3ee1a21a42
Changes to the coding of transform sizes, along with forward and backward probability updates. Results: derf300: +0.241% Context based coding of transform sizes will be in a separate patch. Change-Id: I97241d60a926f014fee2de21fa4446ca56495756
1624 lines
52 KiB
C
1624 lines
52 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <limits.h>
|
|
|
|
#include "vpx/vpx_encoder.h"
|
|
#include "vpx_mem/vpx_mem.h"
|
|
|
|
#include "vp9/common/vp9_entropymode.h"
|
|
#include "vp9/common/vp9_entropymv.h"
|
|
#include "vp9/common/vp9_findnearmv.h"
|
|
#include "vp9/common/vp9_tile_common.h"
|
|
#include "vp9/common/vp9_seg_common.h"
|
|
#include "vp9/common/vp9_pred_common.h"
|
|
#include "vp9/common/vp9_entropy.h"
|
|
#include "vp9/common/vp9_entropymv.h"
|
|
#include "vp9/common/vp9_mvref_common.h"
|
|
#include "vp9/common/vp9_treecoder.h"
|
|
#include "vp9/common/vp9_systemdependent.h"
|
|
#include "vp9/common/vp9_pragmas.h"
|
|
|
|
#include "vp9/encoder/vp9_mcomp.h"
|
|
#include "vp9/encoder/vp9_encodemv.h"
|
|
#include "vp9/encoder/vp9_bitstream.h"
|
|
#include "vp9/encoder/vp9_segmentation.h"
|
|
#include "vp9/encoder/vp9_write_bit_buffer.h"
|
|
|
|
|
|
#if defined(SECTIONBITS_OUTPUT)
|
|
unsigned __int64 Sectionbits[500];
|
|
#endif
|
|
|
|
#ifdef ENTROPY_STATS
|
|
int intra_mode_stats[VP9_INTRA_MODES]
|
|
[VP9_INTRA_MODES]
|
|
[VP9_INTRA_MODES];
|
|
vp9_coeff_stats tree_update_hist[TX_SIZE_MAX_SB][BLOCK_TYPES];
|
|
|
|
extern unsigned int active_section;
|
|
#endif
|
|
|
|
#define vp9_cost_upd ((int)(vp9_cost_one(upd) - vp9_cost_zero(upd)) >> 8)
|
|
#define vp9_cost_upd256 ((int)(vp9_cost_one(upd) - vp9_cost_zero(upd)))
|
|
|
|
static int update_bits[255];
|
|
|
|
static INLINE void write_le32(uint8_t *p, int value) {
|
|
p[0] = value;
|
|
p[1] = value >> 8;
|
|
p[2] = value >> 16;
|
|
p[3] = value >> 24;
|
|
}
|
|
|
|
|
|
|
|
int recenter_nonneg(int v, int m) {
|
|
if (v > (m << 1))
|
|
return v;
|
|
else if (v >= m)
|
|
return ((v - m) << 1);
|
|
else
|
|
return ((m - v) << 1) - 1;
|
|
}
|
|
|
|
static int get_unsigned_bits(unsigned num_values) {
|
|
int cat = 0;
|
|
if ((num_values--) <= 1) return 0;
|
|
while (num_values > 0) {
|
|
cat++;
|
|
num_values >>= 1;
|
|
}
|
|
return cat;
|
|
}
|
|
|
|
void vp9_encode_unsigned_max(struct vp9_write_bit_buffer *wb,
|
|
int data, int max) {
|
|
vp9_wb_write_literal(wb, data, get_unsigned_bits(max));
|
|
}
|
|
|
|
void encode_uniform(vp9_writer *w, int v, int n) {
|
|
int l = get_unsigned_bits(n);
|
|
int m;
|
|
if (l == 0)
|
|
return;
|
|
m = (1 << l) - n;
|
|
if (v < m) {
|
|
vp9_write_literal(w, v, l - 1);
|
|
} else {
|
|
vp9_write_literal(w, m + ((v - m) >> 1), l - 1);
|
|
vp9_write_literal(w, (v - m) & 1, 1);
|
|
}
|
|
}
|
|
|
|
int count_uniform(int v, int n) {
|
|
int l = get_unsigned_bits(n);
|
|
int m;
|
|
if (l == 0) return 0;
|
|
m = (1 << l) - n;
|
|
if (v < m)
|
|
return l - 1;
|
|
else
|
|
return l;
|
|
}
|
|
|
|
void encode_term_subexp(vp9_writer *w, int word, int k, int num_syms) {
|
|
int i = 0;
|
|
int mk = 0;
|
|
while (1) {
|
|
int b = (i ? k + i - 1 : k);
|
|
int a = (1 << b);
|
|
if (num_syms <= mk + 3 * a) {
|
|
encode_uniform(w, word - mk, num_syms - mk);
|
|
break;
|
|
} else {
|
|
int t = (word >= mk + a);
|
|
vp9_write_literal(w, t, 1);
|
|
if (t) {
|
|
i = i + 1;
|
|
mk += a;
|
|
} else {
|
|
vp9_write_literal(w, word - mk, b);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int count_term_subexp(int word, int k, int num_syms) {
|
|
int count = 0;
|
|
int i = 0;
|
|
int mk = 0;
|
|
while (1) {
|
|
int b = (i ? k + i - 1 : k);
|
|
int a = (1 << b);
|
|
if (num_syms <= mk + 3 * a) {
|
|
count += count_uniform(word - mk, num_syms - mk);
|
|
break;
|
|
} else {
|
|
int t = (word >= mk + a);
|
|
count++;
|
|
if (t) {
|
|
i = i + 1;
|
|
mk += a;
|
|
} else {
|
|
count += b;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static void compute_update_table() {
|
|
int i;
|
|
for (i = 0; i < 255; i++)
|
|
update_bits[i] = count_term_subexp(i, SUBEXP_PARAM, 255);
|
|
}
|
|
|
|
static int split_index(int i, int n, int modulus) {
|
|
int max1 = (n - 1 - modulus / 2) / modulus + 1;
|
|
if (i % modulus == modulus / 2) i = i / modulus;
|
|
else i = max1 + i - (i + modulus - modulus / 2) / modulus;
|
|
return i;
|
|
}
|
|
|
|
static int remap_prob(int v, int m) {
|
|
const int n = 256;
|
|
const int modulus = MODULUS_PARAM;
|
|
int i;
|
|
if ((m << 1) <= n)
|
|
i = recenter_nonneg(v, m) - 1;
|
|
else
|
|
i = recenter_nonneg(n - 1 - v, n - 1 - m) - 1;
|
|
|
|
i = split_index(i, n - 1, modulus);
|
|
return i;
|
|
}
|
|
|
|
static void write_prob_diff_update(vp9_writer *w,
|
|
vp9_prob newp, vp9_prob oldp) {
|
|
int delp = remap_prob(newp, oldp);
|
|
encode_term_subexp(w, delp, SUBEXP_PARAM, 255);
|
|
}
|
|
|
|
static int prob_diff_update_cost(vp9_prob newp, vp9_prob oldp) {
|
|
int delp = remap_prob(newp, oldp);
|
|
return update_bits[delp] * 256;
|
|
}
|
|
|
|
static int prob_update_savings(const unsigned int *ct,
|
|
const vp9_prob oldp, const vp9_prob newp,
|
|
const vp9_prob upd) {
|
|
const int old_b = cost_branch256(ct, oldp);
|
|
const int new_b = cost_branch256(ct, newp);
|
|
const int update_b = 2048 + vp9_cost_upd256;
|
|
return old_b - new_b - update_b;
|
|
}
|
|
|
|
static int prob_diff_update_savings_search(const unsigned int *ct,
|
|
const vp9_prob oldp, vp9_prob *bestp,
|
|
const vp9_prob upd) {
|
|
const int old_b = cost_branch256(ct, oldp);
|
|
int new_b, update_b, savings, bestsavings, step;
|
|
vp9_prob newp, bestnewp;
|
|
|
|
bestsavings = 0;
|
|
bestnewp = oldp;
|
|
|
|
step = (*bestp > oldp ? -1 : 1);
|
|
for (newp = *bestp; newp != oldp; newp += step) {
|
|
new_b = cost_branch256(ct, newp);
|
|
update_b = prob_diff_update_cost(newp, oldp) + vp9_cost_upd256;
|
|
savings = old_b - new_b - update_b;
|
|
if (savings > bestsavings) {
|
|
bestsavings = savings;
|
|
bestnewp = newp;
|
|
}
|
|
}
|
|
*bestp = bestnewp;
|
|
return bestsavings;
|
|
}
|
|
|
|
static int prob_diff_update_savings_search_model(const unsigned int *ct,
|
|
const vp9_prob *oldp,
|
|
vp9_prob *bestp,
|
|
const vp9_prob upd,
|
|
int b, int r) {
|
|
int i, old_b, new_b, update_b, savings, bestsavings, step;
|
|
int newp;
|
|
vp9_prob bestnewp, newplist[ENTROPY_NODES], oldplist[ENTROPY_NODES];
|
|
vp9_model_to_full_probs(oldp, oldplist);
|
|
vpx_memcpy(newplist, oldp, sizeof(vp9_prob) * UNCONSTRAINED_NODES);
|
|
for (i = UNCONSTRAINED_NODES, old_b = 0; i < ENTROPY_NODES; ++i)
|
|
old_b += cost_branch256(ct + 2 * i, oldplist[i]);
|
|
old_b += cost_branch256(ct + 2 * PIVOT_NODE, oldplist[PIVOT_NODE]);
|
|
|
|
bestsavings = 0;
|
|
bestnewp = oldp[PIVOT_NODE];
|
|
|
|
step = (*bestp > oldp[PIVOT_NODE] ? -1 : 1);
|
|
newp = *bestp;
|
|
for (; newp != oldp[PIVOT_NODE]; newp += step) {
|
|
if (newp < 1 || newp > 255) continue;
|
|
newplist[PIVOT_NODE] = newp;
|
|
vp9_model_to_full_probs(newplist, newplist);
|
|
for (i = UNCONSTRAINED_NODES, new_b = 0; i < ENTROPY_NODES; ++i)
|
|
new_b += cost_branch256(ct + 2 * i, newplist[i]);
|
|
new_b += cost_branch256(ct + 2 * PIVOT_NODE, newplist[PIVOT_NODE]);
|
|
update_b = prob_diff_update_cost(newp, oldp[PIVOT_NODE]) +
|
|
vp9_cost_upd256;
|
|
savings = old_b - new_b - update_b;
|
|
if (savings > bestsavings) {
|
|
bestsavings = savings;
|
|
bestnewp = newp;
|
|
}
|
|
}
|
|
*bestp = bestnewp;
|
|
return bestsavings;
|
|
}
|
|
|
|
static void vp9_cond_prob_update(vp9_writer *bc, vp9_prob *oldp, vp9_prob upd,
|
|
unsigned int *ct) {
|
|
vp9_prob newp;
|
|
int savings;
|
|
newp = get_binary_prob(ct[0], ct[1]);
|
|
assert(newp >= 1);
|
|
savings = prob_update_savings(ct, *oldp, newp, upd);
|
|
if (savings > 0) {
|
|
vp9_write(bc, 1, upd);
|
|
vp9_write_prob(bc, newp);
|
|
*oldp = newp;
|
|
} else {
|
|
vp9_write(bc, 0, upd);
|
|
}
|
|
}
|
|
|
|
static void vp9_cond_prob_diff_update(vp9_writer *bc, vp9_prob *oldp,
|
|
vp9_prob upd,
|
|
unsigned int *ct) {
|
|
vp9_prob newp;
|
|
int savings;
|
|
newp = get_binary_prob(ct[0], ct[1]);
|
|
assert(newp >= 1);
|
|
savings = prob_diff_update_savings_search(ct, *oldp, &newp, upd);
|
|
if (savings > 0) {
|
|
vp9_write(bc, 1, upd);
|
|
write_prob_diff_update(bc, newp, *oldp);
|
|
*oldp = newp;
|
|
} else {
|
|
vp9_write(bc, 0, upd);
|
|
}
|
|
}
|
|
|
|
static void update_mode(
|
|
vp9_writer *w,
|
|
int n,
|
|
const struct vp9_token tok[/* n */],
|
|
vp9_tree tree,
|
|
vp9_prob Pnew[/* n-1 */],
|
|
vp9_prob Pcur[/* n-1 */],
|
|
unsigned int bct[/* n-1 */] [2],
|
|
const unsigned int num_events[/* n */]
|
|
) {
|
|
int i = 0;
|
|
|
|
vp9_tree_probs_from_distribution(tree, Pnew, bct, num_events, 0);
|
|
n--;
|
|
|
|
for (i = 0; i < n; ++i) {
|
|
vp9_cond_prob_diff_update(w, &Pcur[i], VP9_DEF_UPDATE_PROB, bct[i]);
|
|
}
|
|
}
|
|
|
|
static void update_mbintra_mode_probs(VP9_COMP* const cpi,
|
|
vp9_writer* const bc) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
int j;
|
|
vp9_prob pnew[VP9_INTRA_MODES - 1];
|
|
unsigned int bct[VP9_INTRA_MODES - 1][2];
|
|
|
|
for (j = 0; j < BLOCK_SIZE_GROUPS; j++)
|
|
update_mode(bc, VP9_INTRA_MODES, vp9_intra_mode_encodings,
|
|
vp9_intra_mode_tree, pnew,
|
|
cm->fc.y_mode_prob[j], bct,
|
|
(unsigned int *)cpi->y_mode_count[j]);
|
|
}
|
|
|
|
void vp9_update_skip_probs(VP9_COMP *cpi) {
|
|
VP9_COMMON *const pc = &cpi->common;
|
|
int k;
|
|
|
|
for (k = 0; k < MBSKIP_CONTEXTS; ++k)
|
|
pc->mbskip_pred_probs[k] = get_binary_prob(cpi->skip_false_count[k],
|
|
cpi->skip_true_count[k]);
|
|
}
|
|
|
|
static void write_intra_mode(vp9_writer *bc, int m, const vp9_prob *p) {
|
|
write_token(bc, vp9_intra_mode_tree, p, vp9_intra_mode_encodings + m);
|
|
}
|
|
|
|
static void update_switchable_interp_probs(VP9_COMMON *const pc,
|
|
vp9_writer* const bc) {
|
|
unsigned int branch_ct[VP9_SWITCHABLE_FILTERS + 1]
|
|
[VP9_SWITCHABLE_FILTERS - 1][2];
|
|
vp9_prob new_prob[VP9_SWITCHABLE_FILTERS + 1][VP9_SWITCHABLE_FILTERS - 1];
|
|
int i, j;
|
|
for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j) {
|
|
vp9_tree_probs_from_distribution(
|
|
vp9_switchable_interp_tree,
|
|
new_prob[j], branch_ct[j],
|
|
pc->fc.switchable_interp_count[j], 0);
|
|
}
|
|
for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j) {
|
|
for (i = 0; i < VP9_SWITCHABLE_FILTERS - 1; ++i) {
|
|
// vp9_cond_prob_update(bc, &pc->fc.switchable_interp_prob[j][i],
|
|
// VP9_DEF_UPDATE_PROB, branch_ct[j][i]);
|
|
vp9_cond_prob_diff_update(bc, &pc->fc.switchable_interp_prob[j][i],
|
|
VP9_DEF_UPDATE_PROB, branch_ct[j][i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_inter_mode_probs(VP9_COMMON *pc, vp9_writer* const bc) {
|
|
int i, j;
|
|
|
|
for (i = 0; i < INTER_MODE_CONTEXTS; i++) {
|
|
for (j = 0; j < VP9_INTER_MODES - 1; j++) {
|
|
vp9_cond_prob_diff_update(bc, &pc->fc.inter_mode_probs[i][j],
|
|
VP9_DEF_UPDATE_PROB,
|
|
pc->fc.inter_mode_counts[i][j]);
|
|
// vp9_cond_prob_update(
|
|
// bc, &pc->fc.inter_mode_probs[i][j],
|
|
// VP9_DEF_UPDATE_PROB, pc->fc.inter_mode_counts[i][j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void pack_mb_tokens(vp9_writer* const bc,
|
|
TOKENEXTRA **tp,
|
|
const TOKENEXTRA *const stop) {
|
|
TOKENEXTRA *p = *tp;
|
|
|
|
while (p < stop) {
|
|
const int t = p->token;
|
|
const struct vp9_token *const a = vp9_coef_encodings + t;
|
|
const vp9_extra_bit *const b = vp9_extra_bits + t;
|
|
int i = 0;
|
|
const vp9_prob *pp;
|
|
int v = a->value;
|
|
int n = a->len;
|
|
vp9_prob probs[ENTROPY_NODES];
|
|
|
|
if (t == EOSB_TOKEN) {
|
|
++p;
|
|
break;
|
|
}
|
|
if (t >= TWO_TOKEN) {
|
|
vp9_model_to_full_probs(p->context_tree, probs);
|
|
pp = probs;
|
|
} else {
|
|
pp = p->context_tree;
|
|
}
|
|
assert(pp != 0);
|
|
|
|
/* skip one or two nodes */
|
|
#if !CONFIG_BALANCED_COEFTREE
|
|
if (p->skip_eob_node) {
|
|
n -= p->skip_eob_node;
|
|
i = 2 * p->skip_eob_node;
|
|
}
|
|
#endif
|
|
|
|
do {
|
|
const int bb = (v >> --n) & 1;
|
|
#if CONFIG_BALANCED_COEFTREE
|
|
if (i == 2 && p->skip_eob_node) {
|
|
i += 2;
|
|
assert(bb == 1);
|
|
continue;
|
|
}
|
|
#endif
|
|
vp9_write(bc, bb, pp[i >> 1]);
|
|
i = vp9_coef_tree[i + bb];
|
|
} while (n);
|
|
|
|
if (b->base_val) {
|
|
const int e = p->extra, l = b->len;
|
|
|
|
if (l) {
|
|
const unsigned char *pb = b->prob;
|
|
int v = e >> 1;
|
|
int n = l; /* number of bits in v, assumed nonzero */
|
|
int i = 0;
|
|
|
|
do {
|
|
const int bb = (v >> --n) & 1;
|
|
vp9_write(bc, bb, pb[i >> 1]);
|
|
i = b->tree[i + bb];
|
|
} while (n);
|
|
}
|
|
|
|
vp9_write_bit(bc, e & 1);
|
|
}
|
|
++p;
|
|
}
|
|
|
|
*tp = p;
|
|
}
|
|
|
|
static void write_sb_mv_ref(vp9_writer *bc, MB_PREDICTION_MODE m,
|
|
const vp9_prob *p) {
|
|
#if CONFIG_DEBUG
|
|
assert(NEARESTMV <= m && m <= NEWMV);
|
|
#endif
|
|
write_token(bc, vp9_sb_mv_ref_tree, p,
|
|
vp9_sb_mv_ref_encoding_array - NEARESTMV + m);
|
|
}
|
|
|
|
// This function writes the current macro block's segnment id to the bitstream
|
|
// It should only be called if a segment map update is indicated.
|
|
static void write_mb_segid(vp9_writer *bc,
|
|
const MB_MODE_INFO *mi, const MACROBLOCKD *xd) {
|
|
if (xd->segmentation_enabled && xd->update_mb_segmentation_map)
|
|
treed_write(bc, vp9_segment_tree, xd->mb_segment_tree_probs,
|
|
mi->segment_id, 3);
|
|
}
|
|
|
|
// This function encodes the reference frame
|
|
static void encode_ref_frame(VP9_COMP *cpi, vp9_writer *bc) {
|
|
VP9_COMMON *const pc = &cpi->common;
|
|
MACROBLOCK *const x = &cpi->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *mi = &xd->mode_info_context->mbmi;
|
|
const int segment_id = mi->segment_id;
|
|
int seg_ref_active = vp9_segfeature_active(xd, segment_id,
|
|
SEG_LVL_REF_FRAME);
|
|
int seg_ref_count = 0;
|
|
|
|
if (seg_ref_active) {
|
|
seg_ref_count = vp9_check_segref(xd, segment_id, INTRA_FRAME) +
|
|
vp9_check_segref(xd, segment_id, LAST_FRAME) +
|
|
vp9_check_segref(xd, segment_id, GOLDEN_FRAME) +
|
|
vp9_check_segref(xd, segment_id, ALTREF_FRAME);
|
|
}
|
|
|
|
// If segment level coding of this signal is disabled...
|
|
// or the segment allows multiple reference frame options
|
|
if (!seg_ref_active || (seg_ref_count > 1)) {
|
|
// does the feature use compound prediction or not
|
|
// (if not specified at the frame/segment level)
|
|
if (pc->comp_pred_mode == HYBRID_PREDICTION) {
|
|
vp9_write(bc, mi->ref_frame[1] > INTRA_FRAME,
|
|
vp9_get_pred_prob(pc, xd, PRED_COMP_INTER_INTER));
|
|
} else {
|
|
assert((mi->ref_frame[1] <= INTRA_FRAME) ==
|
|
(pc->comp_pred_mode == SINGLE_PREDICTION_ONLY));
|
|
}
|
|
|
|
if (mi->ref_frame[1] > INTRA_FRAME) {
|
|
vp9_write(bc, mi->ref_frame[0] == GOLDEN_FRAME,
|
|
vp9_get_pred_prob(pc, xd, PRED_COMP_REF_P));
|
|
} else {
|
|
vp9_write(bc, mi->ref_frame[0] != LAST_FRAME,
|
|
vp9_get_pred_prob(pc, xd, PRED_SINGLE_REF_P1));
|
|
if (mi->ref_frame[0] != LAST_FRAME)
|
|
vp9_write(bc, mi->ref_frame[0] != GOLDEN_FRAME,
|
|
vp9_get_pred_prob(pc, xd, PRED_SINGLE_REF_P2));
|
|
}
|
|
} else {
|
|
assert(mi->ref_frame[1] <= INTRA_FRAME);
|
|
assert(vp9_check_segref(xd, segment_id, mi->ref_frame[0]));
|
|
}
|
|
|
|
// if using the prediction mdoel we have nothing further to do because
|
|
// the reference frame is fully coded by the segment
|
|
}
|
|
|
|
static void pack_inter_mode_mvs(VP9_COMP *cpi, MODE_INFO *m,
|
|
vp9_writer *bc, int mi_row, int mi_col) {
|
|
VP9_COMMON *const pc = &cpi->common;
|
|
const nmv_context *nmvc = &pc->fc.nmvc;
|
|
MACROBLOCK *const x = &cpi->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mi = &m->mbmi;
|
|
const MV_REFERENCE_FRAME rf = mi->ref_frame[0];
|
|
const MB_PREDICTION_MODE mode = mi->mode;
|
|
const int segment_id = mi->segment_id;
|
|
int skip_coeff;
|
|
|
|
xd->prev_mode_info_context = pc->prev_mi + (m - pc->mi);
|
|
x->partition_info = x->pi + (m - pc->mi);
|
|
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 9;
|
|
#endif
|
|
|
|
if (cpi->mb.e_mbd.update_mb_segmentation_map) {
|
|
// Is temporal coding of the segment map enabled
|
|
if (pc->temporal_update) {
|
|
unsigned char prediction_flag = vp9_get_pred_flag(xd, PRED_SEG_ID);
|
|
vp9_prob pred_prob = vp9_get_pred_prob(pc, xd, PRED_SEG_ID);
|
|
|
|
// Code the segment id prediction flag for this mb
|
|
vp9_write(bc, prediction_flag, pred_prob);
|
|
|
|
// If the mb segment id wasn't predicted code explicitly
|
|
if (!prediction_flag)
|
|
write_mb_segid(bc, mi, &cpi->mb.e_mbd);
|
|
} else {
|
|
// Normal unpredicted coding
|
|
write_mb_segid(bc, mi, &cpi->mb.e_mbd);
|
|
}
|
|
}
|
|
|
|
if (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) {
|
|
skip_coeff = 1;
|
|
} else {
|
|
skip_coeff = m->mbmi.mb_skip_coeff;
|
|
vp9_write(bc, skip_coeff,
|
|
vp9_get_pred_prob(pc, xd, PRED_MBSKIP));
|
|
}
|
|
|
|
vp9_write(bc, rf != INTRA_FRAME, vp9_get_pred_prob(pc, xd, PRED_INTRA_INTER));
|
|
|
|
if (mi->sb_type >= BLOCK_SIZE_SB8X8 && pc->txfm_mode == TX_MODE_SELECT &&
|
|
!(rf != INTRA_FRAME &&
|
|
(skip_coeff || vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)))) {
|
|
TX_SIZE sz = mi->txfm_size;
|
|
int tx_probs_offset = get_tx_probs_offset(mi->sb_type);
|
|
vp9_write(bc, sz != TX_4X4, pc->fc.tx_probs[tx_probs_offset]);
|
|
if (mi->sb_type >= BLOCK_SIZE_MB16X16 && sz != TX_4X4) {
|
|
vp9_write(bc, sz != TX_8X8, pc->fc.tx_probs[tx_probs_offset + 1]);
|
|
if (mi->sb_type >= BLOCK_SIZE_SB32X32 && sz != TX_8X8)
|
|
vp9_write(bc, sz != TX_16X16, pc->fc.tx_probs[tx_probs_offset + 2]);
|
|
}
|
|
}
|
|
|
|
if (rf == INTRA_FRAME) {
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 6;
|
|
#endif
|
|
|
|
if (m->mbmi.sb_type >= BLOCK_SIZE_SB8X8) {
|
|
const BLOCK_SIZE_TYPE bsize = xd->mode_info_context->mbmi.sb_type;
|
|
const int bwl = b_width_log2(bsize), bhl = b_height_log2(bsize);
|
|
const int bsl = MIN(bwl, bhl);
|
|
write_intra_mode(bc, mode, pc->fc.y_mode_prob[MIN(3, bsl)]);
|
|
} else {
|
|
int idx, idy;
|
|
int bw = 1 << b_width_log2(mi->sb_type);
|
|
int bh = 1 << b_height_log2(mi->sb_type);
|
|
for (idy = 0; idy < 2; idy += bh)
|
|
for (idx = 0; idx < 2; idx += bw) {
|
|
MB_PREDICTION_MODE bm = m->bmi[idy * 2 + idx].as_mode.first;
|
|
write_intra_mode(bc, bm, pc->fc.y_mode_prob[0]);
|
|
}
|
|
}
|
|
write_intra_mode(bc, mi->uv_mode,
|
|
pc->fc.uv_mode_prob[mode]);
|
|
} else {
|
|
vp9_prob mv_ref_p[VP9_INTER_MODES - 1];
|
|
|
|
encode_ref_frame(cpi, bc);
|
|
|
|
vp9_mv_ref_probs(&cpi->common, mv_ref_p, mi->mb_mode_context[rf]);
|
|
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 3;
|
|
#endif
|
|
|
|
// If segment skip is not enabled code the mode.
|
|
if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) {
|
|
if (mi->sb_type >= BLOCK_SIZE_SB8X8) {
|
|
write_sb_mv_ref(bc, mode, mv_ref_p);
|
|
vp9_accum_mv_refs(&cpi->common, mode, mi->mb_mode_context[rf]);
|
|
}
|
|
}
|
|
|
|
if (cpi->common.mcomp_filter_type == SWITCHABLE) {
|
|
write_token(bc, vp9_switchable_interp_tree,
|
|
vp9_get_pred_probs(&cpi->common, xd,
|
|
PRED_SWITCHABLE_INTERP),
|
|
vp9_switchable_interp_encodings +
|
|
vp9_switchable_interp_map[mi->interp_filter]);
|
|
} else {
|
|
assert(mi->interp_filter == cpi->common.mcomp_filter_type);
|
|
}
|
|
|
|
if (xd->mode_info_context->mbmi.sb_type < BLOCK_SIZE_SB8X8) {
|
|
int j;
|
|
MB_PREDICTION_MODE blockmode;
|
|
int_mv blockmv;
|
|
int bwl = b_width_log2(mi->sb_type), bw = 1 << bwl;
|
|
int bhl = b_height_log2(mi->sb_type), bh = 1 << bhl;
|
|
int idx, idy;
|
|
for (idy = 0; idy < 2; idy += bh) {
|
|
for (idx = 0; idx < 2; idx += bw) {
|
|
j = idy * 2 + idx;
|
|
blockmode = cpi->mb.partition_info->bmi[j].mode;
|
|
blockmv = cpi->mb.partition_info->bmi[j].mv;
|
|
write_sb_mv_ref(bc, blockmode, mv_ref_p);
|
|
vp9_accum_mv_refs(&cpi->common, blockmode, mi->mb_mode_context[rf]);
|
|
if (blockmode == NEWMV) {
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 11;
|
|
#endif
|
|
vp9_encode_mv(bc, &blockmv.as_mv, &mi->best_mv.as_mv,
|
|
nmvc, xd->allow_high_precision_mv);
|
|
|
|
if (mi->ref_frame[1] > INTRA_FRAME)
|
|
vp9_encode_mv(bc,
|
|
&cpi->mb.partition_info->bmi[j].second_mv.as_mv,
|
|
&mi->best_second_mv.as_mv,
|
|
nmvc, xd->allow_high_precision_mv);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef MODE_STATS
|
|
++count_mb_seg[mi->partitioning];
|
|
#endif
|
|
} else if (mode == NEWMV) {
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 5;
|
|
#endif
|
|
vp9_encode_mv(bc,
|
|
&mi->mv[0].as_mv, &mi->best_mv.as_mv,
|
|
nmvc, xd->allow_high_precision_mv);
|
|
|
|
if (mi->ref_frame[1] > INTRA_FRAME)
|
|
vp9_encode_mv(bc,
|
|
&mi->mv[1].as_mv, &mi->best_second_mv.as_mv,
|
|
nmvc, xd->allow_high_precision_mv);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void write_mb_modes_kf(const VP9_COMP *cpi,
|
|
MODE_INFO *m,
|
|
vp9_writer *bc, int mi_row, int mi_col) {
|
|
const VP9_COMMON *const c = &cpi->common;
|
|
const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
|
|
const int ym = m->mbmi.mode;
|
|
const int mis = c->mode_info_stride;
|
|
const int segment_id = m->mbmi.segment_id;
|
|
int skip_coeff;
|
|
|
|
if (xd->update_mb_segmentation_map)
|
|
write_mb_segid(bc, &m->mbmi, xd);
|
|
|
|
if (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) {
|
|
skip_coeff = 1;
|
|
} else {
|
|
skip_coeff = m->mbmi.mb_skip_coeff;
|
|
vp9_write(bc, skip_coeff, vp9_get_pred_prob(c, xd, PRED_MBSKIP));
|
|
}
|
|
|
|
if (m->mbmi.sb_type >= BLOCK_SIZE_SB8X8 && c->txfm_mode == TX_MODE_SELECT) {
|
|
TX_SIZE sz = m->mbmi.txfm_size;
|
|
int tx_probs_offset = get_tx_probs_offset(m->mbmi.sb_type);
|
|
vp9_write(bc, sz != TX_4X4, c->fc.tx_probs[tx_probs_offset]);
|
|
if (m->mbmi.sb_type >= BLOCK_SIZE_MB16X16 && sz != TX_4X4) {
|
|
vp9_write(bc, sz != TX_8X8, c->fc.tx_probs[tx_probs_offset + 1]);
|
|
if (m->mbmi.sb_type >= BLOCK_SIZE_SB32X32 && sz != TX_8X8)
|
|
vp9_write(bc, sz != TX_16X16, c->fc.tx_probs[tx_probs_offset + 2]);
|
|
}
|
|
}
|
|
|
|
if (m->mbmi.sb_type >= BLOCK_SIZE_SB8X8) {
|
|
const MB_PREDICTION_MODE A = above_block_mode(m, 0, mis);
|
|
const MB_PREDICTION_MODE L = xd->left_available ?
|
|
left_block_mode(m, 0) : DC_PRED;
|
|
write_intra_mode(bc, ym, c->kf_y_mode_prob[A][L]);
|
|
} else {
|
|
int idx, idy;
|
|
int bw = 1 << b_width_log2(m->mbmi.sb_type);
|
|
int bh = 1 << b_height_log2(m->mbmi.sb_type);
|
|
for (idy = 0; idy < 2; idy += bh) {
|
|
for (idx = 0; idx < 2; idx += bw) {
|
|
int i = idy * 2 + idx;
|
|
const MB_PREDICTION_MODE A = above_block_mode(m, i, mis);
|
|
const MB_PREDICTION_MODE L = (xd->left_available || idx) ?
|
|
left_block_mode(m, i) : DC_PRED;
|
|
const int bm = m->bmi[i].as_mode.first;
|
|
#ifdef ENTROPY_STATS
|
|
++intra_mode_stats[A][L][bm];
|
|
#endif
|
|
write_intra_mode(bc, bm, c->kf_y_mode_prob[A][L]);
|
|
}
|
|
}
|
|
}
|
|
|
|
write_intra_mode(bc, m->mbmi.uv_mode, c->kf_uv_mode_prob[ym]);
|
|
}
|
|
|
|
static void write_modes_b(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc,
|
|
TOKENEXTRA **tok, TOKENEXTRA *tok_end,
|
|
int mi_row, int mi_col) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
|
|
|
|
if (m->mbmi.sb_type < BLOCK_SIZE_SB8X8)
|
|
if (xd->ab_index > 0)
|
|
return;
|
|
xd->mode_info_context = m;
|
|
set_mi_row_col(&cpi->common, xd, mi_row,
|
|
1 << mi_height_log2(m->mbmi.sb_type),
|
|
mi_col, 1 << mi_width_log2(m->mbmi.sb_type));
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
write_mb_modes_kf(cpi, m, bc, mi_row, mi_col);
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 8;
|
|
#endif
|
|
} else {
|
|
pack_inter_mode_mvs(cpi, m, bc, mi_row, mi_col);
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 1;
|
|
#endif
|
|
}
|
|
|
|
assert(*tok < tok_end);
|
|
pack_mb_tokens(bc, tok, tok_end);
|
|
}
|
|
|
|
static void write_modes_sb(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc,
|
|
TOKENEXTRA **tok, TOKENEXTRA *tok_end,
|
|
int mi_row, int mi_col,
|
|
BLOCK_SIZE_TYPE bsize) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
const int mis = cm->mode_info_stride;
|
|
int bwl, bhl;
|
|
int bsl = b_width_log2(bsize);
|
|
int bs = (1 << bsl) / 4; // mode_info step for subsize
|
|
int n;
|
|
PARTITION_TYPE partition;
|
|
BLOCK_SIZE_TYPE subsize;
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
|
|
return;
|
|
|
|
bwl = b_width_log2(m->mbmi.sb_type);
|
|
bhl = b_height_log2(m->mbmi.sb_type);
|
|
|
|
// parse the partition type
|
|
if ((bwl == bsl) && (bhl == bsl))
|
|
partition = PARTITION_NONE;
|
|
else if ((bwl == bsl) && (bhl < bsl))
|
|
partition = PARTITION_HORZ;
|
|
else if ((bwl < bsl) && (bhl == bsl))
|
|
partition = PARTITION_VERT;
|
|
else if ((bwl < bsl) && (bhl < bsl))
|
|
partition = PARTITION_SPLIT;
|
|
else
|
|
assert(0);
|
|
|
|
if (bsize < BLOCK_SIZE_SB8X8)
|
|
if (xd->ab_index > 0)
|
|
return;
|
|
|
|
if (bsize >= BLOCK_SIZE_SB8X8) {
|
|
int pl;
|
|
xd->left_seg_context = cm->left_seg_context + (mi_row & MI_MASK);
|
|
xd->above_seg_context = cm->above_seg_context + mi_col;
|
|
pl = partition_plane_context(xd, bsize);
|
|
// encode the partition information
|
|
write_token(bc, vp9_partition_tree,
|
|
cm->fc.partition_prob[cm->frame_type][pl],
|
|
vp9_partition_encodings + partition);
|
|
}
|
|
|
|
subsize = get_subsize(bsize, partition);
|
|
*(get_sb_index(xd, subsize)) = 0;
|
|
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
write_modes_b(cpi, m, bc, tok, tok_end, mi_row, mi_col);
|
|
break;
|
|
case PARTITION_HORZ:
|
|
write_modes_b(cpi, m, bc, tok, tok_end, mi_row, mi_col);
|
|
*(get_sb_index(xd, subsize)) = 1;
|
|
if ((mi_row + bs) < cm->mi_rows)
|
|
write_modes_b(cpi, m + bs * mis, bc, tok, tok_end, mi_row + bs, mi_col);
|
|
break;
|
|
case PARTITION_VERT:
|
|
write_modes_b(cpi, m, bc, tok, tok_end, mi_row, mi_col);
|
|
*(get_sb_index(xd, subsize)) = 1;
|
|
if ((mi_col + bs) < cm->mi_cols)
|
|
write_modes_b(cpi, m + bs, bc, tok, tok_end, mi_row, mi_col + bs);
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
for (n = 0; n < 4; n++) {
|
|
int j = n >> 1, i = n & 0x01;
|
|
*(get_sb_index(xd, subsize)) = n;
|
|
write_modes_sb(cpi, m + j * bs * mis + i * bs, bc, tok, tok_end,
|
|
mi_row + j * bs, mi_col + i * bs, subsize);
|
|
}
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
|
|
// update partition context
|
|
if (bsize >= BLOCK_SIZE_SB8X8 &&
|
|
(bsize == BLOCK_SIZE_SB8X8 || partition != PARTITION_SPLIT)) {
|
|
set_partition_seg_context(cm, xd, mi_row, mi_col);
|
|
update_partition_context(xd, subsize, bsize);
|
|
}
|
|
}
|
|
|
|
static void write_modes(VP9_COMP *cpi, vp9_writer* const bc,
|
|
TOKENEXTRA **tok, TOKENEXTRA *tok_end) {
|
|
VP9_COMMON *const c = &cpi->common;
|
|
const int mis = c->mode_info_stride;
|
|
MODE_INFO *m, *m_ptr = c->mi;
|
|
int mi_row, mi_col;
|
|
|
|
m_ptr += c->cur_tile_mi_col_start + c->cur_tile_mi_row_start * mis;
|
|
vpx_memset(c->above_seg_context, 0, sizeof(PARTITION_CONTEXT) *
|
|
mi_cols_aligned_to_sb(c));
|
|
|
|
for (mi_row = c->cur_tile_mi_row_start;
|
|
mi_row < c->cur_tile_mi_row_end;
|
|
mi_row += 8, m_ptr += 8 * mis) {
|
|
m = m_ptr;
|
|
vpx_memset(c->left_seg_context, 0, sizeof(c->left_seg_context));
|
|
for (mi_col = c->cur_tile_mi_col_start;
|
|
mi_col < c->cur_tile_mi_col_end;
|
|
mi_col += 64 / MI_SIZE, m += 64 / MI_SIZE)
|
|
write_modes_sb(cpi, m, bc, tok, tok_end, mi_row, mi_col,
|
|
BLOCK_SIZE_SB64X64);
|
|
}
|
|
}
|
|
|
|
/* This function is used for debugging probability trees. */
|
|
static void print_prob_tree(vp9_coeff_probs *coef_probs, int block_types) {
|
|
/* print coef probability tree */
|
|
int i, j, k, l, m;
|
|
FILE *f = fopen("enc_tree_probs.txt", "a");
|
|
fprintf(f, "{\n");
|
|
for (i = 0; i < block_types; i++) {
|
|
fprintf(f, " {\n");
|
|
for (j = 0; j < REF_TYPES; ++j) {
|
|
fprintf(f, " {\n");
|
|
for (k = 0; k < COEF_BANDS; k++) {
|
|
fprintf(f, " {\n");
|
|
for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
|
|
fprintf(f, " {");
|
|
for (m = 0; m < ENTROPY_NODES; m++) {
|
|
fprintf(f, "%3u, ",
|
|
(unsigned int)(coef_probs[i][j][k][l][m]));
|
|
}
|
|
}
|
|
fprintf(f, " }\n");
|
|
}
|
|
fprintf(f, " }\n");
|
|
}
|
|
fprintf(f, " }\n");
|
|
}
|
|
fprintf(f, "}\n");
|
|
fclose(f);
|
|
}
|
|
|
|
static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE txfm_size) {
|
|
vp9_coeff_probs_model *coef_probs = cpi->frame_coef_probs[txfm_size];
|
|
vp9_coeff_count *coef_counts = cpi->coef_counts[txfm_size];
|
|
unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS] =
|
|
cpi->common.fc.eob_branch_counts[txfm_size];
|
|
vp9_coeff_stats *coef_branch_ct = cpi->frame_branch_ct[txfm_size];
|
|
vp9_prob full_probs[ENTROPY_NODES];
|
|
int i, j, k, l;
|
|
|
|
for (i = 0; i < BLOCK_TYPES; ++i) {
|
|
for (j = 0; j < REF_TYPES; ++j) {
|
|
for (k = 0; k < COEF_BANDS; ++k) {
|
|
for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
|
|
if (l >= 3 && k == 0)
|
|
continue;
|
|
vp9_tree_probs_from_distribution(vp9_coef_tree,
|
|
full_probs,
|
|
coef_branch_ct[i][j][k][l],
|
|
coef_counts[i][j][k][l], 0);
|
|
vpx_memcpy(coef_probs[i][j][k][l], full_probs,
|
|
sizeof(vp9_prob) * UNCONSTRAINED_NODES);
|
|
#if CONFIG_BALANCED_COEFTREE
|
|
coef_branch_ct[i][j][k][l][1][1] = eob_branch_ct[i][j][k][l] -
|
|
coef_branch_ct[i][j][k][l][1][0];
|
|
coef_probs[i][j][k][l][1] =
|
|
get_binary_prob(coef_branch_ct[i][j][k][l][1][0],
|
|
coef_branch_ct[i][j][k][l][1][1]);
|
|
#else
|
|
coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] -
|
|
coef_branch_ct[i][j][k][l][0][0];
|
|
coef_probs[i][j][k][l][0] =
|
|
get_binary_prob(coef_branch_ct[i][j][k][l][0][0],
|
|
coef_branch_ct[i][j][k][l][0][1]);
|
|
#endif
|
|
#ifdef ENTROPY_STATS
|
|
if (!cpi->dummy_packing) {
|
|
int t;
|
|
for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
|
|
context_counters[txfm_size][i][j][k][l][t] +=
|
|
coef_counts[i][j][k][l][t];
|
|
context_counters[txfm_size][i][j][k][l][MAX_ENTROPY_TOKENS] +=
|
|
eob_branch_ct[i][j][k][l];
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void build_coeff_contexts(VP9_COMP *cpi) {
|
|
TX_SIZE t;
|
|
for (t = TX_4X4; t <= TX_32X32; t++)
|
|
build_tree_distribution(cpi, t);
|
|
}
|
|
|
|
static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi,
|
|
TX_SIZE tx_size) {
|
|
vp9_coeff_probs_model *new_frame_coef_probs = cpi->frame_coef_probs[tx_size];
|
|
vp9_coeff_probs_model *old_frame_coef_probs =
|
|
cpi->common.fc.coef_probs[tx_size];
|
|
vp9_coeff_stats *frame_branch_ct = cpi->frame_branch_ct[tx_size];
|
|
int i, j, k, l, t;
|
|
int update[2] = {0, 0};
|
|
int savings;
|
|
|
|
const int entropy_nodes_update = UNCONSTRAINED_NODES;
|
|
|
|
const int tstart = 0;
|
|
/* dry run to see if there is any udpate at all needed */
|
|
savings = 0;
|
|
for (i = 0; i < BLOCK_TYPES; ++i) {
|
|
for (j = 0; j < REF_TYPES; ++j) {
|
|
for (k = 0; k < COEF_BANDS; ++k) {
|
|
// int prev_coef_savings[ENTROPY_NODES] = {0};
|
|
for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
|
|
for (t = tstart; t < entropy_nodes_update; ++t) {
|
|
vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
|
|
const vp9_prob oldp = old_frame_coef_probs[i][j][k][l][t];
|
|
const vp9_prob upd = vp9_coef_update_prob[t];
|
|
int s;
|
|
int u = 0;
|
|
|
|
if (l >= 3 && k == 0)
|
|
continue;
|
|
if (t == PIVOT_NODE)
|
|
s = prob_diff_update_savings_search_model(
|
|
frame_branch_ct[i][j][k][l][0],
|
|
old_frame_coef_probs[i][j][k][l], &newp, upd, i, j);
|
|
else
|
|
s = prob_diff_update_savings_search(
|
|
frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
|
|
if (s > 0 && newp != oldp)
|
|
u = 1;
|
|
if (u)
|
|
savings += s - (int)(vp9_cost_zero(upd));
|
|
else
|
|
savings -= (int)(vp9_cost_zero(upd));
|
|
update[u]++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// printf("Update %d %d, savings %d\n", update[0], update[1], savings);
|
|
/* Is coef updated at all */
|
|
if (update[1] == 0 || savings < 0) {
|
|
vp9_write_bit(bc, 0);
|
|
return;
|
|
}
|
|
vp9_write_bit(bc, 1);
|
|
for (i = 0; i < BLOCK_TYPES; ++i) {
|
|
for (j = 0; j < REF_TYPES; ++j) {
|
|
for (k = 0; k < COEF_BANDS; ++k) {
|
|
// int prev_coef_savings[ENTROPY_NODES] = {0};
|
|
for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
|
|
// calc probs and branch cts for this frame only
|
|
for (t = tstart; t < entropy_nodes_update; ++t) {
|
|
vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
|
|
vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t;
|
|
const vp9_prob upd = vp9_coef_update_prob[t];
|
|
int s;
|
|
int u = 0;
|
|
if (l >= 3 && k == 0)
|
|
continue;
|
|
if (t == PIVOT_NODE)
|
|
s = prob_diff_update_savings_search_model(
|
|
frame_branch_ct[i][j][k][l][0],
|
|
old_frame_coef_probs[i][j][k][l], &newp, upd, i, j);
|
|
else
|
|
s = prob_diff_update_savings_search(
|
|
frame_branch_ct[i][j][k][l][t],
|
|
*oldp, &newp, upd);
|
|
if (s > 0 && newp != *oldp)
|
|
u = 1;
|
|
vp9_write(bc, u, upd);
|
|
#ifdef ENTROPY_STATS
|
|
if (!cpi->dummy_packing)
|
|
++tree_update_hist[tx_size][i][j][k][l][t][u];
|
|
#endif
|
|
if (u) {
|
|
/* send/use new probability */
|
|
write_prob_diff_update(bc, newp, *oldp);
|
|
*oldp = newp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_coef_probs(VP9_COMP* const cpi, vp9_writer* const bc) {
|
|
const TXFM_MODE txfm_mode = cpi->common.txfm_mode;
|
|
|
|
vp9_clear_system_state();
|
|
|
|
// Build the cofficient contexts based on counts collected in encode loop
|
|
build_coeff_contexts(cpi);
|
|
|
|
update_coef_probs_common(bc, cpi, TX_4X4);
|
|
|
|
// do not do this if not even allowed
|
|
if (txfm_mode > ONLY_4X4)
|
|
update_coef_probs_common(bc, cpi, TX_8X8);
|
|
|
|
if (txfm_mode > ALLOW_8X8)
|
|
update_coef_probs_common(bc, cpi, TX_16X16);
|
|
|
|
if (txfm_mode > ALLOW_16X16)
|
|
update_coef_probs_common(bc, cpi, TX_32X32);
|
|
}
|
|
|
|
static void encode_loopfilter(VP9_COMMON *pc, MACROBLOCKD *xd,
|
|
struct vp9_write_bit_buffer *wb) {
|
|
int i;
|
|
|
|
// Encode the loop filter level and type
|
|
vp9_wb_write_literal(wb, pc->filter_level, 6);
|
|
vp9_wb_write_literal(wb, pc->sharpness_level, 3);
|
|
|
|
// Write out loop filter deltas applied at the MB level based on mode or
|
|
// ref frame (if they are enabled).
|
|
vp9_wb_write_bit(wb, xd->mode_ref_lf_delta_enabled);
|
|
|
|
if (xd->mode_ref_lf_delta_enabled) {
|
|
// Do the deltas need to be updated
|
|
vp9_wb_write_bit(wb, xd->mode_ref_lf_delta_update);
|
|
if (xd->mode_ref_lf_delta_update) {
|
|
// Send update
|
|
for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
|
|
const int delta = xd->ref_lf_deltas[i];
|
|
|
|
// Frame level data
|
|
if (delta != xd->last_ref_lf_deltas[i]) {
|
|
xd->last_ref_lf_deltas[i] = delta;
|
|
vp9_wb_write_bit(wb, 1);
|
|
|
|
assert(delta != 0);
|
|
vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
|
|
vp9_wb_write_bit(wb, delta < 0);
|
|
} else {
|
|
vp9_wb_write_bit(wb, 0);
|
|
}
|
|
}
|
|
|
|
// Send update
|
|
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
|
|
const int delta = xd->mode_lf_deltas[i];
|
|
if (delta != xd->last_mode_lf_deltas[i]) {
|
|
xd->last_mode_lf_deltas[i] = delta;
|
|
vp9_wb_write_bit(wb, 1);
|
|
|
|
assert(delta != 0);
|
|
vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
|
|
vp9_wb_write_bit(wb, delta < 0);
|
|
} else {
|
|
vp9_wb_write_bit(wb, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void write_delta_q(struct vp9_write_bit_buffer *wb, int delta_q) {
|
|
if (delta_q != 0) {
|
|
vp9_wb_write_bit(wb, 1);
|
|
vp9_wb_write_literal(wb, abs(delta_q), 4);
|
|
vp9_wb_write_bit(wb, delta_q < 0);
|
|
} else {
|
|
vp9_wb_write_bit(wb, 0);
|
|
}
|
|
}
|
|
|
|
static void encode_quantization(VP9_COMMON *cm,
|
|
struct vp9_write_bit_buffer *wb) {
|
|
vp9_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
|
|
write_delta_q(wb, cm->y_dc_delta_q);
|
|
write_delta_q(wb, cm->uv_dc_delta_q);
|
|
write_delta_q(wb, cm->uv_ac_delta_q);
|
|
}
|
|
|
|
|
|
static void encode_segmentation(VP9_COMP *cpi,
|
|
struct vp9_write_bit_buffer *wb) {
|
|
int i, j;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
|
|
|
|
vp9_wb_write_bit(wb, xd->segmentation_enabled);
|
|
if (!xd->segmentation_enabled)
|
|
return;
|
|
|
|
// Segmentation map
|
|
vp9_wb_write_bit(wb, xd->update_mb_segmentation_map);
|
|
if (xd->update_mb_segmentation_map) {
|
|
// Select the coding strategy (temporal or spatial)
|
|
vp9_choose_segmap_coding_method(cpi);
|
|
// Write out probabilities used to decode unpredicted macro-block segments
|
|
for (i = 0; i < MB_SEG_TREE_PROBS; i++) {
|
|
const int prob = xd->mb_segment_tree_probs[i];
|
|
const int update = prob != MAX_PROB;
|
|
vp9_wb_write_bit(wb, update);
|
|
if (update)
|
|
vp9_wb_write_literal(wb, prob, 8);
|
|
}
|
|
|
|
// Write out the chosen coding method.
|
|
vp9_wb_write_bit(wb, cm->temporal_update);
|
|
if (cm->temporal_update) {
|
|
for (i = 0; i < PREDICTION_PROBS; i++) {
|
|
const int prob = cm->segment_pred_probs[i];
|
|
const int update = prob != MAX_PROB;
|
|
vp9_wb_write_bit(wb, update);
|
|
if (update)
|
|
vp9_wb_write_literal(wb, prob, 8);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Segmentation data
|
|
vp9_wb_write_bit(wb, xd->update_mb_segmentation_data);
|
|
if (xd->update_mb_segmentation_data) {
|
|
vp9_wb_write_bit(wb, xd->mb_segment_abs_delta);
|
|
|
|
for (i = 0; i < MAX_MB_SEGMENTS; i++) {
|
|
for (j = 0; j < SEG_LVL_MAX; j++) {
|
|
const int active = vp9_segfeature_active(xd, i, j);
|
|
vp9_wb_write_bit(wb, active);
|
|
if (active) {
|
|
const int data = vp9_get_segdata(xd, i, j);
|
|
const int data_max = vp9_seg_feature_data_max(j);
|
|
|
|
if (vp9_is_segfeature_signed(j)) {
|
|
vp9_encode_unsigned_max(wb, abs(data), data_max);
|
|
vp9_wb_write_bit(wb, data < 0);
|
|
} else {
|
|
vp9_encode_unsigned_max(wb, data, data_max);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void encode_txfm_probs(VP9_COMP *cpi, vp9_writer *w) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
|
|
// Mode
|
|
vp9_write_literal(w, MIN(cm->txfm_mode, ALLOW_32X32), 2);
|
|
if (cm->txfm_mode >= ALLOW_32X32)
|
|
vp9_write_bit(w, cm->txfm_mode == TX_MODE_SELECT);
|
|
|
|
// Probabilities
|
|
if (cm->txfm_mode == TX_MODE_SELECT) {
|
|
int i;
|
|
unsigned int ct[TX_SIZE_PROBS][2];
|
|
tx_counts_to_branch_counts(cm->fc.tx_count_32x32p,
|
|
cm->fc.tx_count_16x16p,
|
|
cm->fc.tx_count_8x8p, ct);
|
|
|
|
for (i = 0; i < TX_SIZE_PROBS; i++) {
|
|
vp9_cond_prob_diff_update(w, &cm->fc.tx_probs[i],
|
|
VP9_DEF_UPDATE_PROB, ct[i]);
|
|
}
|
|
} else {
|
|
vpx_memcpy(cm->fc.tx_probs, vp9_default_tx_probs,
|
|
sizeof(vp9_default_tx_probs));
|
|
}
|
|
}
|
|
|
|
static void write_interp_filter_type(INTERPOLATIONFILTERTYPE type,
|
|
struct vp9_write_bit_buffer *wb) {
|
|
vp9_wb_write_bit(wb, type == SWITCHABLE);
|
|
if (type != SWITCHABLE)
|
|
vp9_wb_write_literal(wb, type, 2);
|
|
}
|
|
|
|
static void fix_mcomp_filter_type(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
|
|
if (cm->mcomp_filter_type == SWITCHABLE) {
|
|
// Check to see if only one of the filters is actually used
|
|
int count[VP9_SWITCHABLE_FILTERS];
|
|
int i, j, c = 0;
|
|
for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) {
|
|
count[i] = 0;
|
|
for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j)
|
|
count[i] += cm->fc.switchable_interp_count[j][i];
|
|
c += (count[i] > 0);
|
|
}
|
|
if (c == 1) {
|
|
// Only one filter is used. So set the filter at frame level
|
|
for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) {
|
|
if (count[i]) {
|
|
cm->mcomp_filter_type = vp9_switchable_interp[i];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void write_tile_info(VP9_COMMON *cm, struct vp9_write_bit_buffer *wb) {
|
|
int min_log2_tiles, delta_log2_tiles, n_tile_bits, n;
|
|
vp9_get_tile_n_bits(cm, &min_log2_tiles, &delta_log2_tiles);
|
|
n_tile_bits = cm->log2_tile_columns - min_log2_tiles;
|
|
for (n = 0; n < delta_log2_tiles; n++) {
|
|
if (n_tile_bits--) {
|
|
vp9_wb_write_bit(wb, 1);
|
|
} else {
|
|
vp9_wb_write_bit(wb, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
vp9_wb_write_bit(wb, cm->log2_tile_rows != 0);
|
|
if (cm->log2_tile_rows != 0)
|
|
vp9_wb_write_bit(wb, cm->log2_tile_rows != 1);
|
|
}
|
|
|
|
void write_uncompressed_header(VP9_COMP *cpi,
|
|
struct vp9_write_bit_buffer *wb) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
|
|
|
|
const int scaling_active = cm->width != cm->display_width ||
|
|
cm->height != cm->display_height;
|
|
|
|
vp9_wb_write_bit(wb, cm->frame_type);
|
|
vp9_wb_write_literal(wb, cm->version, 3);
|
|
vp9_wb_write_bit(wb, cm->show_frame);
|
|
vp9_wb_write_bit(wb, scaling_active);
|
|
vp9_wb_write_bit(wb, cm->subsampling_x);
|
|
vp9_wb_write_bit(wb, cm->subsampling_y);
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
vp9_wb_write_literal(wb, SYNC_CODE_0, 8);
|
|
vp9_wb_write_literal(wb, SYNC_CODE_1, 8);
|
|
vp9_wb_write_literal(wb, SYNC_CODE_2, 8);
|
|
}
|
|
|
|
if (scaling_active) {
|
|
vp9_wb_write_literal(wb, cm->display_width, 16);
|
|
vp9_wb_write_literal(wb, cm->display_height, 16);
|
|
}
|
|
|
|
vp9_wb_write_literal(wb, cm->width, 16);
|
|
vp9_wb_write_literal(wb, cm->height, 16);
|
|
|
|
vp9_wb_write_bit(wb, cm->error_resilient_mode);
|
|
if (!cm->error_resilient_mode) {
|
|
vp9_wb_write_bit(wb, cm->reset_frame_context);
|
|
vp9_wb_write_bit(wb, cm->refresh_frame_context);
|
|
vp9_wb_write_bit(wb, cm->frame_parallel_decoding_mode);
|
|
}
|
|
|
|
// When there is a key frame all reference buffers are updated using the new key frame
|
|
if (cm->frame_type != KEY_FRAME) {
|
|
int refresh_mask, i;
|
|
|
|
// Should the GF or ARF be updated using the transmitted frame or buffer
|
|
#if CONFIG_MULTIPLE_ARF
|
|
if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame &&
|
|
!cpi->refresh_alt_ref_frame) {
|
|
#else
|
|
if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) {
|
|
#endif
|
|
// Preserve the previously existing golden frame and update the frame in
|
|
// the alt ref slot instead. This is highly specific to the use of
|
|
// alt-ref as a forward reference, and this needs to be generalized as
|
|
// other uses are implemented (like RTC/temporal scaling)
|
|
//
|
|
// gld_fb_idx and alt_fb_idx need to be swapped for future frames, but
|
|
// that happens in vp9_onyx_if.c:update_reference_frames() so that it can
|
|
// be done outside of the recode loop.
|
|
refresh_mask = (cpi->refresh_last_frame << cpi->lst_fb_idx) |
|
|
(cpi->refresh_golden_frame << cpi->alt_fb_idx);
|
|
} else {
|
|
int arf_idx = cpi->alt_fb_idx;
|
|
#if CONFIG_MULTIPLE_ARF
|
|
// Determine which ARF buffer to use to encode this ARF frame.
|
|
if (cpi->multi_arf_enabled) {
|
|
int sn = cpi->sequence_number;
|
|
arf_idx = (cpi->frame_coding_order[sn] < 0) ?
|
|
cpi->arf_buffer_idx[sn + 1] :
|
|
cpi->arf_buffer_idx[sn];
|
|
}
|
|
#endif
|
|
refresh_mask = (cpi->refresh_last_frame << cpi->lst_fb_idx) |
|
|
(cpi->refresh_golden_frame << cpi->gld_fb_idx) |
|
|
(cpi->refresh_alt_ref_frame << arf_idx);
|
|
}
|
|
|
|
vp9_wb_write_literal(wb, refresh_mask, NUM_REF_FRAMES);
|
|
vp9_wb_write_literal(wb, cpi->lst_fb_idx, NUM_REF_FRAMES_LG2);
|
|
vp9_wb_write_literal(wb, cpi->gld_fb_idx, NUM_REF_FRAMES_LG2);
|
|
vp9_wb_write_literal(wb, cpi->alt_fb_idx, NUM_REF_FRAMES_LG2);
|
|
|
|
// Indicate the sign bias for each reference frame buffer.
|
|
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i)
|
|
vp9_wb_write_bit(wb, cm->ref_frame_sign_bias[LAST_FRAME + i]);
|
|
|
|
// Signal whether to allow high MV precision
|
|
vp9_wb_write_bit(wb, xd->allow_high_precision_mv);
|
|
|
|
// Signal the type of subpel filter to use
|
|
fix_mcomp_filter_type(cpi);
|
|
write_interp_filter_type(cm->mcomp_filter_type, wb);
|
|
}
|
|
|
|
if (!cm->show_frame)
|
|
vp9_wb_write_bit(wb, cm->intra_only);
|
|
|
|
vp9_wb_write_literal(wb, cm->frame_context_idx, NUM_FRAME_CONTEXTS_LG2);
|
|
vp9_wb_write_bit(wb, cm->clr_type);
|
|
|
|
encode_loopfilter(cm, xd, wb);
|
|
encode_quantization(cm, wb);
|
|
encode_segmentation(cpi, wb);
|
|
|
|
write_tile_info(cm, wb);
|
|
}
|
|
|
|
void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, unsigned long *size) {
|
|
int i, bytes_packed;
|
|
VP9_COMMON *const pc = &cpi->common;
|
|
vp9_writer header_bc, residual_bc;
|
|
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
|
|
|
|
uint8_t *cx_data = dest;
|
|
struct vp9_write_bit_buffer wb = {dest, 0};
|
|
struct vp9_write_bit_buffer first_partition_size_wb;
|
|
|
|
write_uncompressed_header(cpi, &wb);
|
|
first_partition_size_wb = wb;
|
|
vp9_wb_write_literal(&wb, 0, 16); // don't know in advance first part. size
|
|
|
|
bytes_packed = vp9_rb_bytes_written(&wb);
|
|
cx_data += bytes_packed;
|
|
|
|
compute_update_table();
|
|
|
|
vp9_start_encode(&header_bc, cx_data);
|
|
|
|
#ifdef ENTROPY_STATS
|
|
if (pc->frame_type == INTER_FRAME)
|
|
active_section = 0;
|
|
else
|
|
active_section = 7;
|
|
#endif
|
|
|
|
vp9_clear_system_state(); // __asm emms;
|
|
|
|
vp9_copy(pc->fc.pre_coef_probs, pc->fc.coef_probs);
|
|
vp9_copy(pc->fc.pre_y_mode_prob, pc->fc.y_mode_prob);
|
|
vp9_copy(pc->fc.pre_uv_mode_prob, pc->fc.uv_mode_prob);
|
|
vp9_copy(cpi->common.fc.pre_partition_prob,
|
|
cpi->common.fc.partition_prob[INTER_FRAME]);
|
|
pc->fc.pre_nmvc = pc->fc.nmvc;
|
|
vp9_copy(pc->fc.pre_switchable_interp_prob, pc->fc.switchable_interp_prob);
|
|
vp9_copy(pc->fc.pre_inter_mode_probs, pc->fc.inter_mode_probs);
|
|
vp9_copy(pc->fc.pre_intra_inter_prob, pc->fc.intra_inter_prob);
|
|
vp9_copy(pc->fc.pre_comp_inter_prob, pc->fc.comp_inter_prob);
|
|
vp9_copy(pc->fc.pre_comp_ref_prob, pc->fc.comp_ref_prob);
|
|
vp9_copy(pc->fc.pre_single_ref_prob, pc->fc.single_ref_prob);
|
|
cpi->common.fc.pre_nmvc = cpi->common.fc.nmvc;
|
|
vp9_copy(cpi->common.fc.pre_tx_probs, cpi->common.fc.tx_probs);
|
|
|
|
if (xd->lossless) {
|
|
pc->txfm_mode = ONLY_4X4;
|
|
} else {
|
|
encode_txfm_probs(cpi, &header_bc);
|
|
}
|
|
|
|
update_coef_probs(cpi, &header_bc);
|
|
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 2;
|
|
#endif
|
|
|
|
vp9_update_skip_probs(cpi);
|
|
for (i = 0; i < MBSKIP_CONTEXTS; ++i)
|
|
vp9_write_prob(&header_bc, pc->mbskip_pred_probs[i]);
|
|
|
|
if (pc->frame_type != KEY_FRAME) {
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 1;
|
|
#endif
|
|
|
|
update_inter_mode_probs(pc, &header_bc);
|
|
vp9_zero(cpi->common.fc.inter_mode_counts);
|
|
|
|
if (pc->mcomp_filter_type == SWITCHABLE)
|
|
update_switchable_interp_probs(pc, &header_bc);
|
|
|
|
for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
|
|
vp9_cond_prob_diff_update(&header_bc, &pc->fc.intra_inter_prob[i],
|
|
VP9_DEF_UPDATE_PROB, cpi->intra_inter_count[i]);
|
|
|
|
if (pc->allow_comp_inter_inter) {
|
|
const int comp_pred_mode = cpi->common.comp_pred_mode;
|
|
const int use_compound_pred = (comp_pred_mode != SINGLE_PREDICTION_ONLY);
|
|
const int use_hybrid_pred = (comp_pred_mode == HYBRID_PREDICTION);
|
|
|
|
vp9_write_bit(&header_bc, use_compound_pred);
|
|
if (use_compound_pred) {
|
|
vp9_write_bit(&header_bc, use_hybrid_pred);
|
|
if (use_hybrid_pred) {
|
|
for (i = 0; i < COMP_INTER_CONTEXTS; i++)
|
|
vp9_cond_prob_diff_update(&header_bc, &pc->fc.comp_inter_prob[i],
|
|
VP9_DEF_UPDATE_PROB,
|
|
cpi->comp_inter_count[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (pc->comp_pred_mode != COMP_PREDICTION_ONLY) {
|
|
for (i = 0; i < REF_CONTEXTS; i++) {
|
|
vp9_cond_prob_diff_update(&header_bc, &pc->fc.single_ref_prob[i][0],
|
|
VP9_DEF_UPDATE_PROB,
|
|
cpi->single_ref_count[i][0]);
|
|
vp9_cond_prob_diff_update(&header_bc, &pc->fc.single_ref_prob[i][1],
|
|
VP9_DEF_UPDATE_PROB,
|
|
cpi->single_ref_count[i][1]);
|
|
}
|
|
}
|
|
|
|
if (pc->comp_pred_mode != SINGLE_PREDICTION_ONLY) {
|
|
for (i = 0; i < REF_CONTEXTS; i++)
|
|
vp9_cond_prob_diff_update(&header_bc, &pc->fc.comp_ref_prob[i],
|
|
VP9_DEF_UPDATE_PROB,
|
|
cpi->comp_ref_count[i]);
|
|
}
|
|
|
|
update_mbintra_mode_probs(cpi, &header_bc);
|
|
|
|
for (i = 0; i < NUM_PARTITION_CONTEXTS; ++i) {
|
|
vp9_prob Pnew[PARTITION_TYPES - 1];
|
|
unsigned int bct[PARTITION_TYPES - 1][2];
|
|
update_mode(&header_bc, PARTITION_TYPES, vp9_partition_encodings,
|
|
vp9_partition_tree, Pnew,
|
|
pc->fc.partition_prob[pc->frame_type][i], bct,
|
|
(unsigned int *)cpi->partition_count[i]);
|
|
}
|
|
|
|
vp9_write_nmv_probs(cpi, xd->allow_high_precision_mv, &header_bc);
|
|
}
|
|
|
|
|
|
vp9_stop_encode(&header_bc);
|
|
|
|
|
|
// first partition size
|
|
assert(header_bc.pos <= 0xffff);
|
|
vp9_wb_write_literal(&first_partition_size_wb, header_bc.pos, 16);
|
|
*size = bytes_packed + header_bc.pos;
|
|
|
|
{
|
|
int tile_row, tile_col, total_size = 0;
|
|
unsigned char *data_ptr = cx_data + header_bc.pos;
|
|
TOKENEXTRA *tok[1 << 6], *tok_end;
|
|
|
|
tok[0] = cpi->tok;
|
|
for (tile_col = 1; tile_col < pc->tile_columns; tile_col++)
|
|
tok[tile_col] = tok[tile_col - 1] + cpi->tok_count[tile_col - 1];
|
|
|
|
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
|
|
vp9_get_tile_row_offsets(pc, tile_row);
|
|
tok_end = cpi->tok + cpi->tok_count[0];
|
|
for (tile_col = 0; tile_col < pc->tile_columns;
|
|
tile_col++, tok_end += cpi->tok_count[tile_col]) {
|
|
vp9_get_tile_col_offsets(pc, tile_col);
|
|
|
|
if (tile_col < pc->tile_columns - 1 || tile_row < pc->tile_rows - 1)
|
|
vp9_start_encode(&residual_bc, data_ptr + total_size + 4);
|
|
else
|
|
vp9_start_encode(&residual_bc, data_ptr + total_size);
|
|
write_modes(cpi, &residual_bc, &tok[tile_col], tok_end);
|
|
vp9_stop_encode(&residual_bc);
|
|
if (tile_col < pc->tile_columns - 1 || tile_row < pc->tile_rows - 1) {
|
|
// size of this tile
|
|
write_le32(data_ptr + total_size, residual_bc.pos);
|
|
total_size += 4;
|
|
}
|
|
|
|
total_size += residual_bc.pos;
|
|
}
|
|
}
|
|
|
|
assert((unsigned int)(tok[0] - cpi->tok) == cpi->tok_count[0]);
|
|
for (tile_col = 1; tile_col < pc->tile_columns; tile_col++)
|
|
assert((unsigned int)(tok[tile_col] - tok[tile_col - 1]) ==
|
|
cpi->tok_count[tile_col]);
|
|
|
|
*size += total_size;
|
|
}
|
|
}
|
|
|
|
#ifdef ENTROPY_STATS
|
|
static void print_tree_update_for_type(FILE *f,
|
|
vp9_coeff_stats *tree_update_hist,
|
|
int block_types, const char *header) {
|
|
int i, j, k, l, m;
|
|
|
|
fprintf(f, "const vp9_coeff_prob %s = {\n", header);
|
|
for (i = 0; i < block_types; i++) {
|
|
fprintf(f, " { \n");
|
|
for (j = 0; j < REF_TYPES; j++) {
|
|
fprintf(f, " { \n");
|
|
for (k = 0; k < COEF_BANDS; k++) {
|
|
fprintf(f, " {\n");
|
|
for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
|
|
fprintf(f, " {");
|
|
for (m = 0; m < ENTROPY_NODES; m++) {
|
|
fprintf(f, "%3d, ",
|
|
get_binary_prob(tree_update_hist[i][j][k][l][m][0],
|
|
tree_update_hist[i][j][k][l][m][1]));
|
|
}
|
|
fprintf(f, "},\n");
|
|
}
|
|
fprintf(f, "},\n");
|
|
}
|
|
fprintf(f, " },\n");
|
|
}
|
|
fprintf(f, " },\n");
|
|
}
|
|
fprintf(f, "};\n");
|
|
}
|
|
|
|
void print_tree_update_probs() {
|
|
FILE *f = fopen("coefupdprob.h", "w");
|
|
fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n");
|
|
|
|
print_tree_update_for_type(f, tree_update_hist[TX_4X4], BLOCK_TYPES,
|
|
"vp9_coef_update_probs_4x4[BLOCK_TYPES]");
|
|
print_tree_update_for_type(f, tree_update_hist[TX_8X8], BLOCK_TYPES,
|
|
"vp9_coef_update_probs_8x8[BLOCK_TYPES]");
|
|
print_tree_update_for_type(f, tree_update_hist[TX_16X16], BLOCK_TYPES,
|
|
"vp9_coef_update_probs_16x16[BLOCK_TYPES]");
|
|
print_tree_update_for_type(f, tree_update_hist[TX_32X32], BLOCK_TYPES,
|
|
"vp9_coef_update_probs_32x32[BLOCK_TYPES]");
|
|
|
|
fclose(f);
|
|
f = fopen("treeupdate.bin", "wb");
|
|
fwrite(tree_update_hist, sizeof(tree_update_hist), 1, f);
|
|
fclose(f);
|
|
}
|
|
#endif
|