inconsistency of motion
// vectors obtained from the first pass in the current block
for (r = mb_row; r < mb_row_end ; r++) {
for (c = mb_col; c < mb_col_end; c++) {
const int mb_index = r * cm->mb_cols + c;
MOTION_DIRECTION this_mv;
MOTION_DIRECTION right_mv;
MOTION_DIRECTION bottom_mv;
this_mv =
get_motion_direction_fp(cpi->twopass.this_frame_mb_stats[mb_index]);
// to its right
if (c != mb_col_end - 1) {
right_mv = get_motion_direction_fp(
cpi->twopass.this_frame_mb_stats[mb_index + 1]);
none_complexity += get_motion_inconsistency(this_mv, right_mv);
}
// to its bottom
if (r != mb_row_end - 1) {
bottom_mv = get_motion_direction_fp(
cpi->twopass.this_frame_mb_stats[mb_index + cm->mb_cols]);
none_complexity += get_motion_inconsistency(this_mv, bottom_mv);
}
// do not count its left and top neighbors to avoid double counting
}
}
if (none_complexity > complexity_16x16_blocks_threshold[bsize]) {
partition_none_allowed = 0;
}
}
#endif
// PARTITION_NONE
if (partition_none_allowed) {
rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &this_rdc, bsize, ctx,
best_rdc.rdcost);
if (this_rdc.rate != INT_MAX) {
if (bsize >= BLOCK_8X8) {
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
this_rdc.rate, this_rdc.dist);
}
if (this_rdc.rdcost < best_rdc.rdcost) {
int64_t dist_breakout_thr = cpi->sf.partition_search_breakout_dist_thr;
int rate_breakout_thr = cpi->sf.partition_search_breakout_rate_thr;
best_rdc = this_rdc;
if (bsize >= BLOCK_8X8)
pc_tree->partitioning = PARTITION_NONE;
// Adjust dist breakout threshold according to the partition size.
dist_breakout_thr >>= 8 - (b_width_log2_lookup[bsize] +
b_height_log2_lookup[bsize]);
rate_breakout_thr *= num_pels_log2_lookup[bsize];
// If all y, u, v transform blocks in this partition are skippable, and
// the dist & rate are within the thresholds, the partition search is
// terminated for current branch of the partition search tree.
// The dist & rate thresholds are set to 0 at speed 0 to disable the
// early termination at that speed.
if (!x->e_mbd.lossless &&
(ctx->skippable && best_rdc.dist < dist_breakout_thr &&
best_rdc.rate < rate_breakout_thr)) {
do_split = 0;
do_rect = 0;
}
#if CONFIG_FP_MB_STATS
// Check if every 16x16 first pass block statistics has zero
// motion and the corresponding first pass residue is small enough.
// If that is the case, check the difference variance between the
// current frame and the last frame. If the variance is small enough,
// stop further splitting in RD optimization
if (cpi->use_fp_mb_stats && do_split != 0 &&
cm->base_qindex > qindex_skip_threshold_lookup[bsize]) {
int mb_row = mi_row >> 1;
int mb_col = mi_col >> 1;
int mb_row_end =
MIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
int mb_col_end =
MIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
int r, c;
int skip = 1;
for (r = mb_row; r < mb_row_end; r++) {
for (c = mb_col; c < mb_col_end; c++) {
const int mb_index = r * cm->mb_cols + c;
if (!(cpi->twopass.this_frame_mb_stats[mb_index] &
FPMB_MOTION_ZERO_MASK) ||
!(cpi->twopass.this_frame_mb_stats[mb_index] &
FPMB_ERROR_SMALL_MASK)) {
skip = 0;
break;
}
}
if (skip == 0) {
break;
}
}
if (skip) {
if (src_diff_var == UINT_MAX) {
set_offsets(cpi, tile, mi_row, mi_col, bsize);
src_diff_var = get_sby_perpixel_diff_variance(
cpi, &cpi->mb.plane[0].src, mi_row, mi_col, bsize);
}
if (src_diff_var < 8) {
do_split = 0;
do_rect = 0;
}
}
}
#endif
}
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
}
// store estimated motion vector
if (cpi->sf.adaptive_motion_search)
store_pred_mv(x, ctx);
// PARTITION_SPLIT
// TODO(jingning): use the motion vectors given by the above search as
// the starting point of motion search in the following partition type check.
if (do_split) {
subsize = get_subsize(bsize, PARTITION_SPLIT);
if (bsize == BLOCK_8X8) {
i = 4;
if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed)
pc_tree->leaf_split[0]->pred_interp_filter =
ctx->mic.mbmi.interp_filter;
rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &sum_rdc, subsize,
pc_tree->leaf_split[0], best_rdc.rdcost);
if (sum_rdc.rate == INT_MAX)
sum_rdc.rdcost = INT64_MAX;
} else {
for (i = 0; i < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++i) {
const int x_idx = (i & 1) * mi_step;
const int y_idx = (i >> 1) * mi_step;
if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
continue;
if (cpi->sf.adaptive_motion_search)
load_pred_mv(x, ctx);
pc_tree->split[i]->index = i;
rd_pick_partition(cpi, tile, tp, mi_row + y_idx, mi_col + x_idx,
subsize, &this_rdc,
best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[i]);
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
break;
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
sum_rdc.rdcost += this_rdc.rdcost;
}
}
}
if (sum_rdc.rdcost < best_rdc.rdcost && i == 4) {
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
sum_rdc.rate, sum_rdc.dist);
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
pc_tree->partitioning = PARTITION_SPLIT;
}
} else {
// skip rectangular partition test when larger block size
// gives better rd cost
if (cpi->sf.less_rectangular_check)
do_rect &= !partition_none_allowed;
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
}
// PARTITION_HORZ
if (partition_horz_allowed && do_rect) {
subsize = get_subsize(bsize, PARTITION_HORZ);
if (cpi->sf.adaptive_motion_search)
load_pred_mv(x, ctx);
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
pc_tree->horizontal[0].pred_interp_filter =
ctx->mic.mbmi.interp_filter;
rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &sum_rdc, subsize,
&pc_tree->horizontal[0], best_rdc.rdcost);
if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + mi_step < cm->mi_rows &&
bsize > BLOCK_8X8) {
PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
update_state(cpi, ctx, mi_row, mi_col, subsize, 0);
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize, ctx);
if (cpi->sf.adaptive_motion_search)
load_pred_mv(x, ctx);
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
pc_tree->horizontal[1].pred_interp_filter =
ctx->mic.mbmi.interp_filter;
rd_pick_sb_modes(cpi, tile, mi_row + mi_step, mi_col, &this_rdc,
subsize, &pc_tree->horizontal[1],
best_rdc.rdcost - sum_rdc.rdcost);
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
sum_rdc.rdcost += this_rdc.rdcost;
}
}
if (sum_rdc.rdcost < best_rdc.rdcost) {
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
sum_rdc.rate += cpi->partition_cost[pl][PARTITION_HORZ];
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
pc_tree->partitioning = PARTITION_HORZ;
}
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
}
// PARTITION_VERT
if (partition_vert_allowed && do_rect) {
subsize = get_subsize(bsize, PARTITION_VERT);
if (cpi->sf.adaptive_motion_search)
load_pred_mv(x, ctx);
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
pc_tree->vertical[0].pred_interp_filter =
ctx->mic.mbmi.interp_filter;
rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &sum_rdc, subsize,
&pc_tree->vertical[0], best_rdc.rdcost);
if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + mi_step < cm->mi_cols &&
bsize > BLOCK_8X8) {
update_state(cpi, &pc_tree->vertical[0], mi_row, mi_col, subsize, 0);
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize,
&pc_tree->vertical[0]);
if (cpi->sf.adaptive_motion_search)
load_pred_mv(x, ctx);
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
pc_tree->vertical[1].pred_interp_filter =
ctx->mic.mbmi.interp_filter;
rd_pick_sb_modes(cpi, tile, mi_row, mi_col + mi_step, &this_rdc, subsize,
&pc_tree->vertical[1], best_rdc.rdcost - sum_rdc.rdcost);
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
sum_rdc.rdcost += this_rdc.rdcost;
}
}
if (sum_rdc.rdcost < best_rdc.rdcost) {
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
sum_rdc.rate += cpi->partition_cost[pl][PARTITION_VERT];
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
sum_rdc.rate, sum_rdc.dist);
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
pc_tree->partitioning = PARTITION_VERT;
}
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
}
// TODO(jbb): This code added so that we avoid static analysis
// warning related to the fact that best_rd isn't used after this
// point. This code should be refactored so that the duplicate
// checks occur in some sub function and thus are used...
(void) best_rd;
*rd_cost = best_rdc;
if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX &&
pc_tree->index != 3) {
int output_enabled = (bsize == BLOCK_64X64);
// Check the projected output rate for this SB against it's target
// and and if necessary apply a Q delta using segmentation to get
// closer to the target.
if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) && cm->seg.update_map)
vp9_select_in_frame_q_segment(cpi, mi_row, mi_col, output_enabled,
best_rdc.rate);
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh,
best_rdc.rate, best_rdc.dist);
encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize, pc_tree);
}
if (bsize == BLOCK_64X64) {
assert(tp_orig < *tp);
assert(best_rdc.rate < INT_MAX);
assert(best_rdc.dist < INT64_MAX);
} else {
assert(tp_orig == *tp);
}
}
static void encode_rd_sb_row(VP9_COMP *cpi, const TileInfo *const tile,
int mi_row, TOKENEXTRA **tp) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
SPEED_FEATURES *const sf = &cpi->sf;
int mi_col;
// Initialize the left context for the new SB row
vpx_memset(&xd->left_context, 0, sizeof(xd->left_context));
vpx_memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
// Code each SB in the row
for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
mi_col += MI_BLOCK_SIZE) {
int dummy_rate;
int64_t dummy_dist;
RD_COST dummy_rdc;
int i;
const int idx_str = cm->mi_stride * mi_row + mi_col;
MODE_INFO *mi = cm->mi + idx_str;
MODE_INFO *prev_mi = NULL;
if (cm->frame_type != KEY_FRAME)
prev_mi = (cm->prev_mip + cm->mi_stride + 1 + idx_str)->src_mi;
if (sf->adaptive_pred_interp_filter) {
for (i = 0; i < 64; ++i)
cpi->leaf_tree[i].pred_interp_filter = SWITCHABLE;
for (i = 0; i < 64; ++i) {
cpi->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE;
cpi->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE;
cpi->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE;
cpi->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE;
}
}
vp9_zero(cpi->mb.pred_mv);
cpi->pc_root->index = 0;
// TODO(yunqingwang): use_lastframe_partitioning is no longer used in good-
// quality encoding. Need to evaluate it in real-time encoding later to
// decide if it can be removed too. And then, do the code cleanup.
cpi->mb.source_variance = UINT_MAX;
if (sf->partition_search_type == FIXED_PARTITION) {
set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
set_fixed_partitioning(cpi, tile, mi, mi_row, mi_col,
sf->always_this_block_size);
rd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rate, &dummy_dist, 1, cpi->pc_root);
} else if (cpi->partition_search_skippable_frame) {
BLOCK_SIZE bsize;
set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
bsize = get_rd_var_based_fixed_partition(cpi, mi_row, mi_col);
set_fixed_partitioning(cpi, tile, mi, mi_row, mi_col, bsize);
rd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rate, &dummy_dist, 1, cpi->pc_root);
} else if (sf->partition_search_type == VAR_BASED_PARTITION &&
cm->frame_type != KEY_FRAME ) {
choose_partitioning(cpi, tile, mi_row, mi_col);
rd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rate, &dummy_dist, 1, cpi->pc_root);
} else if (sf->partition_search_type == SEARCH_PARTITION &&
sf->use_lastframe_partitioning &&
(cpi->rc.frames_since_key %
sf->last_partitioning_redo_frequency) &&
cm->prev_mi &&
cm->show_frame &&
cm->frame_type != KEY_FRAME &&
!cpi->rc.is_src_frame_alt_ref &&
((sf->use_lastframe_partitioning !=
LAST_FRAME_PARTITION_LOW_MOTION) ||
!sb_has_motion(cm, prev_mi, sf->lf_motion_threshold))) {
if (sf->constrain_copy_partition &&
sb_has_motion(cm, prev_mi, sf->lf_motion_threshold))
constrain_copy_partitioning(cpi, tile, mi, prev_mi,
mi_row, mi_col, BLOCK_16X16);
else
copy_partitioning(cm, mi, prev_mi);
rd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rate, &dummy_dist, 1, cpi->pc_root);
} else {
// If required set upper and lower partition size limits
if (sf->auto_min_max_partition_size) {
set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
rd_auto_partition_range(cpi, tile, mi_row, mi_col,
&sf->min_partition_size,
&sf->max_partition_size);
}
rd_pick_partition(cpi, tile, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rdc, INT64_MAX, cpi->pc_root);
}
}
}
static void init_encode_frame_mb_context(VP9_COMP *cpi) {
MACROBLOCK *const x = &cpi->mb;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
// Copy data over into macro block data structures.
vp9_setup_src_planes(x, cpi->Source, 0, 0);
vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
// Note: this memset assumes above_context[0], [1] and [2]
// are allocated as part of the same buffer.
vpx_memset(xd->above_context[0], 0,
sizeof(*xd->above_context[0]) *
2 * aligned_mi_cols * MAX_MB_PLANE);
vpx_memset(xd->above_seg_context, 0,
sizeof(*xd->above_seg_context) * aligned_mi_cols);
}
static int check_dual_ref_flags(VP9_COMP *cpi) {
const int ref_flags = cpi->ref_frame_flags;
if (vp9_segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) {
return 0;
} else {
return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG)
+ !!(ref_flags & VP9_ALT_FLAG)) >= 2;
}
}
static void reset_skip_tx_size(VP9_COMMON *cm, TX_SIZE max_tx_size) {
int mi_row, mi_col;
const int mis = cm->mi_stride;
MODE_INFO *mi_ptr = cm->mi;
for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row, mi_ptr += mis) {
for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) {
if (mi_ptr[mi_col].src_mi->mbmi.tx_size > max_tx_size)
mi_ptr[mi_col].src_mi->mbmi.tx_size = max_tx_size;
}
}
}
static MV_REFERENCE_FRAME get_frame_type(const VP9_COMP *cpi) {
if (frame_is_intra_only(&cpi->common))
return INTRA_FRAME;
else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame)
return ALTREF_FRAME;
else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
return GOLDEN_FRAME;
else
return LAST_FRAME;
}
static TX_MODE select_tx_mode(const VP9_COMP *cpi) {
if (cpi->mb.e_mbd.lossless)
return ONLY_4X4;
if (cpi->sf.tx_size_search_method == USE_LARGESTALL)
return ALLOW_32X32;
else if (cpi->sf.tx_size_search_method == USE_FULL_RD||
cpi->sf.tx_size_search_method == USE_TX_8X8)
return TX_MODE_SELECT;
else
return cpi->common.tx_mode;
}
static void nonrd_pick_sb_modes(VP9_COMP *cpi, const TileInfo *const tile,
int mi_row, int mi_col,
int *rate, int64_t *dist,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
set_offsets(cpi, tile, mi_row, mi_col, bsize);
mbmi = &xd->mi[0].src_mi->mbmi;
mbmi->sb_type = bsize;
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled)
if (mbmi->segment_id && x->in_static_area)
x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
if (vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP))
set_mode_info_seg_skip(x, cm->tx_mode, rate, dist, bsize);
else
vp9_pick_inter_mode(cpi, x, tile, mi_row, mi_col, rate, dist, bsize, ctx);
duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
}
static void fill_mode_info_sb(VP9_COMMON *cm, MACROBLOCK *x,
int mi_row, int mi_col,
BLOCK_SIZE bsize, BLOCK_SIZE subsize,
PC_TREE *pc_tree) {
MACROBLOCKD *xd = &x->e_mbd;
int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
PARTITION_TYPE partition = pc_tree->partitioning;
assert(bsize >= BLOCK_8X8);
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
switch (partition) {
case PARTITION_NONE:
set_modeinfo_offsets(cm, xd, mi_row, mi_col);
*(xd->mi[0].src_mi) = pc_tree->none.mic;
duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
break;
case PARTITION_VERT:
set_modeinfo_offsets(cm, xd, mi_row, mi_col);
*(xd->mi[0].src_mi) = pc_tree->vertical[0].mic;
duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
if (mi_col + hbs < cm->mi_cols) {
set_modeinfo_offsets(cm, xd, mi_row, mi_col + hbs);
*(xd->mi[0].src_mi) = pc_tree->vertical[1].mic;
duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col + hbs, bsize);
}
break;
case PARTITION_HORZ:
set_modeinfo_offsets(cm, xd, mi_row, mi_col);
*(xd->mi[0].src_mi) = pc_tree->horizontal[0].mic;
duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
if (mi_row + hbs < cm->mi_rows) {
set_modeinfo_offsets(cm, xd, mi_row + hbs, mi_col);
*(xd->mi[0].src_mi) = pc_tree->horizontal[1].mic;
duplicate_mode_info_in_sb(cm, xd, mi_row + hbs, mi_col, bsize);
}
break;
case PARTITION_SPLIT: {
BLOCK_SIZE subsubsize = get_subsize(subsize, PARTITION_SPLIT);
fill_mode_info_sb(cm, x, mi_row, mi_col, subsize,
subsubsize, pc_tree->split[0]);
fill_mode_info_sb(cm, x, mi_row, mi_col + hbs, subsize,
subsubsize, pc_tree->split[1]);
fill_mode_info_sb(cm, x, mi_row + hbs, mi_col, subsize,
subsubsize, pc_tree->split[2]);
fill_mode_info_sb(cm, x, mi_row + hbs, mi_col + hbs, subsize,
subsubsize, pc_tree->split[3]);
break;
}
default:
break;
}
}
static void nonrd_pick_partition(VP9_COMP *cpi, const TileInfo *const tile,
TOKENEXTRA **tp, int mi_row,
int mi_col, BLOCK_SIZE bsize, int *rate,
int64_t *dist, int do_recon, int64_t best_rd,
PC_TREE *pc_tree) {
const SPEED_FEATURES *const sf = &cpi->sf;
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int ms = num_8x8_blocks_wide_lookup[bsize] / 2;
TOKENEXTRA *tp_orig = *tp;
PICK_MODE_CONTEXT *ctx = &pc_tree->none;
int i;
BLOCK_SIZE subsize = bsize;
int this_rate, sum_rate = 0, best_rate = INT_MAX;
int64_t this_dist, sum_dist = 0, best_dist = INT64_MAX;
int64_t sum_rd = 0;
int do_split = bsize >= BLOCK_8X8;
int do_rect = 1;
// Override skipping rectangular partition operations for edge blocks
const int force_horz_split = (mi_row + ms >= cm->mi_rows);
const int force_vert_split = (mi_col + ms >= cm->mi_cols);
const int xss = x->e_mbd.plane[1].subsampling_x;
const int yss = x->e_mbd.plane[1].subsampling_y;
int partition_none_allowed = !force_horz_split && !force_vert_split;
int partition_horz_allowed = !force_vert_split && yss <= xss &&
bsize >= BLOCK_8X8;
int partition_vert_allowed = !force_horz_split && xss <= yss &&
bsize >= BLOCK_8X8;
(void) *tp_orig;
assert(num_8x8_blocks_wide_lookup[bsize] ==
num_8x8_blocks_high_lookup[bsize]);
// Determine partition types in search according to the speed features.
// The threshold set here has to be of square block size.
if (sf->auto_min_max_partition_size) {
partition_none_allowed &= (bsize <= sf->max_partition_size &&
bsize >= sf->min_partition_size);
partition_horz_allowed &= ((bsize <= sf->max_partition_size &&
bsize > sf->min_partition_size) ||
force_horz_split);
partition_vert_allowed &= ((bsize <= sf->max_partition_size &&
bsize > sf->min_partition_size) ||
force_vert_split);
do_split &= bsize > sf->min_partition_size;
}
if (sf->use_square_partition_only) {
partition_horz_allowed &= force_horz_split;
partition_vert_allowed &= force_vert_split;
}
// PARTITION_NONE
if (partition_none_allowed) {
nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col,
&this_rate, &this_dist, bsize, ctx);
ctx->mic.mbmi = xd->mi[0].src_mi->mbmi;
ctx->skip_txfm[0] = x->skip_txfm[0];
ctx->skip = x->skip;
if (this_rate != INT_MAX) {
int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
this_rate += cpi->partition_cost[pl][PARTITION_NONE];
sum_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_dist);
if (sum_rd < best_rd) {
int64_t dist_breakout_thr = sf->partition_search_breakout_dist_thr;
int64_t rate_breakout_thr = sf->partition_search_breakout_rate_thr;
dist_breakout_thr >>= 8 - (b_width_log2_lookup[bsize] +
b_height_log2_lookup[bsize]);
rate_breakout_thr *= num_pels_log2_lookup[bsize];
best_rate = this_rate;
best_dist = this_dist;
best_rd = sum_rd;
if (bsize >= BLOCK_8X8)
pc_tree->partitioning = PARTITION_NONE;
if (!x->e_mbd.lossless &&
this_rate < rate_breakout_thr &&
this_dist < dist_breakout_thr) {
do_split = 0;
do_rect = 0;
}
}
}
}
// store estimated motion vector
store_pred_mv(x, ctx);
// PARTITION_SPLIT
sum_rd = 0;
if (do_split) {
int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
sum_rate += cpi->partition_cost[pl][PARTITION_SPLIT];
subsize = get_subsize(bsize, PARTITION_SPLIT);
for (i = 0; i < 4 && sum_rd < best_rd; ++i) {
const int x_idx = (i & 1) * ms;
const int y_idx = (i >> 1) * ms;
if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
continue;
load_pred_mv(x, ctx);
nonrd_pick_partition(cpi, tile, tp, mi_row + y_idx, mi_col + x_idx,
subsize, &this_rate, &this_dist, 0,
best_rd - sum_rd, pc_tree->split[i]);
if (this_rate == INT_MAX) {
sum_rd = INT64_MAX;
} else {
sum_rate += this_rate;
sum_dist += this_dist;
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
}
}
if (sum_rd < best_rd) {
best_rate = sum_rate;
best_dist = sum_dist;
best_rd = sum_rd;
pc_tree->partitioning = PARTITION_SPLIT;
} else {
// skip rectangular partition test when larger block size
// gives better rd cost
if (sf->less_rectangular_check)
do_rect &= !partition_none_allowed;
}
}
// PARTITION_HORZ
if (partition_horz_allowed && do_rect) {
subsize = get_subsize(bsize, PARTITION_HORZ);
if (sf->adaptive_motion_search)
load_pred_mv(x, ctx);
nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col,
&this_rate, &this_dist, subsize,
&pc_tree->horizontal[0]);
pc_tree->horizontal[0].mic.mbmi = xd->mi[0].src_mi->mbmi;
pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
pc_tree->horizontal[0].skip = x->skip;
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd && mi_row + ms < cm->mi_rows) {
load_pred_mv(x, ctx);
nonrd_pick_sb_modes(cpi, tile, mi_row + ms, mi_col,
&this_rate, &this_dist, subsize,
&pc_tree->horizontal[1]);
pc_tree->horizontal[1].mic.mbmi = xd->mi[0].src_mi->mbmi;
pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
pc_tree->horizontal[1].skip = x->skip;
if (this_rate == INT_MAX) {
sum_rd = INT64_MAX;
} else {
int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
this_rate += cpi->partition_cost[pl][PARTITION_HORZ];
sum_rate += this_rate;
sum_dist += this_dist;
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
}
}
if (sum_rd < best_rd) {
best_rd = sum_rd;
best_rate = sum_rate;
best_dist = sum_dist;
pc_tree->partitioning = PARTITION_HORZ;
}
}
// PARTITION_VERT
if (partition_vert_allowed && do_rect) {
subsize = get_subsize(bsize, PARTITION_VERT);
if (sf->adaptive_motion_search)
load_pred_mv(x, ctx);
nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col,
&this_rate, &this_dist, subsize,
&pc_tree->vertical[0]);
pc_tree->vertical[0].mic.mbmi = xd->mi[0].src_mi->mbmi;
pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
pc_tree->vertical[0].skip = x->skip;
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd && mi_col + ms < cm->mi_cols) {
load_pred_mv(x, ctx);
nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col + ms,
&this_rate, &this_dist, subsize,
&pc_tree->vertical[1]);
pc_tree->vertical[1].mic.mbmi = xd->mi[0].src_mi->mbmi;
pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
pc_tree->vertical[1].skip = x->skip;
if (this_rate == INT_MAX) {
sum_rd = INT64_MAX;
} else {
int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
this_rate += cpi->partition_cost[pl][PARTITION_VERT];
sum_rate += this_rate;
sum_dist += this_dist;
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
}
}
if (sum_rd < best_rd) {
best_rate = sum_rate;
best_dist = sum_dist;
best_rd = sum_rd;
pc_tree->partitioning = PARTITION_VERT;
}
}
// TODO(JBB): The following line is here just to avoid a static warning
// that occurs because at this point we never again reuse best_rd
// despite setting it here. The code should be refactored to avoid this.
(void) best_rd;
*rate = best_rate;
*dist = best_dist;
if (best_rate == INT_MAX)
return;
// update mode info array
subsize = get_subsize(bsize, pc_tree->partitioning);
fill_mode_info_sb(cm, x, mi_row, mi_col, bsize, subsize,
pc_tree);
if (best_rate < INT_MAX && best_dist < INT64_MAX && do_recon) {
int output_enabled = (bsize == BLOCK_64X64);
// Check the projected output rate for this SB against it's target
// and and if necessary apply a Q delta using segmentation to get
// closer to the target.
if ((oxcf->aq_mode == COMPLEXITY_AQ) && cm->seg.update_map) {
vp9_select_in_frame_q_segment(cpi, mi_row, mi_col, output_enabled,
best_rate);
}
if (oxcf->aq_mode == CYCLIC_REFRESH_AQ)
vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh,
best_rate, best_dist);
encode_sb_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize, pc_tree);
}
if (bsize == BLOCK_64X64) {
assert(tp_orig < *tp);
assert(best_rate < INT_MAX);
assert(best_dist < INT64_MAX);
} else {
assert(tp_orig == *tp);
}
}
static void nonrd_use_partition(VP9_COMP *cpi,
const TileInfo *const tile,
MODE_INFO *mi,
TOKENEXTRA **tp,
int mi_row, int mi_col,
BLOCK_SIZE bsize, int output_enabled,
int *totrate, int64_t *totdist,
PC_TREE *pc_tree) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
const int mis = cm->mi_stride;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
int rate = INT_MAX;
int64_t dist = INT64_MAX;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
subsize = (bsize >= BLOCK_8X8) ? mi[0].src_mi->mbmi.sb_type : BLOCK_4X4;
partition = partition_lookup[bsl][subsize];
switch (partition) {
case PARTITION_NONE:
nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, totrate, totdist,
subsize, &pc_tree->none);
pc_tree->none.mic.mbmi = xd->mi[0].src_mi->mbmi;
pc_tree->none.skip_txfm[0] = x->skip_txfm[0];
pc_tree->none.skip = x->skip;
break;
case PARTITION_VERT:
nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, totrate, totdist,
subsize, &pc_tree->vertical[0]);
pc_tree->vertical[0].mic.mbmi = xd->mi[0].src_mi->mbmi;
pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
pc_tree->vertical[0].skip = x->skip;
if (mi_col + hbs < cm->mi_cols) {
nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col + hbs,
&rate, &dist, subsize, &pc_tree->vertical[1]);
pc_tree->vertical[1].mic.mbmi = xd->mi[0].src_mi->mbmi;
pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
pc_tree->vertical[1].skip = x->skip;
if (rate != INT_MAX && dist != INT64_MAX &&
*totrate != INT_MAX && *totdist != INT64_MAX) {
*totrate += rate;
*totdist += dist;
}
}
break;
case PARTITION_HORZ:
nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, totrate, totdist,
subsize, &pc_tree->horizontal[0]);
pc_tree->horizontal[0].mic.mbmi = xd->mi[0].src_mi->mbmi;
pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
pc_tree->horizontal[0].skip = x->skip;
if (mi_row + hbs < cm->mi_rows) {
nonrd_pick_sb_modes(cpi, tile, mi_row + hbs, mi_col,
&rate, &dist, subsize, &pc_tree->horizontal[0]);
pc_tree->horizontal[1].mic.mbmi = xd->mi[0].src_mi->mbmi;
pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
pc_tree->horizontal[1].skip = x->skip;
if (rate != INT_MAX && dist != INT64_MAX &&
*totrate != INT_MAX && *totdist != INT64_MAX) {
*totrate += rate;
*totdist += dist;
}
}
break;
case PARTITION_SPLIT:
subsize = get_subsize(bsize, PARTITION_SPLIT);
nonrd_use_partition(cpi, tile, mi, tp, mi_row, mi_col,
subsize, output_enabled, totrate, totdist,
pc_tree->split[0]);
nonrd_use_partition(cpi, tile, mi + hbs, tp,
mi_row, mi_col + hbs, subsize, output_enabled,
&rate, &dist, pc_tree->split[1]);
if (rate != INT_MAX && dist != INT64_MAX &&
*totrate != INT_MAX && *totdist != INT64_MAX) {
*totrate += rate;
*totdist += dist;
}
nonrd_use_partition(cpi, tile, mi + hbs * mis, tp,
mi_row + hbs, mi_col, subsize, output_enabled,
&rate, &dist, pc_tree->split[2]);
if (rate != INT_MAX && dist != INT64_MAX &&
*totrate != INT_MAX && *totdist != INT64_MAX) {
*totrate += rate;
*totdist += dist;
}
nonrd_use_partition(cpi, tile, mi + hbs * mis + hbs, tp,
mi_row + hbs, mi_col + hbs, subsize, output_enabled,
&rate, &dist, pc_tree->split[3]);
if (rate != INT_MAX && dist != INT64_MAX &&
*totrate != INT_MAX && *totdist != INT64_MAX) {
*totrate += rate;
*totdist += dist;
}
break;
default:
assert("Invalid partition type.");
break;
}
if (bsize == BLOCK_64X64 && output_enabled) {
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh,
*totrate, *totdist);
encode_sb_rt(cpi, tile, tp, mi_row, mi_col, 1, bsize, pc_tree);
}
}
static void encode_nonrd_sb_row(VP9_COMP *cpi, const TileInfo *const tile,
int mi_row, TOKENEXTRA **tp) {
SPEED_FEATURES *const sf = &cpi->sf;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
int mi_col;
// Initialize the left context for the new SB row
vpx_memset(&xd->left_context, 0, sizeof(xd->left_context));
vpx_memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
// Code each SB in the row
for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
mi_col += MI_BLOCK_SIZE) {
int dummy_rate = 0;
int64_t dummy_dist = 0;
const int idx_str = cm->mi_stride * mi_row + mi_col;
MODE_INFO *mi = cm->mi + idx_str;
BLOCK_SIZE bsize;
x->in_static_area = 0;
x->source_variance = UINT_MAX;
vp9_zero(x->pred_mv);
// Set the partition type of the 64X64 block
switch (sf->partition_search_type) {
case VAR_BASED_PARTITION:
choose_partitioning(cpi, tile, mi_row, mi_col);
nonrd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
1, &dummy_rate, &dummy_dist, cpi->pc_root);
break;
case SOURCE_VAR_BASED_PARTITION:
set_source_var_based_partition(cpi, tile, mi, mi_row, mi_col);
nonrd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
1, &dummy_rate, &dummy_dist, cpi->pc_root);
break;
case FIXED_PARTITION:
bsize = sf->partition_search_type == FIXED_PARTITION ?
sf->always_this_block_size :
get_nonrd_var_based_fixed_partition(cpi, mi_row, mi_col);
set_fixed_partitioning(cpi, tile, mi, mi_row, mi_col, bsize);
nonrd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
1, &dummy_rate, &dummy_dist, cpi->pc_root);
break;
case REFERENCE_PARTITION:
if (sf->partition_check ||
!(x->in_static_area = is_background(cpi, tile, mi_row, mi_col))) {
set_modeinfo_offsets(cm, xd, mi_row, mi_col);
auto_partition_range(cpi, tile, mi_row, mi_col,
&sf->min_partition_size,
&sf->max_partition_size);
nonrd_pick_partition(cpi, tile, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rate, &dummy_dist, 1, INT64_MAX,
cpi->pc_root);
} else {
choose_partitioning(cpi, tile, mi_row, mi_col);
nonrd_use_partition(cpi, tile, mi, tp, mi_row, mi_col,
BLOCK_64X64, 1, &dummy_rate, &dummy_dist,
cpi->pc_root);
}
break;
default:
assert(0);
break;
}
}
}
// end RTC play code
static int set_var_thresh_from_histogram(VP9_COMP *cpi) {
const SPEED_FEATURES *const sf = &cpi->sf;
const VP9_COMMON *const cm = &cpi->common;
const uint8_t *src = cpi->Source->y_buffer;
const uint8_t *last_src = cpi->Last_Source->y_buffer;
const int src_stride = cpi->Source->y_stride;
const int last_stride = cpi->Last_Source->y_stride;
// Pick cutoff threshold
const int cutoff = (MIN(cm->width, cm->height) >= 720) ?
(cm->MBs * VAR_HIST_LARGE_CUT_OFF / 100) :
(cm->MBs * VAR_HIST_SMALL_CUT_OFF / 100);
DECLARE_ALIGNED_ARRAY(16, int, hist, VAR_HIST_BINS);
diff *var16 = cpi->source_diff_var;
int sum = 0;
int i, j;
vpx_memset(hist, 0, VAR_HIST_BINS * sizeof(hist[0]));
for (i = 0; i < cm->mb_rows; i++) {
for (j = 0; j < cm->mb_cols; j++) {
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
switch (cm->bit_depth) {
case VPX_BITS_8:
vp9_highbd_get16x16var(src, src_stride, last_src, last_stride,
&var16->sse, &var16->sum);
break;
case VPX_BITS_10:
vp9_highbd_10_get16x16var(src, src_stride, last_src, last_stride,
&var16->sse, &var16->sum);
break;
case VPX_BITS_12:
vp9_highbd_12_get16x16var(src, src_stride, last_src, last_stride,
&var16->sse, &var16->sum);
break;
default:
assert(0 && "cm->bit_depth should be VPX_BITS_8, VPX_BITS_10"
" or VPX_BITS_12");
return -1;
}
} else {
vp9_get16x16var(src, src_stride, last_src, last_stride,
&var16->sse, &var16->sum);
}
#else
vp9_get16x16var(src, src_stride, last_src, last_stride,
&var16->sse, &var16->sum);
#endif // CONFIG_VP9_HIGHBITDEPTH
var16->var = var16->sse -
(((uint32_t)var16->sum * var16->sum) >> 8);
if (var16->var >= VAR_HIST_MAX_BG_VAR)
hist[VAR_HIST_BINS - 1]++;
else
hist[var16->var / VAR_HIST_FACTOR]++;
src += 16;
last_src += 16;
var16++;
}
src = src - cm->mb_cols * 16 + 16 * src_stride;
last_src = last_src - cm->mb_cols * 16 + 16 * last_stride;
}
cpi->source_var_thresh = 0;
if (hist[VAR_HIST_BINS - 1] < cutoff) {
for (i = 0; i < VAR_HIST_BINS - 1; i++) {
sum += hist[i];
if (sum > cutoff) {
cpi->source_var_thresh = (i + 1) * VAR_HIST_FACTOR;
return 0;
}
}
}
return sf->search_type_check_frequency;
}
static void source_var_based_partition_search_method(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
SPEED_FEATURES *const sf = &cpi->sf;
if (cm->frame_type == KEY_FRAME) {
// For key frame, use SEARCH_PARTITION.
sf->partition_search_type = SEARCH_PARTITION;
} else if (cm->intra_only) {
sf->partition_search_type = FIXED_PARTITION;
} else {
if (cm->last_width != cm->width || cm->last_height != cm->height) {
if (cpi->source_diff_var)
vpx_free(cpi->source_diff_var);
CHECK_MEM_ERROR(cm, cpi->source_diff_var,
vpx_calloc(cm->MBs, sizeof(diff)));
}
if (!cpi->frames_till_next_var_check)
cpi->frames_till_next_var_check = set_var_thresh_from_histogram(cpi);
if (cpi->frames_till_next_var_check > 0) {
sf->partition_search_type = FIXED_PARTITION;
cpi->frames_till_next_var_check--;
}
}
}
static int get_skip_encode_frame(const VP9_COMMON *cm) {
unsigned int intra_count = 0, inter_count = 0;
int j;
for (j = 0; j < INTRA_INTER_CONTEXTS; ++j) {
intra_count += cm->counts.intra_inter[j][0];
inter_count += cm->counts.intra_inter[j][1];
}
return (intra_count << 2) < inter_count &&
cm->frame_type != KEY_FRAME &&
cm->show_frame;
}
static void encode_tiles(VP9_COMP *cpi) {
const VP9_COMMON *const cm = &cpi->common;
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
int tile_col, tile_row;
TileInfo tile[4][1 << 6];
TOKENEXTRA *tok[4][1 << 6];
TOKENEXTRA *pre_tok = cpi->tok;
int tile_tok = 0;
for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
vp9_tile_init(&tile[tile_row][tile_col], cm, tile_row, tile_col);
tok[tile_row][tile_col] = pre_tok + tile_tok;
pre_tok = tok[tile_row][tile_col];
tile_tok = allocated_tokens(tile[tile_row][tile_col]);
}
}
for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
const TileInfo * const ptile = &tile[tile_row][tile_col];
TOKENEXTRA * const old_tok = tok[tile_row][tile_col];
int mi_row;
for (mi_row = ptile->mi_row_start; mi_row < ptile->mi_row_end;
mi_row += MI_BLOCK_SIZE) {
if (cpi->sf.use_nonrd_pick_mode && !frame_is_intra_only(cm))
encode_nonrd_sb_row(cpi, ptile, mi_row, &tok[tile_row][tile_col]);
else
encode_rd_sb_row(cpi, ptile, mi_row, &tok[tile_row][tile_col]);
}
cpi->tok_count[tile_row][tile_col] =
(unsigned int)(tok[tile_row][tile_col] - old_tok);
assert(tok[tile_row][tile_col] - old_tok <= allocated_tokens(*ptile));
}
}
}
#if CONFIG_FP_MB_STATS
static int input_fpmb_stats(FIRSTPASS_MB_STATS *firstpass_mb_stats,
VP9_COMMON *cm, uint8_t **this_frame_mb_stats) {
uint8_t *mb_stats_in = firstpass_mb_stats->mb_stats_start +
cm->current_video_frame * cm->MBs * sizeof(uint8_t);
if (mb_stats_in > firstpass_mb_stats->mb_stats_end)
return EOF;
*this_frame_mb_stats = mb_stats_in;
return 1;
}
#endif
static void encode_frame_internal(VP9_COMP *cpi) {
SPEED_FEATURES *const sf = &cpi->sf;
RD_OPT *const rd_opt = &cpi->rd;
MACROBLOCK *const x = &cpi->mb;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
xd->mi = cm->mi;
xd->mi[0].src_mi = &xd->mi[0];
vp9_zero(cm->counts);
vp9_zero(cpi->coef_counts);
vp9_zero(rd_opt->comp_pred_diff);
vp9_zero(rd_opt->filter_diff);
vp9_zero(rd_opt->tx_select_diff);
vp9_zero(rd_opt->tx_select_threshes);
xd->lossless = cm->base_qindex == 0 &&
cm->y_dc_delta_q == 0 &&
cm->uv_dc_delta_q == 0 &&
cm->uv_ac_delta_q == 0;
cm->tx_mode = select_tx_mode(cpi);
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth)
x->fwd_txm4x4 = xd->lossless ? vp9_fwht4x4 : vp9_fdct4x4;
else
x->fwd_txm4x4 = xd->lossless ? vp9_highbd_fwht4x4 : vp9_highbd_fdct4x4;
x->highbd_itxm_add = xd->lossless ? vp9_highbd_iwht4x4_add :
vp9_highbd_idct4x4_add;
#else
x->fwd_txm4x4 = xd->lossless ? vp9_fwht4x4 : vp9_fdct4x4;
#endif // CONFIG_VP9_HIGHBITDEPTH
x->itxm_add = xd->lossless ? vp9_iwht4x4_add : vp9_idct4x4_add;
if (xd->lossless) {
x->optimize = 0;
cm->lf.filter_level = 0;
cpi->zbin_mode_boost_enabled = 0;
}
vp9_frame_init_quantizer(cpi);
vp9_initialize_rd_consts(cpi);
vp9_initialize_me_consts(cpi, cm->base_qindex);
init_encode_frame_mb_context(cpi);
set_prev_mi(cm);
x->quant_fp = cpi->sf.use_quant_fp;
vp9_zero(x->skip_txfm);
if (sf->use_nonrd_pick_mode) {
// Initialize internal buffer pointers for rtc coding, where non-RD
// mode decision is used and hence no buffer pointer swap needed.
int i;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
PICK_MODE_CONTEXT *ctx = &cpi->pc_root->none;
for (i = 0; i < MAX_MB_PLANE; ++i) {
p[i].coeff = ctx->coeff_pbuf[i][0];
p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
p[i].eobs = ctx->eobs_pbuf[i][0];
}
vp9_zero(x->zcoeff_blk);
if (sf->partition_search_type == SOURCE_VAR_BASED_PARTITION)
source_var_based_partition_search_method(cpi);
}
{
struct vpx_usec_timer emr_timer;
vpx_usec_timer_start(&emr_timer);
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
input_fpmb_stats(&cpi->twopass.firstpass_mb_stats, cm,
&cpi->twopass.this_frame_mb_stats);
}
#endif
encode_tiles(cpi);
vpx_usec_timer_mark(&emr_timer);
cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer);
}
sf->skip_encode_frame = sf->skip_encode_sb ? get_skip_encode_frame(cm) : 0;
#if 0
// Keep record of the total distortion this time around for future use
cpi->last_frame_distortion = cpi->frame_distortion;
#endif
}
static INTERP_FILTER get_interp_filter(
const int64_t threshes[SWITCHABLE_FILTER_CONTEXTS], int is_alt_ref) {
if (!is_alt_ref &&
threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP] &&
threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP_SHARP] &&
threshes[EIGHTTAP_SMOOTH] > threshes[SWITCHABLE - 1]) {
return EIGHTTAP_SMOOTH;
} else if (threshes[EIGHTTAP_SHARP] > threshes[EIGHTTAP] &&
threshes[EIGHTTAP_SHARP] > threshes[SWITCHABLE - 1]) {
return EIGHTTAP_SHARP;
} else if (threshes[EIGHTTAP] > threshes[SWITCHABLE - 1]) {
return EIGHTTAP;
} else {
return SWITCHABLE;
}
}
void vp9_encode_frame(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
RD_OPT *const rd_opt = &cpi->rd;
// In the longer term the encoder should be generalized to match the
// decoder such that we allow compound where one of the 3 buffers has a
// different sign bias and that buffer is then the fixed ref. However, this
// requires further work in the rd loop. For now the only supported encoder
// side behavior is where the ALT ref buffer has opposite sign bias to
// the other two.
if (!frame_is_intra_only(cm)) {
if ((cm->ref_frame_sign_bias[ALTREF_FRAME] ==
cm->ref_frame_sign_bias[GOLDEN_FRAME]) ||
(cm->ref_frame_sign_bias[ALTREF_FRAME] ==
cm->ref_frame_sign_bias[LAST_FRAME])) {
cm->allow_comp_inter_inter = 0;
} else {
cm->allow_comp_inter_inter = 1;
cm->comp_fixed_ref = ALTREF_FRAME;
cm->comp_var_ref[0] = LAST_FRAME;
cm->comp_var_ref[1] = GOLDEN_FRAME;
}
}
if (cpi->sf.frame_parameter_update) {
int i;
// This code does a single RD pass over the whole frame assuming
// either compound, single or hybrid prediction as per whatever has
// worked best for that type of frame in the past.
// It also predicts whether another coding mode would have worked
// better that this coding mode. If that is the case, it remembers
// that for subsequent frames.
// It does the same analysis for transform size selection also.
const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi);
int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type];
int64_t *const filter_thrs = rd_opt->filter_threshes[frame_type];
int *const tx_thrs = rd_opt->tx_select_threshes[frame_type];
const int is_alt_ref = frame_type == ALTREF_FRAME;
/* prediction (compound, single or hybrid) mode selection */
if (is_alt_ref || !cm->allow_comp_inter_inter)
cm->reference_mode = SINGLE_REFERENCE;
else if (mode_thrs[COMPOUND_REFERENCE] > mode_thrs[SINGLE_REFERENCE] &&
mode_thrs[COMPOUND_REFERENCE] >
mode_thrs[REFERENCE_MODE_SELECT] &&
check_dual_ref_flags(cpi) &&
cpi->static_mb_pct == 100)
cm->reference_mode = COMPOUND_REFERENCE;
else if (mode_thrs[SINGLE_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT])
cm->reference_mode = SINGLE_REFERENCE;
else
cm->reference_mode = REFERENCE_MODE_SELECT;
if (cm->interp_filter == SWITCHABLE)
cm->interp_filter = get_interp_filter(filter_thrs, is_alt_ref);
encode_frame_internal(cpi);
for (i = 0; i < REFERENCE_MODES; ++i)
mode_thrs[i] = (mode_thrs[i] + rd_opt->comp_pred_diff[i] / cm->MBs) / 2;
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
filter_thrs[i] = (filter_thrs[i] + rd_opt->filter_diff[i] / cm->MBs) / 2;
for (i = 0; i < TX_MODES; ++i) {
int64_t pd = rd_opt->tx_select_diff[i];
if (i == TX_MODE_SELECT)
pd -= RDCOST(cpi->mb.rdmult, cpi->mb.rddiv, 2048 * (TX_SIZES - 1), 0);
tx_thrs[i] = (tx_thrs[i] + (int)(pd / cm->MBs)) / 2;
}
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
int single_count_zero = 0;
int comp_count_zero = 0;
for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
single_count_zero += cm->counts.comp_inter[i][0];
comp_count_zero += cm->counts.comp_inter[i][1];
}
if (comp_count_zero == 0) {
cm->reference_mode = SINGLE_REFERENCE;
vp9_zero(cm->counts.comp_inter);
} else if (single_count_zero == 0) {
cm->reference_mode = COMPOUND_REFERENCE;
vp9_zero(cm->counts.comp_inter);
}
}
if (cm->tx_mode == TX_MODE_SELECT) {
int count4x4 = 0;
int count8x8_lp = 0, count8x8_8x8p = 0;
int count16x16_16x16p = 0, count16x16_lp = 0;
int count32x32 = 0;
for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
count4x4 += cm->counts.tx.p32x32[i][TX_4X4];
count4x4 += cm->counts.tx.p16x16[i][TX_4X4];
count4x4 += cm->counts.tx.p8x8[i][TX_4X4];
count8x8_lp += cm->counts.tx.p32x32[i][TX_8X8];
count8x8_lp += cm->counts.tx.p16x16[i][TX_8X8];
count8x8_8x8p += cm->counts.tx.p8x8[i][TX_8X8];
count16x16_16x16p += cm->counts.tx.p16x16[i][TX_16X16];
count16x16_lp += cm->counts.tx.p32x32[i][TX_16X16];
count32x32 += cm->counts.tx.p32x32[i][TX_32X32];
}
if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
count32x32 == 0) {
cm->tx_mode = ALLOW_8X8;
reset_skip_tx_size(cm, TX_8X8);
} else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
cm->tx_mode = ONLY_4X4;
reset_skip_tx_size(cm, TX_4X4);
} else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
cm->tx_mode = ALLOW_32X32;
} else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
cm->tx_mode = ALLOW_16X16;
reset_skip_tx_size(cm, TX_16X16);
}
}
} else {
cm->reference_mode = SINGLE_REFERENCE;
encode_frame_internal(cpi);
}
}
static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi) {
const PREDICTION_MODE y_mode = mi->mbmi.mode;
const PREDICTION_MODE uv_mode = mi->mbmi.uv_mode;
const BLOCK_SIZE bsize = mi->mbmi.sb_type;
if (bsize < BLOCK_8X8) {
int idx, idy;
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
for (idy = 0; idy < 2; idy += num_4x4_h)
for (idx = 0; idx < 2; idx += num_4x4_w)
++counts->y_mode[0][mi->bmi[idy * 2 + idx].as_mode];
} else {
++counts->y_mode[size_group_lookup[bsize]][y_mode];
}
++counts->uv_mode[y_mode][uv_mode];
}
static int get_zbin_mode_boost(const MB_MODE_INFO *mbmi, int enabled) {
if (enabled) {
if (is_inter_block(mbmi)) {
if (mbmi->mode == ZEROMV) {
return mbmi->ref_frame[0] != LAST_FRAME ? GF_ZEROMV_ZBIN_BOOST
: LF_ZEROMV_ZBIN_BOOST;
} else {
return mbmi->sb_type < BLOCK_8X8 ? SPLIT_MV_ZBIN_BOOST
: MV_ZBIN_BOOST;
}
} else {
return INTRA_ZBIN_BOOST;
}
} else {
return 0;
}
}
static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled,
int mi_row, int mi_col, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *mi_8x8 = xd->mi;
MODE_INFO *mi = mi_8x8;
MB_MODE_INFO *mbmi = &mi->mbmi;
const int seg_skip = vp9_segfeature_active(&cm->seg, mbmi->segment_id,
SEG_LVL_SKIP);
const int mis = cm->mi_stride;
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
x->skip_recode = !x->select_tx_size && mbmi->sb_type >= BLOCK_8X8 &&
cpi->oxcf.aq_mode != COMPLEXITY_AQ &&
cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ &&
cpi->sf.allow_skip_recode;
if (!x->skip_recode && !cpi->sf.use_nonrd_pick_mode)
vpx_memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
x->skip_optimize = ctx->is_coded;
ctx->is_coded = 1;
x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct;
x->skip_encode = (!output_enabled && cpi->sf.skip_encode_frame &&
x->q_index < QIDX_SKIP_THRESH);
if (x->skip_encode)
return;
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
// Experimental code. Special case for gf and arf zeromv modes.
// Increase zbin size to suppress noise
cpi->zbin_mode_boost = get_zbin_mode_boost(mbmi,
cpi->zbin_mode_boost_enabled);
vp9_update_zbin_extra(cpi, x);
if (!is_inter_block(mbmi)) {
int plane;
mbmi->skip = 1;
for (plane = 0; plane < MAX_MB_PLANE; ++plane)
vp9_encode_intra_block_plane(x, MAX(bsize, BLOCK_8X8), plane);
if (output_enabled)
sum_intra_stats(&cm->counts, mi);
vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8));
} else {
int ref;
const int is_compound = has_second_ref(mbmi);
for (ref = 0; ref < 1 + is_compound; ++ref) {
YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi,
mbmi->ref_frame[ref]);
vp9_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
&xd->block_refs[ref]->sf);
}
if (!cpi->sf.reuse_inter_pred_sby || seg_skip)
vp9_build_inter_predictors_sby(xd, mi_row, mi_col, MAX(bsize, BLOCK_8X8));
vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, MAX(bsize, BLOCK_8X8));
vp9_encode_sb(x, MAX(bsize, BLOCK_8X8));
vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8));
}
if (output_enabled) {
if (cm->tx_mode == TX_MODE_SELECT &&
mbmi->sb_type >= BLOCK_8X8 &&
!(is_inter_block(mbmi) && (mbmi->skip || seg_skip))) {
++get_tx_counts(max_txsize_lookup[bsize], vp9_get_tx_size_context(xd),
&cm->counts.tx)[mbmi->tx_size];
} else {
int x, y;
TX_SIZE tx_size;
// The new intra coding scheme requires no change of transform size
if (is_inter_block(&mi->mbmi)) {
tx_size = MIN(tx_mode_to_biggest_tx_size[cm->tx_mode],
max_txsize_lookup[bsize]);
} else {
tx_size = (bsize >= BLOCK_8X8) ? mbmi->tx_size : TX_4X4;
}
for (y = 0; y < mi_height; y++)
for (x = 0; x < mi_width; x++)
if (mi_col + x < cm->mi_cols && mi_row + y < cm->mi_rows)
mi_8x8[mis * y + x].src_mi->mbmi.tx_size = tx_size;
}
}
}