vpx/vp8/encoder/bitstream.c
Deb Mukherjee 3f5d60b384 Entropy coding for hybrid transform
Separates the entropy coding context models for 4x4, 8x8 and 16x16
ADST variants.

There is a small improvement for HD (hd/std-hd) by about 0.1-0.2%.
Results on derf/yt are about the same, probably because there is not
enough statistics.

Results may improve somewhat once the initial probability tables are
updated for the hybrid transforms which is coming soon.

Change-Id: Ic7c0c62dacc68ef551054fdb575be8b8507d32a8
2012-09-27 11:21:39 -07:00

2950 lines
90 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp8/common/header.h"
#include "encodemv.h"
#include "vp8/common/entropymode.h"
#include "vp8/common/findnearmv.h"
#include "mcomp.h"
#include "vp8/common/systemdependent.h"
#include <assert.h>
#include <stdio.h>
#include <limits.h>
#include "vp8/common/pragmas.h"
#include "vpx/vpx_encoder.h"
#include "vpx_mem/vpx_mem.h"
#include "bitstream.h"
#include "segmentation.h"
#include "vp8/common/seg_common.h"
#include "vp8/common/pred_common.h"
#include "vp8/common/entropy.h"
#include "vp8/encoder/encodemv.h"
#if CONFIG_NEWBESTREFMV
#include "vp8/common/mvref_common.h"
#endif
#if defined(SECTIONBITS_OUTPUT)
unsigned __int64 Sectionbits[500];
#endif
//int final_packing = 0;
#ifdef ENTROPY_STATS
int intra_mode_stats [VP8_BINTRAMODES] [VP8_BINTRAMODES] [VP8_BINTRAMODES];
unsigned int tree_update_hist [BLOCK_TYPES]
[COEF_BANDS]
[PREV_COEF_CONTEXTS]
[ENTROPY_NODES][2];
#if CONFIG_HYBRIDTRANSFORM
unsigned int hybrid_tree_update_hist [BLOCK_TYPES]
[COEF_BANDS]
[PREV_COEF_CONTEXTS]
[ENTROPY_NODES][2];
#endif
unsigned int tree_update_hist_8x8 [BLOCK_TYPES_8X8]
[COEF_BANDS]
[PREV_COEF_CONTEXTS]
[ENTROPY_NODES] [2];
#if CONFIG_HYBRIDTRANSFORM8X8
unsigned int hybrid_tree_update_hist_8x8 [BLOCK_TYPES_8X8]
[COEF_BANDS]
[PREV_COEF_CONTEXTS]
[ENTROPY_NODES] [2];
#endif
#if CONFIG_TX16X16
unsigned int tree_update_hist_16x16 [BLOCK_TYPES_16X16]
[COEF_BANDS]
[PREV_COEF_CONTEXTS]
[ENTROPY_NODES] [2];
#if CONFIG_HYBRIDTRANSFORM16X16
unsigned int hybrid_tree_update_hist_16x16 [BLOCK_TYPES_16X16]
[COEF_BANDS]
[PREV_COEF_CONTEXTS]
[ENTROPY_NODES] [2];
#endif
#endif
extern unsigned int active_section;
#endif
#ifdef MODE_STATS
int count_mb_seg[4] = { 0, 0, 0, 0 };
#endif
#define vp8_cost_upd ((int)(vp8_cost_one(upd) - vp8_cost_zero(upd)) >> 8)
#define vp8_cost_upd256 ((int)(vp8_cost_one(upd) - vp8_cost_zero(upd)))
#define SEARCH_NEWP
static int update_bits[255];
static void compute_update_table() {
int i;
for (i = 0; i < 255; i++)
update_bits[i] = vp8_count_term_subexp(i, SUBEXP_PARAM, 255);
}
static int split_index(int i, int n, int modulus) {
int max1 = (n - 1 - modulus / 2) / modulus + 1;
if (i % modulus == modulus / 2) i = i / modulus;
else i = max1 + i - (i + modulus - modulus / 2) / modulus;
return i;
}
static int remap_prob(int v, int m) {
const int n = 256;
const int modulus = MODULUS_PARAM;
int i;
if ((m << 1) <= n)
i = recenter_nonneg(v, m) - 1;
else
i = recenter_nonneg(n - 1 - v, n - 1 - m) - 1;
i = split_index(i, n - 1, modulus);
return i;
}
static void write_prob_diff_update(vp8_writer *const w,
vp8_prob newp, vp8_prob oldp) {
int delp = remap_prob(newp, oldp);
vp8_encode_term_subexp(w, delp, SUBEXP_PARAM, 255);
}
static int prob_diff_update_cost(vp8_prob newp, vp8_prob oldp) {
int delp = remap_prob(newp, oldp);
return update_bits[delp] * 256;
}
#if CONFIG_NEW_MVREF
// Estimate the cost of each coding the vector using each reference candidate
unsigned int pick_best_mv_ref( MACROBLOCK *x,
int_mv target_mv,
int_mv * mv_ref_list,
int_mv * best_ref ) {
int i;
int best_index = 0;
int cost, cost2;
int index_cost[MAX_MV_REFS];
MACROBLOCKD *xd = &x->e_mbd;
/*unsigned int distance, distance2;
distance = mv_distance(&target_mv, &mv_ref_list[0]);
for (i = 1; i < MAX_MV_REFS; ++i ) {
distance2 =
mv_distance(&target_mv, &mv_ref_list[i]);
if (distance2 < distance) {
distance = distance2;
best_index = i;
}
}*/
// For now estimate the cost of selecting a given ref index
// as index * 1 bits (but here 1 bit is scaled to 256)
for (i = 0; i < MAX_MV_REFS; ++i ) {
index_cost[i] = i << 8;
}
index_cost[0] = vp8_cost_zero(205);
index_cost[1] = vp8_cost_zero(40);
index_cost[2] = vp8_cost_zero(8);
index_cost[3] = vp8_cost_zero(2);
cost = index_cost[0] +
vp8_mv_bit_cost(&target_mv,
&mv_ref_list[0],
XMVCOST, 96,
xd->allow_high_precision_mv);
//for (i = 1; i < MAX_MV_REFS; ++i ) {
for (i = 1; i < 4; ++i ) {
cost2 = index_cost[i] +
vp8_mv_bit_cost(&target_mv,
&mv_ref_list[i],
XMVCOST, 96,
xd->allow_high_precision_mv);
if (cost2 < cost) {
cost = cost2;
best_index = i;
}
}
(*best_ref).as_int = mv_ref_list[best_index].as_int;
return best_index;
}
#endif
static void update_mode(
vp8_writer *const w,
int n,
vp8_token tok [/* n */],
vp8_tree tree,
vp8_prob Pnew [/* n-1 */],
vp8_prob Pcur [/* n-1 */],
unsigned int bct [/* n-1 */] [2],
const unsigned int num_events[/* n */]
) {
unsigned int new_b = 0, old_b = 0;
int i = 0;
vp8_tree_probs_from_distribution(
n--, tok, tree,
Pnew, bct, num_events,
256, 1
);
do {
new_b += vp8_cost_branch(bct[i], Pnew[i]);
old_b += vp8_cost_branch(bct[i], Pcur[i]);
} while (++i < n);
if (new_b + (n << 8) < old_b) {
int i = 0;
vp8_write_bit(w, 1);
do {
const vp8_prob p = Pnew[i];
vp8_write_literal(w, Pcur[i] = p ? p : 1, 8);
} while (++i < n);
} else
vp8_write_bit(w, 0);
}
static void update_mbintra_mode_probs(VP8_COMP *cpi) {
VP8_COMMON *const cm = & cpi->common;
vp8_writer *const w = & cpi->bc;
{
vp8_prob Pnew [VP8_YMODES - 1];
unsigned int bct [VP8_YMODES - 1] [2];
update_mode(
w, VP8_YMODES, vp8_ymode_encodings, vp8_ymode_tree,
Pnew, cm->fc.ymode_prob, bct, (unsigned int *)cpi->ymode_count
);
}
}
void update_skip_probs(VP8_COMP *cpi) {
VP8_COMMON *const pc = & cpi->common;
int prob_skip_false[3] = {0, 0, 0};
int k;
for (k = 0; k < MBSKIP_CONTEXTS; ++k) {
if ((cpi->skip_false_count[k] + cpi->skip_true_count[k])) {
prob_skip_false[k] =
cpi->skip_false_count[k] * 256 /
(cpi->skip_false_count[k] + cpi->skip_true_count[k]);
if (prob_skip_false[k] <= 1)
prob_skip_false[k] = 1;
if (prob_skip_false[k] > 255)
prob_skip_false[k] = 255;
} else
prob_skip_false[k] = 128;
pc->mbskip_pred_probs[k] = prob_skip_false[k];
}
}
#if CONFIG_SWITCHABLE_INTERP
void update_switchable_interp_probs(VP8_COMP *cpi) {
VP8_COMMON *const pc = & cpi->common;
vp8_writer *const w = & cpi->bc;
unsigned int branch_ct[32][2];
int i, j;
for (j = 0; j <= VP8_SWITCHABLE_FILTERS; ++j) {
//for (j = 0; j <= 0; ++j) {
/*
if (!cpi->dummy_packing)
#if VP8_SWITCHABLE_FILTERS == 3
printf("HELLO %d %d %d\n", cpi->switchable_interp_count[j][0],
cpi->switchable_interp_count[j][1], cpi->switchable_interp_count[j][2]);
#else
printf("HELLO %d %d\n", cpi->switchable_interp_count[j][0],
cpi->switchable_interp_count[j][1]);
#endif
*/
vp8_tree_probs_from_distribution(
VP8_SWITCHABLE_FILTERS,
vp8_switchable_interp_encodings, vp8_switchable_interp_tree,
pc->fc.switchable_interp_prob[j], branch_ct, cpi->switchable_interp_count[j],
256, 1
);
for (i = 0; i < VP8_SWITCHABLE_FILTERS - 1; ++i) {
if (pc->fc.switchable_interp_prob[j][i] < 1)
pc->fc.switchable_interp_prob[j][i] = 1;
vp8_write_literal(w, pc->fc.switchable_interp_prob[j][i], 8);
/*
if (!cpi->dummy_packing)
#if VP8_SWITCHABLE_FILTERS == 3
printf("Probs %d %d [%d]\n",
pc->fc.switchable_interp_prob[j][0],
pc->fc.switchable_interp_prob[j][1], pc->frame_type);
#else
printf("Probs %d [%d]\n", pc->fc.switchable_interp_prob[j][0],
pc->frame_type);
#endif
*/
}
}
/*
if (!cpi->dummy_packing)
#if VP8_SWITCHABLE_FILTERS == 3
printf("Probs %d %d [%d]\n",
pc->fc.switchable_interp_prob[0], pc->fc.switchable_interp_prob[1], pc->frame_type);
#else
printf("Probs %d [%d]\n", pc->fc.switchable_interp_prob[0], pc->frame_type);
#endif
*/
}
#endif
// This function updates the reference frame prediction stats
static void update_refpred_stats(VP8_COMP *cpi) {
VP8_COMMON *const cm = & cpi->common;
int i;
int tot_count;
vp8_prob new_pred_probs[PREDICTION_PROBS];
int old_cost, new_cost;
// Set the prediction probability structures to defaults
if (cm->frame_type == KEY_FRAME) {
// Set the prediction probabilities to defaults
cm->ref_pred_probs[0] = 120;
cm->ref_pred_probs[1] = 80;
cm->ref_pred_probs[2] = 40;
vpx_memset(cpi->ref_pred_probs_update, 0,
sizeof(cpi->ref_pred_probs_update));
} else {
// From the prediction counts set the probabilities for each context
for (i = 0; i < PREDICTION_PROBS; i++) {
tot_count = cpi->ref_pred_count[i][0] + cpi->ref_pred_count[i][1];
if (tot_count) {
new_pred_probs[i] =
(cpi->ref_pred_count[i][0] * 255 + (tot_count >> 1)) / tot_count;
// Clamp to minimum allowed value
new_pred_probs[i] += !new_pred_probs[i];
} else
new_pred_probs[i] = 128;
// Decide whether or not to update the reference frame probs.
// Returned costs are in 1/256 bit units.
old_cost =
(cpi->ref_pred_count[i][0] * vp8_cost_zero(cm->ref_pred_probs[i])) +
(cpi->ref_pred_count[i][1] * vp8_cost_one(cm->ref_pred_probs[i]));
new_cost =
(cpi->ref_pred_count[i][0] * vp8_cost_zero(new_pred_probs[i])) +
(cpi->ref_pred_count[i][1] * vp8_cost_one(new_pred_probs[i]));
// Cost saving must be >= 8 bits (2048 in these units)
if ((old_cost - new_cost) >= 2048) {
cpi->ref_pred_probs_update[i] = 1;
cm->ref_pred_probs[i] = new_pred_probs[i];
} else
cpi->ref_pred_probs_update[i] = 0;
}
}
}
static void write_ymode(vp8_writer *bc, int m, const vp8_prob *p) {
vp8_write_token(bc, vp8_ymode_tree, p, vp8_ymode_encodings + m);
}
static void kfwrite_ymode(vp8_writer *bc, int m, const vp8_prob *p) {
vp8_write_token(bc, vp8_kf_ymode_tree, p, vp8_kf_ymode_encodings + m);
}
#if CONFIG_SUPERBLOCKS
static void sb_kfwrite_ymode(vp8_writer *bc, int m, const vp8_prob *p) {
vp8_write_token(bc, vp8_uv_mode_tree, p, vp8_sb_kf_ymode_encodings + m);
}
#endif
static void write_i8x8_mode(vp8_writer *bc, int m, const vp8_prob *p) {
vp8_write_token(bc, vp8_i8x8_mode_tree, p, vp8_i8x8_mode_encodings + m);
}
static void write_uv_mode(vp8_writer *bc, int m, const vp8_prob *p) {
vp8_write_token(bc, vp8_uv_mode_tree, p, vp8_uv_mode_encodings + m);
}
static void write_bmode(vp8_writer *bc, int m, const vp8_prob *p) {
vp8_write_token(bc, vp8_bmode_tree, p, vp8_bmode_encodings + m);
}
static void write_split(vp8_writer *bc, int x, const vp8_prob *p) {
vp8_write_token(
bc, vp8_mbsplit_tree, p, vp8_mbsplit_encodings + x
);
}
static int prob_update_savings(const unsigned int *ct,
const vp8_prob oldp, const vp8_prob newp,
const vp8_prob upd) {
const int old_b = vp8_cost_branch256(ct, oldp);
const int new_b = vp8_cost_branch256(ct, newp);
const int update_b = 2048 + vp8_cost_upd256;
return (old_b - new_b - update_b);
}
static int prob_diff_update_savings(const unsigned int *ct,
const vp8_prob oldp, const vp8_prob newp,
const vp8_prob upd) {
const int old_b = vp8_cost_branch256(ct, oldp);
const int new_b = vp8_cost_branch256(ct, newp);
const int update_b = (newp == oldp ? 0 :
prob_diff_update_cost(newp, oldp) + vp8_cost_upd256);
return (old_b - new_b - update_b);
}
static int prob_diff_update_savings_search(const unsigned int *ct,
const vp8_prob oldp, vp8_prob *bestp,
const vp8_prob upd) {
const int old_b = vp8_cost_branch256(ct, oldp);
int new_b, update_b, savings, bestsavings, step;
vp8_prob newp, bestnewp;
bestsavings = 0;
bestnewp = oldp;
step = (*bestp > oldp ? -1 : 1);
for (newp = *bestp; newp != oldp; newp += step) {
new_b = vp8_cost_branch256(ct, newp);
update_b = prob_diff_update_cost(newp, oldp) + vp8_cost_upd256;
savings = old_b - new_b - update_b;
if (savings > bestsavings) {
bestsavings = savings;
bestnewp = newp;
}
}
*bestp = bestnewp;
return bestsavings;
}
static void pack_tokens_c(vp8_writer *w, const TOKENEXTRA *p, int xcount) {
const TOKENEXTRA *const stop = p + xcount;
unsigned int split;
unsigned int shift;
int count = w->count;
unsigned int range = w->range;
unsigned int lowvalue = w->lowvalue;
while (p < stop) {
const int t = p->Token;
vp8_token *const a = vp8_coef_encodings + t;
const vp8_extra_bit_struct *const b = vp8_extra_bits + t;
int i = 0;
const unsigned char *pp = p->context_tree;
int v = a->value;
int n = a->Len;
/* skip one or two nodes */
if (p->skip_eob_node) {
n -= p->skip_eob_node;
i = 2 * p->skip_eob_node;
}
do {
const int bb = (v >> --n) & 1;
split = 1 + (((range - 1) * pp[i >> 1]) >> 8);
i = vp8_coef_tree[i + bb];
if (bb) {
lowvalue += split;
range = range - split;
} else {
range = split;
}
shift = vp8_norm[range];
range <<= shift;
count += shift;
if (count >= 0) {
int offset = shift - count;
if ((lowvalue << (offset - 1)) & 0x80000000) {
int x = w->pos - 1;
while (x >= 0 && w->buffer[x] == 0xff) {
w->buffer[x] = (unsigned char)0;
x--;
}
w->buffer[x] += 1;
}
w->buffer[w->pos++] = (lowvalue >> (24 - offset));
lowvalue <<= offset;
shift = count;
lowvalue &= 0xffffff;
count -= 8;
}
lowvalue <<= shift;
} while (n);
if (b->base_val) {
const int e = p->Extra, L = b->Len;
if (L) {
const unsigned char *pp = b->prob;
int v = e >> 1;
int n = L; /* number of bits in v, assumed nonzero */
int i = 0;
do {
const int bb = (v >> --n) & 1;
split = 1 + (((range - 1) * pp[i >> 1]) >> 8);
i = b->tree[i + bb];
if (bb) {
lowvalue += split;
range = range - split;
} else {
range = split;
}
shift = vp8_norm[range];
range <<= shift;
count += shift;
if (count >= 0) {
int offset = shift - count;
if ((lowvalue << (offset - 1)) & 0x80000000) {
int x = w->pos - 1;
while (x >= 0 && w->buffer[x] == 0xff) {
w->buffer[x] = (unsigned char)0;
x--;
}
w->buffer[x] += 1;
}
w->buffer[w->pos++] = (lowvalue >> (24 - offset));
lowvalue <<= offset;
shift = count;
lowvalue &= 0xffffff;
count -= 8;
}
lowvalue <<= shift;
} while (n);
}
{
split = (range + 1) >> 1;
if (e & 1) {
lowvalue += split;
range = range - split;
} else {
range = split;
}
range <<= 1;
if ((lowvalue & 0x80000000)) {
int x = w->pos - 1;
while (x >= 0 && w->buffer[x] == 0xff) {
w->buffer[x] = (unsigned char)0;
x--;
}
w->buffer[x] += 1;
}
lowvalue <<= 1;
if (!++count) {
count = -8;
w->buffer[w->pos++] = (lowvalue >> 24);
lowvalue &= 0xffffff;
}
}
}
++p;
}
w->count = count;
w->lowvalue = lowvalue;
w->range = range;
}
static void write_partition_size(unsigned char *cx_data, int size) {
signed char csize;
csize = size & 0xff;
*cx_data = csize;
csize = (size >> 8) & 0xff;
*(cx_data + 1) = csize;
csize = (size >> 16) & 0xff;
*(cx_data + 2) = csize;
}
static void write_mv_ref
(
vp8_writer *w, MB_PREDICTION_MODE m, const vp8_prob *p
) {
#if CONFIG_DEBUG
assert(NEARESTMV <= m && m <= SPLITMV);
#endif
vp8_write_token(w, vp8_mv_ref_tree, p,
vp8_mv_ref_encoding_array - NEARESTMV + m);
}
#if CONFIG_SUPERBLOCKS
static void write_sb_mv_ref(vp8_writer *w, MB_PREDICTION_MODE m, const vp8_prob *p) {
#if CONFIG_DEBUG
assert(NEARESTMV <= m && m < SPLITMV);
#endif
vp8_write_token(w, vp8_sb_mv_ref_tree, p,
vp8_sb_mv_ref_encoding_array - NEARESTMV + m);
}
#endif
static void write_sub_mv_ref
(
vp8_writer *w, B_PREDICTION_MODE m, const vp8_prob *p
) {
#if CONFIG_DEBUG
assert(LEFT4X4 <= m && m <= NEW4X4);
#endif
vp8_write_token(w, vp8_sub_mv_ref_tree, p,
vp8_sub_mv_ref_encoding_array - LEFT4X4 + m);
}
#if CONFIG_NEWMVENTROPY
static void write_nmv (vp8_writer *w, const MV *mv, const int_mv *ref,
const nmv_context *nmvc, int usehp) {
MV e;
e.row = mv->row - ref->as_mv.row;
e.col = mv->col - ref->as_mv.col;
vp8_encode_nmv(w, &e, &ref->as_mv, nmvc);
vp8_encode_nmv_fp(w, &e, &ref->as_mv, nmvc, usehp);
}
#else
static void write_mv
(
vp8_writer *w, const MV *mv, const int_mv *ref, const MV_CONTEXT *mvc
) {
MV e;
e.row = mv->row - ref->as_mv.row;
e.col = mv->col - ref->as_mv.col;
vp8_encode_motion_vector(w, &e, mvc);
}
static void write_mv_hp
(
vp8_writer *w, const MV *mv, const int_mv *ref, const MV_CONTEXT_HP *mvc
) {
MV e;
e.row = mv->row - ref->as_mv.row;
e.col = mv->col - ref->as_mv.col;
vp8_encode_motion_vector_hp(w, &e, mvc);
}
#endif /* CONFIG_NEWMVENTROPY */
// This function writes the current macro block's segnment id to the bitstream
// It should only be called if a segment map update is indicated.
static void write_mb_segid(vp8_writer *w,
const MB_MODE_INFO *mi, const MACROBLOCKD *xd) {
// Encode the MB segment id.
if (xd->segmentation_enabled && xd->update_mb_segmentation_map) {
switch (mi->segment_id) {
case 0:
vp8_write(w, 0, xd->mb_segment_tree_probs[0]);
vp8_write(w, 0, xd->mb_segment_tree_probs[1]);
break;
case 1:
vp8_write(w, 0, xd->mb_segment_tree_probs[0]);
vp8_write(w, 1, xd->mb_segment_tree_probs[1]);
break;
case 2:
vp8_write(w, 1, xd->mb_segment_tree_probs[0]);
vp8_write(w, 0, xd->mb_segment_tree_probs[2]);
break;
case 3:
vp8_write(w, 1, xd->mb_segment_tree_probs[0]);
vp8_write(w, 1, xd->mb_segment_tree_probs[2]);
break;
// TRAP.. This should not happen
default:
vp8_write(w, 0, xd->mb_segment_tree_probs[0]);
vp8_write(w, 0, xd->mb_segment_tree_probs[1]);
break;
}
}
}
// This function encodes the reference frame
static void encode_ref_frame(vp8_writer *const w,
VP8_COMMON *const cm,
MACROBLOCKD *xd,
int segment_id,
MV_REFERENCE_FRAME rf) {
int seg_ref_active;
int seg_ref_count = 0;
seg_ref_active = segfeature_active(xd,
segment_id,
SEG_LVL_REF_FRAME);
if (seg_ref_active) {
seg_ref_count = check_segref(xd, segment_id, INTRA_FRAME) +
check_segref(xd, segment_id, LAST_FRAME) +
check_segref(xd, segment_id, GOLDEN_FRAME) +
check_segref(xd, segment_id, ALTREF_FRAME);
}
// If segment level coding of this signal is disabled...
// or the segment allows multiple reference frame options
if (!seg_ref_active || (seg_ref_count > 1)) {
// Values used in prediction model coding
unsigned char prediction_flag;
vp8_prob pred_prob;
MV_REFERENCE_FRAME pred_rf;
// Get the context probability the prediction flag
pred_prob = get_pred_prob(cm, xd, PRED_REF);
// Get the predicted value.
pred_rf = get_pred_ref(cm, xd);
// Did the chosen reference frame match its predicted value.
prediction_flag =
(xd->mode_info_context->mbmi.ref_frame == pred_rf);
set_pred_flag(xd, PRED_REF, prediction_flag);
vp8_write(w, prediction_flag, pred_prob);
// If not predicted correctly then code value explicitly
if (!prediction_flag) {
vp8_prob mod_refprobs[PREDICTION_PROBS];
vpx_memcpy(mod_refprobs,
cm->mod_refprobs[pred_rf], sizeof(mod_refprobs));
// If segment coding enabled blank out options that cant occur by
// setting the branch probability to 0.
if (seg_ref_active) {
mod_refprobs[INTRA_FRAME] *=
check_segref(xd, segment_id, INTRA_FRAME);
mod_refprobs[LAST_FRAME] *=
check_segref(xd, segment_id, LAST_FRAME);
mod_refprobs[GOLDEN_FRAME] *=
(check_segref(xd, segment_id, GOLDEN_FRAME) *
check_segref(xd, segment_id, ALTREF_FRAME));
}
if (mod_refprobs[0]) {
vp8_write(w, (rf != INTRA_FRAME), mod_refprobs[0]);
}
// Inter coded
if (rf != INTRA_FRAME) {
if (mod_refprobs[1]) {
vp8_write(w, (rf != LAST_FRAME), mod_refprobs[1]);
}
if (rf != LAST_FRAME) {
if (mod_refprobs[2]) {
vp8_write(w, (rf != GOLDEN_FRAME), mod_refprobs[2]);
}
}
}
}
}
// if using the prediction mdoel we have nothing further to do because
// the reference frame is fully coded by the segment
}
// Update the probabilities used to encode reference frame data
static void update_ref_probs(VP8_COMP *const cpi) {
VP8_COMMON *const cm = & cpi->common;
const int *const rfct = cpi->count_mb_ref_frame_usage;
const int rf_intra = rfct[INTRA_FRAME];
const int rf_inter = rfct[LAST_FRAME] +
rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
cm->prob_intra_coded = (rf_intra + rf_inter)
? rf_intra * 255 / (rf_intra + rf_inter) : 1;
if (!cm->prob_intra_coded)
cm->prob_intra_coded = 1;
cm->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128;
if (!cm->prob_last_coded)
cm->prob_last_coded = 1;
cm->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
? (rfct[GOLDEN_FRAME] * 255) /
(rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128;
if (!cm->prob_gf_coded)
cm->prob_gf_coded = 1;
// Compute a modified set of probabilities to use when prediction of the
// reference frame fails
compute_mod_refprobs(cm);
}
static void pack_inter_mode_mvs(VP8_COMP *const cpi) {
int i;
VP8_COMMON *const pc = & cpi->common;
vp8_writer *const w = & cpi->bc;
#if CONFIG_NEWMVENTROPY
const nmv_context *nmvc = &pc->fc.nmvc;
#else
const MV_CONTEXT *mvc = pc->fc.mvc;
const MV_CONTEXT_HP *mvc_hp = pc->fc.mvc_hp;
#endif
MACROBLOCK *x = &cpi->mb;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
MODE_INFO *m;
MODE_INFO *prev_m;
const int mis = pc->mode_info_stride;
int mb_row, mb_col;
int row, col;
// Values used in prediction model coding
vp8_prob pred_prob;
unsigned char prediction_flag;
int row_delta[4] = { 0, +1, 0, -1};
int col_delta[4] = { +1, -1, +1, +1};
//final_packing = !cpi->dummy_packing;
cpi->mb.partition_info = cpi->mb.pi;
// Update the probabilities used to encode reference frame data
update_ref_probs(cpi);
#ifdef ENTROPY_STATS
active_section = 1;
#endif
if (pc->mb_no_coeff_skip) {
int k;
update_skip_probs(cpi);
for (k = 0; k < MBSKIP_CONTEXTS; ++k)
vp8_write_literal(w, pc->mbskip_pred_probs[k], 8);
}
#if CONFIG_PRED_FILTER
// Write the prediction filter mode used for this frame
vp8_write_literal(w, pc->pred_filter_mode, 2);
// Write prediction filter on/off probability if signaling at MB level
if (pc->pred_filter_mode == 2)
vp8_write_literal(w, pc->prob_pred_filter_off, 8);
// printf("pred_filter_mode:%d prob_pred_filter_off:%d\n",
// pc->pred_filter_mode, pc->prob_pred_filter_off);
#endif
#if CONFIG_SWITCHABLE_INTERP
if (pc->mcomp_filter_type == SWITCHABLE)
update_switchable_interp_probs(cpi);
#endif
vp8_write_literal(w, pc->prob_intra_coded, 8);
vp8_write_literal(w, pc->prob_last_coded, 8);
vp8_write_literal(w, pc->prob_gf_coded, 8);
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
vp8_write(w, 1, 128);
vp8_write(w, 1, 128);
for (i = 0; i < COMP_PRED_CONTEXTS; i++) {
if (cpi->single_pred_count[i] + cpi->comp_pred_count[i]) {
pc->prob_comppred[i] = cpi->single_pred_count[i] * 255 /
(cpi->single_pred_count[i] + cpi->comp_pred_count[i]);
if (pc->prob_comppred[i] < 1)
pc->prob_comppred[i] = 1;
} else {
pc->prob_comppred[i] = 128;
}
vp8_write_literal(w, pc->prob_comppred[i], 8);
}
} else if (cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY) {
vp8_write(w, 0, 128);
} else { /* compound prediction only */
vp8_write(w, 1, 128);
vp8_write(w, 0, 128);
}
update_mbintra_mode_probs(cpi);
#if CONFIG_NEWMVENTROPY
vp8_write_nmvprobs(cpi, xd->allow_high_precision_mv);
#else
if (xd->allow_high_precision_mv)
vp8_write_mvprobs_hp(cpi);
else
vp8_write_mvprobs(cpi);
#endif
mb_row = 0;
for (row = 0; row < pc->mb_rows; row += 2) {
m = pc->mi + row * mis;
prev_m = pc->prev_mi + row * mis;
mb_col = 0;
for (col = 0; col < pc->mb_cols; col += 2) {
int i;
// Process the 4 MBs in the order:
// top-left, top-right, bottom-left, bottom-right
#if CONFIG_SUPERBLOCKS
vp8_write(w, m->mbmi.encoded_as_sb, pc->sb_coded);
#endif
for (i = 0; i < 4; i++) {
MB_MODE_INFO *mi;
MV_REFERENCE_FRAME rf;
MB_PREDICTION_MODE mode;
int segment_id;
int dy = row_delta[i];
int dx = col_delta[i];
int offset_extended = dy * mis + dx;
if ((mb_row >= pc->mb_rows) || (mb_col >= pc->mb_cols)) {
// MB lies outside frame, move on
mb_row += dy;
mb_col += dx;
m += offset_extended;
prev_m += offset_extended;
cpi->mb.partition_info += offset_extended;
continue;
}
mi = & m->mbmi;
rf = mi->ref_frame;
mode = mi->mode;
segment_id = mi->segment_id;
// Distance of Mb to the various image edges.
// These specified to 8th pel as they are always compared to MV
// values that are in 1/8th pel units
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3;
xd->mb_to_top_edge = -((mb_row * 16)) << 3;
xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3;
// Make sure the MacroBlockD mode info pointer is set correctly
xd->mode_info_context = m;
xd->prev_mode_info_context = prev_m;
#ifdef ENTROPY_STATS
active_section = 9;
#endif
if (cpi->mb.e_mbd.update_mb_segmentation_map) {
// Is temporal coding of the segment map enabled
if (pc->temporal_update) {
prediction_flag = get_pred_flag(xd, PRED_SEG_ID);
pred_prob = get_pred_prob(pc, xd, PRED_SEG_ID);
// Code the segment id prediction flag for this mb
vp8_write(w, prediction_flag, pred_prob);
// If the mb segment id wasn't predicted code explicitly
if (!prediction_flag)
write_mb_segid(w, mi, &cpi->mb.e_mbd);
} else {
// Normal unpredicted coding
write_mb_segid(w, mi, &cpi->mb.e_mbd);
}
}
if (pc->mb_no_coeff_skip &&
(!segfeature_active(xd, segment_id, SEG_LVL_EOB) ||
(get_segdata(xd, segment_id, SEG_LVL_EOB) != 0))) {
int skip_coeff = mi->mb_skip_coeff;
#if CONFIG_SUPERBLOCKS
if (mi->encoded_as_sb) {
skip_coeff &= m[1].mbmi.mb_skip_coeff;
skip_coeff &= m[mis].mbmi.mb_skip_coeff;
skip_coeff &= m[mis + 1].mbmi.mb_skip_coeff;
}
#endif
vp8_encode_bool(w, skip_coeff,
get_pred_prob(pc, xd, PRED_MBSKIP));
}
// Encode the reference frame.
encode_ref_frame(w, pc, xd, segment_id, rf);
if (rf == INTRA_FRAME) {
#ifdef ENTROPY_STATS
active_section = 6;
#endif
// TODO(rbultje) write using SB tree structure
if (!segfeature_active(xd, segment_id, SEG_LVL_MODE)) {
write_ymode(w, mode, pc->fc.ymode_prob);
}
if (mode == B_PRED) {
int j = 0;
#if CONFIG_COMP_INTRA_PRED
int uses_second =
m->bmi[0].as_mode.second !=
(B_PREDICTION_MODE)(B_DC_PRED - 1);
vp8_write(w, uses_second, 128);
#endif
do {
#if CONFIG_COMP_INTRA_PRED
B_PREDICTION_MODE mode2 = m->bmi[j].as_mode.second;
#endif
write_bmode(w, m->bmi[j].as_mode.first,
pc->fc.bmode_prob);
#if CONFIG_COMP_INTRA_PRED
if (uses_second) {
write_bmode(w, mode2, pc->fc.bmode_prob);
}
#endif
} while (++j < 16);
}
if (mode == I8X8_PRED) {
write_i8x8_mode(w, m->bmi[0].as_mode.first,
pc->fc.i8x8_mode_prob);
write_i8x8_mode(w, m->bmi[2].as_mode.first,
pc->fc.i8x8_mode_prob);
write_i8x8_mode(w, m->bmi[8].as_mode.first,
pc->fc.i8x8_mode_prob);
write_i8x8_mode(w, m->bmi[10].as_mode.first,
pc->fc.i8x8_mode_prob);
} else {
write_uv_mode(w, mi->uv_mode,
pc->fc.uv_mode_prob[mode]);
}
} else {
int_mv best_mv, best_second_mv;
int ct[4];
vp8_prob mv_ref_p [VP8_MVREFS - 1];
{
int_mv n1, n2;
vp8_find_near_mvs(xd, m, prev_m, &n1, &n2, &best_mv, ct,
rf, cpi->common.ref_frame_sign_bias);
#if CONFIG_NEWBESTREFMV
best_mv.as_int = mi->ref_mv.as_int;
#endif
vp8_mv_ref_probs(&cpi->common, mv_ref_p, ct);
#ifdef ENTROPY_STATS
accum_mv_refs(mode, ct);
#endif
}
#ifdef ENTROPY_STATS
active_section = 3;
#endif
// Is the segment coding of mode enabled
if (!segfeature_active(xd, segment_id, SEG_LVL_MODE)) {
#if CONFIG_SUPERBLOCKS
if (mi->encoded_as_sb) {
write_sb_mv_ref(w, mode, mv_ref_p);
} else
#endif
{
write_mv_ref(w, mode, mv_ref_p);
}
vp8_accum_mv_refs(&cpi->common, mode, ct);
}
#if CONFIG_PRED_FILTER
// Is the prediction filter enabled
if (mode >= NEARESTMV && mode < SPLITMV) {
if (cpi->common.pred_filter_mode == 2)
vp8_write(w, mi->pred_filter_enabled,
pc->prob_pred_filter_off);
else
assert(mi->pred_filter_enabled ==
cpi->common.pred_filter_mode);
}
#endif
#if CONFIG_SWITCHABLE_INTERP
if (mode >= NEARESTMV && mode <= SPLITMV)
{
if (cpi->common.mcomp_filter_type == SWITCHABLE) {
vp8_write_token(w, vp8_switchable_interp_tree,
get_pred_probs(&cpi->common, xd, PRED_SWITCHABLE_INTERP),
vp8_switchable_interp_encodings +
vp8_switchable_interp_map[mi->interp_filter]);
//if (!cpi->dummy_packing) printf("Reading: %d\n", mi->interp_filter);
} else {
assert (mi->interp_filter ==
cpi->common.mcomp_filter_type);
}
}
#endif
if (mi->second_ref_frame &&
(mode == NEWMV || mode == SPLITMV)) {
int_mv n1, n2;
vp8_find_near_mvs(xd, m,
prev_m,
&n1, &n2, &best_second_mv, ct,
mi->second_ref_frame,
cpi->common.ref_frame_sign_bias);
#if CONFIG_NEWBESTREFMV
best_second_mv.as_int = mi->second_ref_mv.as_int;
#endif
}
// does the feature use compound prediction or not
// (if not specified at the frame/segment level)
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
vp8_write(w, mi->second_ref_frame != INTRA_FRAME,
get_pred_prob(pc, xd, PRED_COMP));
}
{
switch (mode) { /* new, split require MVs */
case NEWMV:
#ifdef ENTROPY_STATS
active_section = 5;
#endif
#if 0 //CONFIG_NEW_MVREF
{
unsigned int best_index;
/*find_mv_refs(xd, m, prev_m,
m->mbmi.ref_frame,
mi->ref_mvs[rf],
cpi->common.ref_frame_sign_bias );*/
best_index = pick_best_mv_ref(x, mi->mv[0],
mi->ref_mvs[rf], &best_mv);
cpi->best_ref_index_counts[best_index]++;
}
#endif
#if CONFIG_NEWMVENTROPY
write_nmv(w, &mi->mv[0].as_mv, &best_mv,
(const nmv_context*) nmvc,
xd->allow_high_precision_mv);
#else
if (xd->allow_high_precision_mv) {
write_mv_hp(w, &mi->mv[0].as_mv, &best_mv, mvc_hp);
} else {
write_mv(w, &mi->mv[0].as_mv, &best_mv, mvc);
}
#endif
if (mi->second_ref_frame) {
#if 0 //CONFIG_NEW_MVREF
unsigned int best_index;
/*find_mv_refs(xd, m, prev_m,
m->mbmi.second_ref_frame,
mi->ref_mvs[mi->second_ref_frame],
cpi->common.ref_frame_sign_bias );*/
best_index =
pick_best_mv_ref(x, mi->mv[1],
mi->ref_mvs[mi->second_ref_frame],
&best_second_mv);
cpi->best_ref_index_counts[best_index]++;
#endif
#if CONFIG_NEWMVENTROPY
write_nmv(w, &mi->mv[1].as_mv, &best_second_mv,
(const nmv_context*) nmvc,
xd->allow_high_precision_mv);
#else
if (xd->allow_high_precision_mv) {
write_mv_hp(w, &mi->mv[1].as_mv, &best_second_mv, mvc_hp);
} else {
write_mv(w, &mi->mv[1].as_mv, &best_second_mv, mvc);
}
#endif
}
break;
case SPLITMV: {
int j = 0;
#ifdef MODE_STATS
++count_mb_seg [mi->partitioning];
#endif
write_split(w, mi->partitioning, cpi->common.fc.mbsplit_prob);
cpi->mbsplit_count[mi->partitioning]++;
do {
B_PREDICTION_MODE blockmode;
int_mv blockmv;
const int *const L =
vp8_mbsplits [mi->partitioning];
int k = -1; /* first block in subset j */
int mv_contz;
int_mv leftmv, abovemv;
blockmode = cpi->mb.partition_info->bmi[j].mode;
blockmv = cpi->mb.partition_info->bmi[j].mv;
#if CONFIG_DEBUG
while (j != L[++k])
if (k >= 16)
assert(0);
#else
while (j != L[++k]);
#endif
leftmv.as_int = left_block_mv(m, k);
abovemv.as_int = above_block_mv(m, k, mis);
mv_contz = vp8_mv_cont(&leftmv, &abovemv);
write_sub_mv_ref(w, blockmode,
cpi->common.fc.sub_mv_ref_prob [mv_contz]);
cpi->sub_mv_ref_count[mv_contz][blockmode - LEFT4X4]++;
if (blockmode == NEW4X4) {
#ifdef ENTROPY_STATS
active_section = 11;
#endif
#if CONFIG_NEWMVENTROPY
write_nmv(w, &blockmv.as_mv, &best_mv,
(const nmv_context*) nmvc,
xd->allow_high_precision_mv);
#else
if (xd->allow_high_precision_mv) {
write_mv_hp(w, &blockmv.as_mv, &best_mv,
(const MV_CONTEXT_HP *) mvc_hp);
} else {
write_mv(w, &blockmv.as_mv, &best_mv,
(const MV_CONTEXT *) mvc);
}
#endif
if (mi->second_ref_frame) {
#if CONFIG_NEWMVENTROPY
write_nmv(w,
&cpi->mb.partition_info->bmi[j].second_mv.as_mv,
&best_second_mv,
(const nmv_context*) nmvc,
xd->allow_high_precision_mv);
#else
if (xd->allow_high_precision_mv) {
write_mv_hp(w, &cpi->mb.partition_info->bmi[j].second_mv.as_mv,
&best_second_mv, (const MV_CONTEXT_HP *) mvc_hp);
} else {
write_mv(w, &cpi->mb.partition_info->bmi[j].second_mv.as_mv,
&best_second_mv, (const MV_CONTEXT *) mvc);
}
#endif
}
}
} while (++j < cpi->mb.partition_info->count);
}
break;
default:
break;
}
}
}
#if CONFIG_SUPERBLOCKS
if (m->mbmi.encoded_as_sb) {
assert(!i);
mb_col += 2;
m += 2;
cpi->mb.partition_info += 2;
prev_m += 2;
break;
}
#endif
// Next MB
mb_row += dy;
mb_col += dx;
m += offset_extended;
prev_m += offset_extended;
cpi->mb.partition_info += offset_extended;
#if CONFIG_DEBUG
assert((prev_m - cpi->common.prev_mip) == (m - cpi->common.mip));
assert((prev_m - cpi->common.prev_mi) == (m - cpi->common.mi));
#endif
}
}
// Next SB
mb_row += 2;
m += mis + (1 - (pc->mb_cols & 0x1));
prev_m += mis + (1 - (pc->mb_cols & 0x1));
cpi->mb.partition_info += mis + (1 - (pc->mb_cols & 0x1));
}
}
static void write_kfmodes(VP8_COMP *cpi) {
vp8_writer *const bc = & cpi->bc;
VP8_COMMON *const c = & cpi->common;
const int mis = c->mode_info_stride;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
MODE_INFO *m;
int i;
int row, col;
int mb_row, mb_col;
int prob_skip_false[3] = {0, 0, 0};
int row_delta[4] = { 0, +1, 0, -1};
int col_delta[4] = { +1, -1, +1, +1};
// printf("write_kfmodes\n");
if (c->mb_no_coeff_skip) {
// Divide by 0 check. 0 case possible with segment features
int k;
for (k = 0; k < MBSKIP_CONTEXTS; ++k) {
if ((cpi->skip_false_count[k] + cpi->skip_true_count[k])) {
prob_skip_false[k] = cpi->skip_false_count[k] * 256 /
(cpi->skip_false_count[k] + cpi->skip_true_count[k]);
if (prob_skip_false[k] <= 1)
prob_skip_false[k] = 1;
if (prob_skip_false[k] > 255)
prob_skip_false[k] = 255;
} else
prob_skip_false[k] = 255;
c->mbskip_pred_probs[k] = prob_skip_false[k];
vp8_write_literal(bc, prob_skip_false[k], 8);
}
}
if (!c->kf_ymode_probs_update) {
vp8_write_literal(bc, c->kf_ymode_probs_index, 3);
}
mb_row = 0;
for (row = 0; row < c->mb_rows; row += 2) {
m = c->mi + row * mis;
mb_col = 0;
for (col = 0; col < c->mb_cols; col += 2) {
#if CONFIG_SUPERBLOCKS
vp8_write(bc, m->mbmi.encoded_as_sb, c->sb_coded);
#endif
// Process the 4 MBs in the order:
// top-left, top-right, bottom-left, bottom-right
for (i = 0; i < 4; i++) {
int ym;
int segment_id;
int dy = row_delta[i];
int dx = col_delta[i];
int offset_extended = dy * mis + dx;
if ((mb_row >= c->mb_rows) || (mb_col >= c->mb_cols)) {
// MB lies outside frame, move on
mb_row += dy;
mb_col += dx;
m += offset_extended;
continue;
}
// Make sure the MacroBlockD mode info pointer is set correctly
xd->mode_info_context = m;
ym = m->mbmi.mode;
segment_id = m->mbmi.segment_id;
if (cpi->mb.e_mbd.update_mb_segmentation_map) {
write_mb_segid(bc, &m->mbmi, &cpi->mb.e_mbd);
}
if (c->mb_no_coeff_skip &&
(!segfeature_active(xd, segment_id, SEG_LVL_EOB) ||
(get_segdata(xd, segment_id, SEG_LVL_EOB) != 0))) {
int skip_coeff = m->mbmi.mb_skip_coeff;
#if CONFIG_SUPERBLOCKS
if (m->mbmi.encoded_as_sb) {
skip_coeff &= m[1].mbmi.mb_skip_coeff;
skip_coeff &= m[mis].mbmi.mb_skip_coeff;
skip_coeff &= m[mis + 1].mbmi.mb_skip_coeff;
}
#endif
vp8_encode_bool(bc, skip_coeff,
get_pred_prob(c, xd, PRED_MBSKIP));
}
#if CONFIG_SUPERBLOCKS
if (m->mbmi.encoded_as_sb) {
sb_kfwrite_ymode(bc, ym,
c->sb_kf_ymode_prob[c->kf_ymode_probs_index]);
} else
#endif
{
kfwrite_ymode(bc, ym,
c->kf_ymode_prob[c->kf_ymode_probs_index]);
}
if (ym == B_PRED) {
const int mis = c->mode_info_stride;
int i = 0;
#if CONFIG_COMP_INTRA_PRED
int uses_second =
m->bmi[0].as_mode.second !=
(B_PREDICTION_MODE)(B_DC_PRED - 1);
vp8_write(bc, uses_second, 128);
#endif
do {
const B_PREDICTION_MODE A = above_block_mode(m, i, mis);
const B_PREDICTION_MODE L = left_block_mode(m, i);
const int bm = m->bmi[i].as_mode.first;
#if CONFIG_COMP_INTRA_PRED
const int bm2 = m->bmi[i].as_mode.second;
#endif
#ifdef ENTROPY_STATS
++intra_mode_stats [A] [L] [bm];
#endif
write_bmode(bc, bm, c->kf_bmode_prob [A] [L]);
// printf(" mode: %d\n", bm);
#if CONFIG_COMP_INTRA_PRED
if (uses_second) {
write_bmode(bc, bm2, c->kf_bmode_prob [A] [L]);
}
#endif
} while (++i < 16);
}
if (ym == I8X8_PRED) {
write_i8x8_mode(bc, m->bmi[0].as_mode.first,
c->fc.i8x8_mode_prob);
// printf(" mode: %d\n", m->bmi[0].as_mode.first); fflush(stdout);
write_i8x8_mode(bc, m->bmi[2].as_mode.first,
c->fc.i8x8_mode_prob);
// printf(" mode: %d\n", m->bmi[2].as_mode.first); fflush(stdout);
write_i8x8_mode(bc, m->bmi[8].as_mode.first,
c->fc.i8x8_mode_prob);
// printf(" mode: %d\n", m->bmi[8].as_mode.first); fflush(stdout);
write_i8x8_mode(bc, m->bmi[10].as_mode.first,
c->fc.i8x8_mode_prob);
// printf(" mode: %d\n", m->bmi[10].as_mode.first); fflush(stdout);
} else
write_uv_mode(bc, m->mbmi.uv_mode, c->kf_uv_mode_prob[ym]);
#if CONFIG_SUPERBLOCKS
if (m->mbmi.encoded_as_sb) {
assert(!i);
mb_col += 2;
m += 2;
break;
}
#endif
// Next MB
mb_row += dy;
mb_col += dx;
m += offset_extended;
}
}
mb_row += 2;
}
}
/* This function is used for debugging probability trees. */
static void print_prob_tree(vp8_prob
coef_probs[BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS][ENTROPY_NODES]) {
/* print coef probability tree */
int i, j, k, l;
FILE *f = fopen("enc_tree_probs.txt", "a");
fprintf(f, "{\n");
for (i = 0; i < BLOCK_TYPES; i++) {
fprintf(f, " {\n");
for (j = 0; j < COEF_BANDS; j++) {
fprintf(f, " {\n");
for (k = 0; k < PREV_COEF_CONTEXTS; k++) {
fprintf(f, " {");
for (l = 0; l < ENTROPY_NODES; l++) {
fprintf(f, "%3u, ",
(unsigned int)(coef_probs [i][j][k][l]));
}
fprintf(f, " }\n");
}
fprintf(f, " }\n");
}
fprintf(f, " }\n");
}
fprintf(f, "}\n");
fclose(f);
}
void build_coeff_contexts(VP8_COMP *cpi) {
int i = 0, j, k;
#ifdef ENTROPY_STATS
int t = 0;
#endif
for (i = 0; i < BLOCK_TYPES; ++i) {
for (j = 0; j < COEF_BANDS; ++j) {
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
continue;
vp8_tree_probs_from_distribution(
MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
cpi->frame_coef_probs [i][j][k],
cpi->frame_branch_ct [i][j][k],
cpi->coef_counts [i][j][k],
256, 1
);
#ifdef ENTROPY_STATS
if (!cpi->dummy_packing)
for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
context_counters[i][j][k][t] += cpi->coef_counts[i][j][k][t];
#endif
}
}
}
#if CONFIG_HYBRIDTRANSFORM
for (i = 0; i < BLOCK_TYPES; ++i) {
for (j = 0; j < COEF_BANDS; ++j) {
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
continue;
vp8_tree_probs_from_distribution(
MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
cpi->frame_hybrid_coef_probs [i][j][k],
cpi->frame_hybrid_branch_ct [i][j][k],
cpi->hybrid_coef_counts [i][j][k],
256, 1
);
#ifdef ENTROPY_STATS
if (!cpi->dummy_packing)
for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
hybrid_context_counters[i][j][k][t] += cpi->hybrid_coef_counts[i][j][k][t];
#endif
}
}
}
#endif
if (cpi->common.txfm_mode == ALLOW_8X8) {
for (i = 0; i < BLOCK_TYPES_8X8; ++i) {
for (j = 0; j < COEF_BANDS; ++j) {
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
/* at every context */
/* calc probs and branch cts for this frame only */
// vp8_prob new_p [ENTROPY_NODES];
// unsigned int branch_ct [ENTROPY_NODES] [2];
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
continue;
vp8_tree_probs_from_distribution(
MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
cpi->frame_coef_probs_8x8 [i][j][k],
cpi->frame_branch_ct_8x8 [i][j][k],
cpi->coef_counts_8x8 [i][j][k],
256, 1
);
#ifdef ENTROPY_STATS
if (!cpi->dummy_packing)
for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
context_counters_8x8[i][j][k][t] += cpi->coef_counts_8x8[i][j][k][t];
#endif
}
}
}
#if CONFIG_HYBRIDTRANSFORM8X8
for (i = 0; i < BLOCK_TYPES_8X8; ++i) {
for (j = 0; j < COEF_BANDS; ++j) {
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
/* at every context */
/* calc probs and branch cts for this frame only */
// vp8_prob new_p [ENTROPY_NODES];
// unsigned int branch_ct [ENTROPY_NODES] [2];
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
continue;
vp8_tree_probs_from_distribution(
MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
cpi->frame_hybrid_coef_probs_8x8 [i][j][k],
cpi->frame_hybrid_branch_ct_8x8 [i][j][k],
cpi->hybrid_coef_counts_8x8 [i][j][k],
256, 1
);
#ifdef ENTROPY_STATS
if (!cpi->dummy_packing)
for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
hybrid_context_counters_8x8[i][j][k][t] += cpi->hybrid_coef_counts_8x8[i][j][k][t];
#endif
}
}
}
#endif
}
#if CONFIG_TX16X16
//16x16
for (i = 0; i < BLOCK_TYPES_16X16; ++i) {
for (j = 0; j < COEF_BANDS; ++j) {
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
continue;
vp8_tree_probs_from_distribution(
MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
cpi->frame_coef_probs_16x16[i][j][k],
cpi->frame_branch_ct_16x16[i][j][k],
cpi->coef_counts_16x16[i][j][k], 256, 1);
#ifdef ENTROPY_STATS
if (!cpi->dummy_packing)
for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
context_counters_16x16[i][j][k][t] += cpi->coef_counts_16x16[i][j][k][t];
#endif
}
}
}
#if CONFIG_HYBRIDTRANSFORM16X16
for (i = 0; i < BLOCK_TYPES_16X16; ++i) {
for (j = 0; j < COEF_BANDS; ++j) {
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
continue;
vp8_tree_probs_from_distribution(
MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
cpi->frame_hybrid_coef_probs_16x16[i][j][k],
cpi->frame_hybrid_branch_ct_16x16[i][j][k],
cpi->hybrid_coef_counts_16x16[i][j][k], 256, 1);
#ifdef ENTROPY_STATS
if (!cpi->dummy_packing)
for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
hybrid_context_counters_16x16[i][j][k][t] += cpi->hybrid_coef_counts_16x16[i][j][k][t];
#endif
}
}
}
#endif
#endif
}
#if 0
static void update_coef_probs2(VP8_COMP *cpi) {
const vp8_prob grpupd = 192;
int i, j, k, t;
vp8_writer *const w = & cpi->bc;
int update[2];
int savings;
vp8_clear_system_state(); // __asm emms;
// Build the cofficient contexts based on counts collected in encode loop
build_coeff_contexts(cpi);
for (t = 0; t < ENTROPY_NODES; ++t) {
/* dry run to see if there is any udpate at all needed */
savings = 0;
update[0] = update[1] = 0;
for (i = 0; i < BLOCK_TYPES; ++i) {
for (j = !i; j < COEF_BANDS; ++j) {
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
vp8_prob newp = cpi->frame_coef_probs [i][j][k][t];
vp8_prob *Pold = cpi->common.fc.coef_probs [i][j][k] + t;
const vp8_prob upd = COEF_UPDATE_PROB;
int s;
int u = 0;
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
continue;
#if defined(SEARCH_NEWP)
s = prob_diff_update_savings_search(
cpi->frame_branch_ct [i][j][k][t], *Pold, &newp, upd);
if (s > 0 && newp != *Pold) u = 1;
if (u)
savings += s - (int)(vp8_cost_zero(upd));
else
savings -= (int)(vp8_cost_zero(upd));
#else
s = prob_update_savings(
cpi->frame_branch_ct [i][j][k][t], *Pold, newp, upd);
if (s > 0) u = 1;
if (u)
savings += s;
#endif
// printf(" %d %d %d: %d\n", i, j, k, u);
update[u]++;
}
}
}
if (update[1] == 0 || savings < 0) {
vp8_write(w, 0, grpupd);
continue;
}
vp8_write(w, 1, grpupd);
for (i = 0; i < BLOCK_TYPES; ++i) {
for (j = !i; j < COEF_BANDS; ++j) {
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
vp8_prob newp = cpi->frame_coef_probs [i][j][k][t];
vp8_prob *Pold = cpi->common.fc.coef_probs [i][j][k] + t;
const vp8_prob upd = COEF_UPDATE_PROB;
int s;
int u = 0;
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
continue;
#if defined(SEARCH_NEWP)
s = prob_diff_update_savings_search(
cpi->frame_branch_ct [i][j][k][t], *Pold, &newp, upd);
if (s > 0 && newp != *Pold) u = 1;
#else
s = prob_update_savings(
cpi->frame_branch_ct [i][j][k][t], *Pold, newp, upd);
if (s > 0) u = 1;
#endif
// printf(" %d %d %d: %d (%d)\n", i, j, k, u, upd);
vp8_write(w, u, upd);
#ifdef ENTROPY_STATS
++ tree_update_hist [i][j][k][t] [u];
#endif
if (u) {
/* send/use new probability */
write_prob_diff_update(w, newp, *Pold);
*Pold = newp;
}
}
}
}
}
if (cpi->common.txfm_mode != ALLOW_8X8) return;
for (t = 0; t < ENTROPY_NODES; ++t) {
/* dry run to see if there is any udpate at all needed */
savings = 0;
update[0] = update[1] = 0;
for (i = 0; i < BLOCK_TYPES_8X8; ++i) {
for (j = !i; j < COEF_BANDS; ++j) {
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
vp8_prob newp = cpi->frame_coef_probs_8x8 [i][j][k][t];
vp8_prob *Pold = cpi->common.fc.coef_probs_8x8 [i][j][k] + t;
const vp8_prob upd = COEF_UPDATE_PROB_8X8;
int s;
int u = 0;
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
continue;
#if defined(SEARCH_NEWP)
s = prob_diff_update_savings_search(
cpi->frame_branch_ct_8x8 [i][j][k][t],
*Pold, &newp, upd);
if (s > 0 && newp != *Pold)
u = 1;
if (u)
savings += s - (int)(vp8_cost_zero(upd));
else
savings -= (int)(vp8_cost_zero(upd));
#else
s = prob_update_savings(
cpi->frame_branch_ct_8x8 [i][j][k][t],
*Pold, newp, upd);
if (s > 0)
u = 1;
if (u)
savings += s;
#endif
update[u]++;
}
}
}
if (update[1] == 0 || savings < 0) {
vp8_write(w, 0, grpupd);
continue;
}
vp8_write(w, 1, grpupd);
for (i = 0; i < BLOCK_TYPES_8X8; ++i) {
for (j = !i; j < COEF_BANDS; ++j) {
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
vp8_prob newp = cpi->frame_coef_probs_8x8 [i][j][k][t];
vp8_prob *Pold = cpi->common.fc.coef_probs_8x8 [i][j][k] + t;
const vp8_prob upd = COEF_UPDATE_PROB_8X8;
int s;
int u = 0;
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
continue;
#if defined(SEARCH_NEWP)
s = prob_diff_update_savings_search(
cpi->frame_branch_ct_8x8 [i][j][k][t],
*Pold, &newp, upd);
if (s > 0 && newp != *Pold)
u = 1;
#else
s = prob_update_savings(
cpi->frame_branch_ct_8x8 [i][j][k][t],
*Pold, newp, upd);
if (s > 0)
u = 1;
#endif
vp8_write(w, u, upd);
#ifdef ENTROPY_STATS
if (!cpi->dummy_packing)
++ tree_update_hist_8x8 [i][j][k][t] [u];
#endif
if (u) {
/* send/use new probability */
write_prob_diff_update(w, newp, *Pold);
*Pold = newp;
}
}
}
}
}
}
#endif
static void update_coef_probs(VP8_COMP *cpi) {
int i, j, k, t;
vp8_writer *const w = & cpi->bc;
int update[2] = {0, 0};
int savings;
vp8_clear_system_state(); // __asm emms;
// Build the cofficient contexts based on counts collected in encode loop
build_coeff_contexts(cpi);
// vp8_prob bestupd = find_coef_update_prob(cpi);
/* dry run to see if there is any udpate at all needed */
savings = 0;
for (i = 0; i < BLOCK_TYPES; ++i) {
for (j = !i; j < COEF_BANDS; ++j) {
int prev_coef_savings[ENTROPY_NODES] = {0};
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
for (t = 0; t < ENTROPY_NODES; ++t) {
vp8_prob newp = cpi->frame_coef_probs [i][j][k][t];
vp8_prob *Pold = cpi->common.fc.coef_probs [i][j][k] + t;
const vp8_prob upd = COEF_UPDATE_PROB;
int s = prev_coef_savings[t];
int u = 0;
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
continue;
#if defined(SEARCH_NEWP)
s = prob_diff_update_savings_search(
cpi->frame_branch_ct [i][j][k][t],
*Pold, &newp, upd);
if (s > 0 && newp != *Pold)
u = 1;
if (u)
savings += s - (int)(vp8_cost_zero(upd));
else
savings -= (int)(vp8_cost_zero(upd));
#else
s = prob_update_savings(
cpi->frame_branch_ct [i][j][k][t],
*Pold, newp, upd);
if (s > 0)
u = 1;
if (u)
savings += s;
#endif
update[u]++;
}
}
}
}
// printf("Update %d %d, savings %d\n", update[0], update[1], savings);
/* Is coef updated at all */
if (update[1] == 0 || savings < 0)
vp8_write_bit(w, 0);
else {
vp8_write_bit(w, 1);
for (i = 0; i < BLOCK_TYPES; ++i) {
for (j = !i; j < COEF_BANDS; ++j) {
int prev_coef_savings[ENTROPY_NODES] = {0};
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
// calc probs and branch cts for this frame only
for (t = 0; t < ENTROPY_NODES; ++t) {
vp8_prob newp = cpi->frame_coef_probs [i][j][k][t];
vp8_prob *Pold = cpi->common.fc.coef_probs [i][j][k] + t;
const vp8_prob upd = COEF_UPDATE_PROB;
int s = prev_coef_savings[t];
int u = 0;
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
continue;
#if defined(SEARCH_NEWP)
s = prob_diff_update_savings_search(
cpi->frame_branch_ct [i][j][k][t],
*Pold, &newp, upd);
if (s > 0 && newp != *Pold)
u = 1;
#else
s = prob_update_savings(
cpi->frame_branch_ct [i][j][k][t],
*Pold, newp, upd);
if (s > 0)
u = 1;
#endif
vp8_write(w, u, upd);
#ifdef ENTROPY_STATS
if (!cpi->dummy_packing)
++ tree_update_hist [i][j][k][t] [u];
#endif
if (u) {
/* send/use new probability */
write_prob_diff_update(w, newp, *Pold);
*Pold = newp;
}
}
}
}
}
}
#if CONFIG_HYBRIDTRANSFORM
savings = 0;
update[0] = update[1] = 0;
for (i = 0; i < BLOCK_TYPES; ++i) {
for (j = !i; j < COEF_BANDS; ++j) {
int prev_coef_savings[ENTROPY_NODES] = {0};
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
for (t = 0; t < ENTROPY_NODES; ++t) {
vp8_prob newp = cpi->frame_hybrid_coef_probs [i][j][k][t];
vp8_prob *Pold = cpi->common.fc.hybrid_coef_probs [i][j][k] + t;
const vp8_prob upd = COEF_UPDATE_PROB;
int s = prev_coef_savings[t];
int u = 0;
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
continue;
#if defined(SEARCH_NEWP)
s = prob_diff_update_savings_search(
cpi->frame_hybrid_branch_ct [i][j][k][t],
*Pold, &newp, upd);
if (s > 0 && newp != *Pold)
u = 1;
if (u)
savings += s - (int)(vp8_cost_zero(upd));
else
savings -= (int)(vp8_cost_zero(upd));
#else
s = prob_update_savings(
cpi->frame_hybrid_branch_ct [i][j][k][t],
*Pold, newp, upd);
if (s > 0)
u = 1;
if (u)
savings += s;
#endif
update[u]++;
}
}
}
}
// printf("Update %d %d, savings %d\n", update[0], update[1], savings);
/* Is coef updated at all */
if (update[1] == 0 || savings < 0)
vp8_write_bit(w, 0);
else {
vp8_write_bit(w, 1);
for (i = 0; i < BLOCK_TYPES; ++i) {
for (j = !i; j < COEF_BANDS; ++j) {
int prev_coef_savings[ENTROPY_NODES] = {0};
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
// calc probs and branch cts for this frame only
for (t = 0; t < ENTROPY_NODES; ++t) {
vp8_prob newp = cpi->frame_hybrid_coef_probs [i][j][k][t];
vp8_prob *Pold = cpi->common.fc.hybrid_coef_probs [i][j][k] + t;
const vp8_prob upd = COEF_UPDATE_PROB;
int s = prev_coef_savings[t];
int u = 0;
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
continue;
#if defined(SEARCH_NEWP)
s = prob_diff_update_savings_search(
cpi->frame_hybrid_branch_ct [i][j][k][t],
*Pold, &newp, upd);
if (s > 0 && newp != *Pold)
u = 1;
#else
s = prob_update_savings(
cpi->frame_hybrid_branch_ct [i][j][k][t],
*Pold, newp, upd);
if (s > 0)
u = 1;
#endif
vp8_write(w, u, upd);
#ifdef ENTROPY_STATS
if (!cpi->dummy_packing)
++ hybrid_tree_update_hist [i][j][k][t] [u];
#endif
if (u) {
/* send/use new probability */
write_prob_diff_update(w, newp, *Pold);
*Pold = newp;
}
}
}
}
}
}
#endif
/* do not do this if not even allowed */
if (cpi->common.txfm_mode == ALLOW_8X8) {
/* dry run to see if update is necessary */
update[0] = update[1] = 0;
savings = 0;
for (i = 0; i < BLOCK_TYPES_8X8; ++i) {
for (j = !i; j < COEF_BANDS; ++j) {
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
// calc probs and branch cts for this frame only
for (t = 0; t < ENTROPY_NODES; ++t) {
const unsigned int *ct = cpi->frame_branch_ct_8x8 [i][j][k][t];
vp8_prob newp = cpi->frame_coef_probs_8x8 [i][j][k][t];
vp8_prob *Pold = cpi->common.fc.coef_probs_8x8 [i][j][k] + t;
const vp8_prob oldp = *Pold;
int s, u;
const vp8_prob upd = COEF_UPDATE_PROB_8X8;
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
continue;
#if defined(SEARCH_NEWP)
s = prob_diff_update_savings_search(ct, oldp, &newp, upd);
u = s > 0 && newp != oldp ? 1 : 0;
if (u)
savings += s - (int)(vp8_cost_zero(upd));
else
savings -= (int)(vp8_cost_zero(upd));
#else
s = prob_update_savings(ct, oldp, newp, upd);
u = s > 0 ? 1 : 0;
if (u)
savings += s;
#endif
update[u]++;
}
}
}
}
if (update[1] == 0 || savings < 0)
vp8_write_bit(w, 0);
else {
vp8_write_bit(w, 1);
for (i = 0; i < BLOCK_TYPES_8X8; ++i) {
for (j = !i; j < COEF_BANDS; ++j) {
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
for (t = 0; t < ENTROPY_NODES; ++t) {
const unsigned int *ct = cpi->frame_branch_ct_8x8 [i][j][k][t];
vp8_prob newp = cpi->frame_coef_probs_8x8 [i][j][k][t];
vp8_prob *Pold = cpi->common.fc.coef_probs_8x8 [i][j][k] + t;
const vp8_prob oldp = *Pold;
const vp8_prob upd = COEF_UPDATE_PROB_8X8;
int s, u;
if (k >= 3 && ((i == 0 && j == 1) ||
(i > 0 && j == 0)))
continue;
#if defined(SEARCH_NEWP)
s = prob_diff_update_savings_search(ct, oldp, &newp, upd);
u = s > 0 && newp != oldp ? 1 : 0;
#else
s = prob_update_savings(ct, oldp, newp, upd);
u = s > 0 ? 1 : 0;
#endif
vp8_write(w, u, upd);
#ifdef ENTROPY_STATS
if (!cpi->dummy_packing)
++ tree_update_hist_8x8 [i][j][k][t] [u];
#endif
if (u) {
/* send/use new probability */
write_prob_diff_update(w, newp, oldp);
*Pold = newp;
}
}
}
}
}
}
#if CONFIG_HYBRIDTRANSFORM8X8
update[0] = update[1] = 0;
savings = 0;
for (i = 0; i < BLOCK_TYPES_8X8; ++i) {
for (j = !i; j < COEF_BANDS; ++j) {
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
// calc probs and branch cts for this frame only
for (t = 0; t < ENTROPY_NODES; ++t) {
const unsigned int *ct = cpi->frame_hybrid_branch_ct_8x8 [i][j][k][t];
vp8_prob newp = cpi->frame_hybrid_coef_probs_8x8 [i][j][k][t];
vp8_prob *Pold = cpi->common.fc.hybrid_coef_probs_8x8 [i][j][k] + t;
const vp8_prob oldp = *Pold;
int s, u;
const vp8_prob upd = COEF_UPDATE_PROB_8X8;
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
continue;
#if defined(SEARCH_NEWP)
s = prob_diff_update_savings_search(ct, oldp, &newp, upd);
u = s > 0 && newp != oldp ? 1 : 0;
if (u)
savings += s - (int)(vp8_cost_zero(upd));
else
savings -= (int)(vp8_cost_zero(upd));
#else
s = prob_update_savings(ct, oldp, newp, upd);
u = s > 0 ? 1 : 0;
if (u)
savings += s;
#endif
update[u]++;
}
}
}
}
if (update[1] == 0 || savings < 0)
vp8_write_bit(w, 0);
else {
vp8_write_bit(w, 1);
for (i = 0; i < BLOCK_TYPES_8X8; ++i) {
for (j = !i; j < COEF_BANDS; ++j) {
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
for (t = 0; t < ENTROPY_NODES; ++t) {
const unsigned int *ct = cpi->frame_hybrid_branch_ct_8x8 [i][j][k][t];
vp8_prob newp = cpi->frame_hybrid_coef_probs_8x8 [i][j][k][t];
vp8_prob *Pold = cpi->common.fc.hybrid_coef_probs_8x8 [i][j][k] + t;
const vp8_prob oldp = *Pold;
const vp8_prob upd = COEF_UPDATE_PROB_8X8;
int s, u;
if (k >= 3 && ((i == 0 && j == 1) ||
(i > 0 && j == 0)))
continue;
#if defined(SEARCH_NEWP)
s = prob_diff_update_savings_search(ct, oldp, &newp, upd);
u = s > 0 && newp != oldp ? 1 : 0;
#else
s = prob_update_savings(ct, oldp, newp, upd);
u = s > 0 ? 1 : 0;
#endif
vp8_write(w, u, upd);
#ifdef ENTROPY_STATS
if (!cpi->dummy_packing)
++ hybrid_tree_update_hist_8x8 [i][j][k][t] [u];
#endif
if (u) {
/* send/use new probability */
write_prob_diff_update(w, newp, oldp);
*Pold = newp;
}
}
}
}
}
}
#endif
}
#if CONFIG_TX16X16
// 16x16
/* dry run to see if update is necessary */
update[0] = update[1] = 0;
savings = 0;
for (i = 0; i < BLOCK_TYPES_16X16; ++i) {
for (j = !i; j < COEF_BANDS; ++j) {
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
// calc probs and branch cts for this frame only
for (t = 0; t < ENTROPY_NODES; ++t) {
const unsigned int *ct = cpi->frame_branch_ct_16x16[i][j][k][t];
vp8_prob newp = cpi->frame_coef_probs_16x16[i][j][k][t];
vp8_prob *Pold = cpi->common.fc.coef_probs_16x16[i][j][k] + t;
const vp8_prob oldp = *Pold;
int s, u;
const vp8_prob upd = COEF_UPDATE_PROB_16X16;
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
continue;
#if defined(SEARCH_NEWP)
s = prob_diff_update_savings_search(ct, oldp, &newp, upd);
u = s > 0 && newp != oldp ? 1 : 0;
if (u)
savings += s - (int)(vp8_cost_zero(upd));
else
savings -= (int)(vp8_cost_zero(upd));
#else
s = prob_update_savings(ct, oldp, newp, upd);
u = s > 0 ? 1 : 0;
if (u)
savings += s;
#endif
update[u]++;
}
}
}
}
if (update[1] == 0 || savings < 0)
vp8_write_bit(w, 0);
else {
vp8_write_bit(w, 1);
for (i = 0; i < BLOCK_TYPES_16X16; ++i) {
for (j = !i; j < COEF_BANDS; ++j) {
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
for (t = 0; t < ENTROPY_NODES; ++t) {
const unsigned int *ct = cpi->frame_branch_ct_16x16[i][j][k][t];
vp8_prob newp = cpi->frame_coef_probs_16x16[i][j][k][t];
vp8_prob *Pold = cpi->common.fc.coef_probs_16x16[i][j][k] + t;
const vp8_prob oldp = *Pold;
const vp8_prob upd = COEF_UPDATE_PROB_16X16;
int s, u;
if (k >= 3 && ((i == 0 && j == 1) ||
(i > 0 && j == 0)))
continue;
#if defined(SEARCH_NEWP)
s = prob_diff_update_savings_search(ct, oldp, &newp, upd);
u = s > 0 && newp != oldp ? 1 : 0;
#else
s = prob_update_savings(ct, oldp, newp, upd);
u = s > 0 ? 1 : 0;
#endif
vp8_write(w, u, upd);
#ifdef ENTROPY_STATS
if (!cpi->dummy_packing)
++tree_update_hist_16x16[i][j][k][t][u];
#endif
if (u) {
/* send/use new probability */
write_prob_diff_update(w, newp, oldp);
*Pold = newp;
}
}
}
}
}
}
#if CONFIG_HYBRIDTRANSFORM16X16
update[0] = update[1] = 0;
savings = 0;
for (i = 0; i < BLOCK_TYPES_16X16; ++i) {
for (j = !i; j < COEF_BANDS; ++j) {
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
// calc probs and branch cts for this frame only
for (t = 0; t < ENTROPY_NODES; ++t) {
const unsigned int *ct = cpi->frame_hybrid_branch_ct_16x16[i][j][k][t];
vp8_prob newp = cpi->frame_hybrid_coef_probs_16x16[i][j][k][t];
vp8_prob *Pold = cpi->common.fc.hybrid_coef_probs_16x16[i][j][k] + t;
const vp8_prob oldp = *Pold;
int s, u;
const vp8_prob upd = COEF_UPDATE_PROB_16X16;
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
continue;
#if defined(SEARCH_NEWP)
s = prob_diff_update_savings_search(ct, oldp, &newp, upd);
u = s > 0 && newp != oldp ? 1 : 0;
if (u)
savings += s - (int)(vp8_cost_zero(upd));
else
savings -= (int)(vp8_cost_zero(upd));
#else
s = prob_update_savings(ct, oldp, newp, upd);
u = s > 0 ? 1 : 0;
if (u)
savings += s;
#endif
update[u]++;
}
}
}
}
if (update[1] == 0 || savings < 0)
vp8_write_bit(w, 0);
else {
vp8_write_bit(w, 1);
for (i = 0; i < BLOCK_TYPES_16X16; ++i) {
for (j = !i; j < COEF_BANDS; ++j) {
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
for (t = 0; t < ENTROPY_NODES; ++t) {
const unsigned int *ct = cpi->frame_hybrid_branch_ct_16x16[i][j][k][t];
vp8_prob newp = cpi->frame_hybrid_coef_probs_16x16[i][j][k][t];
vp8_prob *Pold = cpi->common.fc.hybrid_coef_probs_16x16[i][j][k] + t;
const vp8_prob oldp = *Pold;
const vp8_prob upd = COEF_UPDATE_PROB_16X16;
int s, u;
if (k >= 3 && ((i == 0 && j == 1) ||
(i > 0 && j == 0)))
continue;
#if defined(SEARCH_NEWP)
s = prob_diff_update_savings_search(ct, oldp, &newp, upd);
u = s > 0 && newp != oldp ? 1 : 0;
#else
s = prob_update_savings(ct, oldp, newp, upd);
u = s > 0 ? 1 : 0;
#endif
vp8_write(w, u, upd);
#ifdef ENTROPY_STATS
if (!cpi->dummy_packing)
++hybrid_tree_update_hist_16x16[i][j][k][t][u];
#endif
if (u) {
/* send/use new probability */
write_prob_diff_update(w, newp, oldp);
*Pold = newp;
}
}
}
}
}
}
#endif
#endif
}
#ifdef PACKET_TESTING
FILE *vpxlogc = 0;
#endif
static void put_delta_q(vp8_writer *bc, int delta_q) {
if (delta_q != 0) {
vp8_write_bit(bc, 1);
vp8_write_literal(bc, abs(delta_q), 4);
if (delta_q < 0)
vp8_write_bit(bc, 1);
else
vp8_write_bit(bc, 0);
} else
vp8_write_bit(bc, 0);
}
static void decide_kf_ymode_entropy(VP8_COMP *cpi) {
int mode_cost[MB_MODE_COUNT];
int cost;
int bestcost = INT_MAX;
int bestindex = 0;
int i, j;
for (i = 0; i < 8; i++) {
vp8_cost_tokens(mode_cost, cpi->common.kf_ymode_prob[i], vp8_kf_ymode_tree);
cost = 0;
for (j = 0; j < VP8_YMODES; j++) {
cost += mode_cost[j] * cpi->ymode_count[j];
}
#if CONFIG_SUPERBLOCKS
vp8_cost_tokens(mode_cost, cpi->common.sb_kf_ymode_prob[i],
vp8_sb_ymode_tree);
for (j = 0; j < VP8_I32X32_MODES; j++) {
cost += mode_cost[j] * cpi->sb_ymode_count[j];
}
#endif
if (cost < bestcost) {
bestindex = i;
bestcost = cost;
}
}
cpi->common.kf_ymode_probs_index = bestindex;
}
static void segment_reference_frames(VP8_COMP *cpi) {
VP8_COMMON *oci = &cpi->common;
MODE_INFO *mi = oci->mi;
int ref[MAX_MB_SEGMENTS] = {0};
int i, j;
int mb_index = 0;
MACROBLOCKD *const xd = & cpi->mb.e_mbd;
for (i = 0; i < oci->mb_rows; i++) {
for (j = 0; j < oci->mb_cols; j++, mb_index++) {
ref[mi[mb_index].mbmi.segment_id] |= (1 << mi[mb_index].mbmi.ref_frame);
}
mb_index++;
}
for (i = 0; i < MAX_MB_SEGMENTS; i++) {
enable_segfeature(xd, i, SEG_LVL_REF_FRAME);
set_segdata(xd, i, SEG_LVL_REF_FRAME, ref[i]);
}
}
void vp8_pack_bitstream(VP8_COMP *cpi, unsigned char *dest, unsigned long *size) {
int i, j;
VP8_HEADER oh;
VP8_COMMON *const pc = & cpi->common;
vp8_writer *const bc = & cpi->bc;
MACROBLOCKD *const xd = & cpi->mb.e_mbd;
int extra_bytes_packed = 0;
unsigned char *cx_data = dest;
oh.show_frame = (int) pc->show_frame;
oh.type = (int)pc->frame_type;
oh.version = pc->version;
oh.first_partition_length_in_bytes = 0;
cx_data += 3;
#if defined(SECTIONBITS_OUTPUT)
Sectionbits[active_section = 1] += sizeof(VP8_HEADER) * 8 * 256;
#endif
compute_update_table();
// vp8_kf_default_bmode_probs() is called in vp8_setup_key_frame() once for each
// K frame before encode frame. pc->kf_bmode_prob doesn't get changed anywhere
// else. No need to call it again here. --yw
// vp8_kf_default_bmode_probs( pc->kf_bmode_prob);
// every keyframe send startcode, width, height, scale factor, clamp and color type
if (oh.type == KEY_FRAME) {
int v;
// Start / synch code
cx_data[0] = 0x9D;
cx_data[1] = 0x01;
cx_data[2] = 0x2a;
v = (pc->horiz_scale << 14) | pc->Width;
cx_data[3] = v;
cx_data[4] = v >> 8;
v = (pc->vert_scale << 14) | pc->Height;
cx_data[5] = v;
cx_data[6] = v >> 8;
extra_bytes_packed = 7;
cx_data += extra_bytes_packed;
vp8_start_encode(bc, cx_data);
// signal clr type
vp8_write_bit(bc, pc->clr_type);
vp8_write_bit(bc, pc->clamp_type);
} else
vp8_start_encode(bc, cx_data);
// Signal whether or not Segmentation is enabled
vp8_write_bit(bc, (xd->segmentation_enabled) ? 1 : 0);
// Indicate which features are enabled
if (xd->segmentation_enabled) {
// Indicate whether or not the segmentation map is being updated.
vp8_write_bit(bc, (xd->update_mb_segmentation_map) ? 1 : 0);
// If it is, then indicate the method that will be used.
if (xd->update_mb_segmentation_map) {
// Select the coding strategy (temporal or spatial)
choose_segmap_coding_method(cpi);
// Write out the chosen coding method.
vp8_write_bit(bc, (pc->temporal_update) ? 1 : 0);
}
vp8_write_bit(bc, (xd->update_mb_segmentation_data) ? 1 : 0);
// segment_reference_frames(cpi);
if (xd->update_mb_segmentation_data) {
signed char Data;
vp8_write_bit(bc, (xd->mb_segment_abs_delta) ? 1 : 0);
// For each segments id...
for (i = 0; i < MAX_MB_SEGMENTS; i++) {
// For each segmentation codable feature...
for (j = 0; j < SEG_LVL_MAX; j++) {
Data = get_segdata(xd, i, j);
#if CONFIG_FEATUREUPDATES
// check if there's an update
if (segfeature_changed(xd, i, j)) {
vp8_write_bit(bc, 1);
if (segfeature_active(xd, i, j)) {
// this bit is to say we are still
// active/ if we were inactive
// this is unnecessary
if (old_segfeature_active(xd, i, j)) {
vp8_write_bit(bc, 1);
}
// Is the segment data signed..
if (is_segfeature_signed(j)) {
// Encode the relevant feature data
if (Data < 0) {
Data = - Data;
vp8_write_literal(bc, Data,
seg_feature_data_bits(j));
vp8_write_bit(bc, 1);
} else {
vp8_write_literal(bc, Data,
seg_feature_data_bits(j));
vp8_write_bit(bc, 0);
}
}
// Unsigned data element so no sign bit needed
else
vp8_write_literal(bc, Data,
seg_feature_data_bits(j));
}
// feature is inactive now
else if (old_segfeature_active(xd, i, j)) {
vp8_write_bit(bc, 0);
}
} else {
vp8_write_bit(bc, 0);
}
#else
// If the feature is enabled...
if (segfeature_active(xd, i, j)) {
vp8_write_bit(bc, 1);
// Is the segment data signed..
if (is_segfeature_signed(j)) {
// Encode the relevant feature data
if (Data < 0) {
Data = - Data;
vp8_write_literal(bc, Data,
seg_feature_data_bits(j));
vp8_write_bit(bc, 1);
} else {
vp8_write_literal(bc, Data,
seg_feature_data_bits(j));
vp8_write_bit(bc, 0);
}
}
// Unsigned data element so no sign bit needed
else
vp8_write_literal(bc, Data,
seg_feature_data_bits(j));
} else
vp8_write_bit(bc, 0);
#endif
}
}
}
#if CONFIG_FEATUREUPDATES
// save the segment info for updates next frame
save_segment_info(xd);
#endif
if (xd->update_mb_segmentation_map) {
// Send the tree probabilities used to decode unpredicted
// macro-block segments
for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) {
int Data = xd->mb_segment_tree_probs[i];
if (Data != 255) {
vp8_write_bit(bc, 1);
vp8_write_literal(bc, Data, 8);
} else
vp8_write_bit(bc, 0);
}
// If predictive coding of segment map is enabled send the
// prediction probabilities.
if (pc->temporal_update) {
for (i = 0; i < PREDICTION_PROBS; i++) {
int Data = pc->segment_pred_probs[i];
if (Data != 255) {
vp8_write_bit(bc, 1);
vp8_write_literal(bc, Data, 8);
} else
vp8_write_bit(bc, 0);
}
}
}
}
// Encode the common prediction model status flag probability updates for
// the reference frame
update_refpred_stats(cpi);
if (pc->frame_type != KEY_FRAME) {
for (i = 0; i < PREDICTION_PROBS; i++) {
if (cpi->ref_pred_probs_update[i]) {
vp8_write_bit(bc, 1);
vp8_write_literal(bc, pc->ref_pred_probs[i], 8);
} else
vp8_write_bit(bc, 0);
}
}
#if CONFIG_SUPERBLOCKS
{
/* sb mode probability */
int sb_coded = 256 - (cpi->sb_count << 8) / (((pc->mb_rows + 1) >> 1) * ((pc->mb_cols + 1) >> 1));
if (sb_coded <= 0)
sb_coded = 1;
else if (sb_coded >= 256)
sb_coded = 255;
pc->sb_coded = sb_coded;
vp8_write_literal(bc, pc->sb_coded, 8);
}
#endif
vp8_write_bit(bc, pc->txfm_mode);
// Encode the loop filter level and type
vp8_write_bit(bc, pc->filter_type);
vp8_write_literal(bc, pc->filter_level, 6);
vp8_write_literal(bc, pc->sharpness_level, 3);
// Write out loop filter deltas applied at the MB level based on mode or ref frame (if they are enabled).
vp8_write_bit(bc, (xd->mode_ref_lf_delta_enabled) ? 1 : 0);
if (xd->mode_ref_lf_delta_enabled) {
// Do the deltas need to be updated
int send_update = xd->mode_ref_lf_delta_update;
vp8_write_bit(bc, send_update);
if (send_update) {
int Data;
// Send update
for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
Data = xd->ref_lf_deltas[i];
// Frame level data
if (xd->ref_lf_deltas[i] != xd->last_ref_lf_deltas[i]) {
xd->last_ref_lf_deltas[i] = xd->ref_lf_deltas[i];
vp8_write_bit(bc, 1);
if (Data > 0) {
vp8_write_literal(bc, (Data & 0x3F), 6);
vp8_write_bit(bc, 0); // sign
} else {
Data = -Data;
vp8_write_literal(bc, (Data & 0x3F), 6);
vp8_write_bit(bc, 1); // sign
}
} else
vp8_write_bit(bc, 0);
}
// Send update
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
Data = xd->mode_lf_deltas[i];
if (xd->mode_lf_deltas[i] != xd->last_mode_lf_deltas[i]) {
xd->last_mode_lf_deltas[i] = xd->mode_lf_deltas[i];
vp8_write_bit(bc, 1);
if (Data > 0) {
vp8_write_literal(bc, (Data & 0x3F), 6);
vp8_write_bit(bc, 0); // sign
} else {
Data = -Data;
vp8_write_literal(bc, (Data & 0x3F), 6);
vp8_write_bit(bc, 1); // sign
}
} else
vp8_write_bit(bc, 0);
}
}
}
// signal here is multi token partition is enabled
// vp8_write_literal(bc, pc->multi_token_partition, 2);
vp8_write_literal(bc, 0, 2);
// Frame Q baseline quantizer index
vp8_write_literal(bc, pc->base_qindex, QINDEX_BITS);
// Transmit Dc, Second order and Uv quantizer delta information
put_delta_q(bc, pc->y1dc_delta_q);
put_delta_q(bc, pc->y2dc_delta_q);
put_delta_q(bc, pc->y2ac_delta_q);
put_delta_q(bc, pc->uvdc_delta_q);
put_delta_q(bc, pc->uvac_delta_q);
// When there is a key frame all reference buffers are updated using the new key frame
if (pc->frame_type != KEY_FRAME) {
// Should the GF or ARF be updated using the transmitted frame or buffer
vp8_write_bit(bc, pc->refresh_golden_frame);
vp8_write_bit(bc, pc->refresh_alt_ref_frame);
// For inter frames the current default behavior is that when
// cm->refresh_golden_frame is set we copy the old GF over to
// the ARF buffer. This is purely an encoder decision at present.
if (pc->refresh_golden_frame)
pc->copy_buffer_to_arf = 2;
// If not being updated from current frame should either GF or ARF be updated from another buffer
if (!pc->refresh_golden_frame)
vp8_write_literal(bc, pc->copy_buffer_to_gf, 2);
if (!pc->refresh_alt_ref_frame)
vp8_write_literal(bc, pc->copy_buffer_to_arf, 2);
// Indicate reference frame sign bias for Golden and ARF frames (always 0 for last frame buffer)
vp8_write_bit(bc, pc->ref_frame_sign_bias[GOLDEN_FRAME]);
vp8_write_bit(bc, pc->ref_frame_sign_bias[ALTREF_FRAME]);
// Signal whether to allow high MV precision
vp8_write_bit(bc, (xd->allow_high_precision_mv) ? 1 : 0);
#if CONFIG_SWITCHABLE_INTERP
if (pc->mcomp_filter_type == SWITCHABLE) {
/* Check to see if only one of the filters is actually used */
int count[VP8_SWITCHABLE_FILTERS];
int i, j, c = 0;
for (i = 0; i < VP8_SWITCHABLE_FILTERS; ++i) {
count[i] = 0;
for (j = 0; j <= VP8_SWITCHABLE_FILTERS; ++j) {
count[i] += cpi->switchable_interp_count[j][i];
}
c += (count[i] > 0);
}
if (c == 1) {
/* Only one filter is used. So set the filter at frame level */
for (i = 0; i < VP8_SWITCHABLE_FILTERS; ++i) {
if (count[i]) {
pc->mcomp_filter_type = vp8_switchable_interp[i];
break;
}
}
}
}
// Signal the type of subpel filter to use
vp8_write_bit(bc, (pc->mcomp_filter_type == SWITCHABLE));
if (pc->mcomp_filter_type != SWITCHABLE)
#endif /* CONFIG_SWITCHABLE_INTERP */
vp8_write_literal(bc, (pc->mcomp_filter_type), 2);
}
vp8_write_bit(bc, pc->refresh_entropy_probs);
if (pc->frame_type != KEY_FRAME)
vp8_write_bit(bc, pc->refresh_last_frame);
#ifdef ENTROPY_STATS
if (pc->frame_type == INTER_FRAME)
active_section = 0;
else
active_section = 7;
#endif
vp8_clear_system_state(); // __asm emms;
vp8_copy(cpi->common.fc.pre_coef_probs, cpi->common.fc.coef_probs);
#if CONFIG_HYBRIDTRANSFORM
vp8_copy(cpi->common.fc.pre_hybrid_coef_probs, cpi->common.fc.hybrid_coef_probs);
#endif
vp8_copy(cpi->common.fc.pre_coef_probs_8x8, cpi->common.fc.coef_probs_8x8);
#if CONFIG_HYBRIDTRANSFORM8X8
vp8_copy(cpi->common.fc.pre_hybrid_coef_probs_8x8, cpi->common.fc.hybrid_coef_probs_8x8);
#endif
#if CONFIG_TX16X16
vp8_copy(cpi->common.fc.pre_coef_probs_16x16, cpi->common.fc.coef_probs_16x16);
#if CONFIG_HYBRIDTRANSFORM16X16
vp8_copy(cpi->common.fc.pre_hybrid_coef_probs_16x16, cpi->common.fc.hybrid_coef_probs_16x16);
#endif
#endif
vp8_copy(cpi->common.fc.pre_ymode_prob, cpi->common.fc.ymode_prob);
vp8_copy(cpi->common.fc.pre_uv_mode_prob, cpi->common.fc.uv_mode_prob);
vp8_copy(cpi->common.fc.pre_bmode_prob, cpi->common.fc.bmode_prob);
vp8_copy(cpi->common.fc.pre_sub_mv_ref_prob, cpi->common.fc.sub_mv_ref_prob);
vp8_copy(cpi->common.fc.pre_mbsplit_prob, cpi->common.fc.mbsplit_prob);
vp8_copy(cpi->common.fc.pre_i8x8_mode_prob, cpi->common.fc.i8x8_mode_prob);
#if CONFIG_NEWMVENTROPY
cpi->common.fc.pre_nmvc = cpi->common.fc.nmvc;
#else
vp8_copy(cpi->common.fc.pre_mvc, cpi->common.fc.mvc);
vp8_copy(cpi->common.fc.pre_mvc_hp, cpi->common.fc.mvc_hp);
#endif
vp8_zero(cpi->sub_mv_ref_count);
vp8_zero(cpi->mbsplit_count);
vp8_zero(cpi->common.fc.mv_ref_ct)
vp8_zero(cpi->common.fc.mv_ref_ct_a)
update_coef_probs(cpi);
#ifdef ENTROPY_STATS
active_section = 2;
#endif
// Write out the mb_no_coeff_skip flag
vp8_write_bit(bc, pc->mb_no_coeff_skip);
if (pc->frame_type == KEY_FRAME) {
decide_kf_ymode_entropy(cpi);
write_kfmodes(cpi);
#ifdef ENTROPY_STATS
active_section = 8;
#endif
} else {
pack_inter_mode_mvs(cpi);
vp8_update_mode_context(&cpi->common);
#ifdef ENTROPY_STATS
active_section = 1;
#endif
}
vp8_stop_encode(bc);
oh.first_partition_length_in_bytes = cpi->bc.pos;
/* update frame tag */
{
int v = (oh.first_partition_length_in_bytes << 5) |
(oh.show_frame << 4) |
(oh.version << 1) |
oh.type;
dest[0] = v;
dest[1] = v >> 8;
dest[2] = v >> 16;
}
*size = VP8_HEADER_SIZE + extra_bytes_packed + cpi->bc.pos;
vp8_start_encode(&cpi->bc2, cx_data + bc->pos);
pack_tokens(&cpi->bc2, cpi->tok, cpi->tok_count);
vp8_stop_encode(&cpi->bc2);
*size += cpi->bc2.pos;
}
#ifdef ENTROPY_STATS
void print_tree_update_probs() {
int i, j, k, l;
FILE *f = fopen("coefupdprob.h", "w");
int Sum;
fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n");
fprintf(f, "const vp8_prob\n"
"vp8_coef_update_probs[BLOCK_TYPES]\n"
" [COEF_BANDS]\n"
" [PREV_COEF_CONTEXTS]\n"
" [ENTROPY_NODES] = {\n");
for (i = 0; i < BLOCK_TYPES; i++) {
fprintf(f, " { \n");
for (j = 0; j < COEF_BANDS; j++) {
fprintf(f, " {\n");
for (k = 0; k < PREV_COEF_CONTEXTS; k++) {
fprintf(f, " {");
for (l = 0; l < ENTROPY_NODES; l++) {
Sum = tree_update_hist[i][j][k][l][0] + tree_update_hist[i][j][k][l][1];
if (Sum > 0) {
if (((tree_update_hist[i][j][k][l][0] * 255) / Sum) > 0)
fprintf(f, "%3ld, ", (tree_update_hist[i][j][k][l][0] * 255) / Sum);
else
fprintf(f, "%3ld, ", 1);
} else
fprintf(f, "%3ld, ", 128);
}
fprintf(f, "},\n");
}
fprintf(f, " },\n");
}
fprintf(f, " },\n");
}
fprintf(f, "};\n");
fprintf(f, "const vp8_prob\n"
"vp8_coef_update_probs_8x8[BLOCK_TYPES_8X8]\n"
" [COEF_BANDS]\n"
" [PREV_COEF_CONTEXTS]\n"
" [ENTROPY_NODES] = {\n");
for (i = 0; i < BLOCK_TYPES_8X8; i++) {
fprintf(f, " { \n");
for (j = 0; j < COEF_BANDS; j++) {
fprintf(f, " {\n");
for (k = 0; k < PREV_COEF_CONTEXTS; k++) {
fprintf(f, " {");
for (l = 0; l < MAX_ENTROPY_TOKENS - 1; l++) {
Sum = tree_update_hist_8x8[i][j][k][l][0] + tree_update_hist_8x8[i][j][k][l][1];
if (Sum > 0) {
if (((tree_update_hist_8x8[i][j][k][l][0] * 255) / Sum) > 0)
fprintf(f, "%3ld, ", (tree_update_hist_8x8[i][j][k][l][0] * 255) / Sum);
else
fprintf(f, "%3ld, ", 1);
} else
fprintf(f, "%3ld, ", 128);
}
fprintf(f, "},\n");
}
fprintf(f, " },\n");
}
fprintf(f, " },\n");
}
#if CONFIG_TX16X16 || CONFIG_HYBRIDTRANSFORM16X16
fprintf(f, "const vp8_prob\n"
"vp8_coef_update_probs_16x16[BLOCK_TYPES_16X16]\n"
" [COEF_BANDS]\n"
" [PREV_COEF_CONTEXTS]\n"
" [ENTROPY_NODES] = {\n");
for (i = 0; i < BLOCK_TYPES_16X16; i++) {
fprintf(f, " { \n");
for (j = 0; j < COEF_BANDS; j++) {
fprintf(f, " {\n");
for (k = 0; k < PREV_COEF_CONTEXTS; k++) {
fprintf(f, " {");
for (l = 0; l < MAX_ENTROPY_TOKENS - 1; l++) {
Sum = tree_update_hist_16x16[i][j][k][l][0] + tree_update_hist_16x16[i][j][k][l][1];
if (Sum > 0) {
if (((tree_update_hist_16x16[i][j][k][l][0] * 255) / Sum) > 0)
fprintf(f, "%3ld, ", (tree_update_hist_16x16[i][j][k][l][0] * 255) / Sum);
else
fprintf(f, "%3ld, ", 1);
} else
fprintf(f, "%3ld, ", 128);
}
fprintf(f, "},\n");
}
fprintf(f, " },\n");
}
fprintf(f, " },\n");
}
#endif
fclose(f);
f = fopen("treeupdate.bin", "wb");
fwrite(tree_update_hist, sizeof(tree_update_hist), 1, f);
fwrite(tree_update_hist_8x8, sizeof(tree_update_hist_8x8), 1, f);
#if CONFIG_TX16X16 || CONFIG_HYBRIDTRANSFORM16X16
fwrite(tree_update_hist_16x16, sizeof(tree_update_hist_16x16), 1, f);
#endif
fclose(f);
}
#endif