vpx/vp9/encoder/vp9_encodemb.c
2013-12-13 12:41:31 -08:00

689 lines
25 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "./vp9_rtcd.h"
#include "./vpx_config.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/common/vp9_idct.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/encoder/vp9_dct.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_tokenize.h"
void vp9_setup_interp_filters(MACROBLOCKD *xd,
INTERPOLATION_TYPE mcomp_filter_type,
VP9_COMMON *cm) {
if (xd->mi_8x8 && xd->mi_8x8[0]) {
MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi;
set_scale_factors(xd, mbmi->ref_frame[0] - LAST_FRAME,
mbmi->ref_frame[1] - LAST_FRAME,
cm->active_ref_scale);
} else {
set_scale_factors(xd, -1, -1, cm->active_ref_scale);
}
xd->subpix.filter_x = xd->subpix.filter_y =
vp9_get_filter_kernel(mcomp_filter_type == SWITCHABLE ?
EIGHTTAP : mcomp_filter_type);
assert(((intptr_t)xd->subpix.filter_x & 0xff) == 0);
}
void vp9_subtract_block_c(int rows, int cols,
int16_t *diff_ptr, ptrdiff_t diff_stride,
const uint8_t *src_ptr, ptrdiff_t src_stride,
const uint8_t *pred_ptr, ptrdiff_t pred_stride) {
int r, c;
for (r = 0; r < rows; r++) {
for (c = 0; c < cols; c++)
diff_ptr[c] = src_ptr[c] - pred_ptr[c];
diff_ptr += diff_stride;
pred_ptr += pred_stride;
src_ptr += src_stride;
}
}
static void subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int bw = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int bh = 4 * num_4x4_blocks_high_lookup[plane_bsize];
vp9_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride);
}
void vp9_subtract_sby(MACROBLOCK *x, BLOCK_SIZE bsize) {
subtract_plane(x, bsize, 0);
}
void vp9_subtract_sbuv(MACROBLOCK *x, BLOCK_SIZE bsize) {
int i;
for (i = 1; i < MAX_MB_PLANE; i++)
subtract_plane(x, bsize, i);
}
void vp9_subtract_sb(MACROBLOCK *x, BLOCK_SIZE bsize) {
vp9_subtract_sby(x, bsize);
vp9_subtract_sbuv(x, bsize);
}
#define RDTRUNC(RM, DM, R, D) ((128 + (R) * (RM)) & 0xFF)
typedef struct vp9_token_state vp9_token_state;
struct vp9_token_state {
int rate;
int error;
int next;
signed char token;
short qc;
};
// TODO(jimbankoski): experiment to find optimal RD numbers.
#define Y1_RD_MULT 4
#define UV_RD_MULT 2
static const int plane_rd_mult[4] = {
Y1_RD_MULT,
UV_RD_MULT,
};
#define UPDATE_RD_COST()\
{\
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);\
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);\
if (rd_cost0 == rd_cost1) {\
rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);\
rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);\
}\
}
// This function is a place holder for now but may ultimately need
// to scan previous tokens to work out the correct context.
static int trellis_get_coeff_context(const int16_t *scan,
const int16_t *nb,
int idx, int token,
uint8_t *token_cache) {
int bak = token_cache[scan[idx]], pt;
token_cache[scan[idx]] = vp9_pt_energy_class[token];
pt = get_coef_context(nb, token_cache, idx + 1);
token_cache[scan[idx]] = bak;
return pt;
}
static void optimize_b(MACROBLOCK *mb,
int plane, int block, BLOCK_SIZE plane_bsize,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
TX_SIZE tx_size) {
MACROBLOCKD *const xd = &mb->e_mbd;
struct macroblock_plane *p = &mb->plane[plane];
struct macroblockd_plane *pd = &xd->plane[plane];
const int ref = is_inter_block(&xd->mi_8x8[0]->mbmi);
vp9_token_state tokens[1025][2];
unsigned best_index[1025][2];
const int16_t *coeff_ptr = BLOCK_OFFSET(mb->plane[plane].coeff, block);
int16_t *qcoeff_ptr;
int16_t *dqcoeff_ptr;
int eob = p->eobs[block], final_eob, sz = 0;
const int i0 = 0;
int rc, x, next, i;
int64_t rdmult, rddiv, rd_cost0, rd_cost1;
int rate0, rate1, error0, error1, t0, t1;
int best, band, pt;
PLANE_TYPE type = pd->plane_type;
int err_mult = plane_rd_mult[type];
const int default_eob = 16 << (tx_size << 1);
const int mul = 1 + (tx_size == TX_32X32);
uint8_t token_cache[1024];
const int16_t *dequant_ptr = pd->dequant;
const uint8_t *const band_translate = get_band_translate(tx_size);
const scan_order *so = get_scan(xd, tx_size, type, block);
const int16_t *scan = so->scan;
const int16_t *nb = so->neighbors;
assert((!type && !plane) || (type && plane));
dqcoeff_ptr = BLOCK_OFFSET(pd->dqcoeff, block);
qcoeff_ptr = BLOCK_OFFSET(p->qcoeff, block);
assert(eob <= default_eob);
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
rdmult = mb->rdmult * err_mult;
if (!is_inter_block(&mb->e_mbd.mi_8x8[0]->mbmi))
rdmult = (rdmult * 9) >> 4;
rddiv = mb->rddiv;
/* Initialize the sentinel node of the trellis. */
tokens[eob][0].rate = 0;
tokens[eob][0].error = 0;
tokens[eob][0].next = default_eob;
tokens[eob][0].token = EOB_TOKEN;
tokens[eob][0].qc = 0;
*(tokens[eob] + 1) = *(tokens[eob] + 0);
next = eob;
for (i = 0; i < eob; i++)
token_cache[scan[i]] = vp9_pt_energy_class[vp9_dct_value_tokens_ptr[
qcoeff_ptr[scan[i]]].token];
for (i = eob; i-- > i0;) {
int base_bits, d2, dx;
rc = scan[i];
x = qcoeff_ptr[rc];
/* Only add a trellis state for non-zero coefficients. */
if (x) {
int shortcut = 0;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
/* Evaluate the first possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
t0 = (vp9_dct_value_tokens_ptr + x)->token;
/* Consider both possible successor states. */
if (next < default_eob) {
band = band_translate[i + 1];
pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache);
rate0 +=
mb->token_costs[tx_size][type][ref][band][0][pt]
[tokens[next][0].token];
rate1 +=
mb->token_costs[tx_size][type][ref][band][0][pt]
[tokens[next][1].token];
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp9_dct_value_cost_ptr + x);
dx = mul * (dqcoeff_ptr[rc] - coeff_ptr[rc]);
d2 = dx * dx;
tokens[i][0].rate = base_bits + (best ? rate1 : rate0);
tokens[i][0].error = d2 + (best ? error1 : error0);
tokens[i][0].next = next;
tokens[i][0].token = t0;
tokens[i][0].qc = x;
best_index[i][0] = best;
/* Evaluate the second possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
if ((abs(x)*dequant_ptr[rc != 0] > abs(coeff_ptr[rc]) * mul) &&
(abs(x)*dequant_ptr[rc != 0] < abs(coeff_ptr[rc]) * mul +
dequant_ptr[rc != 0]))
shortcut = 1;
else
shortcut = 0;
if (shortcut) {
sz = -(x < 0);
x -= 2 * sz + 1;
}
/* Consider both possible successor states. */
if (!x) {
/* If we reduced this coefficient to zero, check to see if
* we need to move the EOB back here.
*/
t0 = tokens[next][0].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
t1 = tokens[next][1].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
} else {
t0 = t1 = (vp9_dct_value_tokens_ptr + x)->token;
}
if (next < default_eob) {
band = band_translate[i + 1];
if (t0 != EOB_TOKEN) {
pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache);
rate0 += mb->token_costs[tx_size][type][ref][band][!x][pt]
[tokens[next][0].token];
}
if (t1 != EOB_TOKEN) {
pt = trellis_get_coeff_context(scan, nb, i, t1, token_cache);
rate1 += mb->token_costs[tx_size][type][ref][band][!x][pt]
[tokens[next][1].token];
}
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp9_dct_value_cost_ptr + x);
if (shortcut) {
dx -= (dequant_ptr[rc != 0] + sz) ^ sz;
d2 = dx * dx;
}
tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
tokens[i][1].error = d2 + (best ? error1 : error0);
tokens[i][1].next = next;
tokens[i][1].token = best ? t1 : t0;
tokens[i][1].qc = x;
best_index[i][1] = best;
/* Finally, make this the new head of the trellis. */
next = i;
} else {
/* There's no choice to make for a zero coefficient, so we don't
* add a new trellis node, but we do need to update the costs.
*/
band = band_translate[i + 1];
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
/* Update the cost of each path if we're past the EOB token. */
if (t0 != EOB_TOKEN) {
tokens[next][0].rate +=
mb->token_costs[tx_size][type][ref][band][1][0][t0];
tokens[next][0].token = ZERO_TOKEN;
}
if (t1 != EOB_TOKEN) {
tokens[next][1].rate +=
mb->token_costs[tx_size][type][ref][band][1][0][t1];
tokens[next][1].token = ZERO_TOKEN;
}
best_index[i][0] = best_index[i][1] = 0;
/* Don't update next, because we didn't add a new node. */
}
}
/* Now pick the best path through the whole trellis. */
band = band_translate[i + 1];
pt = combine_entropy_contexts(*a, *l);
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
rate0 += mb->token_costs[tx_size][type][ref][band][0][pt][t0];
rate1 += mb->token_costs[tx_size][type][ref][band][0][pt][t1];
UPDATE_RD_COST();
best = rd_cost1 < rd_cost0;
final_eob = i0 - 1;
vpx_memset(qcoeff_ptr, 0, sizeof(*qcoeff_ptr) * (16 << (tx_size * 2)));
vpx_memset(dqcoeff_ptr, 0, sizeof(*dqcoeff_ptr) * (16 << (tx_size * 2)));
for (i = next; i < eob; i = next) {
x = tokens[i][best].qc;
if (x) {
final_eob = i;
}
rc = scan[i];
qcoeff_ptr[rc] = x;
dqcoeff_ptr[rc] = (x * dequant_ptr[rc != 0]) / mul;
next = tokens[i][best].next;
best = best_index[i][best];
}
final_eob++;
mb->plane[plane].eobs[block] = final_eob;
*a = *l = (final_eob > 0);
}
void vp9_optimize_b(int plane, int block, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, MACROBLOCK *mb, struct optimize_ctx *ctx) {
int x, y;
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &x, &y);
optimize_b(mb, plane, block, plane_bsize,
&ctx->ta[plane][x], &ctx->tl[plane][y], tx_size);
}
static void optimize_init_b(int plane, BLOCK_SIZE bsize,
struct encode_b_args *args) {
const MACROBLOCKD *xd = &args->x->e_mbd;
const struct macroblockd_plane* const pd = &xd->plane[plane];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
const MB_MODE_INFO *mbmi = &xd->mi_8x8[0]->mbmi;
const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi) : mbmi->tx_size;
vp9_get_entropy_contexts(tx_size, args->ctx->ta[plane], args->ctx->tl[plane],
pd->above_context, pd->left_context,
num_4x4_w, num_4x4_h);
}
void vp9_xform_quant(int plane, int block, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
struct encode_b_args* const args = arg;
MACROBLOCK* const x = args->x;
MACROBLOCKD* const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
int16_t *coeff = BLOCK_OFFSET(p->coeff, block);
int16_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block);
int16_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const scan_order *scan_order;
uint16_t *eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
int i, j;
int16_t *src_diff;
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
src_diff = &p->src_diff[4 * (j * diff_stride + i)];
switch (tx_size) {
case TX_32X32:
scan_order = &vp9_default_scan_orders[TX_32X32];
if (x->use_lp32x32fdct)
vp9_fdct32x32_rd(src_diff, coeff, diff_stride);
else
vp9_fdct32x32(src_diff, coeff, diff_stride);
vp9_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, p->zbin_extra, eob, scan_order->scan,
scan_order->iscan);
break;
case TX_16X16:
scan_order = &vp9_default_scan_orders[TX_16X16];
vp9_fdct16x16(src_diff, coeff, diff_stride);
vp9_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, p->zbin_extra, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_8X8:
scan_order = &vp9_default_scan_orders[TX_8X8];
vp9_fdct8x8(src_diff, coeff, diff_stride);
vp9_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, p->zbin_extra, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_4X4:
scan_order = &vp9_default_scan_orders[TX_4X4];
x->fwd_txm4x4(src_diff, coeff, diff_stride);
vp9_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, p->zbin_extra, eob,
scan_order->scan, scan_order->iscan);
break;
default:
assert(0);
}
}
static void encode_block(int plane, int block, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
struct encode_b_args *const args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx *const ctx = args->ctx;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
int i, j;
uint8_t *dst;
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
dst = &pd->dst.buf[4 * j * pd->dst.stride + 4 * i];
// TODO(jingning): per transformed block zero forcing only enabled for
// luma component. will integrate chroma components as well.
if (x->zcoeff_blk[tx_size][block] && plane == 0) {
p->eobs[block] = 0;
ctx->ta[plane][i] = 0;
ctx->tl[plane][j] = 0;
return;
}
if (!x->skip_recode)
vp9_xform_quant(plane, block, plane_bsize, tx_size, arg);
if (x->optimize && (!x->skip_recode || !x->skip_optimize)) {
vp9_optimize_b(plane, block, plane_bsize, tx_size, x, ctx);
} else {
ctx->ta[plane][i] = p->eobs[block] > 0;
ctx->tl[plane][j] = p->eobs[block] > 0;
}
if (x->skip_encode || p->eobs[block] == 0)
return;
switch (tx_size) {
case TX_32X32:
vp9_idct32x32_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
break;
case TX_16X16:
vp9_idct16x16_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
break;
case TX_8X8:
vp9_idct8x8_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
break;
case TX_4X4:
// this is like vp9_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
xd->itxm_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
break;
default:
assert(0 && "Invalid transform size");
}
}
static void encode_block_pass1(int plane, int block, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
struct encode_b_args *const args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
int i, j;
uint8_t *dst;
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
dst = &pd->dst.buf[4 * j * pd->dst.stride + 4 * i];
vp9_xform_quant(plane, block, plane_bsize, tx_size, arg);
if (p->eobs[block] == 0)
return;
xd->itxm_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
}
void vp9_encode_sby(MACROBLOCK *x, BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx ctx;
struct encode_b_args arg = {x, &ctx};
vp9_subtract_sby(x, bsize);
if (x->optimize)
optimize_init_b(0, bsize, &arg);
foreach_transformed_block_in_plane(xd, bsize, 0, encode_block_pass1, &arg);
}
void vp9_encode_sb(MACROBLOCK *x, BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx ctx;
struct encode_b_args arg = {x, &ctx};
if (!x->skip_recode)
vp9_subtract_sb(x, bsize);
if (x->optimize && (!x->skip_recode || !x->skip_optimize)) {
int i;
for (i = 0; i < MAX_MB_PLANE; ++i)
optimize_init_b(i, bsize, &arg);
}
foreach_transformed_block(xd, bsize, encode_block, &arg);
}
void vp9_encode_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
struct encode_b_args* const args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi_8x8[0]->mbmi;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
int16_t *coeff = BLOCK_OFFSET(p->coeff, block);
int16_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block);
int16_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const scan_order *scan_order;
TX_TYPE tx_type;
MB_PREDICTION_MODE mode;
const int bwl = b_width_log2(plane_bsize);
const int diff_stride = 4 * (1 << bwl);
uint8_t *src, *dst;
int16_t *src_diff;
uint16_t *eob = &p->eobs[block];
int i, j;
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
dst = &pd->dst.buf[4 * (j * pd->dst.stride + i)];
src = &p->src.buf[4 * (j * p->src.stride + i)];
src_diff = &p->src_diff[4 * (j * diff_stride + i)];
if (xd->mb_to_right_edge < 0 || xd->mb_to_bottom_edge < 0)
extend_for_intra(xd, plane_bsize, plane, i, j);
// if (x->optimize)
// vp9_optimize_b(plane, block, plane_bsize, tx_size, x, args->ctx);
switch (tx_size) {
case TX_32X32:
scan_order = &vp9_default_scan_orders[TX_32X32];
mode = plane == 0 ? mbmi->mode : mbmi->uv_mode;
vp9_predict_intra_block(xd, block >> 6, bwl, TX_32X32, mode,
x->skip_encode ? src : dst,
x->skip_encode ? p->src.stride : pd->dst.stride,
dst, pd->dst.stride);
if (!x->skip_recode) {
vp9_subtract_block(32, 32, src_diff, diff_stride,
src, p->src.stride, dst, pd->dst.stride);
if (x->use_lp32x32fdct)
vp9_fdct32x32_rd(src_diff, coeff, diff_stride);
else
vp9_fdct32x32(src_diff, coeff, diff_stride);
vp9_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, p->zbin_extra, eob, scan_order->scan,
scan_order->iscan);
}
if (!x->skip_encode && *eob)
vp9_idct32x32_add(dqcoeff, dst, pd->dst.stride, *eob);
break;
case TX_16X16:
tx_type = get_tx_type_16x16(pd->plane_type, xd);
scan_order = &vp9_scan_orders[TX_16X16][tx_type];
mode = plane == 0 ? mbmi->mode : mbmi->uv_mode;
vp9_predict_intra_block(xd, block >> 4, bwl, TX_16X16, mode,
x->skip_encode ? src : dst,
x->skip_encode ? p->src.stride : pd->dst.stride,
dst, pd->dst.stride);
if (!x->skip_recode) {
vp9_subtract_block(16, 16, src_diff, diff_stride,
src, p->src.stride, dst, pd->dst.stride);
vp9_fht16x16(tx_type, src_diff, coeff, diff_stride);
vp9_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, p->zbin_extra, eob, scan_order->scan,
scan_order->iscan);
}
if (!x->skip_encode && *eob)
vp9_iht16x16_add(tx_type, dqcoeff, dst, pd->dst.stride, *eob);
break;
case TX_8X8:
tx_type = get_tx_type_8x8(pd->plane_type, xd);
scan_order = &vp9_scan_orders[TX_8X8][tx_type];
mode = plane == 0 ? mbmi->mode : mbmi->uv_mode;
vp9_predict_intra_block(xd, block >> 2, bwl, TX_8X8, mode,
x->skip_encode ? src : dst,
x->skip_encode ? p->src.stride : pd->dst.stride,
dst, pd->dst.stride);
if (!x->skip_recode) {
vp9_subtract_block(8, 8, src_diff, diff_stride,
src, p->src.stride, dst, pd->dst.stride);
vp9_fht8x8(tx_type, src_diff, coeff, diff_stride);
vp9_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant,
p->quant_shift, qcoeff, dqcoeff,
pd->dequant, p->zbin_extra, eob, scan_order->scan,
scan_order->iscan);
}
if (!x->skip_encode && *eob)
vp9_iht8x8_add(tx_type, dqcoeff, dst, pd->dst.stride, *eob);
break;
case TX_4X4:
tx_type = get_tx_type_4x4(pd->plane_type, xd, block);
scan_order = &vp9_scan_orders[TX_4X4][tx_type];
if (mbmi->sb_type < BLOCK_8X8 && plane == 0)
mode = xd->mi_8x8[0]->bmi[block].as_mode;
else
mode = plane == 0 ? mbmi->mode : mbmi->uv_mode;
vp9_predict_intra_block(xd, block, bwl, TX_4X4, mode,
x->skip_encode ? src : dst,
x->skip_encode ? p->src.stride : pd->dst.stride,
dst, pd->dst.stride);
if (!x->skip_recode) {
vp9_subtract_block(4, 4, src_diff, diff_stride,
src, p->src.stride, dst, pd->dst.stride);
if (tx_type != DCT_DCT)
vp9_short_fht4x4(src_diff, coeff, diff_stride, tx_type);
else
x->fwd_txm4x4(src_diff, coeff, diff_stride);
vp9_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant,
p->quant_shift, qcoeff, dqcoeff,
pd->dequant, p->zbin_extra, eob, scan_order->scan,
scan_order->iscan);
}
if (!x->skip_encode && *eob) {
if (tx_type == DCT_DCT)
// this is like vp9_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
xd->itxm_add(dqcoeff, dst, pd->dst.stride, *eob);
else
vp9_iht4x4_16_add(dqcoeff, dst, pd->dst.stride, tx_type);
}
break;
default:
assert(0);
}
}
void vp9_encode_intra_block_y(MACROBLOCK *x, BLOCK_SIZE bsize) {
MACROBLOCKD* const xd = &x->e_mbd;
struct optimize_ctx ctx;
struct encode_b_args arg = {x, &ctx};
foreach_transformed_block_in_plane(xd, bsize, 0, vp9_encode_block_intra,
&arg);
}
void vp9_encode_intra_block_uv(MACROBLOCK *x, BLOCK_SIZE bsize) {
MACROBLOCKD* const xd = &x->e_mbd;
struct optimize_ctx ctx;
struct encode_b_args arg = {x, &ctx};
foreach_transformed_block_uv(xd, bsize, vp9_encode_block_intra, &arg);
}
int vp9_encode_intra(MACROBLOCK *x, int use_16x16_pred) {
MB_MODE_INFO * mbmi = &x->e_mbd.mi_8x8[0]->mbmi;
x->skip_encode = 0;
mbmi->mode = DC_PRED;
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->tx_size = use_16x16_pred ? (mbmi->sb_type >= BLOCK_16X16 ? TX_16X16
: TX_8X8)
: TX_4X4;
vp9_encode_intra_block_y(x, mbmi->sb_type);
return vp9_get_mb_ss(x->plane[0].src_diff);
}