vpx/vp8/encoder/ratectrl.c
2010-10-14 16:19:06 -04:00

1563 lines
58 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <assert.h>
#include "math.h"
#include "common.h"
#include "ratectrl.h"
#include "entropymode.h"
#include "vpx_mem/vpx_mem.h"
#include "systemdependent.h"
#include "encodemv.h"
#define MIN_BPB_FACTOR 0.01
#define MAX_BPB_FACTOR 50
extern const MB_PREDICTION_MODE vp8_mode_order[MAX_MODES];
extern const MV_REFERENCE_FRAME vp8_ref_frame_order[MAX_MODES];
#ifdef MODE_STATS
extern int y_modes[5];
extern int uv_modes[4];
extern int b_modes[10];
extern int inter_y_modes[10];
extern int inter_uv_modes[4];
extern int inter_b_modes[10];
#endif
// Bits Per MB at different Q (Multiplied by 512)
#define BPER_MB_NORMBITS 9
const int vp8_bits_per_mb[2][QINDEX_RANGE] =
{
// (Updated 19 March 08) Baseline estimate of INTRA-frame Bits Per MB at each Q:
{
674781, 606845, 553905, 524293, 500428, 452540, 435379, 414719,
390970, 371082, 359416, 341807, 336957, 317263, 303724, 298402,
285688, 275237, 268455, 262560, 256038, 248734, 241087, 237615,
229247, 225211, 219112, 213920, 211559, 202714, 198482, 193401,
187866, 183453, 179212, 175965, 171852, 167235, 163972, 160560,
156032, 154349, 151390, 148725, 145708, 142311, 139981, 137700,
134084, 131863, 129746, 128498, 126077, 123461, 121290, 117782,
114883, 112332, 108410, 105685, 103434, 101192, 98587, 95959,
94059, 92017, 89970, 87936, 86142, 84801, 82736, 81106,
79668, 78135, 76641, 75103, 73943, 72693, 71401, 70098,
69165, 67901, 67170, 65987, 64923, 63534, 62378, 61302,
59921, 58941, 57844, 56782, 55960, 54973, 54257, 53454,
52230, 50938, 49962, 49190, 48288, 47270, 46738, 46037,
45020, 44027, 43216, 42287, 41594, 40702, 40081, 39414,
38282, 37627, 36987, 36375, 35808, 35236, 34710, 34162,
33659, 33327, 32751, 32384, 31936, 31461, 30982, 30582,
},
// (Updated 19 March 08) Baseline estimate of INTER-frame Bits Per MB at each Q:
{
497401, 426316, 372064, 352732, 335763, 283921, 273848, 253321,
233181, 217727, 210030, 196685, 194836, 178396, 167753, 164116,
154119, 146929, 142254, 138488, 133591, 127741, 123166, 120226,
114188, 111756, 107882, 104749, 102522, 96451, 94424, 90905,
87286, 84931, 82111, 80534, 77610, 74700, 73037, 70715,
68006, 67235, 65374, 64009, 62134, 60180, 59105, 57691,
55509, 54512, 53318, 52693, 51194, 49840, 48944, 46980,
45668, 44177, 42348, 40994, 39859, 38889, 37717, 36391,
35482, 34622, 33795, 32756, 32002, 31492, 30573, 29737,
29152, 28514, 27941, 27356, 26859, 26329, 25874, 25364,
24957, 24510, 24290, 23689, 23380, 22845, 22481, 22066,
21587, 21219, 20880, 20452, 20260, 19926, 19661, 19334,
18915, 18391, 18046, 17833, 17441, 17105, 16888, 16729,
16383, 16023, 15706, 15442, 15222, 14938, 14673, 14452,
14005, 13807, 13611, 13447, 13223, 13102, 12963, 12801,
12627, 12534, 12356, 12228, 12056, 11907, 11746, 11643,
}
};
const int vp8_kf_boost_qadjustment[QINDEX_RANGE] =
{
128, 129, 130, 131, 132, 133, 134, 135,
136, 137, 138, 139, 140, 141, 142, 143,
144, 145, 146, 147, 148, 149, 150, 151,
152, 153, 154, 155, 156, 157, 158, 159,
160, 161, 162, 163, 164, 165, 166, 167,
168, 169, 170, 171, 172, 173, 174, 175,
176, 177, 178, 179, 180, 181, 182, 183,
184, 185, 186, 187, 188, 189, 190, 191,
192, 193, 194, 195, 196, 197, 198, 199,
200, 200, 201, 201, 202, 203, 203, 203,
204, 204, 205, 205, 206, 206, 207, 207,
208, 208, 209, 209, 210, 210, 211, 211,
212, 212, 213, 213, 214, 214, 215, 215,
216, 216, 217, 217, 218, 218, 219, 219,
220, 220, 220, 220, 220, 220, 220, 220,
220, 220, 220, 220, 220, 220, 220, 220,
};
//#define GFQ_ADJUSTMENT (Q+100)
#define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q]
const int vp8_gf_boost_qadjustment[QINDEX_RANGE] =
{
80, 82, 84, 86, 88, 90, 92, 94,
96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111,
112, 113, 114, 115, 116, 117, 118, 119,
120, 121, 122, 123, 124, 125, 126, 127,
128, 129, 130, 131, 132, 133, 134, 135,
136, 137, 138, 139, 140, 141, 142, 143,
144, 145, 146, 147, 148, 149, 150, 151,
152, 153, 154, 155, 156, 157, 158, 159,
160, 161, 162, 163, 164, 165, 166, 167,
168, 169, 170, 171, 172, 173, 174, 175,
176, 177, 178, 179, 180, 181, 182, 183,
184, 184, 185, 185, 186, 186, 187, 187,
188, 188, 189, 189, 190, 190, 191, 191,
192, 192, 193, 193, 194, 194, 194, 194,
195, 195, 196, 196, 197, 197, 198, 198
};
/*
const int vp8_gf_boost_qadjustment[QINDEX_RANGE] =
{
100,101,102,103,104,105,105,106,
106,107,107,108,109,109,110,111,
112,113,114,115,116,117,118,119,
120,121,122,123,124,125,126,127,
128,129,130,131,132,133,134,135,
136,137,138,139,140,141,142,143,
144,145,146,147,148,149,150,151,
152,153,154,155,156,157,158,159,
160,161,162,163,164,165,166,167,
168,169,170,170,171,171,172,172,
173,173,173,174,174,174,175,175,
175,176,176,176,177,177,177,177,
178,178,179,179,180,180,181,181,
182,182,183,183,184,184,185,185,
186,186,187,187,188,188,189,189,
190,190,191,191,192,192,193,193,
};
*/
const int vp8_kf_gf_boost_qlimits[QINDEX_RANGE] =
{
150, 155, 160, 165, 170, 175, 180, 185,
190, 195, 200, 205, 210, 215, 220, 225,
230, 235, 240, 245, 250, 255, 260, 265,
270, 275, 280, 285, 290, 295, 300, 305,
310, 320, 330, 340, 350, 360, 370, 380,
390, 400, 410, 420, 430, 440, 450, 460,
470, 480, 490, 500, 510, 520, 530, 540,
550, 560, 570, 580, 590, 600, 600, 600,
600, 600, 600, 600, 600, 600, 600, 600,
600, 600, 600, 600, 600, 600, 600, 600,
600, 600, 600, 600, 600, 600, 600, 600,
600, 600, 600, 600, 600, 600, 600, 600,
600, 600, 600, 600, 600, 600, 600, 600,
600, 600, 600, 600, 600, 600, 600, 600,
600, 600, 600, 600, 600, 600, 600, 600,
600, 600, 600, 600, 600, 600, 600, 600,
};
// % adjustment to target kf size based on seperation from previous frame
const int vp8_kf_boost_seperationt_adjustment[16] =
{
30, 40, 50, 55, 60, 65, 70, 75,
80, 85, 90, 95, 100, 100, 100, 100,
};
const int vp8_gf_adjust_table[101] =
{
100,
115, 130, 145, 160, 175, 190, 200, 210, 220, 230,
240, 260, 270, 280, 290, 300, 310, 320, 330, 340,
350, 360, 370, 380, 390, 400, 400, 400, 400, 400,
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
};
const int vp8_gf_intra_useage_adjustment[20] =
{
125, 120, 115, 110, 105, 100, 95, 85, 80, 75,
70, 65, 60, 55, 50, 50, 50, 50, 50, 50,
};
const int vp8_gf_interval_table[101] =
{
7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
};
static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] = { 1, 2, 3, 4, 5 };
void vp8_save_coding_context(VP8_COMP *cpi)
{
CODING_CONTEXT *const cc = & cpi->coding_context;
// Stores a snapshot of key state variables which can subsequently be
// restored with a call to vp8_restore_coding_context. These functions are
// intended for use in a re-code loop in vp8_compress_frame where the
// quantizer value is adjusted between loop iterations.
cc->frames_since_key = cpi->frames_since_key;
cc->filter_level = cpi->common.filter_level;
cc->frames_till_gf_update_due = cpi->frames_till_gf_update_due;
cc->frames_since_golden = cpi->common.frames_since_golden;
vp8_copy(cc->mvc, cpi->common.fc.mvc);
vp8_copy(cc->mvcosts, cpi->mb.mvcosts);
vp8_copy(cc->kf_ymode_prob, cpi->common.kf_ymode_prob);
vp8_copy(cc->ymode_prob, cpi->common.fc.ymode_prob);
vp8_copy(cc->kf_uv_mode_prob, cpi->common.kf_uv_mode_prob);
vp8_copy(cc->uv_mode_prob, cpi->common.fc.uv_mode_prob);
vp8_copy(cc->ymode_count, cpi->ymode_count);
vp8_copy(cc->uv_mode_count, cpi->uv_mode_count);
// Stats
#ifdef MODE_STATS
vp8_copy(cc->y_modes, y_modes);
vp8_copy(cc->uv_modes, uv_modes);
vp8_copy(cc->b_modes, b_modes);
vp8_copy(cc->inter_y_modes, inter_y_modes);
vp8_copy(cc->inter_uv_modes, inter_uv_modes);
vp8_copy(cc->inter_b_modes, inter_b_modes);
#endif
cc->this_frame_percent_intra = cpi->this_frame_percent_intra;
}
void vp8_restore_coding_context(VP8_COMP *cpi)
{
CODING_CONTEXT *const cc = & cpi->coding_context;
// Restore key state variables to the snapshot state stored in the
// previous call to vp8_save_coding_context.
cpi->frames_since_key = cc->frames_since_key;
cpi->common.filter_level = cc->filter_level;
cpi->frames_till_gf_update_due = cc->frames_till_gf_update_due;
cpi->common.frames_since_golden = cc->frames_since_golden;
vp8_copy(cpi->common.fc.mvc, cc->mvc);
vp8_copy(cpi->mb.mvcosts, cc->mvcosts);
vp8_copy(cpi->common.kf_ymode_prob, cc->kf_ymode_prob);
vp8_copy(cpi->common.fc.ymode_prob, cc->ymode_prob);
vp8_copy(cpi->common.kf_uv_mode_prob, cc->kf_uv_mode_prob);
vp8_copy(cpi->common.fc.uv_mode_prob, cc->uv_mode_prob);
vp8_copy(cpi->ymode_count, cc->ymode_count);
vp8_copy(cpi->uv_mode_count, cc->uv_mode_count);
// Stats
#ifdef MODE_STATS
vp8_copy(y_modes, cc->y_modes);
vp8_copy(uv_modes, cc->uv_modes);
vp8_copy(b_modes, cc->b_modes);
vp8_copy(inter_y_modes, cc->inter_y_modes);
vp8_copy(inter_uv_modes, cc->inter_uv_modes);
vp8_copy(inter_b_modes, cc->inter_b_modes);
#endif
cpi->this_frame_percent_intra = cc->this_frame_percent_intra;
}
void vp8_setup_key_frame(VP8_COMP *cpi)
{
// Setup for Key frame:
vp8_default_coef_probs(& cpi->common);
vp8_kf_default_bmode_probs(cpi->common.kf_bmode_prob);
vpx_memcpy(cpi->common.fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context));
{
int flag[2] = {1, 1};
vp8_build_component_cost_table(cpi->mb.mvcost, cpi->mb.mvsadcost, (const MV_CONTEXT *) cpi->common.fc.mvc, flag);
}
vpx_memset(cpi->common.fc.pre_mvc, 0, sizeof(cpi->common.fc.pre_mvc)); //initialize pre_mvc to all zero.
//cpi->common.filter_level = 0; // Reset every key frame.
cpi->common.filter_level = cpi->common.base_qindex * 3 / 8 ;
// Provisional interval before next GF
if (cpi->auto_gold)
//cpi->frames_till_gf_update_due = DEFAULT_GF_INTERVAL;
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
else
cpi->frames_till_gf_update_due = cpi->goldfreq;
cpi->common.refresh_golden_frame = TRUE;
}
void vp8_calc_auto_iframe_target_size(VP8_COMP *cpi)
{
// boost defaults to half second
int kf_boost;
// Clear down mmx registers to allow floating point in what follows
vp8_clear_system_state(); //__asm emms;
if (cpi->oxcf.fixed_q >= 0)
{
vp8_calc_iframe_target_size(cpi);
return;
}
if (cpi->pass == 2)
{
cpi->this_frame_target = cpi->per_frame_bandwidth; // New Two pass RC
}
else
{
// Boost depends somewhat on frame rate
kf_boost = (int)(2 * cpi->output_frame_rate - 16);
// adjustment up based on q
kf_boost = kf_boost * vp8_kf_boost_qadjustment[cpi->ni_av_qi] / 100;
// frame separation adjustment ( down)
if (cpi->frames_since_key < cpi->output_frame_rate / 2)
kf_boost = (int)(kf_boost * cpi->frames_since_key / (cpi->output_frame_rate / 2));
if (kf_boost < 16)
kf_boost = 16;
// Reset the active worst quality to the baseline value for key frames.
cpi->active_worst_quality = cpi->worst_quality;
cpi->this_frame_target = ((16 + kf_boost) * cpi->per_frame_bandwidth) >> 4;
}
// Should the next frame be an altref frame
if (cpi->pass != 2)
{
// For now Alt ref is not allowed except in 2 pass modes.
cpi->source_alt_ref_pending = FALSE;
/*if ( cpi->oxcf.fixed_q == -1)
{
if ( cpi->oxcf.play_alternate && ( (cpi->last_boost/2) > (100+(AF_THRESH*cpi->frames_till_gf_update_due)) ) )
cpi->source_alt_ref_pending = TRUE;
else
cpi->source_alt_ref_pending = FALSE;
}*/
}
if (0)
{
FILE *f;
f = fopen("kf_boost.stt", "a");
//fprintf(f, " %8d %10d %10d %10d %10d %10d %10d\n",
// cpi->common.current_video_frame, cpi->target_bandwidth, cpi->frames_to_key, kf_boost_qadjustment[cpi->ni_av_qi], cpi->kf_boost, (cpi->this_frame_target *100 / cpi->per_frame_bandwidth), cpi->this_frame_target );
fprintf(f, " %8u %10d %10d %10d\n",
cpi->common.current_video_frame, cpi->gfu_boost, cpi->baseline_gf_interval, cpi->source_alt_ref_pending);
fclose(f);
}
}
// Do the best we can to define the parameteres for the next GF based on what information we have available.
static void calc_gf_params(VP8_COMP *cpi)
{
int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
int Boost = 0;
int gf_frame_useage = 0; // Golden frame useage since last GF
int tot_mbs = cpi->recent_ref_frame_usage[INTRA_FRAME] +
cpi->recent_ref_frame_usage[LAST_FRAME] +
cpi->recent_ref_frame_usage[GOLDEN_FRAME] +
cpi->recent_ref_frame_usage[ALTREF_FRAME];
int pct_gf_active = (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols);
// Reset the last boost indicator
//cpi->last_boost = 100;
if (tot_mbs)
gf_frame_useage = (cpi->recent_ref_frame_usage[GOLDEN_FRAME] + cpi->recent_ref_frame_usage[ALTREF_FRAME]) * 100 / tot_mbs;
if (pct_gf_active > gf_frame_useage)
gf_frame_useage = pct_gf_active;
// Not two pass
if (cpi->pass != 2)
{
// Single Pass lagged mode: TBD
if (FALSE)
{
}
// Single Pass compression: Has to use current and historical data
else
{
#if 0
// Experimental code
int index = cpi->one_pass_frame_index;
int frames_to_scan = (cpi->max_gf_interval <= MAX_LAG_BUFFERS) ? cpi->max_gf_interval : MAX_LAG_BUFFERS;
/*
// *************** Experimental code - incomplete
double decay_val = 1.0;
double IIAccumulator = 0.0;
double last_iiaccumulator = 0.0;
double IIRatio;
cpi->one_pass_frame_index = cpi->common.current_video_frame%MAX_LAG_BUFFERS;
for ( i = 0; i < (frames_to_scan - 1); i++ )
{
if ( index < 0 )
index = MAX_LAG_BUFFERS;
index --;
if ( cpi->one_pass_frame_stats[index].frame_coded_error > 0.0 )
{
IIRatio = cpi->one_pass_frame_stats[index].frame_intra_error / cpi->one_pass_frame_stats[index].frame_coded_error;
if ( IIRatio > 30.0 )
IIRatio = 30.0;
}
else
IIRatio = 30.0;
IIAccumulator += IIRatio * decay_val;
decay_val = decay_val * cpi->one_pass_frame_stats[index].frame_pcnt_inter;
if ( (i > MIN_GF_INTERVAL) &&
((IIAccumulator - last_iiaccumulator) < 2.0) )
{
break;
}
last_iiaccumulator = IIAccumulator;
}
Boost = IIAccumulator*100.0/16.0;
cpi->baseline_gf_interval = i;
*/
#else
/*************************************************************/
// OLD code
// Adjust boost based upon ambient Q
Boost = GFQ_ADJUSTMENT;
// Adjust based upon most recently measure intra useage
Boost = Boost * vp8_gf_intra_useage_adjustment[(cpi->this_frame_percent_intra < 15) ? cpi->this_frame_percent_intra : 14] / 100;
// Adjust gf boost based upon GF usage since last GF
Boost = Boost * vp8_gf_adjust_table[gf_frame_useage] / 100;
#endif
}
// golden frame boost without recode loop often goes awry. be safe by keeping numbers down.
if (!cpi->sf.recode_loop)
{
if (cpi->compressor_speed == 2)
Boost = Boost / 2;
}
// Apply an upper limit based on Q for 1 pass encodes
if (Boost > vp8_kf_gf_boost_qlimits[Q] && (cpi->pass == 0))
Boost = vp8_kf_gf_boost_qlimits[Q];
// Apply lower limits to boost.
else if (Boost < 110)
Boost = 110;
// Note the boost used
cpi->last_boost = Boost;
}
// Estimate next interval
// This is updated once the real frame size/boost is known.
if (cpi->oxcf.fixed_q == -1)
{
if (cpi->pass == 2) // 2 Pass
{
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
}
else // 1 Pass
{
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
if (cpi->last_boost > 750)
cpi->frames_till_gf_update_due++;
if (cpi->last_boost > 1000)
cpi->frames_till_gf_update_due++;
if (cpi->last_boost > 1250)
cpi->frames_till_gf_update_due++;
if (cpi->last_boost >= 1500)
cpi->frames_till_gf_update_due ++;
if (vp8_gf_interval_table[gf_frame_useage] > cpi->frames_till_gf_update_due)
cpi->frames_till_gf_update_due = vp8_gf_interval_table[gf_frame_useage];
if (cpi->frames_till_gf_update_due > cpi->max_gf_interval)
cpi->frames_till_gf_update_due = cpi->max_gf_interval;
}
}
else
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
// ARF on or off
if (cpi->pass != 2)
{
// For now Alt ref is not allowed except in 2 pass modes.
cpi->source_alt_ref_pending = FALSE;
/*if ( cpi->oxcf.fixed_q == -1)
{
if ( cpi->oxcf.play_alternate && (cpi->last_boost > (100 + (AF_THRESH*cpi->frames_till_gf_update_due)) ) )
cpi->source_alt_ref_pending = TRUE;
else
cpi->source_alt_ref_pending = FALSE;
}*/
}
}
/* This is equvialent to estimate_bits_at_q without the rate_correction_factor. */
static int baseline_bits_at_q(int frame_kind, int Q, int MBs)
{
int Bpm = vp8_bits_per_mb[frame_kind][Q];
/* Attempt to retain reasonable accuracy without overflow. The cutoff is
* chosen such that the maximum product of Bpm and MBs fits 31 bits. The
* largest Bpm takes 20 bits.
*/
if (MBs > (1 << 11))
return (Bpm >> BPER_MB_NORMBITS) * MBs;
else
return (Bpm * MBs) >> BPER_MB_NORMBITS;
}
void vp8_calc_iframe_target_size(VP8_COMP *cpi)
{
int Q;
int Boost = 100;
Q = (cpi->oxcf.fixed_q >= 0) ? cpi->oxcf.fixed_q : cpi->avg_frame_qindex;
if (cpi->auto_adjust_key_quantizer == 1)
{
// If (auto_adjust_key_quantizer==1) then a lower Q is selected for key-frames.
// The enhanced Q is calculated so as to boost the key frame size by a factor
// specified in kf_boost_qadjustment. Also, can adjust based on distance
// between key frames.
// Adjust boost based upon ambient Q
Boost = vp8_kf_boost_qadjustment[Q];
// Make the Key frame boost less if the seperation from the previous key frame is small
if (cpi->frames_since_key < 16)
Boost = Boost * vp8_kf_boost_seperationt_adjustment[cpi->frames_since_key] / 100;
else
Boost = Boost * vp8_kf_boost_seperationt_adjustment[15] / 100;
// Apply limits on boost
if (Boost > vp8_kf_gf_boost_qlimits[Q])
Boost = vp8_kf_gf_boost_qlimits[Q];
else if (Boost < 120)
Boost = 120;
}
// Keep a record of the boost that was used
cpi->last_boost = Boost;
// Should the next frame be an altref frame
if (cpi->pass != 2)
{
// For now Alt ref is not allowed except in 2 pass modes.
cpi->source_alt_ref_pending = FALSE;
/*if ( cpi->oxcf.fixed_q == -1)
{
if ( cpi->oxcf.play_alternate && ( (cpi->last_boost/2) > (100+(AF_THRESH*cpi->frames_till_gf_update_due)) ) )
cpi->source_alt_ref_pending = TRUE;
else
cpi->source_alt_ref_pending = FALSE;
}*/
}
if (cpi->oxcf.fixed_q >= 0)
{
cpi->this_frame_target = (baseline_bits_at_q(0, Q, cpi->common.MBs) * Boost) / 100;
}
else
{
int bits_per_mb_at_this_q ;
if (cpi->oxcf.error_resilient_mode == 1)
{
cpi->this_frame_target = 2 * cpi->av_per_frame_bandwidth;
return;
}
// Rate targetted scenario:
// Be careful of 32-bit OVERFLOW if restructuring the caluclation of cpi->this_frame_target
bits_per_mb_at_this_q = (int)(.5 +
cpi->key_frame_rate_correction_factor * vp8_bits_per_mb[0][Q]);
cpi->this_frame_target = (((bits_per_mb_at_this_q * cpi->common.MBs) >> BPER_MB_NORMBITS) * Boost) / 100;
// Reset the active worst quality to the baseline value for key frames.
if (cpi->pass < 2)
cpi->active_worst_quality = cpi->worst_quality;
}
}
void vp8_calc_pframe_target_size(VP8_COMP *cpi)
{
int min_frame_target;
int Adjustment;
// Set the min frame bandwidth.
//min_frame_target = estimate_min_frame_size( cpi );
min_frame_target = 0;
if (cpi->pass == 2)
{
min_frame_target = cpi->min_frame_bandwidth;
if (min_frame_target < (cpi->av_per_frame_bandwidth >> 5))
min_frame_target = cpi->av_per_frame_bandwidth >> 5;
}
else if (min_frame_target < cpi->per_frame_bandwidth / 4)
min_frame_target = cpi->per_frame_bandwidth / 4;
// Special alt reference frame case
if (cpi->common.refresh_alt_ref_frame)
{
if (cpi->pass == 2)
{
cpi->per_frame_bandwidth = cpi->gf_bits; // Per frame bit target for the alt ref frame
cpi->this_frame_target = cpi->per_frame_bandwidth;
}
/* One Pass ??? TBD */
/*else
{
int frames_in_section;
int allocation_chunks;
int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
int alt_boost;
int max_arf_rate;
alt_boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100);
alt_boost += (cpi->frames_till_gf_update_due * 50);
// If alt ref is not currently active then we have a pottential double hit with GF and ARF so reduce the boost a bit.
// A similar thing is done on GFs that preceed a arf update.
if ( !cpi->source_alt_ref_active )
alt_boost = alt_boost * 3 / 4;
frames_in_section = cpi->frames_till_gf_update_due+1; // Standard frames + GF
allocation_chunks = (frames_in_section * 100) + alt_boost;
// Normalize Altboost and allocations chunck down to prevent overflow
while ( alt_boost > 1000 )
{
alt_boost /= 2;
allocation_chunks /= 2;
}
else
{
int bits_in_section;
if ( cpi->kf_overspend_bits > 0 )
{
Adjustment = (cpi->kf_bitrate_adjustment <= cpi->kf_overspend_bits) ? cpi->kf_bitrate_adjustment : cpi->kf_overspend_bits;
if ( Adjustment > (cpi->per_frame_bandwidth - min_frame_target) )
Adjustment = (cpi->per_frame_bandwidth - min_frame_target);
cpi->kf_overspend_bits -= Adjustment;
// Calculate an inter frame bandwidth target for the next few frames designed to recover
// any extra bits spent on the key frame.
cpi->inter_frame_target = cpi->per_frame_bandwidth - Adjustment;
if ( cpi->inter_frame_target < min_frame_target )
cpi->inter_frame_target = min_frame_target;
}
else
cpi->inter_frame_target = cpi->per_frame_bandwidth;
bits_in_section = cpi->inter_frame_target * frames_in_section;
// Avoid loss of precision but avoid overflow
if ( (bits_in_section>>7) > allocation_chunks )
cpi->this_frame_target = alt_boost * (bits_in_section / allocation_chunks);
else
cpi->this_frame_target = (alt_boost * bits_in_section) / allocation_chunks;
}
}
*/
}
// Normal frames (gf,and inter)
else
{
// 2 pass
if (cpi->pass == 2)
{
cpi->this_frame_target = cpi->per_frame_bandwidth;
}
// 1 pass
else
{
// Make rate adjustment to recover bits spent in key frame
// Test to see if the key frame inter data rate correction should still be in force
if (cpi->kf_overspend_bits > 0)
{
Adjustment = (cpi->kf_bitrate_adjustment <= cpi->kf_overspend_bits) ? cpi->kf_bitrate_adjustment : cpi->kf_overspend_bits;
if (Adjustment > (cpi->per_frame_bandwidth - min_frame_target))
Adjustment = (cpi->per_frame_bandwidth - min_frame_target);
cpi->kf_overspend_bits -= Adjustment;
// Calculate an inter frame bandwidth target for the next few frames designed to recover
// any extra bits spent on the key frame.
cpi->this_frame_target = cpi->per_frame_bandwidth - Adjustment;
if (cpi->this_frame_target < min_frame_target)
cpi->this_frame_target = min_frame_target;
}
else
cpi->this_frame_target = cpi->per_frame_bandwidth;
// If appropriate make an adjustment to recover bits spent on a recent GF
if ((cpi->gf_overspend_bits > 0) && (cpi->this_frame_target > min_frame_target))
{
int Adjustment = (cpi->non_gf_bitrate_adjustment <= cpi->gf_overspend_bits) ? cpi->non_gf_bitrate_adjustment : cpi->gf_overspend_bits;
if (Adjustment > (cpi->this_frame_target - min_frame_target))
Adjustment = (cpi->this_frame_target - min_frame_target);
cpi->gf_overspend_bits -= Adjustment;
cpi->this_frame_target -= Adjustment;
}
// Apply small + and - boosts for non gf frames
if ((cpi->last_boost > 150) && (cpi->frames_till_gf_update_due > 0) &&
(cpi->current_gf_interval >= (MIN_GF_INTERVAL << 1)))
{
// % Adjustment limited to the range 1% to 10%
Adjustment = (cpi->last_boost - 100) >> 5;
if (Adjustment < 1)
Adjustment = 1;
else if (Adjustment > 10)
Adjustment = 10;
// Convert to bits
Adjustment = (cpi->this_frame_target * Adjustment) / 100;
if (Adjustment > (cpi->this_frame_target - min_frame_target))
Adjustment = (cpi->this_frame_target - min_frame_target);
if (cpi->common.frames_since_golden == (cpi->current_gf_interval >> 1))
cpi->this_frame_target += ((cpi->current_gf_interval - 1) * Adjustment);
else
cpi->this_frame_target -= Adjustment;
}
}
}
// Set a reduced data rate target for our initial Q calculation.
// This should help to save bits during earier sections.
if ((cpi->oxcf.under_shoot_pct > 0) && (cpi->oxcf.under_shoot_pct <= 100))
cpi->this_frame_target = (cpi->this_frame_target * cpi->oxcf.under_shoot_pct) / 100;
// Sanity check that the total sum of adjustments is not above the maximum allowed
// That is that having allowed for KF and GF penalties we have not pushed the
// current interframe target to low. If the adjustment we apply here is not capable of recovering
// all the extra bits we have spent in the KF or GF then the remainder will have to be recovered over
// a longer time span via other buffer / rate control mechanisms.
if (cpi->this_frame_target < min_frame_target)
cpi->this_frame_target = min_frame_target;
if (!cpi->common.refresh_alt_ref_frame)
// Note the baseline target data rate for this inter frame.
cpi->inter_frame_target = cpi->this_frame_target;
// One Pass specific code
if (cpi->pass == 0)
{
// Adapt target frame size with respect to any buffering constraints:
if (cpi->buffered_mode)
{
int one_percent_bits = 1 + cpi->oxcf.optimal_buffer_level / 100;
if ((cpi->buffer_level < cpi->oxcf.optimal_buffer_level) || (cpi->bits_off_target < cpi->oxcf.optimal_buffer_level))
{
int percent_low = 0;
// Decide whether or not we need to adjust the frame data rate target.
//
// If we are are below the optimal buffer fullness level and adherence
// to buffering contraints is important to the end useage then adjust
// the per frame target.
if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) && (cpi->buffer_level < cpi->oxcf.optimal_buffer_level))
{
percent_low = (cpi->oxcf.optimal_buffer_level - cpi->buffer_level) / one_percent_bits;
if (percent_low > 100)
percent_low = 100;
else if (percent_low < 0)
percent_low = 0;
}
// Are we overshooting the long term clip data rate...
else if (cpi->bits_off_target < 0)
{
// Adjust per frame data target downwards to compensate.
percent_low = (int)(100 * -cpi->bits_off_target / (cpi->total_byte_count * 8));
if (percent_low > 100)
percent_low = 100;
else if (percent_low < 0)
percent_low = 0;
}
// lower the target bandwidth for this frame.
cpi->this_frame_target = (cpi->this_frame_target * (100 - (percent_low / 2))) / 100;
// Are we using allowing control of active_worst_allowed_q according to buffer level.
if (cpi->auto_worst_q)
{
int critical_buffer_level;
// For streaming applications the most important factor is cpi->buffer_level as this takes
// into account the specified short term buffering constraints. However, hitting the long
// term clip data rate target is also important.
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
{
// Take the smaller of cpi->buffer_level and cpi->bits_off_target
critical_buffer_level = (cpi->buffer_level < cpi->bits_off_target) ? cpi->buffer_level : cpi->bits_off_target;
}
// For local file playback short term buffering contraints are less of an issue
else
{
// Consider only how we are doing for the clip as a whole
critical_buffer_level = cpi->bits_off_target;
}
// Set the active worst quality based upon the selected buffer fullness number.
if (critical_buffer_level < cpi->oxcf.optimal_buffer_level)
{
if (critical_buffer_level > (cpi->oxcf.optimal_buffer_level / 4))
{
int qadjustment_range = cpi->worst_quality - cpi->ni_av_qi;
int above_base = (critical_buffer_level - (cpi->oxcf.optimal_buffer_level / 4));
// Step active worst quality down from cpi->ni_av_qi when (critical_buffer_level == cpi->optimal_buffer_level)
// to cpi->oxcf.worst_allowed_q when (critical_buffer_level == cpi->optimal_buffer_level/4)
cpi->active_worst_quality = cpi->worst_quality - ((qadjustment_range * above_base) / (cpi->oxcf.optimal_buffer_level * 3 / 4));
}
else
{
cpi->active_worst_quality = cpi->worst_quality;
}
}
else
{
cpi->active_worst_quality = cpi->ni_av_qi;
}
}
else
{
cpi->active_worst_quality = cpi->worst_quality;
}
}
else
{
int percent_high;
if (cpi->bits_off_target > cpi->oxcf.optimal_buffer_level)
{
percent_high = (int)(100 * (cpi->bits_off_target - cpi->oxcf.optimal_buffer_level) / (cpi->total_byte_count * 8));
if (percent_high > 100)
percent_high = 100;
else if (percent_high < 0)
percent_high = 0;
cpi->this_frame_target = (cpi->this_frame_target * (100 + (percent_high / 2))) / 100;
}
// Are we allowing control of active_worst_allowed_q according to bufferl level.
if (cpi->auto_worst_q)
{
// When using the relaxed buffer model stick to the user specified value
cpi->active_worst_quality = cpi->ni_av_qi;
}
else
{
cpi->active_worst_quality = cpi->worst_quality;
}
}
// Set active_best_quality to prevent quality rising too high
cpi->active_best_quality = cpi->best_quality;
// Worst quality obviously must not be better than best quality
if (cpi->active_worst_quality <= cpi->active_best_quality)
cpi->active_worst_quality = cpi->active_best_quality + 1;
}
// Unbuffered mode (eg. video conferencing)
else
{
// Set the active worst quality
cpi->active_worst_quality = cpi->worst_quality;
}
}
// Test to see if we have to drop a frame
// The auto-drop frame code is only used in buffered mode.
// In unbufferd mode (eg vide conferencing) the descision to
// code or drop a frame is made outside the codec in response to real
// world comms or buffer considerations.
if (cpi->drop_frames_allowed && cpi->buffered_mode &&
(cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
((cpi->common.frame_type != KEY_FRAME))) //|| !cpi->oxcf.allow_spatial_resampling) )
{
// Check for a buffer underun-crisis in which case we have to drop a frame
if ((cpi->buffer_level < 0))
{
#if 0
FILE *f = fopen("dec.stt", "a");
fprintf(f, "%10d %10d %10d %10d ***** BUFFER EMPTY\n",
(int) cpi->common.current_video_frame,
cpi->decimation_factor, cpi->common.horiz_scale,
(cpi->buffer_level * 100) / cpi->oxcf.optimal_buffer_level);
fclose(f);
#endif
//vpx_log("Decoder: Drop frame due to bandwidth: %d \n",cpi->buffer_level, cpi->av_per_frame_bandwidth);
cpi->drop_frame = TRUE;
}
#if 0
// Check for other drop frame crtieria (Note 2 pass cbr uses decimation on whole KF sections)
else if ((cpi->buffer_level < cpi->oxcf.drop_frames_water_mark * cpi->oxcf.optimal_buffer_level / 100) &&
(cpi->drop_count < cpi->max_drop_count) && (cpi->pass == 0))
{
cpi->drop_frame = TRUE;
}
#endif
if (cpi->drop_frame)
{
// Update the buffer level variable.
cpi->bits_off_target += cpi->av_per_frame_bandwidth;
cpi->buffer_level = cpi->bits_off_target;
}
else
cpi->drop_count = 0;
}
// Adjust target frame size for Golden Frames:
if (cpi->oxcf.error_resilient_mode == 0 &&
(cpi->frames_till_gf_update_due == 0) && !cpi->drop_frame)
{
//int Boost = 0;
int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
int gf_frame_useage = 0; // Golden frame useage since last GF
int tot_mbs = cpi->recent_ref_frame_usage[INTRA_FRAME] +
cpi->recent_ref_frame_usage[LAST_FRAME] +
cpi->recent_ref_frame_usage[GOLDEN_FRAME] +
cpi->recent_ref_frame_usage[ALTREF_FRAME];
int pct_gf_active = (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols);
// Reset the last boost indicator
//cpi->last_boost = 100;
if (tot_mbs)
gf_frame_useage = (cpi->recent_ref_frame_usage[GOLDEN_FRAME] + cpi->recent_ref_frame_usage[ALTREF_FRAME]) * 100 / tot_mbs;
if (pct_gf_active > gf_frame_useage)
gf_frame_useage = pct_gf_active;
// Is a fixed manual GF frequency being used
if (!cpi->auto_gold)
cpi->common.refresh_golden_frame = TRUE;
else
{
// For one pass throw a GF if recent frame intra useage is low or the GF useage is high
if ((cpi->pass == 0) && (cpi->this_frame_percent_intra < 15 || gf_frame_useage >= 5))
cpi->common.refresh_golden_frame = TRUE;
// Two pass GF descision
else if (cpi->pass == 2)
cpi->common.refresh_golden_frame = TRUE;
}
#if 0
// Debug stats
if (0)
{
FILE *f;
f = fopen("gf_useaget.stt", "a");
fprintf(f, " %8ld %10ld %10ld %10ld %10ld\n",
cpi->common.current_video_frame, cpi->gfu_boost, GFQ_ADJUSTMENT, cpi->gfu_boost, gf_frame_useage);
fclose(f);
}
#endif
if (cpi->common.refresh_golden_frame == TRUE)
{
#if 0
if (0) // p_gw
{
FILE *f;
f = fopen("GFexit.stt", "a");
fprintf(f, "%8ld GF coded\n", cpi->common.current_video_frame);
fclose(f);
}
#endif
cpi->initial_gf_use = 0;
if (cpi->auto_adjust_gold_quantizer)
{
calc_gf_params(cpi);
}
// If we are using alternate ref instead of gf then do not apply the boost
// It will instead be applied to the altref update
// Jims modified boost
if (!cpi->source_alt_ref_active)
{
if (cpi->oxcf.fixed_q < 0)
{
if (cpi->pass == 2)
{
cpi->this_frame_target = cpi->per_frame_bandwidth; // The spend on the GF is defined in the two pass code for two pass encodes
}
else
{
int Boost = cpi->last_boost;
int frames_in_section = cpi->frames_till_gf_update_due + 1;
int allocation_chunks = (frames_in_section * 100) + (Boost - 100);
int bits_in_section = cpi->inter_frame_target * frames_in_section;
// Normalize Altboost and allocations chunck down to prevent overflow
while (Boost > 1000)
{
Boost /= 2;
allocation_chunks /= 2;
}
// Avoid loss of precision but avoid overflow
if ((bits_in_section >> 7) > allocation_chunks)
cpi->this_frame_target = Boost * (bits_in_section / allocation_chunks);
else
cpi->this_frame_target = (Boost * bits_in_section) / allocation_chunks;
}
}
else
cpi->this_frame_target = (baseline_bits_at_q(1, Q, cpi->common.MBs) * cpi->last_boost) / 100;
}
// If there is an active ARF at this location use the minimum
// bits on this frame even if it is a contructed arf.
// The active maximum quantizer insures that an appropriate
// number of bits will be spent if needed for contstructed ARFs.
else
{
cpi->this_frame_target = 0;
}
cpi->current_gf_interval = cpi->frames_till_gf_update_due;
}
}
}
void vp8_update_rate_correction_factors(VP8_COMP *cpi, int damp_var)
{
int Q = cpi->common.base_qindex;
int correction_factor = 100;
double rate_correction_factor;
double adjustment_limit;
int projected_size_based_on_q = 0;
// Clear down mmx registers to allow floating point in what follows
vp8_clear_system_state(); //__asm emms;
if (cpi->common.frame_type == KEY_FRAME)
{
rate_correction_factor = cpi->key_frame_rate_correction_factor;
}
else
{
if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame)
rate_correction_factor = cpi->gf_rate_correction_factor;
else
rate_correction_factor = cpi->rate_correction_factor;
}
// Work out how big we would have expected the frame to be at this Q given the current correction factor.
// Stay in double to avoid int overflow when values are large
//projected_size_based_on_q = ((int)(.5 + rate_correction_factor * vp8_bits_per_mb[cpi->common.frame_type][Q]) * cpi->common.MBs) >> BPER_MB_NORMBITS;
projected_size_based_on_q = (int)(((.5 + rate_correction_factor * vp8_bits_per_mb[cpi->common.frame_type][Q]) * cpi->common.MBs) / (1 << BPER_MB_NORMBITS));
// Make some allowance for cpi->zbin_over_quant
if (cpi->zbin_over_quant > 0)
{
int Z = cpi->zbin_over_quant;
double Factor = 0.99;
double factor_adjustment = 0.01 / 256.0; //(double)ZBIN_OQ_MAX;
while (Z > 0)
{
Z --;
projected_size_based_on_q =
(int)(Factor * projected_size_based_on_q);
Factor += factor_adjustment;
if (Factor >= 0.999)
Factor = 0.999;
}
}
// Work out a size correction factor.
//if ( cpi->this_frame_target > 0 )
// correction_factor = (100 * cpi->projected_frame_size) / cpi->this_frame_target;
if (projected_size_based_on_q > 0)
correction_factor = (100 * cpi->projected_frame_size) / projected_size_based_on_q;
// More heavily damped adjustment used if we have been oscillating either side of target
switch (damp_var)
{
case 0:
adjustment_limit = 0.75;
break;
case 1:
adjustment_limit = 0.375;
break;
case 2:
default:
adjustment_limit = 0.25;
break;
}
//if ( (correction_factor > 102) && (Q < cpi->active_worst_quality) )
if (correction_factor > 102)
{
// We are not already at the worst allowable quality
correction_factor = (int)(100.5 + ((correction_factor - 100) * adjustment_limit));
rate_correction_factor = ((rate_correction_factor * correction_factor) / 100);
// Keep rate_correction_factor within limits
if (rate_correction_factor > MAX_BPB_FACTOR)
rate_correction_factor = MAX_BPB_FACTOR;
}
//else if ( (correction_factor < 99) && (Q > cpi->active_best_quality) )
else if (correction_factor < 99)
{
// We are not already at the best allowable quality
correction_factor = (int)(100.5 - ((100 - correction_factor) * adjustment_limit));
rate_correction_factor = ((rate_correction_factor * correction_factor) / 100);
// Keep rate_correction_factor within limits
if (rate_correction_factor < MIN_BPB_FACTOR)
rate_correction_factor = MIN_BPB_FACTOR;
}
if (cpi->common.frame_type == KEY_FRAME)
cpi->key_frame_rate_correction_factor = rate_correction_factor;
else
{
if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame)
cpi->gf_rate_correction_factor = rate_correction_factor;
else
cpi->rate_correction_factor = rate_correction_factor;
}
}
static int estimate_bits_at_q(VP8_COMP *cpi, int Q)
{
int Bpm = (int)(.5 + cpi->rate_correction_factor * vp8_bits_per_mb[INTER_FRAME][Q]);
/* Attempt to retain reasonable accuracy without overflow. The cutoff is
* chosen such that the maximum product of Bpm and MBs fits 31 bits. The
* largest Bpm takes 20 bits.
*/
if (cpi->common.MBs > (1 << 11))
return (Bpm >> BPER_MB_NORMBITS) * cpi->common.MBs;
else
return (Bpm * cpi->common.MBs) >> BPER_MB_NORMBITS;
}
int vp8_regulate_q(VP8_COMP *cpi, int target_bits_per_frame)
{
int Q = cpi->active_worst_quality;
// Reset Zbin OQ value
cpi->zbin_over_quant = 0;
if (cpi->oxcf.fixed_q >= 0)
{
Q = cpi->oxcf.fixed_q;
if (cpi->common.frame_type == KEY_FRAME)
{
Q = cpi->oxcf.key_q;
}
else if (cpi->common.refresh_alt_ref_frame)
{
Q = cpi->oxcf.alt_q;
}
else if (cpi->common.refresh_golden_frame)
{
Q = cpi->oxcf.gold_q;
}
}
else
{
int i;
int last_error = INT_MAX;
int target_bits_per_mb;
int bits_per_mb_at_this_q;
double correction_factor;
// Select the appropriate correction factor based upon type of frame.
if (cpi->common.frame_type == KEY_FRAME)
correction_factor = cpi->key_frame_rate_correction_factor;
else
{
if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame)
correction_factor = cpi->gf_rate_correction_factor;
else
correction_factor = cpi->rate_correction_factor;
}
// Calculate required scaling factor based on target frame size and size of frame produced using previous Q
if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS))
target_bits_per_mb = (target_bits_per_frame / cpi->common.MBs) << BPER_MB_NORMBITS; // Case where we would overflow int
else
target_bits_per_mb = (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs;
i = cpi->active_best_quality;
do
{
bits_per_mb_at_this_q = (int)(.5 + correction_factor * vp8_bits_per_mb[cpi->common.frame_type][i]);
if (bits_per_mb_at_this_q <= target_bits_per_mb)
{
if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
Q = i;
else
Q = i - 1;
break;
}
else
last_error = bits_per_mb_at_this_q - target_bits_per_mb;
}
while (++i <= cpi->active_worst_quality);
// If we are at MAXQ then enable Q over-run which seeks to claw back additional bits through things like
// the RD multiplier and zero bin size.
if (Q >= MAXQ)
{
int zbin_oqmax;
double Factor = 0.99;
double factor_adjustment = 0.01 / 256.0; //(double)ZBIN_OQ_MAX;
if (cpi->common.frame_type == KEY_FRAME)
zbin_oqmax = 0; //ZBIN_OQ_MAX/16
else if (cpi->common.refresh_alt_ref_frame || (cpi->common.refresh_golden_frame && !cpi->source_alt_ref_active))
zbin_oqmax = 16;
else
zbin_oqmax = ZBIN_OQ_MAX;
/*{
double Factor = (double)target_bits_per_mb/(double)bits_per_mb_at_this_q;
double Oq;
Factor = Factor/1.2683;
Oq = pow( Factor, (1.0/-0.165) );
if ( Oq > zbin_oqmax )
Oq = zbin_oqmax;
cpi->zbin_over_quant = (int)Oq;
}*/
// Each incrment in the zbin is assumed to have a fixed effect on bitrate. This is not of course true.
// The effect will be highly clip dependent and may well have sudden steps.
// The idea here is to acheive higher effective quantizers than the normal maximum by expanding the zero
// bin and hence decreasing the number of low magnitude non zero coefficients.
while (cpi->zbin_over_quant < zbin_oqmax)
{
cpi->zbin_over_quant ++;
if (cpi->zbin_over_quant > zbin_oqmax)
cpi->zbin_over_quant = zbin_oqmax;
// Adjust bits_per_mb_at_this_q estimate
bits_per_mb_at_this_q = (int)(Factor * bits_per_mb_at_this_q);
Factor += factor_adjustment;
if (Factor >= 0.999)
Factor = 0.999;
if (bits_per_mb_at_this_q <= target_bits_per_mb) // Break out if we get down to the target rate
break;
}
}
}
return Q;
}
static int estimate_min_frame_size(VP8_COMP *cpi)
{
double correction_factor;
int bits_per_mb_at_max_q;
// This funtion returns a default value for the first few frames untill the correction factor has had time to adapt.
if (cpi->common.current_video_frame < 10)
{
if (cpi->pass == 2)
return (cpi->min_frame_bandwidth);
else
return cpi->per_frame_bandwidth / 3;
}
/* // Select the appropriate correction factor based upon type of frame.
if ( cpi->common.frame_type == KEY_FRAME )
correction_factor = cpi->key_frame_rate_correction_factor;
else
{
if ( cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame )
correction_factor = cpi->gf_rate_correction_factor;
else
correction_factor = cpi->rate_correction_factor;
}*/
// We estimate at half the value we get from vp8_bits_per_mb
correction_factor = cpi->rate_correction_factor / 2.0;
bits_per_mb_at_max_q = (int)(.5 + correction_factor * vp8_bits_per_mb[cpi->common.frame_type][MAXQ]);
return (bits_per_mb_at_max_q * cpi->common.MBs) >> BPER_MB_NORMBITS;
}
void vp8_adjust_key_frame_context(VP8_COMP *cpi)
{
int i;
int av_key_frames_per_second;
// Average key frame frequency and size
unsigned int total_weight = 0;
unsigned int av_key_frame_frequency = 0;
unsigned int av_key_frame_bits = 0;
unsigned int output_frame_rate = (unsigned int)(100 * cpi->output_frame_rate);
unsigned int target_bandwidth = (unsigned int)(100 * cpi->target_bandwidth);
// Clear down mmx registers to allow floating point in what follows
vp8_clear_system_state(); //__asm emms;
// Update the count of total key frame bits
cpi->tot_key_frame_bits += cpi->projected_frame_size;
// First key frame at start of sequence is a special case. We have no frequency data.
if (cpi->key_frame_count == 1)
{
av_key_frame_frequency = (int)cpi->output_frame_rate * 2; // Assume a default of 1 kf every 2 seconds
av_key_frame_bits = cpi->projected_frame_size;
av_key_frames_per_second = output_frame_rate / av_key_frame_frequency; // Note output_frame_rate not cpi->output_frame_rate
}
else
{
int last_kf_interval =
(cpi->frames_since_key > 0) ? cpi->frames_since_key : 1;
// reset keyframe context and calculate weighted average of last KEY_FRAME_CONTEXT keyframes
for (i = 0; i < KEY_FRAME_CONTEXT; i++)
{
if (i < KEY_FRAME_CONTEXT - 1)
{
cpi->prior_key_frame_size[i] = cpi->prior_key_frame_size[i+1];
cpi->prior_key_frame_distance[i] = cpi->prior_key_frame_distance[i+1];
}
else
{
cpi->prior_key_frame_size[i] = cpi->projected_frame_size;
cpi->prior_key_frame_distance[i] = last_kf_interval;
}
av_key_frame_bits += prior_key_frame_weight[i] * cpi->prior_key_frame_size[i];
av_key_frame_frequency += prior_key_frame_weight[i] * cpi->prior_key_frame_distance[i];
total_weight += prior_key_frame_weight[i];
}
av_key_frame_bits /= total_weight;
av_key_frame_frequency /= total_weight;
av_key_frames_per_second = output_frame_rate / av_key_frame_frequency;
}
// Do we have any key frame overspend to recover?
if ((cpi->pass != 2) && (cpi->projected_frame_size > cpi->per_frame_bandwidth))
{
// Update the count of key frame overspend to be recovered in subsequent frames
// A portion of the KF overspend is treated as gf overspend (and hence recovered more quickly)
// as the kf is also a gf. Otherwise the few frames following each kf tend to get more bits
// allocated than those following other gfs.
cpi->kf_overspend_bits += (cpi->projected_frame_size - cpi->per_frame_bandwidth) * 7 / 8;
cpi->gf_overspend_bits += (cpi->projected_frame_size - cpi->per_frame_bandwidth) * 1 / 8;
if(!av_key_frame_frequency)
av_key_frame_frequency = 60;
// Work out how much to try and recover per frame.
// For one pass we estimate the number of frames to spread it over based upon past history.
// For two pass we know how many frames there will be till the next kf.
if (cpi->pass == 2)
{
if (cpi->frames_to_key > 16)
cpi->kf_bitrate_adjustment = cpi->kf_overspend_bits / (int)cpi->frames_to_key;
else
cpi->kf_bitrate_adjustment = cpi->kf_overspend_bits / 16;
}
else
cpi->kf_bitrate_adjustment = cpi->kf_overspend_bits / (int)av_key_frame_frequency;
}
cpi->frames_since_key = 0;
cpi->last_key_frame_size = cpi->projected_frame_size;
cpi->key_frame_count++;
}
void vp8_compute_frame_size_bounds(VP8_COMP *cpi, int *frame_under_shoot_limit, int *frame_over_shoot_limit)
{
// Set-up bounds on acceptable frame size:
if (cpi->oxcf.fixed_q >= 0)
{
// Fixed Q scenario: frame size never outranges target (there is no target!)
*frame_under_shoot_limit = 0;
*frame_over_shoot_limit = INT_MAX;
}
else
{
if (cpi->common.frame_type == KEY_FRAME)
{
*frame_over_shoot_limit = cpi->this_frame_target * 9 / 8;
*frame_under_shoot_limit = cpi->this_frame_target * 7 / 8;
}
else
{
if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame)
{
*frame_over_shoot_limit = cpi->this_frame_target * 9 / 8;
*frame_under_shoot_limit = cpi->this_frame_target * 7 / 8;
}
else
{
// For CBR take buffer fullness into account
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
{
if (cpi->buffer_level >= ((cpi->oxcf.optimal_buffer_level + cpi->oxcf.maximum_buffer_size) >> 1))
{
// Buffer is too full so relax overshoot and tighten undershoot
*frame_over_shoot_limit = cpi->this_frame_target * 12 / 8;
*frame_under_shoot_limit = cpi->this_frame_target * 6 / 8;
}
else if (cpi->buffer_level <= (cpi->oxcf.optimal_buffer_level >> 1))
{
// Buffer is too low so relax undershoot and tighten overshoot
*frame_over_shoot_limit = cpi->this_frame_target * 10 / 8;
*frame_under_shoot_limit = cpi->this_frame_target * 4 / 8;
}
else
{
*frame_over_shoot_limit = cpi->this_frame_target * 11 / 8;
*frame_under_shoot_limit = cpi->this_frame_target * 5 / 8;
}
}
// VBR
// Note that tighter restrictions here can help quality but hurt encode speed
else
{
*frame_over_shoot_limit = cpi->this_frame_target * 11 / 8;
*frame_under_shoot_limit = cpi->this_frame_target * 5 / 8;
}
}
}
}
}