4d5b81a80f
Change-Id: Id38baf1b89648ef534e28be72f583137871f920c
2372 lines
72 KiB
C
2372 lines
72 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
|
|
#include "vp8/common/header.h"
|
|
#include "encodemv.h"
|
|
#include "vp8/common/entropymode.h"
|
|
#include "vp8/common/findnearmv.h"
|
|
#include "mcomp.h"
|
|
#include "vp8/common/systemdependent.h"
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <limits.h>
|
|
#include "vp8/common/pragmas.h"
|
|
#include "vpx/vpx_encoder.h"
|
|
#include "vpx_mem/vpx_mem.h"
|
|
#include "bitstream.h"
|
|
#include "segmentation.h"
|
|
|
|
#include "vp8/common/seg_common.h"
|
|
#include "vp8/common/pred_common.h"
|
|
#include "vp8/common/entropy.h"
|
|
|
|
#if defined(SECTIONBITS_OUTPUT)
|
|
unsigned __int64 Sectionbits[500];
|
|
#endif
|
|
|
|
#ifdef ENTROPY_STATS
|
|
int intra_mode_stats [VP8_BINTRAMODES] [VP8_BINTRAMODES] [VP8_BINTRAMODES];
|
|
unsigned int tree_update_hist [BLOCK_TYPES]
|
|
[COEF_BANDS]
|
|
[PREV_COEF_CONTEXTS]
|
|
[ENTROPY_NODES][2];
|
|
unsigned int tree_update_hist_8x8 [BLOCK_TYPES_8X8]
|
|
[COEF_BANDS]
|
|
[PREV_COEF_CONTEXTS]
|
|
[ENTROPY_NODES] [2];
|
|
#if CONFIG_TX16X16
|
|
unsigned int tree_update_hist_16x16 [BLOCK_TYPES_16X16]
|
|
[COEF_BANDS]
|
|
[PREV_COEF_CONTEXTS]
|
|
[ENTROPY_NODES] [2];
|
|
#endif
|
|
|
|
extern unsigned int active_section;
|
|
#endif
|
|
|
|
#ifdef MODE_STATS
|
|
int count_mb_seg[4] = { 0, 0, 0, 0 };
|
|
#endif
|
|
|
|
#define vp8_cost_upd ((int)(vp8_cost_one(upd) - vp8_cost_zero(upd)) >> 8)
|
|
#define vp8_cost_upd256 ((int)(vp8_cost_one(upd) - vp8_cost_zero(upd)))
|
|
|
|
#define SEARCH_NEWP
|
|
static int update_bits[255];
|
|
|
|
static void compute_update_table() {
|
|
int i;
|
|
for (i = 0; i < 255; i++)
|
|
update_bits[i] = vp8_count_term_subexp(i, SUBEXP_PARAM, 255);
|
|
}
|
|
|
|
static int split_index(int i, int n, int modulus) {
|
|
int max1 = (n - 1 - modulus / 2) / modulus + 1;
|
|
if (i % modulus == modulus / 2) i = i / modulus;
|
|
else i = max1 + i - (i + modulus - modulus / 2) / modulus;
|
|
return i;
|
|
}
|
|
|
|
static int remap_prob(int v, int m) {
|
|
const int n = 256;
|
|
const int modulus = MODULUS_PARAM;
|
|
int i;
|
|
if ((m << 1) <= n)
|
|
i = recenter_nonneg(v, m) - 1;
|
|
else
|
|
i = recenter_nonneg(n - 1 - v, n - 1 - m) - 1;
|
|
|
|
i = split_index(i, n - 1, modulus);
|
|
return i;
|
|
}
|
|
|
|
static void write_prob_diff_update(vp8_writer *const w,
|
|
vp8_prob newp, vp8_prob oldp) {
|
|
int delp = remap_prob(newp, oldp);
|
|
vp8_encode_term_subexp(w, delp, SUBEXP_PARAM, 255);
|
|
}
|
|
|
|
static int prob_diff_update_cost(vp8_prob newp, vp8_prob oldp) {
|
|
int delp = remap_prob(newp, oldp);
|
|
return update_bits[delp] * 256;
|
|
}
|
|
|
|
static void update_mode(
|
|
vp8_writer *const w,
|
|
int n,
|
|
vp8_token tok [/* n */],
|
|
vp8_tree tree,
|
|
vp8_prob Pnew [/* n-1 */],
|
|
vp8_prob Pcur [/* n-1 */],
|
|
unsigned int bct [/* n-1 */] [2],
|
|
const unsigned int num_events[/* n */]
|
|
) {
|
|
unsigned int new_b = 0, old_b = 0;
|
|
int i = 0;
|
|
|
|
vp8_tree_probs_from_distribution(
|
|
n--, tok, tree,
|
|
Pnew, bct, num_events,
|
|
256, 1
|
|
);
|
|
|
|
do {
|
|
new_b += vp8_cost_branch(bct[i], Pnew[i]);
|
|
old_b += vp8_cost_branch(bct[i], Pcur[i]);
|
|
} while (++i < n);
|
|
|
|
if (new_b + (n << 8) < old_b) {
|
|
int i = 0;
|
|
|
|
vp8_write_bit(w, 1);
|
|
|
|
do {
|
|
const vp8_prob p = Pnew[i];
|
|
|
|
vp8_write_literal(w, Pcur[i] = p ? p : 1, 8);
|
|
} while (++i < n);
|
|
} else
|
|
vp8_write_bit(w, 0);
|
|
}
|
|
|
|
static void update_mbintra_mode_probs(VP8_COMP *cpi) {
|
|
VP8_COMMON *const x = & cpi->common;
|
|
|
|
vp8_writer *const w = & cpi->bc;
|
|
|
|
{
|
|
vp8_prob Pnew [VP8_YMODES - 1];
|
|
unsigned int bct [VP8_YMODES - 1] [2];
|
|
|
|
update_mode(
|
|
w, VP8_YMODES, vp8_ymode_encodings, vp8_ymode_tree,
|
|
Pnew, x->fc.ymode_prob, bct, (unsigned int *)cpi->ymode_count
|
|
);
|
|
}
|
|
}
|
|
|
|
void update_skip_probs(VP8_COMP *cpi) {
|
|
VP8_COMMON *const pc = & cpi->common;
|
|
int prob_skip_false[3] = {0, 0, 0};
|
|
int k;
|
|
|
|
for (k = 0; k < MBSKIP_CONTEXTS; ++k) {
|
|
if ((cpi->skip_false_count[k] + cpi->skip_true_count[k])) {
|
|
prob_skip_false[k] =
|
|
cpi->skip_false_count[k] * 256 /
|
|
(cpi->skip_false_count[k] + cpi->skip_true_count[k]);
|
|
|
|
if (prob_skip_false[k] <= 1)
|
|
prob_skip_false[k] = 1;
|
|
|
|
if (prob_skip_false[k] > 255)
|
|
prob_skip_false[k] = 255;
|
|
} else
|
|
prob_skip_false[k] = 128;
|
|
|
|
pc->mbskip_pred_probs[k] = prob_skip_false[k];
|
|
}
|
|
}
|
|
|
|
#if CONFIG_SWITCHABLE_INTERP
|
|
void update_switchable_interp_probs(VP8_COMP *cpi) {
|
|
VP8_COMMON *const pc = & cpi->common;
|
|
vp8_writer *const w = & cpi->bc;
|
|
unsigned int branch_ct[32][2];
|
|
int i, j;
|
|
for (j = 0; j <= VP8_SWITCHABLE_FILTERS; ++j) {
|
|
//for (j = 0; j <= 0; ++j) {
|
|
/*
|
|
if (!cpi->dummy_packing)
|
|
#if VP8_SWITCHABLE_FILTERS == 3
|
|
printf("HELLO %d %d %d\n", cpi->switchable_interp_count[j][0],
|
|
cpi->switchable_interp_count[j][1], cpi->switchable_interp_count[j][2]);
|
|
#else
|
|
printf("HELLO %d %d\n", cpi->switchable_interp_count[j][0],
|
|
cpi->switchable_interp_count[j][1]);
|
|
#endif
|
|
*/
|
|
vp8_tree_probs_from_distribution(
|
|
VP8_SWITCHABLE_FILTERS,
|
|
vp8_switchable_interp_encodings, vp8_switchable_interp_tree,
|
|
pc->fc.switchable_interp_prob[j], branch_ct, cpi->switchable_interp_count[j],
|
|
256, 1
|
|
);
|
|
for (i = 0; i < VP8_SWITCHABLE_FILTERS - 1; ++i) {
|
|
if (pc->fc.switchable_interp_prob[j][i] < 1)
|
|
pc->fc.switchable_interp_prob[j][i] = 1;
|
|
vp8_write_literal(w, pc->fc.switchable_interp_prob[j][i], 8);
|
|
/*
|
|
if (!cpi->dummy_packing)
|
|
#if VP8_SWITCHABLE_FILTERS == 3
|
|
printf("Probs %d %d [%d]\n",
|
|
pc->fc.switchable_interp_prob[j][0],
|
|
pc->fc.switchable_interp_prob[j][1], pc->frame_type);
|
|
#else
|
|
printf("Probs %d [%d]\n", pc->fc.switchable_interp_prob[j][0],
|
|
pc->frame_type);
|
|
#endif
|
|
*/
|
|
}
|
|
}
|
|
/*
|
|
if (!cpi->dummy_packing)
|
|
#if VP8_SWITCHABLE_FILTERS == 3
|
|
printf("Probs %d %d [%d]\n",
|
|
pc->fc.switchable_interp_prob[0], pc->fc.switchable_interp_prob[1], pc->frame_type);
|
|
#else
|
|
printf("Probs %d [%d]\n", pc->fc.switchable_interp_prob[0], pc->frame_type);
|
|
#endif
|
|
*/
|
|
}
|
|
#endif
|
|
|
|
// This function updates the reference frame prediction stats
|
|
static void update_refpred_stats(VP8_COMP *cpi) {
|
|
VP8_COMMON *const cm = & cpi->common;
|
|
int i;
|
|
int tot_count;
|
|
vp8_prob new_pred_probs[PREDICTION_PROBS];
|
|
int old_cost, new_cost;
|
|
|
|
// Set the prediction probability structures to defaults
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
// Set the prediction probabilities to defaults
|
|
cm->ref_pred_probs[0] = 120;
|
|
cm->ref_pred_probs[1] = 80;
|
|
cm->ref_pred_probs[2] = 40;
|
|
|
|
vpx_memset(cpi->ref_pred_probs_update, 0,
|
|
sizeof(cpi->ref_pred_probs_update));
|
|
} else {
|
|
// From the prediction counts set the probabilities for each context
|
|
for (i = 0; i < PREDICTION_PROBS; i++) {
|
|
tot_count = cpi->ref_pred_count[i][0] + cpi->ref_pred_count[i][1];
|
|
if (tot_count) {
|
|
new_pred_probs[i] =
|
|
(cpi->ref_pred_count[i][0] * 255 + (tot_count >> 1)) / tot_count;
|
|
|
|
// Clamp to minimum allowed value
|
|
new_pred_probs[i] += !new_pred_probs[i];
|
|
} else
|
|
new_pred_probs[i] = 128;
|
|
|
|
// Decide whether or not to update the reference frame probs.
|
|
// Returned costs are in 1/256 bit units.
|
|
old_cost =
|
|
(cpi->ref_pred_count[i][0] * vp8_cost_zero(cm->ref_pred_probs[i])) +
|
|
(cpi->ref_pred_count[i][1] * vp8_cost_one(cm->ref_pred_probs[i]));
|
|
|
|
new_cost =
|
|
(cpi->ref_pred_count[i][0] * vp8_cost_zero(new_pred_probs[i])) +
|
|
(cpi->ref_pred_count[i][1] * vp8_cost_one(new_pred_probs[i]));
|
|
|
|
// Cost saving must be >= 8 bits (2048 in these units)
|
|
if ((old_cost - new_cost) >= 2048) {
|
|
cpi->ref_pred_probs_update[i] = 1;
|
|
cm->ref_pred_probs[i] = new_pred_probs[i];
|
|
} else
|
|
cpi->ref_pred_probs_update[i] = 0;
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
static void write_ymode(vp8_writer *bc, int m, const vp8_prob *p) {
|
|
vp8_write_token(bc, vp8_ymode_tree, p, vp8_ymode_encodings + m);
|
|
}
|
|
|
|
static void kfwrite_ymode(vp8_writer *bc, int m, const vp8_prob *p) {
|
|
vp8_write_token(bc, vp8_kf_ymode_tree, p, vp8_kf_ymode_encodings + m);
|
|
}
|
|
|
|
static void write_i8x8_mode(vp8_writer *bc, int m, const vp8_prob *p) {
|
|
vp8_write_token(bc, vp8_i8x8_mode_tree, p, vp8_i8x8_mode_encodings + m);
|
|
}
|
|
|
|
static void write_uv_mode(vp8_writer *bc, int m, const vp8_prob *p) {
|
|
vp8_write_token(bc, vp8_uv_mode_tree, p, vp8_uv_mode_encodings + m);
|
|
}
|
|
|
|
|
|
static void write_bmode(vp8_writer *bc, int m, const vp8_prob *p) {
|
|
vp8_write_token(bc, vp8_bmode_tree, p, vp8_bmode_encodings + m);
|
|
}
|
|
|
|
static void write_split(vp8_writer *bc, int x, const vp8_prob *p) {
|
|
vp8_write_token(
|
|
bc, vp8_mbsplit_tree, p, vp8_mbsplit_encodings + x
|
|
);
|
|
}
|
|
|
|
static int prob_update_savings(const unsigned int *ct,
|
|
const vp8_prob oldp, const vp8_prob newp,
|
|
const vp8_prob upd) {
|
|
const int old_b = vp8_cost_branch256(ct, oldp);
|
|
const int new_b = vp8_cost_branch256(ct, newp);
|
|
const int update_b = 2048 + vp8_cost_upd256;
|
|
return (old_b - new_b - update_b);
|
|
}
|
|
|
|
static int prob_diff_update_savings(const unsigned int *ct,
|
|
const vp8_prob oldp, const vp8_prob newp,
|
|
const vp8_prob upd) {
|
|
const int old_b = vp8_cost_branch256(ct, oldp);
|
|
const int new_b = vp8_cost_branch256(ct, newp);
|
|
const int update_b = (newp == oldp ? 0 :
|
|
prob_diff_update_cost(newp, oldp) + vp8_cost_upd256);
|
|
return (old_b - new_b - update_b);
|
|
}
|
|
|
|
static int prob_diff_update_savings_search(const unsigned int *ct,
|
|
const vp8_prob oldp, vp8_prob *bestp,
|
|
const vp8_prob upd) {
|
|
const int old_b = vp8_cost_branch256(ct, oldp);
|
|
int new_b, update_b, savings, bestsavings, step;
|
|
vp8_prob newp, bestnewp;
|
|
|
|
bestsavings = 0;
|
|
bestnewp = oldp;
|
|
|
|
step = (*bestp > oldp ? -1 : 1);
|
|
for (newp = *bestp; newp != oldp; newp += step) {
|
|
new_b = vp8_cost_branch256(ct, newp);
|
|
update_b = prob_diff_update_cost(newp, oldp) + vp8_cost_upd256;
|
|
savings = old_b - new_b - update_b;
|
|
if (savings > bestsavings) {
|
|
bestsavings = savings;
|
|
bestnewp = newp;
|
|
}
|
|
}
|
|
*bestp = bestnewp;
|
|
return bestsavings;
|
|
}
|
|
|
|
static void pack_tokens_c(vp8_writer *w, const TOKENEXTRA *p, int xcount) {
|
|
const TOKENEXTRA *const stop = p + xcount;
|
|
unsigned int split;
|
|
unsigned int shift;
|
|
int count = w->count;
|
|
unsigned int range = w->range;
|
|
unsigned int lowvalue = w->lowvalue;
|
|
|
|
while (p < stop) {
|
|
const int t = p->Token;
|
|
vp8_token *const a = vp8_coef_encodings + t;
|
|
const vp8_extra_bit_struct *const b = vp8_extra_bits + t;
|
|
int i = 0;
|
|
const unsigned char *pp = p->context_tree;
|
|
int v = a->value;
|
|
int n = a->Len;
|
|
|
|
/* skip one or two nodes */
|
|
if (p->skip_eob_node) {
|
|
n -= p->skip_eob_node;
|
|
i = 2 * p->skip_eob_node;
|
|
}
|
|
|
|
do {
|
|
const int bb = (v >> --n) & 1;
|
|
split = 1 + (((range - 1) * pp[i >> 1]) >> 8);
|
|
i = vp8_coef_tree[i + bb];
|
|
|
|
if (bb) {
|
|
lowvalue += split;
|
|
range = range - split;
|
|
} else {
|
|
range = split;
|
|
}
|
|
|
|
shift = vp8_norm[range];
|
|
range <<= shift;
|
|
count += shift;
|
|
|
|
if (count >= 0) {
|
|
int offset = shift - count;
|
|
|
|
if ((lowvalue << (offset - 1)) & 0x80000000) {
|
|
int x = w->pos - 1;
|
|
|
|
while (x >= 0 && w->buffer[x] == 0xff) {
|
|
w->buffer[x] = (unsigned char)0;
|
|
x--;
|
|
}
|
|
|
|
w->buffer[x] += 1;
|
|
}
|
|
|
|
w->buffer[w->pos++] = (lowvalue >> (24 - offset));
|
|
lowvalue <<= offset;
|
|
shift = count;
|
|
lowvalue &= 0xffffff;
|
|
count -= 8;
|
|
}
|
|
|
|
lowvalue <<= shift;
|
|
} while (n);
|
|
|
|
|
|
if (b->base_val) {
|
|
const int e = p->Extra, L = b->Len;
|
|
|
|
if (L) {
|
|
const unsigned char *pp = b->prob;
|
|
int v = e >> 1;
|
|
int n = L; /* number of bits in v, assumed nonzero */
|
|
int i = 0;
|
|
|
|
do {
|
|
const int bb = (v >> --n) & 1;
|
|
split = 1 + (((range - 1) * pp[i >> 1]) >> 8);
|
|
i = b->tree[i + bb];
|
|
|
|
if (bb) {
|
|
lowvalue += split;
|
|
range = range - split;
|
|
} else {
|
|
range = split;
|
|
}
|
|
|
|
shift = vp8_norm[range];
|
|
range <<= shift;
|
|
count += shift;
|
|
|
|
if (count >= 0) {
|
|
int offset = shift - count;
|
|
|
|
if ((lowvalue << (offset - 1)) & 0x80000000) {
|
|
int x = w->pos - 1;
|
|
|
|
while (x >= 0 && w->buffer[x] == 0xff) {
|
|
w->buffer[x] = (unsigned char)0;
|
|
x--;
|
|
}
|
|
|
|
w->buffer[x] += 1;
|
|
}
|
|
|
|
w->buffer[w->pos++] = (lowvalue >> (24 - offset));
|
|
lowvalue <<= offset;
|
|
shift = count;
|
|
lowvalue &= 0xffffff;
|
|
count -= 8;
|
|
}
|
|
|
|
lowvalue <<= shift;
|
|
} while (n);
|
|
}
|
|
|
|
|
|
{
|
|
|
|
split = (range + 1) >> 1;
|
|
|
|
if (e & 1) {
|
|
lowvalue += split;
|
|
range = range - split;
|
|
} else {
|
|
range = split;
|
|
}
|
|
|
|
range <<= 1;
|
|
|
|
if ((lowvalue & 0x80000000)) {
|
|
int x = w->pos - 1;
|
|
|
|
while (x >= 0 && w->buffer[x] == 0xff) {
|
|
w->buffer[x] = (unsigned char)0;
|
|
x--;
|
|
}
|
|
|
|
w->buffer[x] += 1;
|
|
|
|
}
|
|
|
|
lowvalue <<= 1;
|
|
|
|
if (!++count) {
|
|
count = -8;
|
|
w->buffer[w->pos++] = (lowvalue >> 24);
|
|
lowvalue &= 0xffffff;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
++p;
|
|
}
|
|
|
|
w->count = count;
|
|
w->lowvalue = lowvalue;
|
|
w->range = range;
|
|
|
|
}
|
|
|
|
static void write_partition_size(unsigned char *cx_data, int size) {
|
|
signed char csize;
|
|
|
|
csize = size & 0xff;
|
|
*cx_data = csize;
|
|
csize = (size >> 8) & 0xff;
|
|
*(cx_data + 1) = csize;
|
|
csize = (size >> 16) & 0xff;
|
|
*(cx_data + 2) = csize;
|
|
|
|
}
|
|
|
|
static void write_mv_ref
|
|
(
|
|
vp8_writer *w, MB_PREDICTION_MODE m, const vp8_prob *p
|
|
) {
|
|
#if CONFIG_DEBUG
|
|
assert(NEARESTMV <= m && m <= SPLITMV);
|
|
#endif
|
|
vp8_write_token(w, vp8_mv_ref_tree, p,
|
|
vp8_mv_ref_encoding_array - NEARESTMV + m);
|
|
}
|
|
|
|
static void write_sub_mv_ref
|
|
(
|
|
vp8_writer *w, B_PREDICTION_MODE m, const vp8_prob *p
|
|
) {
|
|
#if CONFIG_DEBUG
|
|
assert(LEFT4X4 <= m && m <= NEW4X4);
|
|
#endif
|
|
vp8_write_token(w, vp8_sub_mv_ref_tree, p,
|
|
vp8_sub_mv_ref_encoding_array - LEFT4X4 + m);
|
|
}
|
|
|
|
static void write_mv
|
|
(
|
|
vp8_writer *w, const MV *mv, const int_mv *ref, const MV_CONTEXT *mvc
|
|
) {
|
|
MV e;
|
|
e.row = mv->row - ref->as_mv.row;
|
|
e.col = mv->col - ref->as_mv.col;
|
|
|
|
vp8_encode_motion_vector(w, &e, mvc);
|
|
}
|
|
|
|
static void write_mv_hp
|
|
(
|
|
vp8_writer *w, const MV *mv, const int_mv *ref, const MV_CONTEXT_HP *mvc
|
|
) {
|
|
MV e;
|
|
e.row = mv->row - ref->as_mv.row;
|
|
e.col = mv->col - ref->as_mv.col;
|
|
|
|
vp8_encode_motion_vector_hp(w, &e, mvc);
|
|
}
|
|
|
|
// This function writes the current macro block's segnment id to the bitstream
|
|
// It should only be called if a segment map update is indicated.
|
|
static void write_mb_segid(vp8_writer *w,
|
|
const MB_MODE_INFO *mi, const MACROBLOCKD *x) {
|
|
// Encode the MB segment id.
|
|
if (x->segmentation_enabled && x->update_mb_segmentation_map) {
|
|
switch (mi->segment_id) {
|
|
case 0:
|
|
vp8_write(w, 0, x->mb_segment_tree_probs[0]);
|
|
vp8_write(w, 0, x->mb_segment_tree_probs[1]);
|
|
break;
|
|
case 1:
|
|
vp8_write(w, 0, x->mb_segment_tree_probs[0]);
|
|
vp8_write(w, 1, x->mb_segment_tree_probs[1]);
|
|
break;
|
|
case 2:
|
|
vp8_write(w, 1, x->mb_segment_tree_probs[0]);
|
|
vp8_write(w, 0, x->mb_segment_tree_probs[2]);
|
|
break;
|
|
case 3:
|
|
vp8_write(w, 1, x->mb_segment_tree_probs[0]);
|
|
vp8_write(w, 1, x->mb_segment_tree_probs[2]);
|
|
break;
|
|
|
|
// TRAP.. This should not happen
|
|
default:
|
|
vp8_write(w, 0, x->mb_segment_tree_probs[0]);
|
|
vp8_write(w, 0, x->mb_segment_tree_probs[1]);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function encodes the reference frame
|
|
static void encode_ref_frame(vp8_writer *const w,
|
|
VP8_COMMON *const cm,
|
|
MACROBLOCKD *xd,
|
|
int segment_id,
|
|
MV_REFERENCE_FRAME rf) {
|
|
int seg_ref_active;
|
|
int seg_ref_count = 0;
|
|
seg_ref_active = segfeature_active(xd,
|
|
segment_id,
|
|
SEG_LVL_REF_FRAME);
|
|
|
|
if (seg_ref_active) {
|
|
seg_ref_count = check_segref(xd, segment_id, INTRA_FRAME) +
|
|
check_segref(xd, segment_id, LAST_FRAME) +
|
|
check_segref(xd, segment_id, GOLDEN_FRAME) +
|
|
check_segref(xd, segment_id, ALTREF_FRAME);
|
|
}
|
|
|
|
// If segment level coding of this signal is disabled...
|
|
// or the segment allows multiple reference frame options
|
|
if (!seg_ref_active || (seg_ref_count > 1)) {
|
|
// Values used in prediction model coding
|
|
unsigned char prediction_flag;
|
|
vp8_prob pred_prob;
|
|
MV_REFERENCE_FRAME pred_rf;
|
|
|
|
// Get the context probability the prediction flag
|
|
pred_prob = get_pred_prob(cm, xd, PRED_REF);
|
|
|
|
// Get the predicted value.
|
|
pred_rf = get_pred_ref(cm, xd);
|
|
|
|
// Did the chosen reference frame match its predicted value.
|
|
prediction_flag =
|
|
(xd->mode_info_context->mbmi.ref_frame == pred_rf);
|
|
|
|
set_pred_flag(xd, PRED_REF, prediction_flag);
|
|
vp8_write(w, prediction_flag, pred_prob);
|
|
|
|
// If not predicted correctly then code value explicitly
|
|
if (!prediction_flag) {
|
|
vp8_prob mod_refprobs[PREDICTION_PROBS];
|
|
|
|
vpx_memcpy(mod_refprobs,
|
|
cm->mod_refprobs[pred_rf], sizeof(mod_refprobs));
|
|
|
|
// If segment coding enabled blank out options that cant occur by
|
|
// setting the branch probability to 0.
|
|
if (seg_ref_active) {
|
|
mod_refprobs[INTRA_FRAME] *=
|
|
check_segref(xd, segment_id, INTRA_FRAME);
|
|
mod_refprobs[LAST_FRAME] *=
|
|
check_segref(xd, segment_id, LAST_FRAME);
|
|
mod_refprobs[GOLDEN_FRAME] *=
|
|
(check_segref(xd, segment_id, GOLDEN_FRAME) *
|
|
check_segref(xd, segment_id, ALTREF_FRAME));
|
|
}
|
|
|
|
if (mod_refprobs[0]) {
|
|
vp8_write(w, (rf != INTRA_FRAME), mod_refprobs[0]);
|
|
}
|
|
|
|
// Inter coded
|
|
if (rf != INTRA_FRAME) {
|
|
if (mod_refprobs[1]) {
|
|
vp8_write(w, (rf != LAST_FRAME), mod_refprobs[1]);
|
|
}
|
|
|
|
if (rf != LAST_FRAME) {
|
|
if (mod_refprobs[2]) {
|
|
vp8_write(w, (rf != GOLDEN_FRAME), mod_refprobs[2]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// if using the prediction mdoel we have nothing further to do because
|
|
// the reference frame is fully coded by the segment
|
|
}
|
|
|
|
// Update the probabilities used to encode reference frame data
|
|
static void update_ref_probs(VP8_COMP *const cpi) {
|
|
VP8_COMMON *const cm = & cpi->common;
|
|
|
|
const int *const rfct = cpi->count_mb_ref_frame_usage;
|
|
const int rf_intra = rfct[INTRA_FRAME];
|
|
const int rf_inter = rfct[LAST_FRAME] +
|
|
rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
|
|
|
|
cm->prob_intra_coded = (rf_intra + rf_inter)
|
|
? rf_intra * 255 / (rf_intra + rf_inter) : 1;
|
|
|
|
if (!cm->prob_intra_coded)
|
|
cm->prob_intra_coded = 1;
|
|
|
|
cm->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128;
|
|
|
|
if (!cm->prob_last_coded)
|
|
cm->prob_last_coded = 1;
|
|
|
|
cm->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
|
|
? (rfct[GOLDEN_FRAME] * 255) /
|
|
(rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128;
|
|
|
|
if (!cm->prob_gf_coded)
|
|
cm->prob_gf_coded = 1;
|
|
|
|
// Compute a modified set of probabilities to use when prediction of the
|
|
// reference frame fails
|
|
compute_mod_refprobs(cm);
|
|
}
|
|
|
|
static void pack_inter_mode_mvs(VP8_COMP *const cpi) {
|
|
int i;
|
|
VP8_COMMON *const pc = & cpi->common;
|
|
vp8_writer *const w = & cpi->bc;
|
|
const MV_CONTEXT *mvc = pc->fc.mvc;
|
|
const MV_CONTEXT_HP *mvc_hp = pc->fc.mvc_hp;
|
|
MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
MODE_INFO *m;
|
|
MODE_INFO *prev_m;
|
|
|
|
const int mis = pc->mode_info_stride;
|
|
int mb_row, mb_col;
|
|
int row, col;
|
|
|
|
// Values used in prediction model coding
|
|
vp8_prob pred_prob;
|
|
unsigned char prediction_flag;
|
|
|
|
int row_delta[4] = { 0, +1, 0, -1};
|
|
int col_delta[4] = { +1, -1, +1, +1};
|
|
|
|
cpi->mb.partition_info = cpi->mb.pi;
|
|
|
|
// Update the probabilities used to encode reference frame data
|
|
update_ref_probs(cpi);
|
|
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 1;
|
|
#endif
|
|
|
|
if (pc->mb_no_coeff_skip) {
|
|
int k;
|
|
|
|
update_skip_probs(cpi);
|
|
for (k = 0; k < MBSKIP_CONTEXTS; ++k)
|
|
vp8_write_literal(w, pc->mbskip_pred_probs[k], 8);
|
|
}
|
|
|
|
#if CONFIG_PRED_FILTER
|
|
// Write the prediction filter mode used for this frame
|
|
vp8_write_literal(w, pc->pred_filter_mode, 2);
|
|
|
|
// Write prediction filter on/off probability if signaling at MB level
|
|
if (pc->pred_filter_mode == 2)
|
|
vp8_write_literal(w, pc->prob_pred_filter_off, 8);
|
|
|
|
// printf("pred_filter_mode:%d prob_pred_filter_off:%d\n",
|
|
// pc->pred_filter_mode, pc->prob_pred_filter_off);
|
|
#endif
|
|
#if CONFIG_SWITCHABLE_INTERP
|
|
if (pc->mcomp_filter_type == SWITCHABLE)
|
|
update_switchable_interp_probs(cpi);
|
|
#endif
|
|
|
|
vp8_write_literal(w, pc->prob_intra_coded, 8);
|
|
vp8_write_literal(w, pc->prob_last_coded, 8);
|
|
vp8_write_literal(w, pc->prob_gf_coded, 8);
|
|
|
|
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
|
|
vp8_write(w, 1, 128);
|
|
vp8_write(w, 1, 128);
|
|
for (i = 0; i < COMP_PRED_CONTEXTS; i++) {
|
|
if (cpi->single_pred_count[i] + cpi->comp_pred_count[i]) {
|
|
pc->prob_comppred[i] = cpi->single_pred_count[i] * 255 /
|
|
(cpi->single_pred_count[i] + cpi->comp_pred_count[i]);
|
|
if (pc->prob_comppred[i] < 1)
|
|
pc->prob_comppred[i] = 1;
|
|
} else {
|
|
pc->prob_comppred[i] = 128;
|
|
}
|
|
vp8_write_literal(w, pc->prob_comppred[i], 8);
|
|
}
|
|
} else if (cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY) {
|
|
vp8_write(w, 0, 128);
|
|
} else { /* compound prediction only */
|
|
vp8_write(w, 1, 128);
|
|
vp8_write(w, 0, 128);
|
|
}
|
|
|
|
update_mbintra_mode_probs(cpi);
|
|
|
|
if (xd->allow_high_precision_mv)
|
|
vp8_write_mvprobs_hp(cpi);
|
|
else
|
|
vp8_write_mvprobs(cpi);
|
|
|
|
mb_row = 0;
|
|
for (row = 0; row < pc->mb_rows; row += 2) {
|
|
m = pc->mi + row * mis;
|
|
prev_m = pc->prev_mi + row * mis;
|
|
|
|
mb_col = 0;
|
|
for (col = 0; col < pc->mb_cols; col += 2) {
|
|
int i;
|
|
|
|
// Process the 4 MBs in the order:
|
|
// top-left, top-right, bottom-left, bottom-right
|
|
for (i = 0; i < 4; i++) {
|
|
MB_MODE_INFO *mi;
|
|
MV_REFERENCE_FRAME rf;
|
|
MB_PREDICTION_MODE mode;
|
|
int segment_id;
|
|
|
|
int dy = row_delta[i];
|
|
int dx = col_delta[i];
|
|
int offset_extended = dy * mis + dx;
|
|
|
|
if ((mb_row >= pc->mb_rows) || (mb_col >= pc->mb_cols)) {
|
|
// MB lies outside frame, move on
|
|
mb_row += dy;
|
|
mb_col += dx;
|
|
m += offset_extended;
|
|
prev_m += offset_extended;
|
|
cpi->mb.partition_info += offset_extended;
|
|
continue;
|
|
}
|
|
|
|
mi = & m->mbmi;
|
|
rf = mi->ref_frame;
|
|
mode = mi->mode;
|
|
segment_id = mi->segment_id;
|
|
|
|
// Distance of Mb to the various image edges.
|
|
// These specified to 8th pel as they are always compared to MV
|
|
// values that are in 1/8th pel units
|
|
xd->mb_to_left_edge = -((mb_col * 16) << 3);
|
|
xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3;
|
|
xd->mb_to_top_edge = -((mb_row * 16)) << 3;
|
|
xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3;
|
|
|
|
// Make sure the MacroBlockD mode info pointer is set correctly
|
|
xd->mode_info_context = m;
|
|
xd->prev_mode_info_context = prev_m;
|
|
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 9;
|
|
#endif
|
|
|
|
if (cpi->mb.e_mbd.update_mb_segmentation_map) {
|
|
// Is temporal coding of the segment map enabled
|
|
if (pc->temporal_update) {
|
|
prediction_flag = get_pred_flag(xd, PRED_SEG_ID);
|
|
pred_prob = get_pred_prob(pc, xd, PRED_SEG_ID);
|
|
|
|
// Code the segment id prediction flag for this mb
|
|
vp8_write(w, prediction_flag, pred_prob);
|
|
|
|
// If the mb segment id wasn't predicted code explicitly
|
|
if (!prediction_flag)
|
|
write_mb_segid(w, mi, &cpi->mb.e_mbd);
|
|
} else {
|
|
// Normal unpredicted coding
|
|
write_mb_segid(w, mi, &cpi->mb.e_mbd);
|
|
}
|
|
}
|
|
|
|
if (pc->mb_no_coeff_skip &&
|
|
(!segfeature_active(xd, segment_id, SEG_LVL_EOB) ||
|
|
(get_segdata(xd, segment_id, SEG_LVL_EOB) != 0))) {
|
|
vp8_encode_bool(w, mi->mb_skip_coeff,
|
|
get_pred_prob(pc, xd, PRED_MBSKIP));
|
|
}
|
|
|
|
// Encode the reference frame.
|
|
encode_ref_frame(w, pc, xd, segment_id, rf);
|
|
|
|
if (rf == INTRA_FRAME) {
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 6;
|
|
#endif
|
|
|
|
if (!segfeature_active(xd, segment_id, SEG_LVL_MODE)) {
|
|
write_ymode(w, mode, pc->fc.ymode_prob);
|
|
}
|
|
|
|
if (mode == B_PRED) {
|
|
int j = 0;
|
|
#if CONFIG_COMP_INTRA_PRED
|
|
int uses_second =
|
|
m->bmi[0].as_mode.second !=
|
|
(B_PREDICTION_MODE)(B_DC_PRED - 1);
|
|
vp8_write(w, uses_second, 128);
|
|
#endif
|
|
do {
|
|
#if CONFIG_COMP_INTRA_PRED
|
|
B_PREDICTION_MODE mode2 = m->bmi[j].as_mode.second;
|
|
#endif
|
|
write_bmode(w, m->bmi[j].as_mode.first,
|
|
pc->fc.bmode_prob);
|
|
#if CONFIG_COMP_INTRA_PRED
|
|
if (uses_second) {
|
|
write_bmode(w, mode2, pc->fc.bmode_prob);
|
|
}
|
|
#endif
|
|
} while (++j < 16);
|
|
}
|
|
if (mode == I8X8_PRED) {
|
|
write_i8x8_mode(w, m->bmi[0].as_mode.first,
|
|
pc->fc.i8x8_mode_prob);
|
|
write_i8x8_mode(w, m->bmi[2].as_mode.first,
|
|
pc->fc.i8x8_mode_prob);
|
|
write_i8x8_mode(w, m->bmi[8].as_mode.first,
|
|
pc->fc.i8x8_mode_prob);
|
|
write_i8x8_mode(w, m->bmi[10].as_mode.first,
|
|
pc->fc.i8x8_mode_prob);
|
|
} else {
|
|
write_uv_mode(w, mi->uv_mode,
|
|
pc->fc.uv_mode_prob[mode]);
|
|
}
|
|
} else {
|
|
int_mv best_mv, best_second_mv;
|
|
int ct[4];
|
|
|
|
vp8_prob mv_ref_p [VP8_MVREFS - 1];
|
|
|
|
{
|
|
int_mv n1, n2;
|
|
|
|
vp8_find_near_mvs(xd, m, prev_m, &n1, &n2, &best_mv, ct,
|
|
rf, cpi->common.ref_frame_sign_bias);
|
|
#if CONFIG_NEWBESTREFMV
|
|
best_mv.as_int = mi->ref_mv.as_int;
|
|
#endif
|
|
vp8_mv_ref_probs(&cpi->common, mv_ref_p, ct);
|
|
|
|
#ifdef ENTROPY_STATS
|
|
accum_mv_refs(mode, ct);
|
|
#endif
|
|
}
|
|
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 3;
|
|
#endif
|
|
|
|
// Is the segment coding of mode enabled
|
|
if (!segfeature_active(xd, segment_id, SEG_LVL_MODE)) {
|
|
write_mv_ref(w, mode, mv_ref_p);
|
|
vp8_accum_mv_refs(&cpi->common, mode, ct);
|
|
}
|
|
|
|
#if CONFIG_PRED_FILTER
|
|
// Is the prediction filter enabled
|
|
if (mode >= NEARESTMV && mode < SPLITMV) {
|
|
if (cpi->common.pred_filter_mode == 2)
|
|
vp8_write(w, mi->pred_filter_enabled,
|
|
pc->prob_pred_filter_off);
|
|
else
|
|
assert(mi->pred_filter_enabled ==
|
|
cpi->common.pred_filter_mode);
|
|
}
|
|
#endif
|
|
#if CONFIG_SWITCHABLE_INTERP
|
|
if (mode >= NEARESTMV && mode <= SPLITMV)
|
|
{
|
|
if (cpi->common.mcomp_filter_type == SWITCHABLE) {
|
|
vp8_write_token(w, vp8_switchable_interp_tree,
|
|
get_pred_probs(&cpi->common, xd, PRED_SWITCHABLE_INTERP),
|
|
vp8_switchable_interp_encodings +
|
|
vp8_switchable_interp_map[mi->interp_filter]);
|
|
//if (!cpi->dummy_packing) printf("Reading: %d\n", mi->interp_filter);
|
|
} else {
|
|
assert (mi->interp_filter ==
|
|
cpi->common.mcomp_filter_type);
|
|
}
|
|
}
|
|
#endif
|
|
if (mi->second_ref_frame &&
|
|
(mode == NEWMV || mode == SPLITMV)) {
|
|
int_mv n1, n2;
|
|
|
|
vp8_find_near_mvs(xd, m,
|
|
prev_m,
|
|
&n1, &n2, &best_second_mv, ct,
|
|
mi->second_ref_frame,
|
|
cpi->common.ref_frame_sign_bias);
|
|
#if CONFIG_NEWBESTREFMV
|
|
best_second_mv.as_int = mi->second_ref_mv.as_int;
|
|
#endif
|
|
}
|
|
|
|
// does the feature use compound prediction or not
|
|
// (if not specified at the frame/segment level)
|
|
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
|
|
vp8_write(w, mi->second_ref_frame != INTRA_FRAME,
|
|
get_pred_prob(pc, xd, PRED_COMP));
|
|
}
|
|
|
|
{
|
|
switch (mode) { /* new, split require MVs */
|
|
case NEWMV:
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 5;
|
|
#endif
|
|
|
|
if (xd->allow_high_precision_mv)
|
|
write_mv_hp(w, &mi->mv[0].as_mv, &best_mv, mvc_hp);
|
|
else
|
|
write_mv(w, &mi->mv[0].as_mv, &best_mv, mvc);
|
|
|
|
if (mi->second_ref_frame) {
|
|
if (xd->allow_high_precision_mv)
|
|
write_mv_hp(w, &mi->mv[1].as_mv, &best_second_mv, mvc_hp);
|
|
else
|
|
write_mv(w, &mi->mv[1].as_mv, &best_second_mv, mvc);
|
|
}
|
|
break;
|
|
case SPLITMV: {
|
|
int j = 0;
|
|
|
|
#ifdef MODE_STATS
|
|
++count_mb_seg [mi->partitioning];
|
|
#endif
|
|
|
|
write_split(w, mi->partitioning, cpi->common.fc.mbsplit_prob);
|
|
cpi->mbsplit_count[mi->partitioning]++;
|
|
|
|
do {
|
|
B_PREDICTION_MODE blockmode;
|
|
int_mv blockmv;
|
|
const int *const L =
|
|
vp8_mbsplits [mi->partitioning];
|
|
int k = -1; /* first block in subset j */
|
|
int mv_contz;
|
|
int_mv leftmv, abovemv;
|
|
|
|
blockmode = cpi->mb.partition_info->bmi[j].mode;
|
|
blockmv = cpi->mb.partition_info->bmi[j].mv;
|
|
#if CONFIG_DEBUG
|
|
while (j != L[++k])
|
|
if (k >= 16)
|
|
assert(0);
|
|
#else
|
|
while (j != L[++k]);
|
|
#endif
|
|
leftmv.as_int = left_block_mv(m, k);
|
|
abovemv.as_int = above_block_mv(m, k, mis);
|
|
mv_contz = vp8_mv_cont(&leftmv, &abovemv);
|
|
|
|
write_sub_mv_ref(w, blockmode,
|
|
cpi->common.fc.sub_mv_ref_prob [mv_contz]);
|
|
cpi->sub_mv_ref_count[mv_contz][blockmode - LEFT4X4]++;
|
|
if (blockmode == NEW4X4) {
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 11;
|
|
#endif
|
|
if (xd->allow_high_precision_mv) {
|
|
write_mv_hp(w, &blockmv.as_mv, &best_mv,
|
|
(const MV_CONTEXT_HP *) mvc_hp);
|
|
} else {
|
|
write_mv(w, &blockmv.as_mv, &best_mv,
|
|
(const MV_CONTEXT *) mvc);
|
|
}
|
|
|
|
if (mi->second_ref_frame) {
|
|
if (xd->allow_high_precision_mv) {
|
|
write_mv_hp(w, &cpi->mb.partition_info->bmi[j].second_mv.as_mv,
|
|
&best_second_mv, (const MV_CONTEXT_HP *) mvc_hp);
|
|
} else {
|
|
write_mv(w, &cpi->mb.partition_info->bmi[j].second_mv.as_mv,
|
|
&best_second_mv, (const MV_CONTEXT *) mvc);
|
|
}
|
|
}
|
|
}
|
|
} while (++j < cpi->mb.partition_info->count);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Next MB
|
|
mb_row += dy;
|
|
mb_col += dx;
|
|
m += offset_extended;
|
|
prev_m += offset_extended;
|
|
cpi->mb.partition_info += offset_extended;
|
|
#if CONFIG_DEBUG
|
|
assert((prev_m - cpi->common.prev_mip) == (m - cpi->common.mip));
|
|
assert((prev_m - cpi->common.prev_mi) == (m - cpi->common.mi));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Next SB
|
|
mb_row += 2;
|
|
m += mis + (1 - (pc->mb_cols & 0x1));
|
|
prev_m += mis + (1 - (pc->mb_cols & 0x1));
|
|
cpi->mb.partition_info += mis + (1 - (pc->mb_cols & 0x1));
|
|
}
|
|
}
|
|
|
|
static void write_kfmodes(VP8_COMP *cpi) {
|
|
vp8_writer *const bc = & cpi->bc;
|
|
VP8_COMMON *const c = & cpi->common;
|
|
const int mis = c->mode_info_stride;
|
|
MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
MODE_INFO *m;
|
|
int i;
|
|
int row, col;
|
|
int mb_row, mb_col;
|
|
int prob_skip_false[3] = {0, 0, 0};
|
|
int row_delta[4] = { 0, +1, 0, -1};
|
|
int col_delta[4] = { +1, -1, +1, +1};
|
|
|
|
// printf("write_kfmodes\n");
|
|
if (c->mb_no_coeff_skip) {
|
|
// Divide by 0 check. 0 case possible with segment features
|
|
int k;
|
|
for (k = 0; k < MBSKIP_CONTEXTS; ++k) {
|
|
if ((cpi->skip_false_count[k] + cpi->skip_true_count[k])) {
|
|
prob_skip_false[k] = cpi->skip_false_count[k] * 256 /
|
|
(cpi->skip_false_count[k] + cpi->skip_true_count[k]);
|
|
|
|
if (prob_skip_false[k] <= 1)
|
|
prob_skip_false[k] = 1;
|
|
|
|
if (prob_skip_false[k] > 255)
|
|
prob_skip_false[k] = 255;
|
|
} else
|
|
prob_skip_false[k] = 255;
|
|
|
|
c->mbskip_pred_probs[k] = prob_skip_false[k];
|
|
vp8_write_literal(bc, prob_skip_false[k], 8);
|
|
}
|
|
}
|
|
|
|
if (!c->kf_ymode_probs_update) {
|
|
vp8_write_literal(bc, c->kf_ymode_probs_index, 3);
|
|
}
|
|
|
|
mb_row = 0;
|
|
for (row = 0; row < c->mb_rows; row += 2) {
|
|
m = c->mi + row * mis;
|
|
|
|
mb_col = 0;
|
|
for (col = 0; col < c->mb_cols; col += 2) {
|
|
// Process the 4 MBs in the order:
|
|
// top-left, top-right, bottom-left, bottom-right
|
|
for (i = 0; i < 4; i++) {
|
|
int ym;
|
|
int segment_id;
|
|
int dy = row_delta[i];
|
|
int dx = col_delta[i];
|
|
int offset_extended = dy * mis + dx;
|
|
|
|
if ((mb_row >= c->mb_rows) || (mb_col >= c->mb_cols)) {
|
|
// MB lies outside frame, move on
|
|
mb_row += dy;
|
|
mb_col += dx;
|
|
m += offset_extended;
|
|
continue;
|
|
}
|
|
|
|
// Make sure the MacroBlockD mode info pointer is set correctly
|
|
xd->mode_info_context = m;
|
|
|
|
ym = m->mbmi.mode;
|
|
segment_id = m->mbmi.segment_id;
|
|
|
|
if (cpi->mb.e_mbd.update_mb_segmentation_map) {
|
|
write_mb_segid(bc, &m->mbmi, &cpi->mb.e_mbd);
|
|
}
|
|
|
|
if (c->mb_no_coeff_skip &&
|
|
(!segfeature_active(xd, segment_id, SEG_LVL_EOB) ||
|
|
(get_segdata(xd, segment_id, SEG_LVL_EOB) != 0))) {
|
|
vp8_encode_bool(bc, m->mbmi.mb_skip_coeff,
|
|
get_pred_prob(c, xd, PRED_MBSKIP));
|
|
}
|
|
kfwrite_ymode(bc, ym,
|
|
c->kf_ymode_prob[c->kf_ymode_probs_index]);
|
|
|
|
if (ym == B_PRED) {
|
|
const int mis = c->mode_info_stride;
|
|
int i = 0;
|
|
#if CONFIG_COMP_INTRA_PRED
|
|
int uses_second =
|
|
m->bmi[0].as_mode.second !=
|
|
(B_PREDICTION_MODE)(B_DC_PRED - 1);
|
|
vp8_write(bc, uses_second, 128);
|
|
#endif
|
|
do {
|
|
const B_PREDICTION_MODE A = above_block_mode(m, i, mis);
|
|
const B_PREDICTION_MODE L = left_block_mode(m, i);
|
|
const int bm = m->bmi[i].as_mode.first;
|
|
#if CONFIG_COMP_INTRA_PRED
|
|
const int bm2 = m->bmi[i].as_mode.second;
|
|
#endif
|
|
|
|
#ifdef ENTROPY_STATS
|
|
++intra_mode_stats [A] [L] [bm];
|
|
#endif
|
|
|
|
write_bmode(bc, bm, c->kf_bmode_prob [A] [L]);
|
|
// printf(" mode: %d\n", bm);
|
|
#if CONFIG_COMP_INTRA_PRED
|
|
if (uses_second) {
|
|
write_bmode(bc, bm2, c->kf_bmode_prob [A] [L]);
|
|
}
|
|
#endif
|
|
} while (++i < 16);
|
|
}
|
|
if (ym == I8X8_PRED) {
|
|
write_i8x8_mode(bc, m->bmi[0].as_mode.first,
|
|
c->fc.i8x8_mode_prob);
|
|
// printf(" mode: %d\n", m->bmi[0].as_mode.first); fflush(stdout);
|
|
write_i8x8_mode(bc, m->bmi[2].as_mode.first,
|
|
c->fc.i8x8_mode_prob);
|
|
// printf(" mode: %d\n", m->bmi[2].as_mode.first); fflush(stdout);
|
|
write_i8x8_mode(bc, m->bmi[8].as_mode.first,
|
|
c->fc.i8x8_mode_prob);
|
|
// printf(" mode: %d\n", m->bmi[8].as_mode.first); fflush(stdout);
|
|
write_i8x8_mode(bc, m->bmi[10].as_mode.first,
|
|
c->fc.i8x8_mode_prob);
|
|
// printf(" mode: %d\n", m->bmi[10].as_mode.first); fflush(stdout);
|
|
} else
|
|
write_uv_mode(bc, m->mbmi.uv_mode, c->kf_uv_mode_prob[ym]);
|
|
|
|
// Next MB
|
|
mb_row += dy;
|
|
mb_col += dx;
|
|
m += offset_extended;
|
|
}
|
|
}
|
|
mb_row += 2;
|
|
}
|
|
}
|
|
|
|
|
|
/* This function is used for debugging probability trees. */
|
|
static void print_prob_tree(vp8_prob
|
|
coef_probs[BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS][ENTROPY_NODES]) {
|
|
/* print coef probability tree */
|
|
int i, j, k, l;
|
|
FILE *f = fopen("enc_tree_probs.txt", "a");
|
|
fprintf(f, "{\n");
|
|
for (i = 0; i < BLOCK_TYPES; i++) {
|
|
fprintf(f, " {\n");
|
|
for (j = 0; j < COEF_BANDS; j++) {
|
|
fprintf(f, " {\n");
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; k++) {
|
|
fprintf(f, " {");
|
|
for (l = 0; l < ENTROPY_NODES; l++) {
|
|
fprintf(f, "%3u, ",
|
|
(unsigned int)(coef_probs [i][j][k][l]));
|
|
}
|
|
fprintf(f, " }\n");
|
|
}
|
|
fprintf(f, " }\n");
|
|
}
|
|
fprintf(f, " }\n");
|
|
}
|
|
fprintf(f, "}\n");
|
|
fclose(f);
|
|
}
|
|
|
|
|
|
void build_coeff_contexts(VP8_COMP *cpi) {
|
|
int i = 0, j, k;
|
|
#ifdef ENTROPY_STATS
|
|
int t = 0;
|
|
#endif
|
|
for (i = 0; i < BLOCK_TYPES; ++i) {
|
|
for (j = 0; j < COEF_BANDS; ++j) {
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
|
|
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
|
|
continue;
|
|
vp8_tree_probs_from_distribution(
|
|
MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
|
|
cpi->frame_coef_probs [i][j][k],
|
|
cpi->frame_branch_ct [i][j][k],
|
|
cpi->coef_counts [i][j][k],
|
|
256, 1
|
|
);
|
|
#ifdef ENTROPY_STATS
|
|
if (!cpi->dummy_packing)
|
|
for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
|
|
context_counters[i][j][k][t] += cpi->coef_counts[i][j][k][t];
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
if (cpi->common.txfm_mode == ALLOW_8X8) {
|
|
for (i = 0; i < BLOCK_TYPES_8X8; ++i) {
|
|
for (j = 0; j < COEF_BANDS; ++j) {
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
|
|
/* at every context */
|
|
/* calc probs and branch cts for this frame only */
|
|
// vp8_prob new_p [ENTROPY_NODES];
|
|
// unsigned int branch_ct [ENTROPY_NODES] [2];
|
|
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
|
|
continue;
|
|
vp8_tree_probs_from_distribution(
|
|
MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
|
|
cpi->frame_coef_probs_8x8 [i][j][k],
|
|
cpi->frame_branch_ct_8x8 [i][j][k],
|
|
cpi->coef_counts_8x8 [i][j][k],
|
|
256, 1
|
|
);
|
|
#ifdef ENTROPY_STATS
|
|
if (!cpi->dummy_packing)
|
|
for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
|
|
context_counters_8x8[i][j][k][t] += cpi->coef_counts_8x8[i][j][k][t];
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_TX16X16
|
|
//16x16
|
|
for (i = 0; i < BLOCK_TYPES_16X16; ++i) {
|
|
for (j = 0; j < COEF_BANDS; ++j) {
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
|
|
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
|
|
continue;
|
|
vp8_tree_probs_from_distribution(
|
|
MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
|
|
cpi->frame_coef_probs_16x16[i][j][k],
|
|
cpi->frame_branch_ct_16x16[i][j][k],
|
|
cpi->coef_counts_16x16[i][j][k], 256, 1);
|
|
#ifdef ENTROPY_STATS
|
|
if (!cpi->dummy_packing)
|
|
for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
|
|
context_counters_16x16[i][j][k][t] += cpi->coef_counts_16x16[i][j][k][t];
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void update_coef_probs2(VP8_COMP *cpi) {
|
|
const vp8_prob grpupd = 192;
|
|
int i, j, k, t;
|
|
vp8_writer *const w = & cpi->bc;
|
|
int update[2];
|
|
int savings;
|
|
|
|
vp8_clear_system_state(); // __asm emms;
|
|
// Build the cofficient contexts based on counts collected in encode loop
|
|
build_coeff_contexts(cpi);
|
|
|
|
for (t = 0; t < ENTROPY_NODES; ++t) {
|
|
/* dry run to see if there is any udpate at all needed */
|
|
savings = 0;
|
|
update[0] = update[1] = 0;
|
|
for (i = 0; i < BLOCK_TYPES; ++i) {
|
|
for (j = !i; j < COEF_BANDS; ++j) {
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
|
|
vp8_prob newp = cpi->frame_coef_probs [i][j][k][t];
|
|
vp8_prob *Pold = cpi->common.fc.coef_probs [i][j][k] + t;
|
|
const vp8_prob upd = COEF_UPDATE_PROB;
|
|
int s;
|
|
int u = 0;
|
|
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
|
|
continue;
|
|
|
|
#if defined(SEARCH_NEWP)
|
|
s = prob_diff_update_savings_search(
|
|
cpi->frame_branch_ct [i][j][k][t], *Pold, &newp, upd);
|
|
if (s > 0 && newp != *Pold) u = 1;
|
|
if (u)
|
|
savings += s - (int)(vp8_cost_zero(upd));
|
|
else
|
|
savings -= (int)(vp8_cost_zero(upd));
|
|
#else
|
|
s = prob_update_savings(
|
|
cpi->frame_branch_ct [i][j][k][t], *Pold, newp, upd);
|
|
if (s > 0) u = 1;
|
|
if (u)
|
|
savings += s;
|
|
#endif
|
|
// printf(" %d %d %d: %d\n", i, j, k, u);
|
|
update[u]++;
|
|
}
|
|
}
|
|
}
|
|
if (update[1] == 0 || savings < 0) {
|
|
vp8_write(w, 0, grpupd);
|
|
continue;
|
|
}
|
|
vp8_write(w, 1, grpupd);
|
|
for (i = 0; i < BLOCK_TYPES; ++i) {
|
|
for (j = !i; j < COEF_BANDS; ++j) {
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
|
|
vp8_prob newp = cpi->frame_coef_probs [i][j][k][t];
|
|
vp8_prob *Pold = cpi->common.fc.coef_probs [i][j][k] + t;
|
|
const vp8_prob upd = COEF_UPDATE_PROB;
|
|
int s;
|
|
int u = 0;
|
|
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
|
|
continue;
|
|
#if defined(SEARCH_NEWP)
|
|
s = prob_diff_update_savings_search(
|
|
cpi->frame_branch_ct [i][j][k][t], *Pold, &newp, upd);
|
|
if (s > 0 && newp != *Pold) u = 1;
|
|
#else
|
|
s = prob_update_savings(
|
|
cpi->frame_branch_ct [i][j][k][t], *Pold, newp, upd);
|
|
if (s > 0) u = 1;
|
|
#endif
|
|
// printf(" %d %d %d: %d (%d)\n", i, j, k, u, upd);
|
|
vp8_write(w, u, upd);
|
|
#ifdef ENTROPY_STATS
|
|
++ tree_update_hist [i][j][k][t] [u];
|
|
#endif
|
|
if (u) {
|
|
/* send/use new probability */
|
|
write_prob_diff_update(w, newp, *Pold);
|
|
*Pold = newp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cpi->common.txfm_mode != ALLOW_8X8) return;
|
|
|
|
for (t = 0; t < ENTROPY_NODES; ++t) {
|
|
/* dry run to see if there is any udpate at all needed */
|
|
savings = 0;
|
|
update[0] = update[1] = 0;
|
|
for (i = 0; i < BLOCK_TYPES_8X8; ++i) {
|
|
for (j = !i; j < COEF_BANDS; ++j) {
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
|
|
vp8_prob newp = cpi->frame_coef_probs_8x8 [i][j][k][t];
|
|
vp8_prob *Pold = cpi->common.fc.coef_probs_8x8 [i][j][k] + t;
|
|
const vp8_prob upd = COEF_UPDATE_PROB_8X8;
|
|
int s;
|
|
int u = 0;
|
|
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
|
|
continue;
|
|
#if defined(SEARCH_NEWP)
|
|
s = prob_diff_update_savings_search(
|
|
cpi->frame_branch_ct_8x8 [i][j][k][t],
|
|
*Pold, &newp, upd);
|
|
if (s > 0 && newp != *Pold)
|
|
u = 1;
|
|
if (u)
|
|
savings += s - (int)(vp8_cost_zero(upd));
|
|
else
|
|
savings -= (int)(vp8_cost_zero(upd));
|
|
#else
|
|
s = prob_update_savings(
|
|
cpi->frame_branch_ct_8x8 [i][j][k][t],
|
|
*Pold, newp, upd);
|
|
if (s > 0)
|
|
u = 1;
|
|
if (u)
|
|
savings += s;
|
|
#endif
|
|
update[u]++;
|
|
}
|
|
}
|
|
}
|
|
if (update[1] == 0 || savings < 0) {
|
|
vp8_write(w, 0, grpupd);
|
|
continue;
|
|
}
|
|
vp8_write(w, 1, grpupd);
|
|
for (i = 0; i < BLOCK_TYPES_8X8; ++i) {
|
|
for (j = !i; j < COEF_BANDS; ++j) {
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
|
|
vp8_prob newp = cpi->frame_coef_probs_8x8 [i][j][k][t];
|
|
vp8_prob *Pold = cpi->common.fc.coef_probs_8x8 [i][j][k] + t;
|
|
const vp8_prob upd = COEF_UPDATE_PROB_8X8;
|
|
int s;
|
|
int u = 0;
|
|
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
|
|
continue;
|
|
#if defined(SEARCH_NEWP)
|
|
s = prob_diff_update_savings_search(
|
|
cpi->frame_branch_ct_8x8 [i][j][k][t],
|
|
*Pold, &newp, upd);
|
|
if (s > 0 && newp != *Pold)
|
|
u = 1;
|
|
#else
|
|
s = prob_update_savings(
|
|
cpi->frame_branch_ct_8x8 [i][j][k][t],
|
|
*Pold, newp, upd);
|
|
if (s > 0)
|
|
u = 1;
|
|
#endif
|
|
vp8_write(w, u, upd);
|
|
#ifdef ENTROPY_STATS
|
|
if (!cpi->dummy_packing)
|
|
++ tree_update_hist_8x8 [i][j][k][t] [u];
|
|
#endif
|
|
if (u) {
|
|
/* send/use new probability */
|
|
write_prob_diff_update(w, newp, *Pold);
|
|
*Pold = newp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_coef_probs(VP8_COMP *cpi) {
|
|
int i, j, k, t;
|
|
vp8_writer *const w = & cpi->bc;
|
|
int update[2] = {0, 0};
|
|
int savings;
|
|
|
|
vp8_clear_system_state(); // __asm emms;
|
|
|
|
// Build the cofficient contexts based on counts collected in encode loop
|
|
build_coeff_contexts(cpi);
|
|
|
|
// vp8_prob bestupd = find_coef_update_prob(cpi);
|
|
|
|
/* dry run to see if there is any udpate at all needed */
|
|
savings = 0;
|
|
for (i = 0; i < BLOCK_TYPES; ++i) {
|
|
for (j = !i; j < COEF_BANDS; ++j) {
|
|
int prev_coef_savings[ENTROPY_NODES] = {0};
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
|
|
for (t = 0; t < ENTROPY_NODES; ++t) {
|
|
vp8_prob newp = cpi->frame_coef_probs [i][j][k][t];
|
|
vp8_prob *Pold = cpi->common.fc.coef_probs [i][j][k] + t;
|
|
const vp8_prob upd = COEF_UPDATE_PROB;
|
|
int s = prev_coef_savings[t];
|
|
int u = 0;
|
|
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
|
|
continue;
|
|
#if defined(SEARCH_NEWP)
|
|
s = prob_diff_update_savings_search(
|
|
cpi->frame_branch_ct [i][j][k][t],
|
|
*Pold, &newp, upd);
|
|
if (s > 0 && newp != *Pold)
|
|
u = 1;
|
|
if (u)
|
|
savings += s - (int)(vp8_cost_zero(upd));
|
|
else
|
|
savings -= (int)(vp8_cost_zero(upd));
|
|
#else
|
|
s = prob_update_savings(
|
|
cpi->frame_branch_ct [i][j][k][t],
|
|
*Pold, newp, upd);
|
|
if (s > 0)
|
|
u = 1;
|
|
if (u)
|
|
savings += s;
|
|
#endif
|
|
|
|
update[u]++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// printf("Update %d %d, savings %d\n", update[0], update[1], savings);
|
|
/* Is coef updated at all */
|
|
if (update[1] == 0 || savings < 0)
|
|
vp8_write_bit(w, 0);
|
|
else {
|
|
vp8_write_bit(w, 1);
|
|
for (i = 0; i < BLOCK_TYPES; ++i) {
|
|
for (j = !i; j < COEF_BANDS; ++j) {
|
|
int prev_coef_savings[ENTROPY_NODES] = {0};
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
|
|
// calc probs and branch cts for this frame only
|
|
for (t = 0; t < ENTROPY_NODES; ++t) {
|
|
vp8_prob newp = cpi->frame_coef_probs [i][j][k][t];
|
|
vp8_prob *Pold = cpi->common.fc.coef_probs [i][j][k] + t;
|
|
const vp8_prob upd = COEF_UPDATE_PROB;
|
|
int s = prev_coef_savings[t];
|
|
int u = 0;
|
|
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
|
|
continue;
|
|
|
|
#if defined(SEARCH_NEWP)
|
|
s = prob_diff_update_savings_search(
|
|
cpi->frame_branch_ct [i][j][k][t],
|
|
*Pold, &newp, upd);
|
|
if (s > 0 && newp != *Pold)
|
|
u = 1;
|
|
#else
|
|
s = prob_update_savings(
|
|
cpi->frame_branch_ct [i][j][k][t],
|
|
*Pold, newp, upd);
|
|
if (s > 0)
|
|
u = 1;
|
|
#endif
|
|
vp8_write(w, u, upd);
|
|
#ifdef ENTROPY_STATS
|
|
if (!cpi->dummy_packing)
|
|
++ tree_update_hist [i][j][k][t] [u];
|
|
#endif
|
|
if (u) {
|
|
/* send/use new probability */
|
|
write_prob_diff_update(w, newp, *Pold);
|
|
*Pold = newp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* do not do this if not even allowed */
|
|
if (cpi->common.txfm_mode == ALLOW_8X8) {
|
|
/* dry run to see if update is necessary */
|
|
update[0] = update[1] = 0;
|
|
savings = 0;
|
|
for (i = 0; i < BLOCK_TYPES_8X8; ++i) {
|
|
for (j = !i; j < COEF_BANDS; ++j) {
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
|
|
// calc probs and branch cts for this frame only
|
|
for (t = 0; t < ENTROPY_NODES; ++t) {
|
|
const unsigned int *ct = cpi->frame_branch_ct_8x8 [i][j][k][t];
|
|
vp8_prob newp = cpi->frame_coef_probs_8x8 [i][j][k][t];
|
|
vp8_prob *Pold = cpi->common.fc.coef_probs_8x8 [i][j][k] + t;
|
|
const vp8_prob oldp = *Pold;
|
|
int s, u;
|
|
const vp8_prob upd = COEF_UPDATE_PROB_8X8;
|
|
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
|
|
continue;
|
|
#if defined(SEARCH_NEWP)
|
|
s = prob_diff_update_savings_search(ct, oldp, &newp, upd);
|
|
u = s > 0 && newp != oldp ? 1 : 0;
|
|
if (u)
|
|
savings += s - (int)(vp8_cost_zero(upd));
|
|
else
|
|
savings -= (int)(vp8_cost_zero(upd));
|
|
#else
|
|
s = prob_update_savings(ct, oldp, newp, upd);
|
|
u = s > 0 ? 1 : 0;
|
|
if (u)
|
|
savings += s;
|
|
#endif
|
|
update[u]++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (update[1] == 0 || savings < 0)
|
|
vp8_write_bit(w, 0);
|
|
else {
|
|
vp8_write_bit(w, 1);
|
|
for (i = 0; i < BLOCK_TYPES_8X8; ++i) {
|
|
for (j = !i; j < COEF_BANDS; ++j) {
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
|
|
for (t = 0; t < ENTROPY_NODES; ++t) {
|
|
const unsigned int *ct = cpi->frame_branch_ct_8x8 [i][j][k][t];
|
|
vp8_prob newp = cpi->frame_coef_probs_8x8 [i][j][k][t];
|
|
vp8_prob *Pold = cpi->common.fc.coef_probs_8x8 [i][j][k] + t;
|
|
const vp8_prob oldp = *Pold;
|
|
const vp8_prob upd = COEF_UPDATE_PROB_8X8;
|
|
int s, u;
|
|
if (k >= 3 && ((i == 0 && j == 1) ||
|
|
(i > 0 && j == 0)))
|
|
continue;
|
|
#if defined(SEARCH_NEWP)
|
|
s = prob_diff_update_savings_search(ct, oldp, &newp, upd);
|
|
u = s > 0 && newp != oldp ? 1 : 0;
|
|
#else
|
|
s = prob_update_savings(ct, oldp, newp, upd);
|
|
u = s > 0 ? 1 : 0;
|
|
#endif
|
|
vp8_write(w, u, upd);
|
|
#ifdef ENTROPY_STATS
|
|
if (!cpi->dummy_packing)
|
|
++ tree_update_hist_8x8 [i][j][k][t] [u];
|
|
#endif
|
|
if (u) {
|
|
/* send/use new probability */
|
|
write_prob_diff_update(w, newp, oldp);
|
|
*Pold = newp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_TX16X16
|
|
// 16x16
|
|
/* dry run to see if update is necessary */
|
|
update[0] = update[1] = 0;
|
|
savings = 0;
|
|
for (i = 0; i < BLOCK_TYPES_16X16; ++i) {
|
|
for (j = !i; j < COEF_BANDS; ++j) {
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
|
|
// calc probs and branch cts for this frame only
|
|
for (t = 0; t < ENTROPY_NODES; ++t) {
|
|
const unsigned int *ct = cpi->frame_branch_ct_16x16[i][j][k][t];
|
|
vp8_prob newp = cpi->frame_coef_probs_16x16[i][j][k][t];
|
|
vp8_prob *Pold = cpi->common.fc.coef_probs_16x16[i][j][k] + t;
|
|
const vp8_prob oldp = *Pold;
|
|
int s, u;
|
|
const vp8_prob upd = COEF_UPDATE_PROB_16X16;
|
|
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
|
|
continue;
|
|
#if defined(SEARCH_NEWP)
|
|
s = prob_diff_update_savings_search(ct, oldp, &newp, upd);
|
|
u = s > 0 && newp != oldp ? 1 : 0;
|
|
if (u)
|
|
savings += s - (int)(vp8_cost_zero(upd));
|
|
else
|
|
savings -= (int)(vp8_cost_zero(upd));
|
|
#else
|
|
s = prob_update_savings(ct, oldp, newp, upd);
|
|
u = s > 0 ? 1 : 0;
|
|
if (u)
|
|
savings += s;
|
|
#endif
|
|
update[u]++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (update[1] == 0 || savings < 0)
|
|
vp8_write_bit(w, 0);
|
|
else {
|
|
vp8_write_bit(w, 1);
|
|
for (i = 0; i < BLOCK_TYPES_16X16; ++i) {
|
|
for (j = !i; j < COEF_BANDS; ++j) {
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
|
|
for (t = 0; t < ENTROPY_NODES; ++t) {
|
|
const unsigned int *ct = cpi->frame_branch_ct_16x16[i][j][k][t];
|
|
vp8_prob newp = cpi->frame_coef_probs_16x16[i][j][k][t];
|
|
vp8_prob *Pold = cpi->common.fc.coef_probs_16x16[i][j][k] + t;
|
|
const vp8_prob oldp = *Pold;
|
|
const vp8_prob upd = COEF_UPDATE_PROB_16X16;
|
|
int s, u;
|
|
if (k >= 3 && ((i == 0 && j == 1) ||
|
|
(i > 0 && j == 0)))
|
|
continue;
|
|
#if defined(SEARCH_NEWP)
|
|
s = prob_diff_update_savings_search(ct, oldp, &newp, upd);
|
|
u = s > 0 && newp != oldp ? 1 : 0;
|
|
#else
|
|
s = prob_update_savings(ct, oldp, newp, upd);
|
|
u = s > 0 ? 1 : 0;
|
|
#endif
|
|
vp8_write(w, u, upd);
|
|
#ifdef ENTROPY_STATS
|
|
if (!cpi->dummy_packing)
|
|
++tree_update_hist_16x16[i][j][k][t][u];
|
|
#endif
|
|
if (u) {
|
|
/* send/use new probability */
|
|
write_prob_diff_update(w, newp, oldp);
|
|
*Pold = newp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef PACKET_TESTING
|
|
FILE *vpxlogc = 0;
|
|
#endif
|
|
|
|
static void put_delta_q(vp8_writer *bc, int delta_q) {
|
|
if (delta_q != 0) {
|
|
vp8_write_bit(bc, 1);
|
|
vp8_write_literal(bc, abs(delta_q), 4);
|
|
|
|
if (delta_q < 0)
|
|
vp8_write_bit(bc, 1);
|
|
else
|
|
vp8_write_bit(bc, 0);
|
|
} else
|
|
vp8_write_bit(bc, 0);
|
|
}
|
|
extern const unsigned int kf_y_mode_cts[8][VP8_YMODES];
|
|
static void decide_kf_ymode_entropy(VP8_COMP *cpi) {
|
|
|
|
int mode_cost[MB_MODE_COUNT];
|
|
int cost;
|
|
int bestcost = INT_MAX;
|
|
int bestindex = 0;
|
|
int i, j;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
vp8_cost_tokens(mode_cost, cpi->common.kf_ymode_prob[i], vp8_kf_ymode_tree);
|
|
cost = 0;
|
|
for (j = 0; j < VP8_YMODES; j++) {
|
|
cost += mode_cost[j] * cpi->ymode_count[j];
|
|
}
|
|
if (cost < bestcost) {
|
|
bestindex = i;
|
|
bestcost = cost;
|
|
}
|
|
}
|
|
cpi->common.kf_ymode_probs_index = bestindex;
|
|
|
|
}
|
|
static void segment_reference_frames(VP8_COMP *cpi) {
|
|
VP8_COMMON *oci = &cpi->common;
|
|
MODE_INFO *mi = oci->mi;
|
|
int ref[MAX_MB_SEGMENTS] = {0};
|
|
int i, j;
|
|
int mb_index = 0;
|
|
MACROBLOCKD *const xd = & cpi->mb.e_mbd;
|
|
|
|
for (i = 0; i < oci->mb_rows; i++) {
|
|
for (j = 0; j < oci->mb_cols; j++, mb_index++) {
|
|
ref[mi[mb_index].mbmi.segment_id] |= (1 << mi[mb_index].mbmi.ref_frame);
|
|
}
|
|
mb_index++;
|
|
}
|
|
for (i = 0; i < MAX_MB_SEGMENTS; i++) {
|
|
enable_segfeature(xd, i, SEG_LVL_REF_FRAME);
|
|
set_segdata(xd, i, SEG_LVL_REF_FRAME, ref[i]);
|
|
}
|
|
}
|
|
|
|
void vp8_pack_bitstream(VP8_COMP *cpi, unsigned char *dest, unsigned long *size) {
|
|
int i, j;
|
|
VP8_HEADER oh;
|
|
VP8_COMMON *const pc = & cpi->common;
|
|
vp8_writer *const bc = & cpi->bc;
|
|
MACROBLOCKD *const xd = & cpi->mb.e_mbd;
|
|
int extra_bytes_packed = 0;
|
|
|
|
unsigned char *cx_data = dest;
|
|
|
|
oh.show_frame = (int) pc->show_frame;
|
|
oh.type = (int)pc->frame_type;
|
|
oh.version = pc->version;
|
|
oh.first_partition_length_in_bytes = 0;
|
|
|
|
cx_data += 3;
|
|
|
|
#if defined(SECTIONBITS_OUTPUT)
|
|
Sectionbits[active_section = 1] += sizeof(VP8_HEADER) * 8 * 256;
|
|
#endif
|
|
|
|
compute_update_table();
|
|
|
|
// vp8_kf_default_bmode_probs() is called in vp8_setup_key_frame() once for each
|
|
// K frame before encode frame. pc->kf_bmode_prob doesn't get changed anywhere
|
|
// else. No need to call it again here. --yw
|
|
// vp8_kf_default_bmode_probs( pc->kf_bmode_prob);
|
|
|
|
// every keyframe send startcode, width, height, scale factor, clamp and color type
|
|
if (oh.type == KEY_FRAME) {
|
|
int v;
|
|
|
|
// Start / synch code
|
|
cx_data[0] = 0x9D;
|
|
cx_data[1] = 0x01;
|
|
cx_data[2] = 0x2a;
|
|
|
|
v = (pc->horiz_scale << 14) | pc->Width;
|
|
cx_data[3] = v;
|
|
cx_data[4] = v >> 8;
|
|
|
|
v = (pc->vert_scale << 14) | pc->Height;
|
|
cx_data[5] = v;
|
|
cx_data[6] = v >> 8;
|
|
|
|
extra_bytes_packed = 7;
|
|
cx_data += extra_bytes_packed;
|
|
|
|
vp8_start_encode(bc, cx_data);
|
|
|
|
// signal clr type
|
|
vp8_write_bit(bc, pc->clr_type);
|
|
vp8_write_bit(bc, pc->clamp_type);
|
|
|
|
} else
|
|
vp8_start_encode(bc, cx_data);
|
|
|
|
// Signal whether or not Segmentation is enabled
|
|
vp8_write_bit(bc, (xd->segmentation_enabled) ? 1 : 0);
|
|
|
|
// Indicate which features are enabled
|
|
if (xd->segmentation_enabled) {
|
|
// Indicate whether or not the segmentation map is being updated.
|
|
vp8_write_bit(bc, (xd->update_mb_segmentation_map) ? 1 : 0);
|
|
|
|
// If it is, then indicate the method that will be used.
|
|
if (xd->update_mb_segmentation_map) {
|
|
// Select the coding strategy (temporal or spatial)
|
|
choose_segmap_coding_method(cpi);
|
|
|
|
// Take a copy of the segment map if it changed for
|
|
// future comparison
|
|
vpx_memcpy(pc->last_frame_seg_map,
|
|
cpi->segmentation_map, pc->MBs);
|
|
|
|
// Write out the chosen coding method.
|
|
vp8_write_bit(bc, (pc->temporal_update) ? 1 : 0);
|
|
}
|
|
|
|
vp8_write_bit(bc, (xd->update_mb_segmentation_data) ? 1 : 0);
|
|
|
|
// segment_reference_frames(cpi);
|
|
|
|
if (xd->update_mb_segmentation_data) {
|
|
signed char Data;
|
|
|
|
vp8_write_bit(bc, (xd->mb_segment_abs_delta) ? 1 : 0);
|
|
|
|
// For each segments id...
|
|
for (i = 0; i < MAX_MB_SEGMENTS; i++) {
|
|
// For each segmentation codable feature...
|
|
for (j = 0; j < SEG_LVL_MAX; j++) {
|
|
Data = get_segdata(xd, i, j);
|
|
|
|
|
|
#if CONFIG_FEATUREUPDATES
|
|
|
|
// check if there's an update
|
|
if (segfeature_changed(xd, i, j)) {
|
|
vp8_write_bit(bc, 1);
|
|
|
|
if (segfeature_active(xd, i, j)) {
|
|
// this bit is to say we are still
|
|
// active/ if we were inactive
|
|
// this is unnecessary
|
|
if (old_segfeature_active(xd, i, j)) {
|
|
vp8_write_bit(bc, 1);
|
|
}
|
|
// Is the segment data signed..
|
|
if (is_segfeature_signed(j)) {
|
|
// Encode the relevant feature data
|
|
if (Data < 0) {
|
|
Data = - Data;
|
|
vp8_write_literal(bc, Data,
|
|
seg_feature_data_bits(j));
|
|
vp8_write_bit(bc, 1);
|
|
} else {
|
|
vp8_write_literal(bc, Data,
|
|
seg_feature_data_bits(j));
|
|
vp8_write_bit(bc, 0);
|
|
}
|
|
}
|
|
// Unsigned data element so no sign bit needed
|
|
else
|
|
vp8_write_literal(bc, Data,
|
|
seg_feature_data_bits(j));
|
|
}
|
|
// feature is inactive now
|
|
else if (old_segfeature_active(xd, i, j)) {
|
|
vp8_write_bit(bc, 0);
|
|
}
|
|
} else {
|
|
vp8_write_bit(bc, 0);
|
|
}
|
|
#else
|
|
|
|
// If the feature is enabled...
|
|
if (segfeature_active(xd, i, j)) {
|
|
vp8_write_bit(bc, 1);
|
|
|
|
// Is the segment data signed..
|
|
if (is_segfeature_signed(j)) {
|
|
// Encode the relevant feature data
|
|
if (Data < 0) {
|
|
Data = - Data;
|
|
vp8_write_literal(bc, Data,
|
|
seg_feature_data_bits(j));
|
|
vp8_write_bit(bc, 1);
|
|
} else {
|
|
vp8_write_literal(bc, Data,
|
|
seg_feature_data_bits(j));
|
|
vp8_write_bit(bc, 0);
|
|
}
|
|
}
|
|
// Unsigned data element so no sign bit needed
|
|
else
|
|
vp8_write_literal(bc, Data,
|
|
seg_feature_data_bits(j));
|
|
} else
|
|
vp8_write_bit(bc, 0);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_FEATUREUPDATES
|
|
// save the segment info for updates next frame
|
|
save_segment_info(xd);
|
|
#endif
|
|
|
|
if (xd->update_mb_segmentation_map) {
|
|
// Send the tree probabilities used to decode unpredicted
|
|
// macro-block segments
|
|
for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) {
|
|
int Data = xd->mb_segment_tree_probs[i];
|
|
|
|
if (Data != 255) {
|
|
vp8_write_bit(bc, 1);
|
|
vp8_write_literal(bc, Data, 8);
|
|
} else
|
|
vp8_write_bit(bc, 0);
|
|
}
|
|
|
|
// If predictive coding of segment map is enabled send the
|
|
// prediction probabilities.
|
|
if (pc->temporal_update) {
|
|
for (i = 0; i < PREDICTION_PROBS; i++) {
|
|
int Data = pc->segment_pred_probs[i];
|
|
|
|
if (Data != 255) {
|
|
vp8_write_bit(bc, 1);
|
|
vp8_write_literal(bc, Data, 8);
|
|
} else
|
|
vp8_write_bit(bc, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Encode the common prediction model status flag probability updates for
|
|
// the reference frame
|
|
update_refpred_stats(cpi);
|
|
if (pc->frame_type != KEY_FRAME) {
|
|
for (i = 0; i < PREDICTION_PROBS; i++) {
|
|
if (cpi->ref_pred_probs_update[i]) {
|
|
vp8_write_bit(bc, 1);
|
|
vp8_write_literal(bc, pc->ref_pred_probs[i], 8);
|
|
} else
|
|
vp8_write_bit(bc, 0);
|
|
}
|
|
}
|
|
|
|
vp8_write_bit(bc, pc->txfm_mode);
|
|
|
|
// Encode the loop filter level and type
|
|
vp8_write_bit(bc, pc->filter_type);
|
|
vp8_write_literal(bc, pc->filter_level, 6);
|
|
vp8_write_literal(bc, pc->sharpness_level, 3);
|
|
|
|
// Write out loop filter deltas applied at the MB level based on mode or ref frame (if they are enabled).
|
|
vp8_write_bit(bc, (xd->mode_ref_lf_delta_enabled) ? 1 : 0);
|
|
|
|
if (xd->mode_ref_lf_delta_enabled) {
|
|
// Do the deltas need to be updated
|
|
int send_update = xd->mode_ref_lf_delta_update;
|
|
|
|
vp8_write_bit(bc, send_update);
|
|
if (send_update) {
|
|
int Data;
|
|
|
|
// Send update
|
|
for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
|
|
Data = xd->ref_lf_deltas[i];
|
|
|
|
// Frame level data
|
|
if (xd->ref_lf_deltas[i] != xd->last_ref_lf_deltas[i]) {
|
|
xd->last_ref_lf_deltas[i] = xd->ref_lf_deltas[i];
|
|
vp8_write_bit(bc, 1);
|
|
|
|
if (Data > 0) {
|
|
vp8_write_literal(bc, (Data & 0x3F), 6);
|
|
vp8_write_bit(bc, 0); // sign
|
|
} else {
|
|
Data = -Data;
|
|
vp8_write_literal(bc, (Data & 0x3F), 6);
|
|
vp8_write_bit(bc, 1); // sign
|
|
}
|
|
} else
|
|
vp8_write_bit(bc, 0);
|
|
}
|
|
|
|
// Send update
|
|
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
|
|
Data = xd->mode_lf_deltas[i];
|
|
|
|
if (xd->mode_lf_deltas[i] != xd->last_mode_lf_deltas[i]) {
|
|
xd->last_mode_lf_deltas[i] = xd->mode_lf_deltas[i];
|
|
vp8_write_bit(bc, 1);
|
|
|
|
if (Data > 0) {
|
|
vp8_write_literal(bc, (Data & 0x3F), 6);
|
|
vp8_write_bit(bc, 0); // sign
|
|
} else {
|
|
Data = -Data;
|
|
vp8_write_literal(bc, (Data & 0x3F), 6);
|
|
vp8_write_bit(bc, 1); // sign
|
|
}
|
|
} else
|
|
vp8_write_bit(bc, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
// signal here is multi token partition is enabled
|
|
// vp8_write_literal(bc, pc->multi_token_partition, 2);
|
|
vp8_write_literal(bc, 0, 2);
|
|
|
|
// Frame Q baseline quantizer index
|
|
vp8_write_literal(bc, pc->base_qindex, QINDEX_BITS);
|
|
|
|
// Transmit Dc, Second order and Uv quantizer delta information
|
|
put_delta_q(bc, pc->y1dc_delta_q);
|
|
put_delta_q(bc, pc->y2dc_delta_q);
|
|
put_delta_q(bc, pc->y2ac_delta_q);
|
|
put_delta_q(bc, pc->uvdc_delta_q);
|
|
put_delta_q(bc, pc->uvac_delta_q);
|
|
|
|
// When there is a key frame all reference buffers are updated using the new key frame
|
|
if (pc->frame_type != KEY_FRAME) {
|
|
// Should the GF or ARF be updated using the transmitted frame or buffer
|
|
vp8_write_bit(bc, pc->refresh_golden_frame);
|
|
vp8_write_bit(bc, pc->refresh_alt_ref_frame);
|
|
|
|
// For inter frames the current default behavior is that when
|
|
// cm->refresh_golden_frame is set we copy the old GF over to
|
|
// the ARF buffer. This is purely an encoder decision at present.
|
|
if (pc->refresh_golden_frame)
|
|
pc->copy_buffer_to_arf = 2;
|
|
|
|
// If not being updated from current frame should either GF or ARF be updated from another buffer
|
|
if (!pc->refresh_golden_frame)
|
|
vp8_write_literal(bc, pc->copy_buffer_to_gf, 2);
|
|
|
|
if (!pc->refresh_alt_ref_frame)
|
|
vp8_write_literal(bc, pc->copy_buffer_to_arf, 2);
|
|
|
|
// Indicate reference frame sign bias for Golden and ARF frames (always 0 for last frame buffer)
|
|
vp8_write_bit(bc, pc->ref_frame_sign_bias[GOLDEN_FRAME]);
|
|
vp8_write_bit(bc, pc->ref_frame_sign_bias[ALTREF_FRAME]);
|
|
|
|
// Signal whether to allow high MV precision
|
|
vp8_write_bit(bc, (xd->allow_high_precision_mv) ? 1 : 0);
|
|
#if CONFIG_SWITCHABLE_INTERP
|
|
if (pc->mcomp_filter_type == SWITCHABLE) {
|
|
/* Check to see if only one of the filters is actually used */
|
|
int count[VP8_SWITCHABLE_FILTERS];
|
|
int i, j, c = 0;
|
|
for (i = 0; i < VP8_SWITCHABLE_FILTERS; ++i) {
|
|
count[i] = 0;
|
|
for (j = 0; j <= VP8_SWITCHABLE_FILTERS; ++j) {
|
|
count[i] += cpi->switchable_interp_count[j][i];
|
|
}
|
|
c += (count[i] > 0);
|
|
}
|
|
if (c == 1) {
|
|
/* Only one filter is used. So set the filter at frame level */
|
|
for (i = 0; i < VP8_SWITCHABLE_FILTERS; ++i) {
|
|
if (count[i]) {
|
|
pc->mcomp_filter_type = vp8_switchable_interp[i];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Signal the type of subpel filter to use
|
|
vp8_write_bit(bc, (pc->mcomp_filter_type == SWITCHABLE));
|
|
if (pc->mcomp_filter_type != SWITCHABLE)
|
|
#endif /* CONFIG_SWITCHABLE_INTERP */
|
|
vp8_write_literal(bc, (pc->mcomp_filter_type), 2);
|
|
}
|
|
|
|
vp8_write_bit(bc, pc->refresh_entropy_probs);
|
|
|
|
if (pc->frame_type != KEY_FRAME)
|
|
vp8_write_bit(bc, pc->refresh_last_frame);
|
|
|
|
#ifdef ENTROPY_STATS
|
|
if (pc->frame_type == INTER_FRAME)
|
|
active_section = 0;
|
|
else
|
|
active_section = 7;
|
|
#endif
|
|
|
|
vp8_clear_system_state(); // __asm emms;
|
|
|
|
vp8_copy(cpi->common.fc.pre_coef_probs, cpi->common.fc.coef_probs);
|
|
vp8_copy(cpi->common.fc.pre_coef_probs_8x8, cpi->common.fc.coef_probs_8x8);
|
|
#if CONFIG_TX16X16
|
|
vp8_copy(cpi->common.fc.pre_coef_probs_16x16, cpi->common.fc.coef_probs_16x16);
|
|
#endif
|
|
vp8_copy(cpi->common.fc.pre_ymode_prob, cpi->common.fc.ymode_prob);
|
|
vp8_copy(cpi->common.fc.pre_uv_mode_prob, cpi->common.fc.uv_mode_prob);
|
|
vp8_copy(cpi->common.fc.pre_bmode_prob, cpi->common.fc.bmode_prob);
|
|
vp8_copy(cpi->common.fc.pre_sub_mv_ref_prob, cpi->common.fc.sub_mv_ref_prob);
|
|
vp8_copy(cpi->common.fc.pre_mbsplit_prob, cpi->common.fc.mbsplit_prob);
|
|
vp8_copy(cpi->common.fc.pre_i8x8_mode_prob, cpi->common.fc.i8x8_mode_prob);
|
|
vp8_copy(cpi->common.fc.pre_mvc, cpi->common.fc.mvc);
|
|
vp8_copy(cpi->common.fc.pre_mvc_hp, cpi->common.fc.mvc_hp);
|
|
vp8_zero(cpi->sub_mv_ref_count);
|
|
vp8_zero(cpi->mbsplit_count);
|
|
vp8_zero(cpi->common.fc.mv_ref_ct)
|
|
vp8_zero(cpi->common.fc.mv_ref_ct_a)
|
|
#if COEFUPDATETYPE == 2
|
|
update_coef_probs2(cpi);
|
|
#else
|
|
update_coef_probs(cpi);
|
|
#endif
|
|
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 2;
|
|
#endif
|
|
|
|
// Write out the mb_no_coeff_skip flag
|
|
vp8_write_bit(bc, pc->mb_no_coeff_skip);
|
|
|
|
if (pc->frame_type == KEY_FRAME) {
|
|
decide_kf_ymode_entropy(cpi);
|
|
write_kfmodes(cpi);
|
|
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 8;
|
|
#endif
|
|
} else {
|
|
pack_inter_mode_mvs(cpi);
|
|
vp8_update_mode_context(&cpi->common);
|
|
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 1;
|
|
#endif
|
|
}
|
|
|
|
vp8_stop_encode(bc);
|
|
|
|
oh.first_partition_length_in_bytes = cpi->bc.pos;
|
|
|
|
/* update frame tag */
|
|
{
|
|
int v = (oh.first_partition_length_in_bytes << 5) |
|
|
(oh.show_frame << 4) |
|
|
(oh.version << 1) |
|
|
oh.type;
|
|
|
|
dest[0] = v;
|
|
dest[1] = v >> 8;
|
|
dest[2] = v >> 16;
|
|
}
|
|
|
|
*size = VP8_HEADER_SIZE + extra_bytes_packed + cpi->bc.pos;
|
|
|
|
vp8_start_encode(&cpi->bc2, cx_data + bc->pos);
|
|
|
|
pack_tokens(&cpi->bc2, cpi->tok, cpi->tok_count);
|
|
|
|
vp8_stop_encode(&cpi->bc2);
|
|
|
|
*size += cpi->bc2.pos;
|
|
|
|
}
|
|
|
|
#ifdef ENTROPY_STATS
|
|
void print_tree_update_probs() {
|
|
int i, j, k, l;
|
|
FILE *f = fopen("coefupdprob.h", "w");
|
|
int Sum;
|
|
fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n");
|
|
|
|
fprintf(f, "const vp8_prob\n"
|
|
"vp8_coef_update_probs[BLOCK_TYPES]\n"
|
|
" [COEF_BANDS]\n"
|
|
" [PREV_COEF_CONTEXTS]\n"
|
|
" [ENTROPY_NODES] = {\n");
|
|
for (i = 0; i < BLOCK_TYPES; i++) {
|
|
fprintf(f, " { \n");
|
|
for (j = 0; j < COEF_BANDS; j++) {
|
|
fprintf(f, " {\n");
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; k++) {
|
|
fprintf(f, " {");
|
|
for (l = 0; l < ENTROPY_NODES; l++) {
|
|
Sum = tree_update_hist[i][j][k][l][0] + tree_update_hist[i][j][k][l][1];
|
|
if (Sum > 0) {
|
|
if (((tree_update_hist[i][j][k][l][0] * 255) / Sum) > 0)
|
|
fprintf(f, "%3ld, ", (tree_update_hist[i][j][k][l][0] * 255) / Sum);
|
|
else
|
|
fprintf(f, "%3ld, ", 1);
|
|
} else
|
|
fprintf(f, "%3ld, ", 128);
|
|
}
|
|
fprintf(f, "},\n");
|
|
}
|
|
fprintf(f, " },\n");
|
|
}
|
|
fprintf(f, " },\n");
|
|
}
|
|
fprintf(f, "};\n");
|
|
|
|
fprintf(f, "const vp8_prob\n"
|
|
"vp8_coef_update_probs_8x8[BLOCK_TYPES_8X8]\n"
|
|
" [COEF_BANDS]\n"
|
|
" [PREV_COEF_CONTEXTS]\n"
|
|
" [ENTROPY_NODES] = {\n");
|
|
for (i = 0; i < BLOCK_TYPES_8X8; i++) {
|
|
fprintf(f, " { \n");
|
|
for (j = 0; j < COEF_BANDS; j++) {
|
|
fprintf(f, " {\n");
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; k++) {
|
|
fprintf(f, " {");
|
|
for (l = 0; l < MAX_ENTROPY_TOKENS - 1; l++) {
|
|
Sum = tree_update_hist_8x8[i][j][k][l][0] + tree_update_hist_8x8[i][j][k][l][1];
|
|
if (Sum > 0) {
|
|
if (((tree_update_hist_8x8[i][j][k][l][0] * 255) / Sum) > 0)
|
|
fprintf(f, "%3ld, ", (tree_update_hist_8x8[i][j][k][l][0] * 255) / Sum);
|
|
else
|
|
fprintf(f, "%3ld, ", 1);
|
|
} else
|
|
fprintf(f, "%3ld, ", 128);
|
|
}
|
|
fprintf(f, "},\n");
|
|
}
|
|
fprintf(f, " },\n");
|
|
}
|
|
fprintf(f, " },\n");
|
|
}
|
|
|
|
#if CONFIG_TX16X16
|
|
fprintf(f, "const vp8_prob\n"
|
|
"vp8_coef_update_probs_16x16[BLOCK_TYPES_16X16]\n"
|
|
" [COEF_BANDS]\n"
|
|
" [PREV_COEF_CONTEXTS]\n"
|
|
" [ENTROPY_NODES] = {\n");
|
|
for (i = 0; i < BLOCK_TYPES_16X16; i++) {
|
|
fprintf(f, " { \n");
|
|
for (j = 0; j < COEF_BANDS; j++) {
|
|
fprintf(f, " {\n");
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; k++) {
|
|
fprintf(f, " {");
|
|
for (l = 0; l < MAX_ENTROPY_TOKENS - 1; l++) {
|
|
Sum = tree_update_hist_16x16[i][j][k][l][0] + tree_update_hist_16x16[i][j][k][l][1];
|
|
if (Sum > 0) {
|
|
if (((tree_update_hist_16x16[i][j][k][l][0] * 255) / Sum) > 0)
|
|
fprintf(f, "%3ld, ", (tree_update_hist_16x16[i][j][k][l][0] * 255) / Sum);
|
|
else
|
|
fprintf(f, "%3ld, ", 1);
|
|
} else
|
|
fprintf(f, "%3ld, ", 128);
|
|
}
|
|
fprintf(f, "},\n");
|
|
}
|
|
fprintf(f, " },\n");
|
|
}
|
|
fprintf(f, " },\n");
|
|
}
|
|
#endif
|
|
|
|
fclose(f);
|
|
f = fopen("treeupdate.bin", "wb");
|
|
fwrite(tree_update_hist, sizeof(tree_update_hist), 1, f);
|
|
fwrite(tree_update_hist_8x8, sizeof(tree_update_hist_8x8), 1, f);
|
|
#if CONFIG_TX16X16
|
|
fwrite(tree_update_hist_16x16, sizeof(tree_update_hist_16x16), 1, f);
|
|
#endif
|
|
fclose(f);
|
|
}
|
|
#endif
|