700 lines
23 KiB
C
700 lines
23 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <limits.h>
|
|
#include <assert.h>
|
|
|
|
#include "math.h"
|
|
#include "vp9/common/vp9_alloccommon.h"
|
|
#include "vp9/common/vp9_modecont.h"
|
|
#include "vp9/common/vp9_common.h"
|
|
#include "vp9/encoder/vp9_ratectrl.h"
|
|
#include "vp9/common/vp9_entropymode.h"
|
|
#include "vpx_mem/vpx_mem.h"
|
|
#include "vp9/common/vp9_systemdependent.h"
|
|
#include "vp9/encoder/vp9_encodemv.h"
|
|
#include "vp9/common/vp9_quant_common.h"
|
|
|
|
#define MIN_BPB_FACTOR 0.005
|
|
#define MAX_BPB_FACTOR 50
|
|
|
|
#ifdef MODE_STATS
|
|
extern unsigned int y_modes[VP9_YMODES];
|
|
extern unsigned int uv_modes[VP9_UV_MODES];
|
|
extern unsigned int b_modes[B_MODE_COUNT];
|
|
|
|
extern unsigned int inter_y_modes[MB_MODE_COUNT];
|
|
extern unsigned int inter_uv_modes[VP9_UV_MODES];
|
|
extern unsigned int inter_b_modes[B_MODE_COUNT];
|
|
#endif
|
|
|
|
// Bits Per MB at different Q (Multiplied by 512)
|
|
#define BPER_MB_NORMBITS 9
|
|
|
|
// % adjustment to target kf size based on seperation from previous frame
|
|
static const int kf_boost_seperation_adjustment[16] = {
|
|
30, 40, 50, 55, 60, 65, 70, 75,
|
|
80, 85, 90, 95, 100, 100, 100, 100,
|
|
};
|
|
|
|
static const int gf_adjust_table[101] = {
|
|
100,
|
|
115, 130, 145, 160, 175, 190, 200, 210, 220, 230,
|
|
240, 260, 270, 280, 290, 300, 310, 320, 330, 340,
|
|
350, 360, 370, 380, 390, 400, 400, 400, 400, 400,
|
|
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
|
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
|
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
|
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
|
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
|
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
|
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
|
};
|
|
|
|
static const int gf_intra_usage_adjustment[20] = {
|
|
125, 120, 115, 110, 105, 100, 95, 85, 80, 75,
|
|
70, 65, 60, 55, 50, 50, 50, 50, 50, 50,
|
|
};
|
|
|
|
static const int gf_interval_table[101] = {
|
|
7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
|
10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
|
|
10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
|
|
11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
|
|
};
|
|
|
|
static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] = { 1, 2, 3, 4, 5 };
|
|
|
|
// These functions use formulaic calculations to make playing with the
|
|
// quantizer tables easier. If necessary they can be replaced by lookup
|
|
// tables if and when things settle down in the experimental bitstream
|
|
double vp9_convert_qindex_to_q(int qindex) {
|
|
// Convert the index to a real Q value (scaled down to match old Q values)
|
|
return (double)vp9_ac_yquant(qindex) / 4.0;
|
|
}
|
|
|
|
int vp9_gfboost_qadjust(int qindex) {
|
|
int retval;
|
|
double q;
|
|
|
|
q = vp9_convert_qindex_to_q(qindex);
|
|
retval = (int)((0.00000828 * q * q * q) +
|
|
(-0.0055 * q * q) +
|
|
(1.32 * q) + 79.3);
|
|
return retval;
|
|
}
|
|
|
|
static int kfboost_qadjust(int qindex) {
|
|
int retval;
|
|
double q;
|
|
|
|
q = vp9_convert_qindex_to_q(qindex);
|
|
retval = (int)((0.00000973 * q * q * q) +
|
|
(-0.00613 * q * q) +
|
|
(1.316 * q) + 121.2);
|
|
return retval;
|
|
}
|
|
|
|
int vp9_bits_per_mb(FRAME_TYPE frame_type, int qindex) {
|
|
if (frame_type == KEY_FRAME)
|
|
return (int)(4500000 / vp9_convert_qindex_to_q(qindex));
|
|
else
|
|
return (int)(2850000 / vp9_convert_qindex_to_q(qindex));
|
|
}
|
|
|
|
|
|
void vp9_save_coding_context(VP9_COMP *cpi) {
|
|
CODING_CONTEXT *const cc = &cpi->coding_context;
|
|
VP9_COMMON *cm = &cpi->common;
|
|
MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
|
|
// Stores a snapshot of key state variables which can subsequently be
|
|
// restored with a call to vp9_restore_coding_context. These functions are
|
|
// intended for use in a re-code loop in vp9_compress_frame where the
|
|
// quantizer value is adjusted between loop iterations.
|
|
|
|
cc->nmvc = cm->fc.nmvc;
|
|
vp9_copy(cc->nmvjointcost, cpi->mb.nmvjointcost);
|
|
vp9_copy(cc->nmvcosts, cpi->mb.nmvcosts);
|
|
vp9_copy(cc->nmvcosts_hp, cpi->mb.nmvcosts_hp);
|
|
|
|
vp9_copy(cc->vp9_mode_contexts, cm->fc.vp9_mode_contexts);
|
|
|
|
vp9_copy(cc->ymode_prob, cm->fc.ymode_prob);
|
|
#if CONFIG_SUPERBLOCKS
|
|
vp9_copy(cc->sb_ymode_prob, cm->fc.sb_ymode_prob);
|
|
#endif
|
|
vp9_copy(cc->bmode_prob, cm->fc.bmode_prob);
|
|
vp9_copy(cc->uv_mode_prob, cm->fc.uv_mode_prob);
|
|
vp9_copy(cc->i8x8_mode_prob, cm->fc.i8x8_mode_prob);
|
|
vp9_copy(cc->sub_mv_ref_prob, cm->fc.sub_mv_ref_prob);
|
|
vp9_copy(cc->mbsplit_prob, cm->fc.mbsplit_prob);
|
|
|
|
// Stats
|
|
#ifdef MODE_STATS
|
|
vp9_copy(cc->y_modes, y_modes);
|
|
vp9_copy(cc->uv_modes, uv_modes);
|
|
vp9_copy(cc->b_modes, b_modes);
|
|
vp9_copy(cc->inter_y_modes, inter_y_modes);
|
|
vp9_copy(cc->inter_uv_modes, inter_uv_modes);
|
|
vp9_copy(cc->inter_b_modes, inter_b_modes);
|
|
#endif
|
|
|
|
vp9_copy(cc->segment_pred_probs, cm->segment_pred_probs);
|
|
vp9_copy(cc->ref_pred_probs_update, cpi->ref_pred_probs_update);
|
|
vp9_copy(cc->ref_pred_probs, cm->ref_pred_probs);
|
|
vp9_copy(cc->prob_comppred, cm->prob_comppred);
|
|
|
|
vpx_memcpy(cpi->coding_context.last_frame_seg_map_copy,
|
|
cm->last_frame_seg_map, (cm->mb_rows * cm->mb_cols));
|
|
|
|
vp9_copy(cc->last_ref_lf_deltas, xd->last_ref_lf_deltas);
|
|
vp9_copy(cc->last_mode_lf_deltas, xd->last_mode_lf_deltas);
|
|
|
|
vp9_copy(cc->coef_probs, cm->fc.coef_probs);
|
|
vp9_copy(cc->hybrid_coef_probs, cm->fc.hybrid_coef_probs);
|
|
vp9_copy(cc->coef_probs_8x8, cm->fc.coef_probs_8x8);
|
|
vp9_copy(cc->hybrid_coef_probs_8x8, cm->fc.hybrid_coef_probs_8x8);
|
|
vp9_copy(cc->coef_probs_16x16, cm->fc.coef_probs_16x16);
|
|
vp9_copy(cc->hybrid_coef_probs_16x16, cm->fc.hybrid_coef_probs_16x16);
|
|
vp9_copy(cc->switchable_interp_prob, cm->fc.switchable_interp_prob);
|
|
#if CONFIG_COMP_INTERINTRA_PRED
|
|
cc->interintra_prob = cm->fc.interintra_prob;
|
|
#endif
|
|
}
|
|
|
|
void vp9_restore_coding_context(VP9_COMP *cpi) {
|
|
CODING_CONTEXT *const cc = &cpi->coding_context;
|
|
VP9_COMMON *cm = &cpi->common;
|
|
MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
|
|
// Restore key state variables to the snapshot state stored in the
|
|
// previous call to vp9_save_coding_context.
|
|
|
|
cm->fc.nmvc = cc->nmvc;
|
|
vp9_copy(cpi->mb.nmvjointcost, cc->nmvjointcost);
|
|
vp9_copy(cpi->mb.nmvcosts, cc->nmvcosts);
|
|
vp9_copy(cpi->mb.nmvcosts_hp, cc->nmvcosts_hp);
|
|
|
|
vp9_copy(cm->fc.vp9_mode_contexts, cc->vp9_mode_contexts);
|
|
|
|
vp9_copy(cm->fc.ymode_prob, cc->ymode_prob);
|
|
#if CONFIG_SUPERBLOCKS
|
|
vp9_copy(cm->fc.sb_ymode_prob, cc->sb_ymode_prob);
|
|
#endif
|
|
vp9_copy(cm->fc.bmode_prob, cc->bmode_prob);
|
|
vp9_copy(cm->fc.i8x8_mode_prob, cc->i8x8_mode_prob);
|
|
vp9_copy(cm->fc.uv_mode_prob, cc->uv_mode_prob);
|
|
vp9_copy(cm->fc.sub_mv_ref_prob, cc->sub_mv_ref_prob);
|
|
vp9_copy(cm->fc.mbsplit_prob, cc->mbsplit_prob);
|
|
|
|
// Stats
|
|
#ifdef MODE_STATS
|
|
vp9_copy(y_modes, cc->y_modes);
|
|
vp9_copy(uv_modes, cc->uv_modes);
|
|
vp9_copy(b_modes, cc->b_modes);
|
|
vp9_copy(inter_y_modes, cc->inter_y_modes);
|
|
vp9_copy(inter_uv_modes, cc->inter_uv_modes);
|
|
vp9_copy(inter_b_modes, cc->inter_b_modes);
|
|
#endif
|
|
|
|
vp9_copy(cm->segment_pred_probs, cc->segment_pred_probs);
|
|
vp9_copy(cpi->ref_pred_probs_update, cc->ref_pred_probs_update);
|
|
vp9_copy(cm->ref_pred_probs, cc->ref_pred_probs);
|
|
vp9_copy(cm->prob_comppred, cc->prob_comppred);
|
|
|
|
vpx_memcpy(cm->last_frame_seg_map,
|
|
cpi->coding_context.last_frame_seg_map_copy,
|
|
(cm->mb_rows * cm->mb_cols));
|
|
|
|
vp9_copy(xd->last_ref_lf_deltas, cc->last_ref_lf_deltas);
|
|
vp9_copy(xd->last_mode_lf_deltas, cc->last_mode_lf_deltas);
|
|
|
|
vp9_copy(cm->fc.coef_probs, cc->coef_probs);
|
|
vp9_copy(cm->fc.hybrid_coef_probs, cc->hybrid_coef_probs);
|
|
vp9_copy(cm->fc.coef_probs_8x8, cc->coef_probs_8x8);
|
|
vp9_copy(cm->fc.hybrid_coef_probs_8x8, cc->hybrid_coef_probs_8x8);
|
|
vp9_copy(cm->fc.coef_probs_16x16, cc->coef_probs_16x16);
|
|
vp9_copy(cm->fc.hybrid_coef_probs_16x16, cc->hybrid_coef_probs_16x16);
|
|
vp9_copy(cm->fc.switchable_interp_prob, cc->switchable_interp_prob);
|
|
#if CONFIG_COMP_INTERINTRA_PRED
|
|
cm->fc.interintra_prob = cc->interintra_prob;
|
|
#endif
|
|
}
|
|
|
|
|
|
void vp9_setup_key_frame(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
// Setup for Key frame:
|
|
vp9_default_coef_probs(& cpi->common);
|
|
vp9_kf_default_bmode_probs(cpi->common.kf_bmode_prob);
|
|
vp9_init_mbmode_probs(& cpi->common);
|
|
vp9_default_bmode_probs(cm->fc.bmode_prob);
|
|
|
|
vp9_init_mv_probs(& cpi->common);
|
|
|
|
// cpi->common.filter_level = 0; // Reset every key frame.
|
|
cpi->common.filter_level = cpi->common.base_qindex * 3 / 8;
|
|
|
|
// interval before next GF
|
|
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
|
|
|
|
cpi->common.refresh_golden_frame = TRUE;
|
|
cpi->common.refresh_alt_ref_frame = TRUE;
|
|
|
|
vp9_init_mode_contexts(&cpi->common);
|
|
vpx_memcpy(&cpi->common.lfc, &cpi->common.fc, sizeof(cpi->common.fc));
|
|
vpx_memcpy(&cpi->common.lfc_a, &cpi->common.fc, sizeof(cpi->common.fc));
|
|
|
|
vpx_memset(cm->prev_mip, 0,
|
|
(cm->mb_cols + 1) * (cm->mb_rows + 1)* sizeof(MODE_INFO));
|
|
vpx_memset(cm->mip, 0,
|
|
(cm->mb_cols + 1) * (cm->mb_rows + 1)* sizeof(MODE_INFO));
|
|
|
|
vp9_update_mode_info_border(cm, cm->mip);
|
|
vp9_update_mode_info_in_image(cm, cm->mi);
|
|
}
|
|
|
|
void vp9_setup_inter_frame(VP9_COMP *cpi) {
|
|
if (cpi->common.refresh_alt_ref_frame) {
|
|
vpx_memcpy(&cpi->common.fc,
|
|
&cpi->common.lfc_a,
|
|
sizeof(cpi->common.fc));
|
|
} else {
|
|
vpx_memcpy(&cpi->common.fc,
|
|
&cpi->common.lfc,
|
|
sizeof(cpi->common.fc));
|
|
}
|
|
}
|
|
|
|
|
|
static int estimate_bits_at_q(int frame_kind, int Q, int MBs,
|
|
double correction_factor) {
|
|
int Bpm = (int)(.5 + correction_factor * vp9_bits_per_mb(frame_kind, Q));
|
|
|
|
/* Attempt to retain reasonable accuracy without overflow. The cutoff is
|
|
* chosen such that the maximum product of Bpm and MBs fits 31 bits. The
|
|
* largest Bpm takes 20 bits.
|
|
*/
|
|
if (MBs > (1 << 11))
|
|
return (Bpm >> BPER_MB_NORMBITS) * MBs;
|
|
else
|
|
return (Bpm * MBs) >> BPER_MB_NORMBITS;
|
|
}
|
|
|
|
|
|
static void calc_iframe_target_size(VP9_COMP *cpi) {
|
|
// boost defaults to half second
|
|
int target;
|
|
|
|
// Clear down mmx registers to allow floating point in what follows
|
|
vp9_clear_system_state(); // __asm emms;
|
|
|
|
// New Two pass RC
|
|
target = cpi->per_frame_bandwidth;
|
|
|
|
if (cpi->oxcf.rc_max_intra_bitrate_pct) {
|
|
int max_rate = cpi->per_frame_bandwidth
|
|
* cpi->oxcf.rc_max_intra_bitrate_pct / 100;
|
|
|
|
if (target > max_rate)
|
|
target = max_rate;
|
|
}
|
|
|
|
cpi->this_frame_target = target;
|
|
|
|
}
|
|
|
|
|
|
// Do the best we can to define the parameteres for the next GF based
|
|
// on what information we have available.
|
|
//
|
|
// In this experimental code only two pass is supported
|
|
// so we just use the interval determined in the two pass code.
|
|
static void calc_gf_params(VP9_COMP *cpi) {
|
|
// Set the gf interval
|
|
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
|
|
}
|
|
|
|
|
|
static void calc_pframe_target_size(VP9_COMP *cpi) {
|
|
int min_frame_target;
|
|
|
|
min_frame_target = 0;
|
|
|
|
min_frame_target = cpi->min_frame_bandwidth;
|
|
|
|
if (min_frame_target < (cpi->av_per_frame_bandwidth >> 5))
|
|
min_frame_target = cpi->av_per_frame_bandwidth >> 5;
|
|
|
|
|
|
// Special alt reference frame case
|
|
if (cpi->common.refresh_alt_ref_frame) {
|
|
// Per frame bit target for the alt ref frame
|
|
cpi->per_frame_bandwidth = cpi->twopass.gf_bits;
|
|
cpi->this_frame_target = cpi->per_frame_bandwidth;
|
|
}
|
|
|
|
// Normal frames (gf,and inter)
|
|
else {
|
|
cpi->this_frame_target = cpi->per_frame_bandwidth;
|
|
}
|
|
|
|
// Sanity check that the total sum of adjustments is not above the maximum allowed
|
|
// That is that having allowed for KF and GF penalties we have not pushed the
|
|
// current interframe target to low. If the adjustment we apply here is not capable of recovering
|
|
// all the extra bits we have spent in the KF or GF then the remainder will have to be recovered over
|
|
// a longer time span via other buffer / rate control mechanisms.
|
|
if (cpi->this_frame_target < min_frame_target)
|
|
cpi->this_frame_target = min_frame_target;
|
|
|
|
if (!cpi->common.refresh_alt_ref_frame)
|
|
// Note the baseline target data rate for this inter frame.
|
|
cpi->inter_frame_target = cpi->this_frame_target;
|
|
|
|
// Adjust target frame size for Golden Frames:
|
|
if (cpi->frames_till_gf_update_due == 0) {
|
|
// int Boost = 0;
|
|
int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
|
|
|
|
cpi->common.refresh_golden_frame = TRUE;
|
|
|
|
calc_gf_params(cpi);
|
|
|
|
// If we are using alternate ref instead of gf then do not apply the boost
|
|
// It will instead be applied to the altref update
|
|
// Jims modified boost
|
|
if (!cpi->source_alt_ref_active) {
|
|
if (cpi->oxcf.fixed_q < 0) {
|
|
// The spend on the GF is defined in the two pass code
|
|
// for two pass encodes
|
|
cpi->this_frame_target = cpi->per_frame_bandwidth;
|
|
} else
|
|
cpi->this_frame_target =
|
|
(estimate_bits_at_q(1, Q, cpi->common.MBs, 1.0)
|
|
* cpi->last_boost) / 100;
|
|
|
|
}
|
|
// If there is an active ARF at this location use the minimum
|
|
// bits on this frame even if it is a contructed arf.
|
|
// The active maximum quantizer insures that an appropriate
|
|
// number of bits will be spent if needed for contstructed ARFs.
|
|
else {
|
|
cpi->this_frame_target = 0;
|
|
}
|
|
|
|
cpi->current_gf_interval = cpi->frames_till_gf_update_due;
|
|
}
|
|
}
|
|
|
|
|
|
void vp9_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) {
|
|
int Q = cpi->common.base_qindex;
|
|
int correction_factor = 100;
|
|
double rate_correction_factor;
|
|
double adjustment_limit;
|
|
|
|
int projected_size_based_on_q = 0;
|
|
|
|
// Clear down mmx registers to allow floating point in what follows
|
|
vp9_clear_system_state(); // __asm emms;
|
|
|
|
if (cpi->common.frame_type == KEY_FRAME) {
|
|
rate_correction_factor = cpi->key_frame_rate_correction_factor;
|
|
} else {
|
|
if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame)
|
|
rate_correction_factor = cpi->gf_rate_correction_factor;
|
|
else
|
|
rate_correction_factor = cpi->rate_correction_factor;
|
|
}
|
|
|
|
// Work out how big we would have expected the frame to be at this Q given the current correction factor.
|
|
// Stay in double to avoid int overflow when values are large
|
|
projected_size_based_on_q =
|
|
(int)(((.5 + rate_correction_factor *
|
|
vp9_bits_per_mb(cpi->common.frame_type, Q)) *
|
|
cpi->common.MBs) / (1 << BPER_MB_NORMBITS));
|
|
|
|
// Make some allowance for cpi->zbin_over_quant
|
|
if (cpi->zbin_over_quant > 0) {
|
|
int Z = cpi->zbin_over_quant;
|
|
double Factor = 0.99;
|
|
double factor_adjustment = 0.01 / 256.0; // (double)ZBIN_OQ_MAX;
|
|
|
|
while (Z > 0) {
|
|
Z--;
|
|
projected_size_based_on_q =
|
|
(int)(Factor * projected_size_based_on_q);
|
|
Factor += factor_adjustment;
|
|
|
|
if (Factor >= 0.999)
|
|
Factor = 0.999;
|
|
}
|
|
}
|
|
|
|
// Work out a size correction factor.
|
|
// if ( cpi->this_frame_target > 0 )
|
|
// correction_factor = (100 * cpi->projected_frame_size) / cpi->this_frame_target;
|
|
if (projected_size_based_on_q > 0)
|
|
correction_factor = (100 * cpi->projected_frame_size) / projected_size_based_on_q;
|
|
|
|
// More heavily damped adjustment used if we have been oscillating either side of target
|
|
switch (damp_var) {
|
|
case 0:
|
|
adjustment_limit = 0.75;
|
|
break;
|
|
case 1:
|
|
adjustment_limit = 0.375;
|
|
break;
|
|
case 2:
|
|
default:
|
|
adjustment_limit = 0.25;
|
|
break;
|
|
}
|
|
|
|
// if ( (correction_factor > 102) && (Q < cpi->active_worst_quality) )
|
|
if (correction_factor > 102) {
|
|
// We are not already at the worst allowable quality
|
|
correction_factor = (int)(100.5 + ((correction_factor - 100) * adjustment_limit));
|
|
rate_correction_factor = ((rate_correction_factor * correction_factor) / 100);
|
|
|
|
// Keep rate_correction_factor within limits
|
|
if (rate_correction_factor > MAX_BPB_FACTOR)
|
|
rate_correction_factor = MAX_BPB_FACTOR;
|
|
}
|
|
// else if ( (correction_factor < 99) && (Q > cpi->active_best_quality) )
|
|
else if (correction_factor < 99) {
|
|
// We are not already at the best allowable quality
|
|
correction_factor = (int)(100.5 - ((100 - correction_factor) * adjustment_limit));
|
|
rate_correction_factor = ((rate_correction_factor * correction_factor) / 100);
|
|
|
|
// Keep rate_correction_factor within limits
|
|
if (rate_correction_factor < MIN_BPB_FACTOR)
|
|
rate_correction_factor = MIN_BPB_FACTOR;
|
|
}
|
|
|
|
if (cpi->common.frame_type == KEY_FRAME)
|
|
cpi->key_frame_rate_correction_factor = rate_correction_factor;
|
|
else {
|
|
if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame)
|
|
cpi->gf_rate_correction_factor = rate_correction_factor;
|
|
else
|
|
cpi->rate_correction_factor = rate_correction_factor;
|
|
}
|
|
}
|
|
|
|
|
|
int vp9_regulate_q(VP9_COMP *cpi, int target_bits_per_frame) {
|
|
int Q = cpi->active_worst_quality;
|
|
|
|
int i;
|
|
int last_error = INT_MAX;
|
|
int target_bits_per_mb;
|
|
int bits_per_mb_at_this_q;
|
|
double correction_factor;
|
|
|
|
// Reset Zbin OQ value
|
|
cpi->zbin_over_quant = 0;
|
|
|
|
// Select the appropriate correction factor based upon type of frame.
|
|
if (cpi->common.frame_type == KEY_FRAME)
|
|
correction_factor = cpi->key_frame_rate_correction_factor;
|
|
else {
|
|
if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame)
|
|
correction_factor = cpi->gf_rate_correction_factor;
|
|
else
|
|
correction_factor = cpi->rate_correction_factor;
|
|
}
|
|
|
|
// Calculate required scaling factor based on target frame size and size of frame produced using previous Q
|
|
if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS))
|
|
target_bits_per_mb = (target_bits_per_frame / cpi->common.MBs) << BPER_MB_NORMBITS; // Case where we would overflow int
|
|
else
|
|
target_bits_per_mb = (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs;
|
|
|
|
i = cpi->active_best_quality;
|
|
|
|
do {
|
|
bits_per_mb_at_this_q =
|
|
(int)(.5 + correction_factor *
|
|
vp9_bits_per_mb(cpi->common.frame_type, i));
|
|
|
|
if (bits_per_mb_at_this_q <= target_bits_per_mb) {
|
|
if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
|
|
Q = i;
|
|
else
|
|
Q = i - 1;
|
|
|
|
break;
|
|
} else
|
|
last_error = bits_per_mb_at_this_q - target_bits_per_mb;
|
|
} while (++i <= cpi->active_worst_quality);
|
|
|
|
|
|
// If we are at MAXQ then enable Q over-run which seeks to claw back additional bits through things like
|
|
// the RD multiplier and zero bin size.
|
|
if (Q >= MAXQ) {
|
|
int zbin_oqmax;
|
|
|
|
double Factor = 0.99;
|
|
double factor_adjustment = 0.01 / 256.0; // (double)ZBIN_OQ_MAX;
|
|
|
|
if (cpi->common.frame_type == KEY_FRAME)
|
|
zbin_oqmax = 0; // ZBIN_OQ_MAX/16
|
|
else if (cpi->common.refresh_alt_ref_frame || (cpi->common.refresh_golden_frame && !cpi->source_alt_ref_active))
|
|
zbin_oqmax = 16;
|
|
else
|
|
zbin_oqmax = ZBIN_OQ_MAX;
|
|
|
|
// Each incrment in the zbin is assumed to have a fixed effect on bitrate. This is not of course true.
|
|
// The effect will be highly clip dependent and may well have sudden steps.
|
|
// The idea here is to acheive higher effective quantizers than the normal maximum by expanding the zero
|
|
// bin and hence decreasing the number of low magnitude non zero coefficients.
|
|
while (cpi->zbin_over_quant < zbin_oqmax) {
|
|
cpi->zbin_over_quant++;
|
|
|
|
if (cpi->zbin_over_quant > zbin_oqmax)
|
|
cpi->zbin_over_quant = zbin_oqmax;
|
|
|
|
// Adjust bits_per_mb_at_this_q estimate
|
|
bits_per_mb_at_this_q = (int)(Factor * bits_per_mb_at_this_q);
|
|
Factor += factor_adjustment;
|
|
|
|
if (Factor >= 0.999)
|
|
Factor = 0.999;
|
|
|
|
if (bits_per_mb_at_this_q <= target_bits_per_mb) // Break out if we get down to the target rate
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
return Q;
|
|
}
|
|
|
|
|
|
static int estimate_keyframe_frequency(VP9_COMP *cpi) {
|
|
int i;
|
|
|
|
// Average key frame frequency
|
|
int av_key_frame_frequency = 0;
|
|
|
|
/* First key frame at start of sequence is a special case. We have no
|
|
* frequency data.
|
|
*/
|
|
if (cpi->key_frame_count == 1) {
|
|
/* Assume a default of 1 kf every 2 seconds, or the max kf interval,
|
|
* whichever is smaller.
|
|
*/
|
|
int key_freq = cpi->oxcf.key_freq > 0 ? cpi->oxcf.key_freq : 1;
|
|
av_key_frame_frequency = (int)cpi->output_frame_rate * 2;
|
|
|
|
if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq)
|
|
av_key_frame_frequency = cpi->oxcf.key_freq;
|
|
|
|
cpi->prior_key_frame_distance[KEY_FRAME_CONTEXT - 1]
|
|
= av_key_frame_frequency;
|
|
} else {
|
|
unsigned int total_weight = 0;
|
|
int last_kf_interval =
|
|
(cpi->frames_since_key > 0) ? cpi->frames_since_key : 1;
|
|
|
|
/* reset keyframe context and calculate weighted average of last
|
|
* KEY_FRAME_CONTEXT keyframes
|
|
*/
|
|
for (i = 0; i < KEY_FRAME_CONTEXT; i++) {
|
|
if (i < KEY_FRAME_CONTEXT - 1)
|
|
cpi->prior_key_frame_distance[i]
|
|
= cpi->prior_key_frame_distance[i + 1];
|
|
else
|
|
cpi->prior_key_frame_distance[i] = last_kf_interval;
|
|
|
|
av_key_frame_frequency += prior_key_frame_weight[i]
|
|
* cpi->prior_key_frame_distance[i];
|
|
total_weight += prior_key_frame_weight[i];
|
|
}
|
|
|
|
av_key_frame_frequency /= total_weight;
|
|
|
|
}
|
|
return av_key_frame_frequency;
|
|
}
|
|
|
|
|
|
void vp9_adjust_key_frame_context(VP9_COMP *cpi) {
|
|
// Clear down mmx registers to allow floating point in what follows
|
|
vp9_clear_system_state();
|
|
|
|
cpi->frames_since_key = 0;
|
|
cpi->key_frame_count++;
|
|
}
|
|
|
|
|
|
void vp9_compute_frame_size_bounds(VP9_COMP *cpi, int *frame_under_shoot_limit,
|
|
int *frame_over_shoot_limit) {
|
|
// Set-up bounds on acceptable frame size:
|
|
if (cpi->oxcf.fixed_q >= 0) {
|
|
// Fixed Q scenario: frame size never outranges target (there is no target!)
|
|
*frame_under_shoot_limit = 0;
|
|
*frame_over_shoot_limit = INT_MAX;
|
|
} else {
|
|
if (cpi->common.frame_type == KEY_FRAME) {
|
|
*frame_over_shoot_limit = cpi->this_frame_target * 9 / 8;
|
|
*frame_under_shoot_limit = cpi->this_frame_target * 7 / 8;
|
|
} else {
|
|
if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame) {
|
|
*frame_over_shoot_limit = cpi->this_frame_target * 9 / 8;
|
|
*frame_under_shoot_limit = cpi->this_frame_target * 7 / 8;
|
|
} else {
|
|
// Stron overshoot limit for constrained quality
|
|
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
|
|
*frame_over_shoot_limit = cpi->this_frame_target * 11 / 8;
|
|
*frame_under_shoot_limit = cpi->this_frame_target * 2 / 8;
|
|
} else {
|
|
*frame_over_shoot_limit = cpi->this_frame_target * 11 / 8;
|
|
*frame_under_shoot_limit = cpi->this_frame_target * 5 / 8;
|
|
}
|
|
}
|
|
}
|
|
|
|
// For very small rate targets where the fractional adjustment
|
|
// (eg * 7/8) may be tiny make sure there is at least a minimum
|
|
// range.
|
|
*frame_over_shoot_limit += 200;
|
|
*frame_under_shoot_limit -= 200;
|
|
if (*frame_under_shoot_limit < 0)
|
|
*frame_under_shoot_limit = 0;
|
|
}
|
|
}
|
|
|
|
|
|
// return of 0 means drop frame
|
|
int vp9_pick_frame_size(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
calc_iframe_target_size(cpi);
|
|
else
|
|
calc_pframe_target_size(cpi);
|
|
|
|
return 1;
|
|
}
|