vpx/vp9/encoder/vp9_dct.c
Deb Mukherjee 210dc5b2db Further improvements on the hybrid dwt/dct expt
Modifies the scanning pattern and uses a floating point 16x16
dct implementation for now to handle scaling better.
Also experiments are in progress with 2/6 and 9/7 wavelets.

Results have improved to within ~0.25% of 32x32 dct for std-hd
and about 0.03% for derf. This difference can probably be bridged by
re-optimizing the entropy stats for these transforms. Currently
the stats used are common between 32x32 dct and dwt/dct.

Experiments are in progress with various scan pattern - wavelet
combinations.

Ideally the subbands should be tokenized separately, and an
experiment will be condcuted next on that.

Change-Id: Ia9cbfc2d63cb7a47e562b2cd9341caf962bcc110
2012-12-13 10:37:49 -08:00

2174 lines
73 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <math.h>
#include "vpx_ports/config.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/common/vp9_blockd.h"
// TODO: these transforms can be converted into integer forms to reduce
// the complexity
static const float dct_4[16] = {
0.500000000000000, 0.500000000000000, 0.500000000000000, 0.500000000000000,
0.653281482438188, 0.270598050073099, -0.270598050073099, -0.653281482438188,
0.500000000000000, -0.500000000000000, -0.500000000000000, 0.500000000000000,
0.270598050073099, -0.653281482438188, 0.653281482438188, -0.270598050073099
};
static const float adst_4[16] = {
0.228013428883779, 0.428525073124360, 0.577350269189626, 0.656538502008139,
0.577350269189626, 0.577350269189626, 0.000000000000000, -0.577350269189626,
0.656538502008139, -0.228013428883779, -0.577350269189626, 0.428525073124359,
0.428525073124360, -0.656538502008139, 0.577350269189626, -0.228013428883779
};
static const float dct_8[64] = {
0.353553390593274, 0.353553390593274, 0.353553390593274, 0.353553390593274,
0.353553390593274, 0.353553390593274, 0.353553390593274, 0.353553390593274,
0.490392640201615, 0.415734806151273, 0.277785116509801, 0.097545161008064,
-0.097545161008064, -0.277785116509801, -0.415734806151273, -0.490392640201615,
0.461939766255643, 0.191341716182545, -0.191341716182545, -0.461939766255643,
-0.461939766255643, -0.191341716182545, 0.191341716182545, 0.461939766255643,
0.415734806151273, -0.097545161008064, -0.490392640201615, -0.277785116509801,
0.277785116509801, 0.490392640201615, 0.097545161008064, -0.415734806151273,
0.353553390593274, -0.353553390593274, -0.353553390593274, 0.353553390593274,
0.353553390593274, -0.353553390593274, -0.353553390593274, 0.353553390593274,
0.277785116509801, -0.490392640201615, 0.097545161008064, 0.415734806151273,
-0.415734806151273, -0.097545161008064, 0.490392640201615, -0.277785116509801,
0.191341716182545, -0.461939766255643, 0.461939766255643, -0.191341716182545,
-0.191341716182545, 0.461939766255643, -0.461939766255643, 0.191341716182545,
0.097545161008064, -0.277785116509801, 0.415734806151273, -0.490392640201615,
0.490392640201615, -0.415734806151273, 0.277785116509801, -0.097545161008064
};
static const float adst_8[64] = {
0.089131608307533, 0.175227946595735, 0.255357107325376, 0.326790388032145,
0.387095214016349, 0.434217976756762, 0.466553967085785, 0.483002021635509,
0.255357107325376, 0.434217976756762, 0.483002021635509, 0.387095214016349,
0.175227946595735, -0.089131608307533, -0.326790388032145, -0.466553967085785,
0.387095214016349, 0.466553967085785, 0.175227946595735, -0.255357107325376,
-0.483002021635509, -0.326790388032145, 0.089131608307533, 0.434217976756762,
0.466553967085785, 0.255357107325376, -0.326790388032145, -0.434217976756762,
0.089131608307533, 0.483002021635509, 0.175227946595735, -0.387095214016348,
0.483002021635509, -0.089131608307533, -0.466553967085785, 0.175227946595735,
0.434217976756762, -0.255357107325376, -0.387095214016348, 0.326790388032145,
0.434217976756762, -0.387095214016348, -0.089131608307533, 0.466553967085786,
-0.326790388032145, -0.175227946595735, 0.483002021635509, -0.255357107325375,
0.326790388032145, -0.483002021635509, 0.387095214016349, -0.089131608307534,
-0.255357107325377, 0.466553967085785, -0.434217976756762, 0.175227946595736,
0.175227946595735, -0.326790388032145, 0.434217976756762, -0.483002021635509,
0.466553967085785, -0.387095214016348, 0.255357107325376, -0.089131608307532
};
/* Converted the transforms to integers. */
static const int16_t dct_i4[16] = {
16384, 16384, 16384, 16384,
21407, 8867, -8867, -21407,
16384, -16384, -16384, 16384,
8867, -21407, 21407, -8867
};
static const int16_t adst_i4[16] = {
7472, 14042, 18919, 21513,
18919, 18919, 0, -18919,
21513, -7472, -18919, 14042,
14042, -21513, 18919, -7472
};
static const int16_t dct_i8[64] = {
11585, 11585, 11585, 11585,
11585, 11585, 11585, 11585,
16069, 13623, 9102, 3196,
-3196, -9102, -13623, -16069,
15137, 6270, -6270, -15137,
-15137, -6270, 6270, 15137,
13623, -3196, -16069, -9102,
9102, 16069, 3196, -13623,
11585, -11585, -11585, 11585,
11585, -11585, -11585, 11585,
9102, -16069, 3196, 13623,
-13623, -3196, 16069, -9102,
6270, -15137, 15137, -6270,
-6270, 15137, -15137, 6270,
3196, -9102, 13623, -16069,
16069, -13623, 9102, -3196
};
static const int16_t adst_i8[64] = {
2921, 5742, 8368, 10708,
12684, 14228, 15288, 15827,
8368, 14228, 15827, 12684,
5742, -2921, -10708, -15288,
12684, 15288, 5742, -8368,
-15827, -10708, 2921, 14228,
15288, 8368, -10708, -14228,
2921, 15827, 5742, -12684,
15827, -2921, -15288, 5742,
14228, -8368, -12684, 10708,
14228, -12684, -2921, 15288,
-10708, -5742, 15827, -8368,
10708, -15827, 12684, -2921,
-8368, 15288, -14228, 5742,
5742, -10708, 14228, -15827,
15288, -12684, 8368, -2921
};
static const float dct_16[256] = {
0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000,
0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000,
0.351851, 0.338330, 0.311806, 0.273300, 0.224292, 0.166664, 0.102631, 0.034654,
-0.034654, -0.102631, -0.166664, -0.224292, -0.273300, -0.311806, -0.338330, -0.351851,
0.346760, 0.293969, 0.196424, 0.068975, -0.068975, -0.196424, -0.293969, -0.346760,
-0.346760, -0.293969, -0.196424, -0.068975, 0.068975, 0.196424, 0.293969, 0.346760,
0.338330, 0.224292, 0.034654, -0.166664, -0.311806, -0.351851, -0.273300, -0.102631,
0.102631, 0.273300, 0.351851, 0.311806, 0.166664, -0.034654, -0.224292, -0.338330,
0.326641, 0.135299, -0.135299, -0.326641, -0.326641, -0.135299, 0.135299, 0.326641,
0.326641, 0.135299, -0.135299, -0.326641, -0.326641, -0.135299, 0.135299, 0.326641,
0.311806, 0.034654, -0.273300, -0.338330, -0.102631, 0.224292, 0.351851, 0.166664,
-0.166664, -0.351851, -0.224292, 0.102631, 0.338330, 0.273300, -0.034654, -0.311806,
0.293969, -0.068975, -0.346760, -0.196424, 0.196424, 0.346760, 0.068975, -0.293969,
-0.293969, 0.068975, 0.346760, 0.196424, -0.196424, -0.346760, -0.068975, 0.293969,
0.273300, -0.166664, -0.338330, 0.034654, 0.351851, 0.102631, -0.311806, -0.224292,
0.224292, 0.311806, -0.102631, -0.351851, -0.034654, 0.338330, 0.166664, -0.273300,
0.250000, -0.250000, -0.250000, 0.250000, 0.250000, -0.250000, -0.250000, 0.250000,
0.250000, -0.250000, -0.250000, 0.250000, 0.250000, -0.250000, -0.250000, 0.250000,
0.224292, -0.311806, -0.102631, 0.351851, -0.034654, -0.338330, 0.166664, 0.273300,
-0.273300, -0.166664, 0.338330, 0.034654, -0.351851, 0.102631, 0.311806, -0.224292,
0.196424, -0.346760, 0.068975, 0.293969, -0.293969, -0.068975, 0.346760, -0.196424,
-0.196424, 0.346760, -0.068975, -0.293969, 0.293969, 0.068975, -0.346760, 0.196424,
0.166664, -0.351851, 0.224292, 0.102631, -0.338330, 0.273300, 0.034654, -0.311806,
0.311806, -0.034654, -0.273300, 0.338330, -0.102631, -0.224292, 0.351851, -0.166664,
0.135299, -0.326641, 0.326641, -0.135299, -0.135299, 0.326641, -0.326641, 0.135299,
0.135299, -0.326641, 0.326641, -0.135299, -0.135299, 0.326641, -0.326641, 0.135299,
0.102631, -0.273300, 0.351851, -0.311806, 0.166664, 0.034654, -0.224292, 0.338330,
-0.338330, 0.224292, -0.034654, -0.166664, 0.311806, -0.351851, 0.273300, -0.102631,
0.068975, -0.196424, 0.293969, -0.346760, 0.346760, -0.293969, 0.196424, -0.068975,
-0.068975, 0.196424, -0.293969, 0.346760, -0.346760, 0.293969, -0.196424, 0.068975,
0.034654, -0.102631, 0.166664, -0.224292, 0.273300, -0.311806, 0.338330, -0.351851,
0.351851, -0.338330, 0.311806, -0.273300, 0.224292, -0.166664, 0.102631, -0.034654
};
static const float adst_16[256] = {
0.033094, 0.065889, 0.098087, 0.129396, 0.159534, 0.188227, 0.215215, 0.240255,
0.263118, 0.283599, 0.301511, 0.316693, 0.329007, 0.338341, 0.344612, 0.347761,
0.098087, 0.188227, 0.263118, 0.316693, 0.344612, 0.344612, 0.316693, 0.263118,
0.188227, 0.098087, 0.000000, -0.098087, -0.188227, -0.263118, -0.316693, -0.344612,
0.159534, 0.283599, 0.344612, 0.329007, 0.240255, 0.098087, -0.065889, -0.215215,
-0.316693, -0.347761, -0.301511, -0.188227, -0.033094, 0.129396, 0.263118, 0.338341,
0.215215, 0.338341, 0.316693, 0.159534, -0.065889, -0.263118, -0.347761, -0.283599,
-0.098087, 0.129396, 0.301511, 0.344612, 0.240255, 0.033094, -0.188227, -0.329007,
0.263118, 0.344612, 0.188227, -0.098087, -0.316693, -0.316693, -0.098087, 0.188227,
0.344612, 0.263118, 0.000000, -0.263118, -0.344612, -0.188227, 0.098087, 0.316693,
0.301511, 0.301511, 0.000000, -0.301511, -0.301511, -0.000000, 0.301511, 0.301511,
0.000000, -0.301511, -0.301511, -0.000000, 0.301511, 0.301511, 0.000000, -0.301511,
0.329007, 0.215215, -0.188227, -0.338341, -0.033094, 0.316693, 0.240255, -0.159534,
-0.344612, -0.065889, 0.301511, 0.263118, -0.129396, -0.347761, -0.098087, 0.283599,
0.344612, 0.098087, -0.316693, -0.188227, 0.263118, 0.263118, -0.188227, -0.316693,
0.098087, 0.344612, 0.000000, -0.344612, -0.098087, 0.316693, 0.188227, -0.263118,
0.347761, -0.033094, -0.344612, 0.065889, 0.338341, -0.098087, -0.329007, 0.129396,
0.316693, -0.159534, -0.301511, 0.188227, 0.283599, -0.215215, -0.263118, 0.240255,
0.338341, -0.159534, -0.263118, 0.283599, 0.129396, -0.344612, 0.033094, 0.329007,
-0.188227, -0.240255, 0.301511, 0.098087, -0.347761, 0.065889, 0.316693, -0.215215,
0.316693, -0.263118, -0.098087, 0.344612, -0.188227, -0.188227, 0.344612, -0.098087,
-0.263118, 0.316693, 0.000000, -0.316693, 0.263118, 0.098087, -0.344612, 0.188227,
0.283599, -0.329007, 0.098087, 0.215215, -0.347761, 0.188227, 0.129396, -0.338341,
0.263118, 0.033094, -0.301511, 0.316693, -0.065889, -0.240255, 0.344612, -0.159534,
0.240255, -0.347761, 0.263118, -0.033094, -0.215215, 0.344612, -0.283599, 0.065889,
0.188227, -0.338341, 0.301511, -0.098087, -0.159534, 0.329007, -0.316693, 0.129396,
0.188227, -0.316693, 0.344612, -0.263118, 0.098087, 0.098087, -0.263118, 0.344612,
-0.316693, 0.188227, 0.000000, -0.188227, 0.316693, -0.344612, 0.263118, -0.098087,
0.129396, -0.240255, 0.316693, -0.347761, 0.329007, -0.263118, 0.159534, -0.033094,
-0.098087, 0.215215, -0.301511, 0.344612, -0.338341, 0.283599, -0.188227, 0.065889,
0.065889, -0.129396, 0.188227, -0.240255, 0.283599, -0.316693, 0.338341, -0.347761,
0.344612, -0.329007, 0.301511, -0.263118, 0.215215, -0.159534, 0.098087, -0.033094
};
/* Converted the transforms to integers. */
static const int16_t dct_i16[256] = {
8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192,
8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192,
11529, 11086, 10217, 8955, 7350, 5461, 3363, 1136,
-1136, -3363, -5461, -7350, -8955, -10217, -11086, -11529,
11363, 9633, 6436, 2260, -2260, -6436, -9633, -11363,
-11363, -9633, -6436, -2260, 2260, 6436, 9633, 11363,
11086, 7350, 1136, -5461, -10217, -11529, -8955, -3363,
3363, 8955, 11529, 10217, 5461, -1136, -7350, -11086,
10703, 4433, -4433, -10703, -10703, -4433, 4433, 10703,
10703, 4433, -4433, -10703, -10703, -4433, 4433, 10703,
10217, 1136, -8955, -11086, -3363, 7350, 11529, 5461,
-5461, -11529, -7350, 3363, 11086, 8955, -1136, -10217,
9633, -2260, -11363, -6436, 6436, 11363, 2260, -9633,
-9633, 2260, 11363, 6436, -6436, -11363, -2260, 9633,
8955, -5461, -11086, 1136, 11529, 3363, -10217, -7350,
7350, 10217, -3363, -11529, -1136, 11086, 5461, -8955,
8192, -8192, -8192, 8192, 8192, -8192, -8192, 8192,
8192, -8192, -8192, 8192, 8192, -8192, -8192, 8192,
7350, -10217, -3363, 11529, -1136, -11086, 5461, 8955,
-8955, -5461, 11086, 1136, -11529, 3363, 10217, -7350,
6436, -11363, 2260, 9633, -9633, -2260, 11363, -6436,
-6436, 11363, -2260, -9633, 9633, 2260, -11363, 6436,
5461, -11529, 7350, 3363, -11086, 8955, 1136, -10217,
10217, -1136, -8955, 11086, -3363, -7350, 11529, -5461,
4433, -10703, 10703, -4433, -4433, 10703, -10703, 4433,
4433, -10703, 10703, -4433, -4433, 10703, -10703, 4433,
3363, -8955, 11529, -10217, 5461, 1136, -7350, 11086,
-11086, 7350, -1136, -5461, 10217, -11529, 8955, -3363,
2260, -6436, 9633, -11363, 11363, -9633, 6436, -2260,
-2260, 6436, -9633, 11363, -11363, 9633, -6436, 2260,
1136, -3363, 5461, -7350, 8955, -10217, 11086, -11529,
11529, -11086, 10217, -8955, 7350, -5461, 3363, -1136
};
static const int16_t adst_i16[256] = {
1084, 2159, 3214, 4240, 5228, 6168, 7052, 7873,
8622, 9293, 9880, 10377, 10781, 11087, 11292, 11395,
3214, 6168, 8622, 10377, 11292, 11292, 10377, 8622,
6168, 3214, 0, -3214, -6168, -8622, -10377, -11292,
5228, 9293, 11292, 10781, 7873, 3214, -2159, -7052,
-10377, -11395, -9880, -6168, -1084, 4240, 8622, 11087,
7052, 11087, 10377, 5228, -2159, -8622, -11395, -9293,
-3214, 4240, 9880, 11292, 7873, 1084, -6168, -10781,
8622, 11292, 6168, -3214, -10377, -10377, -3214, 6168,
11292, 8622, 0, -8622, -11292, -6168, 3214, 10377,
9880, 9880, 0, -9880, -9880, 0, 9880, 9880,
0, -9880, -9880, 0, 9880, 9880, 0, -9880,
10781, 7052, -6168, -11087, -1084, 10377, 7873, -5228,
-11292, -2159, 9880, 8622, -4240, -11395, -3214, 9293,
11292, 3214, -10377, -6168, 8622, 8622, -6168, -10377,
3214, 11292, 0, -11292, -3214, 10377, 6168, -8622,
11395, -1084, -11292, 2159, 11087, -3214, -10781, 4240,
10377, -5228, -9880, 6168, 9293, -7052, -8622, 7873,
11087, -5228, -8622, 9293, 4240, -11292, 1084, 10781,
-6168, -7873, 9880, 3214, -11395, 2159, 10377, -7052,
10377, -8622, -3214, 11292, -6168, -6168, 11292, -3214,
-8622, 10377, 0, -10377, 8622, 3214, -11292, 6168,
9293, -10781, 3214, 7052, -11395, 6168, 4240, -11087,
8622, 1084, -9880, 10377, -2159, -7873, 11292, -5228,
7873, -11395, 8622, -1084, -7052, 11292, -9293, 2159,
6168, -11087, 9880, -3214, -5228, 10781, -10377, 4240,
6168, -10377, 11292, -8622, 3214, 3214, -8622, 11292,
-10377, 6168, 0, -6168, 10377, -11292, 8622, -3214,
4240, -7873, 10377, -11395, 10781, -8622, 5228, -1084,
-3214, 7052, -9880, 11292, -11087, 9293, -6168, 2159,
2159, -4240, 6168, -7873, 9293, -10377, 11087, -11395,
11292, -10781, 9880, -8622, 7052, -5228, 3214, -1084
};
static const int xC1S7 = 16069;
static const int xC2S6 = 15137;
static const int xC3S5 = 13623;
static const int xC4S4 = 11585;
static const int xC5S3 = 9102;
static const int xC6S2 = 6270;
static const int xC7S1 = 3196;
#define SHIFT_BITS 14
#define DOROUND(X) X += (1<<(SHIFT_BITS-1));
#define FINAL_SHIFT 3
#define FINAL_ROUNDING (1<<(FINAL_SHIFT -1))
#define IN_SHIFT (FINAL_SHIFT+1)
void vp9_short_fdct8x8_c(short *InputData, short *OutputData, int pitch) {
int loop;
int short_pitch = pitch >> 1;
int is07, is12, is34, is56;
int is0734, is1256;
int id07, id12, id34, id56;
int irot_input_x, irot_input_y;
int icommon_product1; // Re-used product (c4s4 * (s12 - s56))
int icommon_product2; // Re-used product (c4s4 * (d12 + d56))
int temp1, temp2; // intermediate variable for computation
int InterData[64];
int *ip = InterData;
short *op = OutputData;
for (loop = 0; loop < 8; loop++) {
// Pre calculate some common sums and differences.
is07 = (InputData[0] + InputData[7]) << IN_SHIFT;
is12 = (InputData[1] + InputData[2]) << IN_SHIFT;
is34 = (InputData[3] + InputData[4]) << IN_SHIFT;
is56 = (InputData[5] + InputData[6]) << IN_SHIFT;
id07 = (InputData[0] - InputData[7]) << IN_SHIFT;
id12 = (InputData[1] - InputData[2]) << IN_SHIFT;
id34 = (InputData[3] - InputData[4]) << IN_SHIFT;
id56 = (InputData[5] - InputData[6]) << IN_SHIFT;
is0734 = is07 + is34;
is1256 = is12 + is56;
// Pre-Calculate some common product terms.
icommon_product1 = xC4S4 * (is12 - is56);
DOROUND(icommon_product1)
icommon_product1 >>= SHIFT_BITS;
icommon_product2 = xC4S4 * (id12 + id56);
DOROUND(icommon_product2)
icommon_product2 >>= SHIFT_BITS;
ip[0] = (xC4S4 * (is0734 + is1256));
DOROUND(ip[0]);
ip[0] >>= SHIFT_BITS;
ip[4] = (xC4S4 * (is0734 - is1256));
DOROUND(ip[4]);
ip[4] >>= SHIFT_BITS;
// Define inputs to rotation for outputs 2 and 6
irot_input_x = id12 - id56;
irot_input_y = is07 - is34;
// Apply rotation for outputs 2 and 6.
temp1 = xC6S2 * irot_input_x;
DOROUND(temp1);
temp1 >>= SHIFT_BITS;
temp2 = xC2S6 * irot_input_y;
DOROUND(temp2);
temp2 >>= SHIFT_BITS;
ip[2] = temp1 + temp2;
temp1 = xC6S2 * irot_input_y;
DOROUND(temp1);
temp1 >>= SHIFT_BITS;
temp2 = xC2S6 * irot_input_x;
DOROUND(temp2);
temp2 >>= SHIFT_BITS;
ip[6] = temp1 - temp2;
// Define inputs to rotation for outputs 1 and 7
irot_input_x = icommon_product1 + id07;
irot_input_y = -(id34 + icommon_product2);
// Apply rotation for outputs 1 and 7.
temp1 = xC1S7 * irot_input_x;
DOROUND(temp1);
temp1 >>= SHIFT_BITS;
temp2 = xC7S1 * irot_input_y;
DOROUND(temp2);
temp2 >>= SHIFT_BITS;
ip[1] = temp1 - temp2;
temp1 = xC7S1 * irot_input_x;
DOROUND(temp1);
temp1 >>= SHIFT_BITS;
temp2 = xC1S7 * irot_input_y;
DOROUND(temp2);
temp2 >>= SHIFT_BITS;
ip[7] = temp1 + temp2;
// Define inputs to rotation for outputs 3 and 5
irot_input_x = id07 - icommon_product1;
irot_input_y = id34 - icommon_product2;
// Apply rotation for outputs 3 and 5.
temp1 = xC3S5 * irot_input_x;
DOROUND(temp1);
temp1 >>= SHIFT_BITS;
temp2 = xC5S3 * irot_input_y;
DOROUND(temp2);
temp2 >>= SHIFT_BITS;
ip[3] = temp1 - temp2;
temp1 = xC5S3 * irot_input_x;
DOROUND(temp1);
temp1 >>= SHIFT_BITS;
temp2 = xC3S5 * irot_input_y;
DOROUND(temp2);
temp2 >>= SHIFT_BITS;
ip[5] = temp1 + temp2;
// Increment data pointer for next row
InputData += short_pitch;
ip += 8;
}
// Performed DCT on rows, now transform the columns
ip = InterData;
for (loop = 0; loop < 8; loop++) {
// Pre calculate some common sums and differences.
is07 = ip[0 * 8] + ip[7 * 8];
is12 = ip[1 * 8] + ip[2 * 8];
is34 = ip[3 * 8] + ip[4 * 8];
is56 = ip[5 * 8] + ip[6 * 8];
id07 = ip[0 * 8] - ip[7 * 8];
id12 = ip[1 * 8] - ip[2 * 8];
id34 = ip[3 * 8] - ip[4 * 8];
id56 = ip[5 * 8] - ip[6 * 8];
is0734 = is07 + is34;
is1256 = is12 + is56;
// Pre-Calculate some common product terms
icommon_product1 = xC4S4 * (is12 - is56);
icommon_product2 = xC4S4 * (id12 + id56);
DOROUND(icommon_product1)
DOROUND(icommon_product2)
icommon_product1 >>= SHIFT_BITS;
icommon_product2 >>= SHIFT_BITS;
temp1 = xC4S4 * (is0734 + is1256);
temp2 = xC4S4 * (is0734 - is1256);
DOROUND(temp1);
DOROUND(temp2);
temp1 >>= SHIFT_BITS;
temp2 >>= SHIFT_BITS;
op[0 * 8] = (temp1 + FINAL_ROUNDING) >> FINAL_SHIFT;
op[4 * 8] = (temp2 + FINAL_ROUNDING) >> FINAL_SHIFT;
// Define inputs to rotation for outputs 2 and 6
irot_input_x = id12 - id56;
irot_input_y = is07 - is34;
// Apply rotation for outputs 2 and 6.
temp1 = xC6S2 * irot_input_x;
DOROUND(temp1);
temp1 >>= SHIFT_BITS;
temp2 = xC2S6 * irot_input_y;
DOROUND(temp2);
temp2 >>= SHIFT_BITS;
op[2 * 8] = (temp1 + temp2 + FINAL_ROUNDING) >> FINAL_SHIFT;
temp1 = xC6S2 * irot_input_y;
DOROUND(temp1);
temp1 >>= SHIFT_BITS;
temp2 = xC2S6 * irot_input_x;
DOROUND(temp2);
temp2 >>= SHIFT_BITS;
op[6 * 8] = (temp1 - temp2 + FINAL_ROUNDING) >> FINAL_SHIFT;
// Define inputs to rotation for outputs 1 and 7
irot_input_x = icommon_product1 + id07;
irot_input_y = -(id34 + icommon_product2);
// Apply rotation for outputs 1 and 7.
temp1 = xC1S7 * irot_input_x;
DOROUND(temp1);
temp1 >>= SHIFT_BITS;
temp2 = xC7S1 * irot_input_y;
DOROUND(temp2);
temp2 >>= SHIFT_BITS;
op[1 * 8] = (temp1 - temp2 + FINAL_ROUNDING) >> FINAL_SHIFT;
temp1 = xC7S1 * irot_input_x;
DOROUND(temp1);
temp1 >>= SHIFT_BITS;
temp2 = xC1S7 * irot_input_y;
DOROUND(temp2);
temp2 >>= SHIFT_BITS;
op[7 * 8] = (temp1 + temp2 + FINAL_ROUNDING) >> FINAL_SHIFT;
// Define inputs to rotation for outputs 3 and 5
irot_input_x = id07 - icommon_product1;
irot_input_y = id34 - icommon_product2;
// Apply rotation for outputs 3 and 5.
temp1 = xC3S5 * irot_input_x;
DOROUND(temp1);
temp1 >>= SHIFT_BITS;
temp2 = xC5S3 * irot_input_y;
DOROUND(temp2);
temp2 >>= SHIFT_BITS;
op[3 * 8] = (temp1 - temp2 + FINAL_ROUNDING) >> FINAL_SHIFT;
temp1 = xC5S3 * irot_input_x;
DOROUND(temp1);
temp1 >>= SHIFT_BITS;
temp2 = xC3S5 * irot_input_y;
DOROUND(temp2);
temp2 >>= SHIFT_BITS;
op[5 * 8] = (temp1 + temp2 + FINAL_ROUNDING) >> FINAL_SHIFT;
// Increment data pointer for next column.
ip++;
op++;
}
}
void vp9_short_fhaar2x2_c(short *input, short *output, int pitch) {
/* [1 1; 1 -1] orthogonal transform */
/* use position: 0,1, 4, 8 */
int i;
short *ip1 = input;
short *op1 = output;
for (i = 0; i < 16; i++) {
op1[i] = 0;
}
op1[0] = (ip1[0] + ip1[1] + ip1[4] + ip1[8] + 1) >> 1;
op1[1] = (ip1[0] - ip1[1] + ip1[4] - ip1[8]) >> 1;
op1[4] = (ip1[0] + ip1[1] - ip1[4] - ip1[8]) >> 1;
op1[8] = (ip1[0] - ip1[1] - ip1[4] + ip1[8]) >> 1;
}
/* For test */
#define TEST_INT 1
#if TEST_INT
#define vp9_fht_int_c vp9_fht_c
#else
#define vp9_fht_float_c vp9_fht_c
#endif
void vp9_fht_float_c(const int16_t *input, int pitch, int16_t *output,
TX_TYPE tx_type, int tx_dim) {
vp9_clear_system_state(); // Make it simd safe : __asm emms;
{
int i, j, k;
float bufa[256], bufb[256]; // buffers are for floating-point test purpose
// the implementation could be simplified in
// conjunction with integer transform
const int16_t *ip = input;
int16_t *op = output;
float *pfa = &bufa[0];
float *pfb = &bufb[0];
// pointers to vertical and horizontal transforms
const float *ptv, *pth;
assert(tx_type != DCT_DCT);
// load and convert residual array into floating-point
for (j = 0; j < tx_dim; j++) {
for (i = 0; i < tx_dim; i++) {
pfa[i] = (float)ip[i];
}
pfa += tx_dim;
ip += pitch / 2;
}
// vertical transformation
pfa = &bufa[0];
pfb = &bufb[0];
switch (tx_type) {
case ADST_ADST :
case ADST_DCT :
ptv = (tx_dim == 4) ? &adst_4[0] :
((tx_dim == 8) ? &adst_8[0] : &adst_16[0]);
break;
default :
ptv = (tx_dim == 4) ? &dct_4[0] :
((tx_dim == 8) ? &dct_8[0] : &dct_16[0]);
break;
}
for (j = 0; j < tx_dim; j++) {
for (i = 0; i < tx_dim; i++) {
pfb[i] = 0;
for (k = 0; k < tx_dim; k++) {
pfb[i] += ptv[k] * pfa[(k * tx_dim)];
}
pfa += 1;
}
pfb += tx_dim;
ptv += tx_dim;
pfa = &bufa[0];
}
// horizontal transformation
pfa = &bufa[0];
pfb = &bufb[0];
switch (tx_type) {
case ADST_ADST :
case DCT_ADST :
pth = (tx_dim == 4) ? &adst_4[0] :
((tx_dim == 8) ? &adst_8[0] : &adst_16[0]);
break;
default :
pth = (tx_dim == 4) ? &dct_4[0] :
((tx_dim == 8) ? &dct_8[0] : &dct_16[0]);
break;
}
for (j = 0; j < tx_dim; j++) {
for (i = 0; i < tx_dim; i++) {
pfa[i] = 0;
for (k = 0; k < tx_dim; k++) {
pfa[i] += pfb[k] * pth[k];
}
pth += tx_dim;
}
pfa += tx_dim;
pfb += tx_dim;
// pth -= tx_dim * tx_dim;
switch (tx_type) {
case ADST_ADST :
case DCT_ADST :
pth = (tx_dim == 4) ? &adst_4[0] :
((tx_dim == 8) ? &adst_8[0] : &adst_16[0]);
break;
default :
pth = (tx_dim == 4) ? &dct_4[0] :
((tx_dim == 8) ? &dct_8[0] : &dct_16[0]);
break;
}
}
// convert to short integer format and load BLOCKD buffer
op = output;
pfa = &bufa[0];
for (j = 0; j < tx_dim; j++) {
for (i = 0; i < tx_dim; i++) {
op[i] = (pfa[i] > 0 ) ? (int16_t)( 8 * pfa[i] + 0.49) :
-(int16_t)(- 8 * pfa[i] + 0.49);
}
op += tx_dim;
pfa += tx_dim;
}
}
vp9_clear_system_state(); // Make it simd safe : __asm emms;
}
/* Converted the transforms to integer form. */
#define VERTICAL_SHIFT 11
#define VERTICAL_ROUNDING ((1 << (VERTICAL_SHIFT - 1)) - 1)
#define HORIZONTAL_SHIFT 16
#define HORIZONTAL_ROUNDING ((1 << (HORIZONTAL_SHIFT - 1)) - 1)
void vp9_fht_int_c(const int16_t *input, int pitch, int16_t *output,
TX_TYPE tx_type, int tx_dim) {
int i, j, k;
int16_t imbuf[256];
const int16_t *ip = input;
int16_t *op = output;
int16_t *im = &imbuf[0];
/* pointers to vertical and horizontal transforms. */
const int16_t *ptv = NULL, *pth = NULL;
switch (tx_type) {
case ADST_ADST :
ptv = pth = (tx_dim == 4) ? &adst_i4[0]
: ((tx_dim == 8) ? &adst_i8[0]
: &adst_i16[0]);
break;
case ADST_DCT :
ptv = (tx_dim == 4) ? &adst_i4[0]
: ((tx_dim == 8) ? &adst_i8[0] : &adst_i16[0]);
pth = (tx_dim == 4) ? &dct_i4[0]
: ((tx_dim == 8) ? &dct_i8[0] : &dct_i16[0]);
break;
case DCT_ADST :
ptv = (tx_dim == 4) ? &dct_i4[0]
: ((tx_dim == 8) ? &dct_i8[0] : &dct_i16[0]);
pth = (tx_dim == 4) ? &adst_i4[0]
: ((tx_dim == 8) ? &adst_i8[0] : &adst_i16[0]);
break;
case DCT_DCT :
ptv = pth = (tx_dim == 4) ? &dct_i4[0]
: ((tx_dim == 8) ? &dct_i8[0] : &dct_i16[0]);
break;
default:
assert(0);
break;
}
/* vertical transformation */
for (j = 0; j < tx_dim; j++) {
for (i = 0; i < tx_dim; i++) {
int temp = 0;
for (k = 0; k < tx_dim; k++) {
temp += ptv[k] * ip[(k * (pitch >> 1))];
}
im[i] = (int16_t)((temp + VERTICAL_ROUNDING) >> VERTICAL_SHIFT);
ip++;
}
im += tx_dim; // 16
ptv += tx_dim;
ip = input;
}
/* horizontal transformation */
im = &imbuf[0];
for (j = 0; j < tx_dim; j++) {
const int16_t *pthc = pth;
for (i = 0; i < tx_dim; i++) {
int temp = 0;
for (k = 0; k < tx_dim; k++) {
temp += im[k] * pthc[k];
}
op[i] = (int16_t)((temp + HORIZONTAL_ROUNDING) >> HORIZONTAL_SHIFT);
pthc += tx_dim;
}
im += tx_dim; // 16
op += tx_dim;
}
}
void vp9_short_fdct4x4_c(short *input, short *output, int pitch) {
int i;
int a1, b1, c1, d1;
short *ip = input;
short *op = output;
for (i = 0; i < 4; i++) {
a1 = ((ip[0] + ip[3]) << 5);
b1 = ((ip[1] + ip[2]) << 5);
c1 = ((ip[1] - ip[2]) << 5);
d1 = ((ip[0] - ip[3]) << 5);
op[0] = a1 + b1;
op[2] = a1 - b1;
op[1] = (c1 * 2217 + d1 * 5352 + 14500) >> 12;
op[3] = (d1 * 2217 - c1 * 5352 + 7500) >> 12;
ip += pitch / 2;
op += 4;
}
ip = output;
op = output;
for (i = 0; i < 4; i++) {
a1 = ip[0] + ip[12];
b1 = ip[4] + ip[8];
c1 = ip[4] - ip[8];
d1 = ip[0] - ip[12];
op[0] = (a1 + b1 + 7) >> 4;
op[8] = (a1 - b1 + 7) >> 4;
op[4] = ((c1 * 2217 + d1 * 5352 + 12000) >> 16) + (d1 != 0);
op[12] = (d1 * 2217 - c1 * 5352 + 51000) >> 16;
ip++;
op++;
}
}
void vp9_short_fdct8x4_c(short *input, short *output, int pitch)
{
vp9_short_fdct4x4_c(input, output, pitch);
vp9_short_fdct4x4_c(input + 4, output + 16, pitch);
}
void vp9_short_walsh4x4_c(short *input, short *output, int pitch) {
int i;
int a1, b1, c1, d1;
short *ip = input;
short *op = output;
int pitch_short = pitch >> 1;
for (i = 0; i < 4; i++) {
a1 = ip[0 * pitch_short] + ip[3 * pitch_short];
b1 = ip[1 * pitch_short] + ip[2 * pitch_short];
c1 = ip[1 * pitch_short] - ip[2 * pitch_short];
d1 = ip[0 * pitch_short] - ip[3 * pitch_short];
op[0] = (a1 + b1 + 1) >> 1;
op[4] = (c1 + d1) >> 1;
op[8] = (a1 - b1) >> 1;
op[12] = (d1 - c1) >> 1;
ip++;
op++;
}
ip = output;
op = output;
for (i = 0; i < 4; i++) {
a1 = ip[0] + ip[3];
b1 = ip[1] + ip[2];
c1 = ip[1] - ip[2];
d1 = ip[0] - ip[3];
op[0] = (a1 + b1 + 1) >> 1;
op[1] = (c1 + d1) >> 1;
op[2] = (a1 - b1) >> 1;
op[3] = (d1 - c1) >> 1;
ip += 4;
op += 4;
}
}
#if CONFIG_LOSSLESS
void vp9_short_walsh4x4_lossless_c(short *input, short *output, int pitch) {
int i;
int a1, b1, c1, d1;
short *ip = input;
short *op = output;
int pitch_short = pitch >> 1;
for (i = 0; i < 4; i++) {
a1 = (ip[0 * pitch_short] + ip[3 * pitch_short]) >> Y2_WHT_UPSCALE_FACTOR;
b1 = (ip[1 * pitch_short] + ip[2 * pitch_short]) >> Y2_WHT_UPSCALE_FACTOR;
c1 = (ip[1 * pitch_short] - ip[2 * pitch_short]) >> Y2_WHT_UPSCALE_FACTOR;
d1 = (ip[0 * pitch_short] - ip[3 * pitch_short]) >> Y2_WHT_UPSCALE_FACTOR;
op[0] = (a1 + b1 + 1) >> 1;
op[4] = (c1 + d1) >> 1;
op[8] = (a1 - b1) >> 1;
op[12] = (d1 - c1) >> 1;
ip++;
op++;
}
ip = output;
op = output;
for (i = 0; i < 4; i++) {
a1 = ip[0] + ip[3];
b1 = ip[1] + ip[2];
c1 = ip[1] - ip[2];
d1 = ip[0] - ip[3];
op[0] = ((a1 + b1 + 1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
op[1] = ((c1 + d1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
op[2] = ((a1 - b1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
op[3] = ((d1 - c1) >> 1) << Y2_WHT_UPSCALE_FACTOR;
ip += 4;
op += 4;
}
}
void vp9_short_walsh4x4_x8_c(short *input, short *output, int pitch) {
int i;
int a1, b1, c1, d1;
short *ip = input;
short *op = output;
int pitch_short = pitch >> 1;
for (i = 0; i < 4; i++) {
a1 = ip[0 * pitch_short] + ip[3 * pitch_short];
b1 = ip[1 * pitch_short] + ip[2 * pitch_short];
c1 = ip[1 * pitch_short] - ip[2 * pitch_short];
d1 = ip[0 * pitch_short] - ip[3 * pitch_short];
op[0] = (a1 + b1 + 1) >> 1;
op[4] = (c1 + d1) >> 1;
op[8] = (a1 - b1) >> 1;
op[12] = (d1 - c1) >> 1;
ip++;
op++;
}
ip = output;
op = output;
for (i = 0; i < 4; i++) {
a1 = ip[0] + ip[3];
b1 = ip[1] + ip[2];
c1 = ip[1] - ip[2];
d1 = ip[0] - ip[3];
op[0] = ((a1 + b1 + 1) >> 1) << WHT_UPSCALE_FACTOR;
op[1] = ((c1 + d1) >> 1) << WHT_UPSCALE_FACTOR;
op[2] = ((a1 - b1) >> 1) << WHT_UPSCALE_FACTOR;
op[3] = ((d1 - c1) >> 1) << WHT_UPSCALE_FACTOR;
ip += 4;
op += 4;
}
}
void vp9_short_walsh8x4_x8_c(short *input, short *output, int pitch) {
vp9_short_walsh4x4_x8_c(input, output, pitch);
vp9_short_walsh4x4_x8_c(input + 4, output + 16, pitch);
}
#endif
#define TEST_INT_16x16_DCT 1
#if !TEST_INT_16x16_DCT
static void dct16x16_1d(double input[16], double output[16]) {
static const double C1 = 0.995184726672197;
static const double C2 = 0.98078528040323;
static const double C3 = 0.956940335732209;
static const double C4 = 0.923879532511287;
static const double C5 = 0.881921264348355;
static const double C6 = 0.831469612302545;
static const double C7 = 0.773010453362737;
static const double C8 = 0.707106781186548;
static const double C9 = 0.634393284163646;
static const double C10 = 0.555570233019602;
static const double C11 = 0.471396736825998;
static const double C12 = 0.38268343236509;
static const double C13 = 0.290284677254462;
static const double C14 = 0.195090322016128;
static const double C15 = 0.098017140329561;
vp9_clear_system_state(); // Make it simd safe : __asm emms;
{
double step[16];
double intermediate[16];
double temp1, temp2;
// step 1
step[ 0] = input[0] + input[15];
step[ 1] = input[1] + input[14];
step[ 2] = input[2] + input[13];
step[ 3] = input[3] + input[12];
step[ 4] = input[4] + input[11];
step[ 5] = input[5] + input[10];
step[ 6] = input[6] + input[ 9];
step[ 7] = input[7] + input[ 8];
step[ 8] = input[7] - input[ 8];
step[ 9] = input[6] - input[ 9];
step[10] = input[5] - input[10];
step[11] = input[4] - input[11];
step[12] = input[3] - input[12];
step[13] = input[2] - input[13];
step[14] = input[1] - input[14];
step[15] = input[0] - input[15];
// step 2
output[0] = step[0] + step[7];
output[1] = step[1] + step[6];
output[2] = step[2] + step[5];
output[3] = step[3] + step[4];
output[4] = step[3] - step[4];
output[5] = step[2] - step[5];
output[6] = step[1] - step[6];
output[7] = step[0] - step[7];
temp1 = step[ 8]*C7;
temp2 = step[15]*C9;
output[ 8] = temp1 + temp2;
temp1 = step[ 9]*C11;
temp2 = step[14]*C5;
output[ 9] = temp1 - temp2;
temp1 = step[10]*C3;
temp2 = step[13]*C13;
output[10] = temp1 + temp2;
temp1 = step[11]*C15;
temp2 = step[12]*C1;
output[11] = temp1 - temp2;
temp1 = step[11]*C1;
temp2 = step[12]*C15;
output[12] = temp2 + temp1;
temp1 = step[10]*C13;
temp2 = step[13]*C3;
output[13] = temp2 - temp1;
temp1 = step[ 9]*C5;
temp2 = step[14]*C11;
output[14] = temp2 + temp1;
temp1 = step[ 8]*C9;
temp2 = step[15]*C7;
output[15] = temp2 - temp1;
// step 3
step[ 0] = output[0] + output[3];
step[ 1] = output[1] + output[2];
step[ 2] = output[1] - output[2];
step[ 3] = output[0] - output[3];
temp1 = output[4]*C14;
temp2 = output[7]*C2;
step[ 4] = temp1 + temp2;
temp1 = output[5]*C10;
temp2 = output[6]*C6;
step[ 5] = temp1 + temp2;
temp1 = output[5]*C6;
temp2 = output[6]*C10;
step[ 6] = temp2 - temp1;
temp1 = output[4]*C2;
temp2 = output[7]*C14;
step[ 7] = temp2 - temp1;
step[ 8] = output[ 8] + output[11];
step[ 9] = output[ 9] + output[10];
step[10] = output[ 9] - output[10];
step[11] = output[ 8] - output[11];
step[12] = output[12] + output[15];
step[13] = output[13] + output[14];
step[14] = output[13] - output[14];
step[15] = output[12] - output[15];
// step 4
output[ 0] = (step[ 0] + step[ 1]);
output[ 8] = (step[ 0] - step[ 1]);
temp1 = step[2]*C12;
temp2 = step[3]*C4;
temp1 = temp1 + temp2;
output[ 4] = 2*(temp1*C8);
temp1 = step[2]*C4;
temp2 = step[3]*C12;
temp1 = temp2 - temp1;
output[12] = 2*(temp1*C8);
output[ 2] = 2*((step[4] + step[ 5])*C8);
output[14] = 2*((step[7] - step[ 6])*C8);
temp1 = step[4] - step[5];
temp2 = step[6] + step[7];
output[ 6] = (temp1 + temp2);
output[10] = (temp1 - temp2);
intermediate[8] = step[8] + step[14];
intermediate[9] = step[9] + step[15];
temp1 = intermediate[8]*C12;
temp2 = intermediate[9]*C4;
temp1 = temp1 - temp2;
output[3] = 2*(temp1*C8);
temp1 = intermediate[8]*C4;
temp2 = intermediate[9]*C12;
temp1 = temp2 + temp1;
output[13] = 2*(temp1*C8);
output[ 9] = 2*((step[10] + step[11])*C8);
intermediate[11] = step[10] - step[11];
intermediate[12] = step[12] + step[13];
intermediate[13] = step[12] - step[13];
intermediate[14] = step[ 8] - step[14];
intermediate[15] = step[ 9] - step[15];
output[15] = (intermediate[11] + intermediate[12]);
output[ 1] = -(intermediate[11] - intermediate[12]);
output[ 7] = 2*(intermediate[13]*C8);
temp1 = intermediate[14]*C12;
temp2 = intermediate[15]*C4;
temp1 = temp1 - temp2;
output[11] = -2*(temp1*C8);
temp1 = intermediate[14]*C4;
temp2 = intermediate[15]*C12;
temp1 = temp2 + temp1;
output[ 5] = 2*(temp1*C8);
}
vp9_clear_system_state(); // Make it simd safe : __asm emms;
}
void vp9_short_fdct16x16_c(short *input, short *out, int pitch) {
vp9_clear_system_state(); // Make it simd safe : __asm emms;
{
int shortpitch = pitch >> 1;
int i, j;
double output[256];
// First transform columns
for (i = 0; i < 16; i++) {
double temp_in[16], temp_out[16];
for (j = 0; j < 16; j++)
temp_in[j] = input[j*shortpitch + i];
dct16x16_1d(temp_in, temp_out);
for (j = 0; j < 16; j++)
output[j*16 + i] = temp_out[j];
}
// Then transform rows
for (i = 0; i < 16; ++i) {
double temp_in[16], temp_out[16];
for (j = 0; j < 16; ++j)
temp_in[j] = output[j + i*16];
dct16x16_1d(temp_in, temp_out);
for (j = 0; j < 16; ++j)
output[j + i*16] = temp_out[j];
}
// Scale by some magic number
for (i = 0; i < 256; i++)
out[i] = (short)round(output[i]/2);
}
vp9_clear_system_state(); // Make it simd safe : __asm emms;
}
#else
static const int16_t C1 = 16305;
static const int16_t C2 = 16069;
static const int16_t C3 = 15679;
static const int16_t C4 = 15137;
static const int16_t C5 = 14449;
static const int16_t C6 = 13623;
static const int16_t C7 = 12665;
static const int16_t C8 = 11585;
static const int16_t C9 = 10394;
static const int16_t C10 = 9102;
static const int16_t C11 = 7723;
static const int16_t C12 = 6270;
static const int16_t C13 = 4756;
static const int16_t C14 = 3196;
static const int16_t C15 = 1606;
#define RIGHT_SHIFT 14
#define ROUNDING (1 << (RIGHT_SHIFT - 1))
static void dct16x16_1d(int16_t input[16], int16_t output[16],
int last_shift_bits) {
int16_t step[16];
int intermediate[16];
int temp1, temp2;
int final_shift = RIGHT_SHIFT;
int final_rounding = ROUNDING;
int output_shift = 0;
int output_rounding = 0;
final_shift += last_shift_bits;
if (final_shift > 0)
final_rounding = 1 << (final_shift - 1);
output_shift += last_shift_bits;
if (output_shift > 0)
output_rounding = 1 << (output_shift - 1);
// step 1
step[ 0] = input[0] + input[15];
step[ 1] = input[1] + input[14];
step[ 2] = input[2] + input[13];
step[ 3] = input[3] + input[12];
step[ 4] = input[4] + input[11];
step[ 5] = input[5] + input[10];
step[ 6] = input[6] + input[ 9];
step[ 7] = input[7] + input[ 8];
step[ 8] = input[7] - input[ 8];
step[ 9] = input[6] - input[ 9];
step[10] = input[5] - input[10];
step[11] = input[4] - input[11];
step[12] = input[3] - input[12];
step[13] = input[2] - input[13];
step[14] = input[1] - input[14];
step[15] = input[0] - input[15];
// step 2
output[0] = step[0] + step[7];
output[1] = step[1] + step[6];
output[2] = step[2] + step[5];
output[3] = step[3] + step[4];
output[4] = step[3] - step[4];
output[5] = step[2] - step[5];
output[6] = step[1] - step[6];
output[7] = step[0] - step[7];
temp1 = step[ 8] * C7;
temp2 = step[15] * C9;
output[ 8] = (temp1 + temp2 + ROUNDING) >> RIGHT_SHIFT;
temp1 = step[ 9] * C11;
temp2 = step[14] * C5;
output[ 9] = (temp1 - temp2 + ROUNDING) >> RIGHT_SHIFT;
temp1 = step[10] * C3;
temp2 = step[13] * C13;
output[10] = (temp1 + temp2 + ROUNDING) >> RIGHT_SHIFT;
temp1 = step[11] * C15;
temp2 = step[12] * C1;
output[11] = (temp1 - temp2 + ROUNDING) >> RIGHT_SHIFT;
temp1 = step[11] * C1;
temp2 = step[12] * C15;
output[12] = (temp2 + temp1 + ROUNDING) >> RIGHT_SHIFT;
temp1 = step[10] * C13;
temp2 = step[13] * C3;
output[13] = (temp2 - temp1 + ROUNDING) >> RIGHT_SHIFT;
temp1 = step[ 9] * C5;
temp2 = step[14] * C11;
output[14] = (temp2 + temp1 + ROUNDING) >> RIGHT_SHIFT;
temp1 = step[ 8] * C9;
temp2 = step[15] * C7;
output[15] = (temp2 - temp1 + ROUNDING) >> RIGHT_SHIFT;
// step 3
step[ 0] = output[0] + output[3];
step[ 1] = output[1] + output[2];
step[ 2] = output[1] - output[2];
step[ 3] = output[0] - output[3];
temp1 = output[4] * C14;
temp2 = output[7] * C2;
step[ 4] = (temp1 + temp2 + ROUNDING) >> RIGHT_SHIFT;
temp1 = output[5] * C10;
temp2 = output[6] * C6;
step[ 5] = (temp1 + temp2 + ROUNDING) >> RIGHT_SHIFT;
temp1 = output[5] * C6;
temp2 = output[6] * C10;
step[ 6] = (temp2 - temp1 + ROUNDING) >> RIGHT_SHIFT;
temp1 = output[4] * C2;
temp2 = output[7] * C14;
step[ 7] = (temp2 - temp1 + ROUNDING) >> RIGHT_SHIFT;
step[ 8] = output[ 8] + output[11];
step[ 9] = output[ 9] + output[10];
step[10] = output[ 9] - output[10];
step[11] = output[ 8] - output[11];
step[12] = output[12] + output[15];
step[13] = output[13] + output[14];
step[14] = output[13] - output[14];
step[15] = output[12] - output[15];
// step 4
output[ 0] = (step[ 0] + step[ 1] + output_rounding) >> output_shift;
output[ 8] = (step[ 0] - step[ 1] + output_rounding) >> output_shift;
temp1 = step[2] * C12;
temp2 = step[3] * C4;
temp1 = (temp1 + temp2 + final_rounding) >> final_shift;
output[ 4] = (2 * (temp1 * C8) + ROUNDING) >> RIGHT_SHIFT;
temp1 = step[2] * C4;
temp2 = step[3] * C12;
temp1 = (temp2 - temp1 + final_rounding) >> final_shift;
output[12] = (2 * (temp1 * C8) + ROUNDING) >> RIGHT_SHIFT;
output[ 2] = (2 * ((step[4] + step[ 5]) * C8) + final_rounding)
>> final_shift;
output[14] = (2 * ((step[7] - step[ 6]) * C8) + final_rounding)
>> final_shift;
temp1 = step[4] - step[5];
temp2 = step[6] + step[7];
output[ 6] = (temp1 + temp2 + output_rounding) >> output_shift;
output[10] = (temp1 - temp2 + output_rounding) >> output_shift;
intermediate[8] = step[8] + step[14];
intermediate[9] = step[9] + step[15];
temp1 = intermediate[8] * C12;
temp2 = intermediate[9] * C4;
temp1 = (temp1 - temp2 + final_rounding) >> final_shift;
output[3] = (2 * (temp1 * C8) + ROUNDING) >> RIGHT_SHIFT;
temp1 = intermediate[8] * C4;
temp2 = intermediate[9] * C12;
temp1 = (temp2 + temp1 + final_rounding) >> final_shift;
output[13] = (2 * (temp1 * C8) + ROUNDING) >> RIGHT_SHIFT;
output[ 9] = (2 * ((step[10] + step[11]) * C8) + final_rounding)
>> final_shift;
intermediate[11] = step[10] - step[11];
intermediate[12] = step[12] + step[13];
intermediate[13] = step[12] - step[13];
intermediate[14] = step[ 8] - step[14];
intermediate[15] = step[ 9] - step[15];
output[15] = (intermediate[11] + intermediate[12] + output_rounding)
>> output_shift;
output[ 1] = -(intermediate[11] - intermediate[12] + output_rounding)
>> output_shift;
output[ 7] = (2 * (intermediate[13] * C8) + final_rounding) >> final_shift;
temp1 = intermediate[14] * C12;
temp2 = intermediate[15] * C4;
temp1 = (temp1 - temp2 + final_rounding) >> final_shift;
output[11] = (-2 * (temp1 * C8) + ROUNDING) >> RIGHT_SHIFT;
temp1 = intermediate[14] * C4;
temp2 = intermediate[15] * C12;
temp1 = (temp2 + temp1 + final_rounding) >> final_shift;
output[ 5] = (2 * (temp1 * C8) + ROUNDING) >> RIGHT_SHIFT;
}
void vp9_short_fdct16x16_c(int16_t *input, int16_t *out, int pitch) {
int shortpitch = pitch >> 1;
int i, j;
int16_t output[256];
int16_t *outptr = &output[0];
// First transform columns
for (i = 0; i < 16; i++) {
int16_t temp_in[16];
int16_t temp_out[16];
for (j = 0; j < 16; j++)
temp_in[j] = input[j * shortpitch + i];
dct16x16_1d(temp_in, temp_out, 0);
for (j = 0; j < 16; j++)
output[j * 16 + i] = temp_out[j];
}
// Then transform rows
for (i = 0; i < 16; ++i) {
dct16x16_1d(outptr, out, 1);
outptr += 16;
out += 16;
}
}
#undef RIGHT_SHIFT
#undef ROUNDING
#endif
#if CONFIG_TX32X32
#if !CONFIG_DWT32X32HYBRID
static void dct32_1d(double *input, double *output, int stride) {
static const double C1 = 0.998795456205; // cos(pi * 1 / 64)
static const double C2 = 0.995184726672; // cos(pi * 2 / 64)
static const double C3 = 0.989176509965; // cos(pi * 3 / 64)
static const double C4 = 0.980785280403; // cos(pi * 4 / 64)
static const double C5 = 0.970031253195; // cos(pi * 5 / 64)
static const double C6 = 0.956940335732; // cos(pi * 6 / 64)
static const double C7 = 0.941544065183; // cos(pi * 7 / 64)
static const double C8 = 0.923879532511; // cos(pi * 8 / 64)
static const double C9 = 0.903989293123; // cos(pi * 9 / 64)
static const double C10 = 0.881921264348; // cos(pi * 10 / 64)
static const double C11 = 0.857728610000; // cos(pi * 11 / 64)
static const double C12 = 0.831469612303; // cos(pi * 12 / 64)
static const double C13 = 0.803207531481; // cos(pi * 13 / 64)
static const double C14 = 0.773010453363; // cos(pi * 14 / 64)
static const double C15 = 0.740951125355; // cos(pi * 15 / 64)
static const double C16 = 0.707106781187; // cos(pi * 16 / 64)
static const double C17 = 0.671558954847; // cos(pi * 17 / 64)
static const double C18 = 0.634393284164; // cos(pi * 18 / 64)
static const double C19 = 0.595699304492; // cos(pi * 19 / 64)
static const double C20 = 0.555570233020; // cos(pi * 20 / 64)
static const double C21 = 0.514102744193; // cos(pi * 21 / 64)
static const double C22 = 0.471396736826; // cos(pi * 22 / 64)
static const double C23 = 0.427555093430; // cos(pi * 23 / 64)
static const double C24 = 0.382683432365; // cos(pi * 24 / 64)
static const double C25 = 0.336889853392; // cos(pi * 25 / 64)
static const double C26 = 0.290284677254; // cos(pi * 26 / 64)
static const double C27 = 0.242980179903; // cos(pi * 27 / 64)
static const double C28 = 0.195090322016; // cos(pi * 28 / 64)
static const double C29 = 0.146730474455; // cos(pi * 29 / 64)
static const double C30 = 0.098017140330; // cos(pi * 30 / 64)
static const double C31 = 0.049067674327; // cos(pi * 31 / 64)
double step[32];
// Stage 1
step[0] = input[stride*0] + input[stride*(32 - 1)];
step[1] = input[stride*1] + input[stride*(32 - 2)];
step[2] = input[stride*2] + input[stride*(32 - 3)];
step[3] = input[stride*3] + input[stride*(32 - 4)];
step[4] = input[stride*4] + input[stride*(32 - 5)];
step[5] = input[stride*5] + input[stride*(32 - 6)];
step[6] = input[stride*6] + input[stride*(32 - 7)];
step[7] = input[stride*7] + input[stride*(32 - 8)];
step[8] = input[stride*8] + input[stride*(32 - 9)];
step[9] = input[stride*9] + input[stride*(32 - 10)];
step[10] = input[stride*10] + input[stride*(32 - 11)];
step[11] = input[stride*11] + input[stride*(32 - 12)];
step[12] = input[stride*12] + input[stride*(32 - 13)];
step[13] = input[stride*13] + input[stride*(32 - 14)];
step[14] = input[stride*14] + input[stride*(32 - 15)];
step[15] = input[stride*15] + input[stride*(32 - 16)];
step[16] = -input[stride*16] + input[stride*(32 - 17)];
step[17] = -input[stride*17] + input[stride*(32 - 18)];
step[18] = -input[stride*18] + input[stride*(32 - 19)];
step[19] = -input[stride*19] + input[stride*(32 - 20)];
step[20] = -input[stride*20] + input[stride*(32 - 21)];
step[21] = -input[stride*21] + input[stride*(32 - 22)];
step[22] = -input[stride*22] + input[stride*(32 - 23)];
step[23] = -input[stride*23] + input[stride*(32 - 24)];
step[24] = -input[stride*24] + input[stride*(32 - 25)];
step[25] = -input[stride*25] + input[stride*(32 - 26)];
step[26] = -input[stride*26] + input[stride*(32 - 27)];
step[27] = -input[stride*27] + input[stride*(32 - 28)];
step[28] = -input[stride*28] + input[stride*(32 - 29)];
step[29] = -input[stride*29] + input[stride*(32 - 30)];
step[30] = -input[stride*30] + input[stride*(32 - 31)];
step[31] = -input[stride*31] + input[stride*(32 - 32)];
// Stage 2
output[stride*0] = step[0] + step[16 - 1];
output[stride*1] = step[1] + step[16 - 2];
output[stride*2] = step[2] + step[16 - 3];
output[stride*3] = step[3] + step[16 - 4];
output[stride*4] = step[4] + step[16 - 5];
output[stride*5] = step[5] + step[16 - 6];
output[stride*6] = step[6] + step[16 - 7];
output[stride*7] = step[7] + step[16 - 8];
output[stride*8] = -step[8] + step[16 - 9];
output[stride*9] = -step[9] + step[16 - 10];
output[stride*10] = -step[10] + step[16 - 11];
output[stride*11] = -step[11] + step[16 - 12];
output[stride*12] = -step[12] + step[16 - 13];
output[stride*13] = -step[13] + step[16 - 14];
output[stride*14] = -step[14] + step[16 - 15];
output[stride*15] = -step[15] + step[16 - 16];
output[stride*16] = step[16];
output[stride*17] = step[17];
output[stride*18] = step[18];
output[stride*19] = step[19];
output[stride*20] = (-step[20] + step[27])*C16;
output[stride*21] = (-step[21] + step[26])*C16;
output[stride*22] = (-step[22] + step[25])*C16;
output[stride*23] = (-step[23] + step[24])*C16;
output[stride*24] = (step[24] + step[23])*C16;
output[stride*25] = (step[25] + step[22])*C16;
output[stride*26] = (step[26] + step[21])*C16;
output[stride*27] = (step[27] + step[20])*C16;
output[stride*28] = step[28];
output[stride*29] = step[29];
output[stride*30] = step[30];
output[stride*31] = step[31];
// Stage 3
step[0] = output[stride*0] + output[stride*(8 - 1)];
step[1] = output[stride*1] + output[stride*(8 - 2)];
step[2] = output[stride*2] + output[stride*(8 - 3)];
step[3] = output[stride*3] + output[stride*(8 - 4)];
step[4] = -output[stride*4] + output[stride*(8 - 5)];
step[5] = -output[stride*5] + output[stride*(8 - 6)];
step[6] = -output[stride*6] + output[stride*(8 - 7)];
step[7] = -output[stride*7] + output[stride*(8 - 8)];
step[8] = output[stride*8];
step[9] = output[stride*9];
step[10] = (-output[stride*10] + output[stride*13])*C16;
step[11] = (-output[stride*11] + output[stride*12])*C16;
step[12] = (output[stride*12] + output[stride*11])*C16;
step[13] = (output[stride*13] + output[stride*10])*C16;
step[14] = output[stride*14];
step[15] = output[stride*15];
step[16] = output[stride*16] + output[stride*23];
step[17] = output[stride*17] + output[stride*22];
step[18] = output[stride*18] + output[stride*21];
step[19] = output[stride*19] + output[stride*20];
step[20] = -output[stride*20] + output[stride*19];
step[21] = -output[stride*21] + output[stride*18];
step[22] = -output[stride*22] + output[stride*17];
step[23] = -output[stride*23] + output[stride*16];
step[24] = -output[stride*24] + output[stride*31];
step[25] = -output[stride*25] + output[stride*30];
step[26] = -output[stride*26] + output[stride*29];
step[27] = -output[stride*27] + output[stride*28];
step[28] = output[stride*28] + output[stride*27];
step[29] = output[stride*29] + output[stride*26];
step[30] = output[stride*30] + output[stride*25];
step[31] = output[stride*31] + output[stride*24];
// Stage 4
output[stride*0] = step[0] + step[3];
output[stride*1] = step[1] + step[2];
output[stride*2] = -step[2] + step[1];
output[stride*3] = -step[3] + step[0];
output[stride*4] = step[4];
output[stride*5] = (-step[5] + step[6])*C16;
output[stride*6] = (step[6] + step[5])*C16;
output[stride*7] = step[7];
output[stride*8] = step[8] + step[11];
output[stride*9] = step[9] + step[10];
output[stride*10] = -step[10] + step[9];
output[stride*11] = -step[11] + step[8];
output[stride*12] = -step[12] + step[15];
output[stride*13] = -step[13] + step[14];
output[stride*14] = step[14] + step[13];
output[stride*15] = step[15] + step[12];
output[stride*16] = step[16];
output[stride*17] = step[17];
output[stride*18] = step[18]*-C8 + step[29]*C24;
output[stride*19] = step[19]*-C8 + step[28]*C24;
output[stride*20] = step[20]*-C24 + step[27]*-C8;
output[stride*21] = step[21]*-C24 + step[26]*-C8;
output[stride*22] = step[22];
output[stride*23] = step[23];
output[stride*24] = step[24];
output[stride*25] = step[25];
output[stride*26] = step[26]*C24 + step[21]*-C8;
output[stride*27] = step[27]*C24 + step[20]*-C8;
output[stride*28] = step[28]*C8 + step[19]*C24;
output[stride*29] = step[29]*C8 + step[18]*C24;
output[stride*30] = step[30];
output[stride*31] = step[31];
// Stage 5
step[0] = (output[stride*0] + output[stride*1]) * C16;
step[1] = (-output[stride*1] + output[stride*0]) * C16;
step[2] = output[stride*2]*C24 + output[stride*3] * C8;
step[3] = output[stride*3]*C24 - output[stride*2] * C8;
step[4] = output[stride*4] + output[stride*5];
step[5] = -output[stride*5] + output[stride*4];
step[6] = -output[stride*6] + output[stride*7];
step[7] = output[stride*7] + output[stride*6];
step[8] = output[stride*8];
step[9] = output[stride*9]*-C8 + output[stride*14]*C24;
step[10] = output[stride*10]*-C24 + output[stride*13]*-C8;
step[11] = output[stride*11];
step[12] = output[stride*12];
step[13] = output[stride*13]*C24 + output[stride*10]*-C8;
step[14] = output[stride*14]*C8 + output[stride*9]*C24;
step[15] = output[stride*15];
step[16] = output[stride*16] + output[stride*19];
step[17] = output[stride*17] + output[stride*18];
step[18] = -output[stride*18] + output[stride*17];
step[19] = -output[stride*19] + output[stride*16];
step[20] = -output[stride*20] + output[stride*23];
step[21] = -output[stride*21] + output[stride*22];
step[22] = output[stride*22] + output[stride*21];
step[23] = output[stride*23] + output[stride*20];
step[24] = output[stride*24] + output[stride*27];
step[25] = output[stride*25] + output[stride*26];
step[26] = -output[stride*26] + output[stride*25];
step[27] = -output[stride*27] + output[stride*24];
step[28] = -output[stride*28] + output[stride*31];
step[29] = -output[stride*29] + output[stride*30];
step[30] = output[stride*30] + output[stride*29];
step[31] = output[stride*31] + output[stride*28];
// Stage 6
output[stride*0] = step[0];
output[stride*1] = step[1];
output[stride*2] = step[2];
output[stride*3] = step[3];
output[stride*4] = step[4]*C28 + step[7]*C4;
output[stride*5] = step[5]*C12 + step[6]*C20;
output[stride*6] = step[6]*C12 + step[5]*-C20;
output[stride*7] = step[7]*C28 + step[4]*-C4;
output[stride*8] = step[8] + step[9];
output[stride*9] = -step[9] + step[8];
output[stride*10] = -step[10] + step[11];
output[stride*11] = step[11] + step[10];
output[stride*12] = step[12] + step[13];
output[stride*13] = -step[13] + step[12];
output[stride*14] = -step[14] + step[15];
output[stride*15] = step[15] + step[14];
output[stride*16] = step[16];
output[stride*17] = step[17]*-C4 + step[30]*C28;
output[stride*18] = step[18]*-C28 + step[29]*-C4;
output[stride*19] = step[19];
output[stride*20] = step[20];
output[stride*21] = step[21]*-C20 + step[26]*C12;
output[stride*22] = step[22]*-C12 + step[25]*-C20;
output[stride*23] = step[23];
output[stride*24] = step[24];
output[stride*25] = step[25]*C12 + step[22]*-C20;
output[stride*26] = step[26]*C20 + step[21]*C12;
output[stride*27] = step[27];
output[stride*28] = step[28];
output[stride*29] = step[29]*C28 + step[18]*-C4;
output[stride*30] = step[30]*C4 + step[17]*C28;
output[stride*31] = step[31];
// Stage 7
step[0] = output[stride*0];
step[1] = output[stride*1];
step[2] = output[stride*2];
step[3] = output[stride*3];
step[4] = output[stride*4];
step[5] = output[stride*5];
step[6] = output[stride*6];
step[7] = output[stride*7];
step[8] = output[stride*8]*C30 + output[stride*15]*C2;
step[9] = output[stride*9]*C14 + output[stride*14]*C18;
step[10] = output[stride*10]*C22 + output[stride*13]*C10;
step[11] = output[stride*11]*C6 + output[stride*12]*C26;
step[12] = output[stride*12]*C6 + output[stride*11]*-C26;
step[13] = output[stride*13]*C22 + output[stride*10]*-C10;
step[14] = output[stride*14]*C14 + output[stride*9]*-C18;
step[15] = output[stride*15]*C30 + output[stride*8]*-C2;
step[16] = output[stride*16] + output[stride*17];
step[17] = -output[stride*17] + output[stride*16];
step[18] = -output[stride*18] + output[stride*19];
step[19] = output[stride*19] + output[stride*18];
step[20] = output[stride*20] + output[stride*21];
step[21] = -output[stride*21] + output[stride*20];
step[22] = -output[stride*22] + output[stride*23];
step[23] = output[stride*23] + output[stride*22];
step[24] = output[stride*24] + output[stride*25];
step[25] = -output[stride*25] + output[stride*24];
step[26] = -output[stride*26] + output[stride*27];
step[27] = output[stride*27] + output[stride*26];
step[28] = output[stride*28] + output[stride*29];
step[29] = -output[stride*29] + output[stride*28];
step[30] = -output[stride*30] + output[stride*31];
step[31] = output[stride*31] + output[stride*30];
// Final stage --- outputs indices are bit-reversed.
output[stride*0] = step[0];
output[stride*16] = step[1];
output[stride*8] = step[2];
output[stride*24] = step[3];
output[stride*4] = step[4];
output[stride*20] = step[5];
output[stride*12] = step[6];
output[stride*28] = step[7];
output[stride*2] = step[8];
output[stride*18] = step[9];
output[stride*10] = step[10];
output[stride*26] = step[11];
output[stride*6] = step[12];
output[stride*22] = step[13];
output[stride*14] = step[14];
output[stride*30] = step[15];
output[stride*1] = step[16]*C31 + step[31]*C1;
output[stride*17] = step[17]*C15 + step[30]*C17;
output[stride*9] = step[18]*C23 + step[29]*C9;
output[stride*25] = step[19]*C7 + step[28]*C25;
output[stride*5] = step[20]*C27 + step[27]*C5;
output[stride*21] = step[21]*C11 + step[26]*C21;
output[stride*13] = step[22]*C19 + step[25]*C13;
output[stride*29] = step[23]*C3 + step[24]*C29;
output[stride*3] = step[24]*C3 + step[23]*-C29;
output[stride*19] = step[25]*C19 + step[22]*-C13;
output[stride*11] = step[26]*C11 + step[21]*-C21;
output[stride*27] = step[27]*C27 + step[20]*-C5;
output[stride*7] = step[28]*C7 + step[19]*-C25;
output[stride*23] = step[29]*C23 + step[18]*-C9;
output[stride*15] = step[30]*C15 + step[17]*-C17;
output[stride*31] = step[31]*C31 + step[16]*-C1;
}
void vp9_short_fdct32x32_c(int16_t *input, int16_t *out, int pitch) {
vp9_clear_system_state(); // Make it simd safe : __asm emms;
{
int shortpitch = pitch >> 1;
int i, j;
double output[1024];
// First transform columns
for (i = 0; i < 32; i++) {
double temp_in[32], temp_out[32];
for (j = 0; j < 32; j++)
temp_in[j] = input[j*shortpitch + i];
dct32_1d(temp_in, temp_out, 1);
for (j = 0; j < 32; j++)
output[j*32 + i] = temp_out[j];
}
// Then transform rows
for (i = 0; i < 32; ++i) {
double temp_in[32], temp_out[32];
for (j = 0; j < 32; ++j)
temp_in[j] = output[j + i*32];
dct32_1d(temp_in, temp_out, 1);
for (j = 0; j < 32; ++j)
output[j + i*32] = temp_out[j];
}
// Scale by some magic number
for (i = 0; i < 1024; i++) {
out[i] = (short)round(output[i]/4);
}
}
vp9_clear_system_state(); // Make it simd safe : __asm emms;
}
#else // CONFIG_DWT32X32HYBRID
#define DWT_MAX_LENGTH 64
#define DWT_TYPE 26 // 26/53/97
#define DWT_PRECISION_BITS 2
#define DWT_PRECISION_RND ((1 << DWT_PRECISION_BITS) / 2)
#if DWT_TYPE == 53
// Note: block length must be even for this implementation
static void analysis_53_row(int length, short *x,
short *lowpass, short *highpass) {
int n;
short r, *a, *b;
n = length >> 1;
b = highpass;
a = lowpass;
while (--n) {
*a++ = (r = *x++) << 1;
*b++ = *x - ((r + x[1] + 1) >> 1);
x++;
}
*a = (r = *x++) << 1;
*b = *x - r;
n = length >> 1;
b = highpass;
a = lowpass;
r = *highpass;
while (n--) {
*a++ += (r + (*b) + 1) >> 1;
r = *b++;
}
}
static void analysis_53_col(int length, short *x,
short *lowpass, short *highpass) {
int n;
short r, *a, *b;
n = length >> 1;
b = highpass;
a = lowpass;
while (--n) {
*a++ = (r = *x++);
*b++ = (((*x) << 1) - (r + x[1]) + 2) >> 2;
x++;
}
*a = (r = *x++);
*b = (*x - r + 1) >> 1;
n = length >> 1;
b = highpass;
a = lowpass;
r = *highpass;
while (n--) {
*a++ += (r + (*b) + 1) >> 1;
r = *b++;
}
}
static void dyadic_analyze_53(int levels, int width, int height,
short *x, int pitch_x, short *c, int pitch_c) {
int lv, i, j, nh, nw, hh = height, hw = width;
short buffer[2 * DWT_MAX_LENGTH];
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++) {
c[i * pitch_c + j] = x[i * pitch_x + j] << DWT_PRECISION_BITS;
}
}
for (lv = 0; lv < levels; lv++) {
nh = hh;
hh = (hh + 1) >> 1;
nw = hw;
hw = (hw + 1) >> 1;
if ((nh < 2) || (nw < 2)) return;
for (i = 0; i < nh; i++) {
memcpy(buffer, &c[i * pitch_c], nw * sizeof(short));
analysis_53_row(nw, buffer, &c[i * pitch_c], &c[i * pitch_c] + hw);
}
for (j = 0; j < nw; j++) {
for (i = 0; i < nh; i++)
buffer[i + nh] = c[i * pitch_c + j];
analysis_53_col(nh, buffer + nh, buffer, buffer + hh);
for (i = 0; i < nh; i++)
c[i * pitch_c + j] = buffer[i];
}
}
}
#elif DWT_TYPE == 26
static void analysis_26_row(int length, short *x,
short *lowpass, short *highpass) {
int i, n;
short r, s, *a, *b;
a = lowpass;
b = highpass;
for (i = length >> 1; i; i--) {
r = *x++;
s = *x++;
*a++ = r + s;
*b++ = r - s;
}
n = length >> 1;
if (n >= 4) {
a = lowpass;
b = highpass;
r = *lowpass;
while (--n) {
*b++ -= (r - a[1] + 4) >> 3;
r = *a++;
}
*b -= (r - *a + 4) >> 3;
}
}
static void analysis_26_col(int length, short *x,
short *lowpass, short *highpass) {
int i, n;
short r, s, *a, *b;
a = lowpass;
b = highpass;
for (i = length >> 1; i; i--) {
r = *x++;
s = *x++;
*a++ = (r + s + 1) >> 1;
*b++ = (r - s + 1) >> 1;
}
n = length >> 1;
if (n >= 4) {
a = lowpass;
b = highpass;
r = *lowpass;
while (--n) {
*b++ -= (r - a[1] + 4) >> 3;
r = *a++;
}
*b -= (r - *a + 4) >> 3;
}
}
static void dyadic_analyze_26(int levels, int width, int height,
short *x, int pitch_x, short *c, int pitch_c) {
int lv, i, j, nh, nw, hh = height, hw = width;
short buffer[2 * DWT_MAX_LENGTH];
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++) {
c[i * pitch_c + j] = x[i * pitch_x + j] << DWT_PRECISION_BITS;
}
}
for (lv = 0; lv < levels; lv++) {
nh = hh;
hh = (hh + 1) >> 1;
nw = hw;
hw = (hw + 1) >> 1;
if ((nh < 2) || (nw < 2)) return;
for (i = 0; i < nh; i++) {
memcpy(buffer, &c[i * pitch_c], nw * sizeof(short));
analysis_26_row(nw, buffer, &c[i * pitch_c], &c[i * pitch_c] + hw);
}
for (j = 0; j < nw; j++) {
for (i = 0; i < nh; i++)
buffer[i + nh] = c[i * pitch_c + j];
analysis_26_col(nh, buffer + nh, buffer, buffer + hh);
for (i = 0; i < nh; i++)
c[i * pitch_c + j] = buffer[i];
}
}
}
#elif DWT_TYPE == 97
static void analysis_97(int length, double *x,
double *lowpass, double *highpass) {
static const double a_predict1 = -1.586134342;
static const double a_update1 = -0.05298011854;
static const double a_predict2 = 0.8829110762;
static const double a_update2 = 0.4435068522;
static const double s_low = 1.149604398;
static const double s_high = 1/1.149604398;
int i;
double y[DWT_MAX_LENGTH];
// Predict 1
for (i = 1; i < length - 2; i += 2) {
x[i] += a_predict1 * (x[i - 1] + x[i + 1]);
}
x[length - 1] += 2 * a_predict1 * x[length - 2];
// Update 1
for (i = 2; i < length; i += 2) {
x[i] += a_update1 * (x[i - 1] + x[i + 1]);
}
x[0] += 2 * a_update1 * x[1];
// Predict 2
for (i = 1; i < length - 2; i += 2) {
x[i] += a_predict2 * (x[i - 1] + x[i + 1]);
}
x[length - 1] += 2 * a_predict2 * x[length - 2];
// Update 2
for (i = 2; i < length; i += 2) {
x[i] += a_update2 * (x[i - 1] + x[i + 1]);
}
x[0] += 2 * a_update2 * x[1];
memcpy(y, x, sizeof(*y) * length);
// Scale and pack
for (i = 0; i < length / 2; i++) {
lowpass[i] = y[2 * i] * s_low;
highpass[i] = y[2 * i + 1] * s_high;
}
}
static void dyadic_analyze_97(int levels, int width, int height,
short *x, int pitch_x, short *c, int pitch_c) {
int lv, i, j, nh, nw, hh = height, hw = width;
double buffer[2 * DWT_MAX_LENGTH];
double y[DWT_MAX_LENGTH * DWT_MAX_LENGTH];
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++) {
y[i * DWT_MAX_LENGTH + j] = x[i * pitch_x + j] << DWT_PRECISION_BITS;
}
}
for (lv = 0; lv < levels; lv++) {
nh = hh;
hh = (hh + 1) >> 1;
nw = hw;
hw = (hw + 1) >> 1;
if ((nh < 2) || (nw < 2)) return;
for (i = 0; i < nh; i++) {
memcpy(buffer, &y[i * DWT_MAX_LENGTH], nw * sizeof(*buffer));
analysis_97(nw, buffer, &y[i * DWT_MAX_LENGTH],
&y[i * DWT_MAX_LENGTH] + hw);
}
for (j = 0; j < nw; j++) {
for (i = 0; i < nh; i++)
buffer[i + nh] = y[i * DWT_MAX_LENGTH + j];
analysis_97(nh, buffer + nh, buffer, buffer + hh);
for (i = 0; i < nh; i++)
c[i * pitch_c + j] = round(buffer[i]);
}
}
}
#endif // DWT_TYPE
// TODO(debargha): Implement the scaling differently so as not to have to
// use the floating point dct
static void dct16x16_1d_f(double input[16], double output[16]) {
static const double C1 = 0.995184726672197;
static const double C2 = 0.98078528040323;
static const double C3 = 0.956940335732209;
static const double C4 = 0.923879532511287;
static const double C5 = 0.881921264348355;
static const double C6 = 0.831469612302545;
static const double C7 = 0.773010453362737;
static const double C8 = 0.707106781186548;
static const double C9 = 0.634393284163646;
static const double C10 = 0.555570233019602;
static const double C11 = 0.471396736825998;
static const double C12 = 0.38268343236509;
static const double C13 = 0.290284677254462;
static const double C14 = 0.195090322016128;
static const double C15 = 0.098017140329561;
vp9_clear_system_state(); // Make it simd safe : __asm emms;
{
double step[16];
double intermediate[16];
double temp1, temp2;
// step 1
step[ 0] = input[0] + input[15];
step[ 1] = input[1] + input[14];
step[ 2] = input[2] + input[13];
step[ 3] = input[3] + input[12];
step[ 4] = input[4] + input[11];
step[ 5] = input[5] + input[10];
step[ 6] = input[6] + input[ 9];
step[ 7] = input[7] + input[ 8];
step[ 8] = input[7] - input[ 8];
step[ 9] = input[6] - input[ 9];
step[10] = input[5] - input[10];
step[11] = input[4] - input[11];
step[12] = input[3] - input[12];
step[13] = input[2] - input[13];
step[14] = input[1] - input[14];
step[15] = input[0] - input[15];
// step 2
output[0] = step[0] + step[7];
output[1] = step[1] + step[6];
output[2] = step[2] + step[5];
output[3] = step[3] + step[4];
output[4] = step[3] - step[4];
output[5] = step[2] - step[5];
output[6] = step[1] - step[6];
output[7] = step[0] - step[7];
temp1 = step[ 8]*C7;
temp2 = step[15]*C9;
output[ 8] = temp1 + temp2;
temp1 = step[ 9]*C11;
temp2 = step[14]*C5;
output[ 9] = temp1 - temp2;
temp1 = step[10]*C3;
temp2 = step[13]*C13;
output[10] = temp1 + temp2;
temp1 = step[11]*C15;
temp2 = step[12]*C1;
output[11] = temp1 - temp2;
temp1 = step[11]*C1;
temp2 = step[12]*C15;
output[12] = temp2 + temp1;
temp1 = step[10]*C13;
temp2 = step[13]*C3;
output[13] = temp2 - temp1;
temp1 = step[ 9]*C5;
temp2 = step[14]*C11;
output[14] = temp2 + temp1;
temp1 = step[ 8]*C9;
temp2 = step[15]*C7;
output[15] = temp2 - temp1;
// step 3
step[ 0] = output[0] + output[3];
step[ 1] = output[1] + output[2];
step[ 2] = output[1] - output[2];
step[ 3] = output[0] - output[3];
temp1 = output[4]*C14;
temp2 = output[7]*C2;
step[ 4] = temp1 + temp2;
temp1 = output[5]*C10;
temp2 = output[6]*C6;
step[ 5] = temp1 + temp2;
temp1 = output[5]*C6;
temp2 = output[6]*C10;
step[ 6] = temp2 - temp1;
temp1 = output[4]*C2;
temp2 = output[7]*C14;
step[ 7] = temp2 - temp1;
step[ 8] = output[ 8] + output[11];
step[ 9] = output[ 9] + output[10];
step[10] = output[ 9] - output[10];
step[11] = output[ 8] - output[11];
step[12] = output[12] + output[15];
step[13] = output[13] + output[14];
step[14] = output[13] - output[14];
step[15] = output[12] - output[15];
// step 4
output[ 0] = (step[ 0] + step[ 1]);
output[ 8] = (step[ 0] - step[ 1]);
temp1 = step[2]*C12;
temp2 = step[3]*C4;
temp1 = temp1 + temp2;
output[ 4] = 2*(temp1*C8);
temp1 = step[2]*C4;
temp2 = step[3]*C12;
temp1 = temp2 - temp1;
output[12] = 2*(temp1*C8);
output[ 2] = 2*((step[4] + step[ 5])*C8);
output[14] = 2*((step[7] - step[ 6])*C8);
temp1 = step[4] - step[5];
temp2 = step[6] + step[7];
output[ 6] = (temp1 + temp2);
output[10] = (temp1 - temp2);
intermediate[8] = step[8] + step[14];
intermediate[9] = step[9] + step[15];
temp1 = intermediate[8]*C12;
temp2 = intermediate[9]*C4;
temp1 = temp1 - temp2;
output[3] = 2*(temp1*C8);
temp1 = intermediate[8]*C4;
temp2 = intermediate[9]*C12;
temp1 = temp2 + temp1;
output[13] = 2*(temp1*C8);
output[ 9] = 2*((step[10] + step[11])*C8);
intermediate[11] = step[10] - step[11];
intermediate[12] = step[12] + step[13];
intermediate[13] = step[12] - step[13];
intermediate[14] = step[ 8] - step[14];
intermediate[15] = step[ 9] - step[15];
output[15] = (intermediate[11] + intermediate[12]);
output[ 1] = -(intermediate[11] - intermediate[12]);
output[ 7] = 2*(intermediate[13]*C8);
temp1 = intermediate[14]*C12;
temp2 = intermediate[15]*C4;
temp1 = temp1 - temp2;
output[11] = -2*(temp1*C8);
temp1 = intermediate[14]*C4;
temp2 = intermediate[15]*C12;
temp1 = temp2 + temp1;
output[ 5] = 2*(temp1*C8);
}
vp9_clear_system_state(); // Make it simd safe : __asm emms;
}
void vp9_short_fdct16x16_c_f(short *input, short *out, int pitch) {
vp9_clear_system_state(); // Make it simd safe : __asm emms;
{
int shortpitch = pitch >> 1;
int i, j;
double output[256];
// First transform columns
for (i = 0; i < 16; i++) {
double temp_in[16], temp_out[16];
for (j = 0; j < 16; j++)
temp_in[j] = input[j*shortpitch + i];
dct16x16_1d_f(temp_in, temp_out);
for (j = 0; j < 16; j++)
output[j*16 + i] = temp_out[j];
}
// Then transform rows
for (i = 0; i < 16; ++i) {
double temp_in[16], temp_out[16];
for (j = 0; j < 16; ++j)
temp_in[j] = output[j + i*16];
dct16x16_1d_f(temp_in, temp_out);
for (j = 0; j < 16; ++j)
output[j + i*16] = temp_out[j];
}
// Scale by some magic number
for (i = 0; i < 256; i++)
out[i] = (short)round(output[i] / (4 << DWT_PRECISION_BITS));
}
vp9_clear_system_state(); // Make it simd safe : __asm emms;
}
void vp9_short_fdct32x32_c(short *input, short *out, int pitch) {
// assume out is a 32x32 buffer
short buffer[16 * 16];
int i;
const int short_pitch = pitch >> 1;
#if DWT_TYPE == 26
dyadic_analyze_26(1, 32, 32, input, short_pitch, out, 32);
#elif DWT_TYPE == 97
dyadic_analyze_97(1, 32, 32, input, short_pitch, out, 32);
#elif DWT_TYPE == 53
dyadic_analyze_53(1, 32, 32, input, short_pitch, out, 32);
#endif
// TODO(debargha): Implement more efficiently by adding output pitch
// argument to the dct16x16 function
vp9_short_fdct16x16_c_f(out, buffer, 64);
for (i = 0; i < 16; ++i)
vpx_memcpy(out + i * 32, buffer + i * 16, sizeof(short) * 16);
vp9_short_fdct16x16_c_f(out + 16, buffer, 64);
for (i = 0; i < 16; ++i)
vpx_memcpy(out + i * 32 + 16, buffer + i * 16, sizeof(short) * 16);
vp9_short_fdct16x16_c_f(out + 32 * 16, buffer, 64);
for (i = 0; i < 16; ++i)
vpx_memcpy(out + i * 32 + 32 * 16, buffer + i * 16, sizeof(short) * 16);
vp9_short_fdct16x16_c_f(out + 33 * 16, buffer, 64);
for (i = 0; i < 16; ++i)
vpx_memcpy(out + i * 32 + 33 * 16, buffer + i * 16, sizeof(short) * 16);
}
#endif // CONFIG_DWT32X32HYBRID
#endif // CONFIG_TX32X32