vpx/vp9/encoder/arm/neon/vp9_quantize_neon.c
clang-format e0cc52db3f vp9/encoder: apply clang-format
Change-Id: I45d9fb4013f50766b24363a86365e8063e8954c2
2016-08-02 16:47:11 -07:00

118 lines
5.1 KiB
C

/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <arm_neon.h>
#include <math.h>
#include "vpx_mem/vpx_mem.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/encoder/vp9_encoder.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_rd.h"
void vp9_quantize_fp_neon(const int16_t *coeff_ptr, intptr_t count,
int skip_block, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, int16_t *qcoeff_ptr,
int16_t *dqcoeff_ptr, const int16_t *dequant_ptr,
uint16_t *eob_ptr, const int16_t *scan,
const int16_t *iscan) {
// TODO(jingning) Decide the need of these arguments after the
// quantization process is completed.
(void)zbin_ptr;
(void)quant_shift_ptr;
(void)scan;
if (!skip_block) {
// Quantization pass: All coefficients with index >= zero_flag are
// skippable. Note: zero_flag can be zero.
int i;
const int16x8_t v_zero = vdupq_n_s16(0);
const int16x8_t v_one = vdupq_n_s16(1);
int16x8_t v_eobmax_76543210 = vdupq_n_s16(-1);
int16x8_t v_round = vmovq_n_s16(round_ptr[1]);
int16x8_t v_quant = vmovq_n_s16(quant_ptr[1]);
int16x8_t v_dequant = vmovq_n_s16(dequant_ptr[1]);
// adjust for dc
v_round = vsetq_lane_s16(round_ptr[0], v_round, 0);
v_quant = vsetq_lane_s16(quant_ptr[0], v_quant, 0);
v_dequant = vsetq_lane_s16(dequant_ptr[0], v_dequant, 0);
// process dc and the first seven ac coeffs
{
const int16x8_t v_iscan = vld1q_s16(&iscan[0]);
const int16x8_t v_coeff = vld1q_s16(&coeff_ptr[0]);
const int16x8_t v_coeff_sign = vshrq_n_s16(v_coeff, 15);
const int16x8_t v_tmp = vabaq_s16(v_round, v_coeff, v_zero);
const int32x4_t v_tmp_lo =
vmull_s16(vget_low_s16(v_tmp), vget_low_s16(v_quant));
const int32x4_t v_tmp_hi =
vmull_s16(vget_high_s16(v_tmp), vget_high_s16(v_quant));
const int16x8_t v_tmp2 =
vcombine_s16(vshrn_n_s32(v_tmp_lo, 16), vshrn_n_s32(v_tmp_hi, 16));
const uint16x8_t v_nz_mask = vceqq_s16(v_tmp2, v_zero);
const int16x8_t v_iscan_plus1 = vaddq_s16(v_iscan, v_one);
const int16x8_t v_nz_iscan = vbslq_s16(v_nz_mask, v_zero, v_iscan_plus1);
const int16x8_t v_qcoeff_a = veorq_s16(v_tmp2, v_coeff_sign);
const int16x8_t v_qcoeff = vsubq_s16(v_qcoeff_a, v_coeff_sign);
const int16x8_t v_dqcoeff = vmulq_s16(v_qcoeff, v_dequant);
v_eobmax_76543210 = vmaxq_s16(v_eobmax_76543210, v_nz_iscan);
vst1q_s16(&qcoeff_ptr[0], v_qcoeff);
vst1q_s16(&dqcoeff_ptr[0], v_dqcoeff);
v_round = vmovq_n_s16(round_ptr[1]);
v_quant = vmovq_n_s16(quant_ptr[1]);
v_dequant = vmovq_n_s16(dequant_ptr[1]);
}
// now process the rest of the ac coeffs
for (i = 8; i < count; i += 8) {
const int16x8_t v_iscan = vld1q_s16(&iscan[i]);
const int16x8_t v_coeff = vld1q_s16(&coeff_ptr[i]);
const int16x8_t v_coeff_sign = vshrq_n_s16(v_coeff, 15);
const int16x8_t v_tmp = vabaq_s16(v_round, v_coeff, v_zero);
const int32x4_t v_tmp_lo =
vmull_s16(vget_low_s16(v_tmp), vget_low_s16(v_quant));
const int32x4_t v_tmp_hi =
vmull_s16(vget_high_s16(v_tmp), vget_high_s16(v_quant));
const int16x8_t v_tmp2 =
vcombine_s16(vshrn_n_s32(v_tmp_lo, 16), vshrn_n_s32(v_tmp_hi, 16));
const uint16x8_t v_nz_mask = vceqq_s16(v_tmp2, v_zero);
const int16x8_t v_iscan_plus1 = vaddq_s16(v_iscan, v_one);
const int16x8_t v_nz_iscan = vbslq_s16(v_nz_mask, v_zero, v_iscan_plus1);
const int16x8_t v_qcoeff_a = veorq_s16(v_tmp2, v_coeff_sign);
const int16x8_t v_qcoeff = vsubq_s16(v_qcoeff_a, v_coeff_sign);
const int16x8_t v_dqcoeff = vmulq_s16(v_qcoeff, v_dequant);
v_eobmax_76543210 = vmaxq_s16(v_eobmax_76543210, v_nz_iscan);
vst1q_s16(&qcoeff_ptr[i], v_qcoeff);
vst1q_s16(&dqcoeff_ptr[i], v_dqcoeff);
}
{
const int16x4_t v_eobmax_3210 = vmax_s16(
vget_low_s16(v_eobmax_76543210), vget_high_s16(v_eobmax_76543210));
const int64x1_t v_eobmax_xx32 =
vshr_n_s64(vreinterpret_s64_s16(v_eobmax_3210), 32);
const int16x4_t v_eobmax_tmp =
vmax_s16(v_eobmax_3210, vreinterpret_s16_s64(v_eobmax_xx32));
const int64x1_t v_eobmax_xxx3 =
vshr_n_s64(vreinterpret_s64_s16(v_eobmax_tmp), 16);
const int16x4_t v_eobmax_final =
vmax_s16(v_eobmax_tmp, vreinterpret_s16_s64(v_eobmax_xxx3));
*eob_ptr = (uint16_t)vget_lane_s16(v_eobmax_final, 0);
}
} else {
memset(qcoeff_ptr, 0, count * sizeof(int16_t));
memset(dqcoeff_ptr, 0, count * sizeof(int16_t));
*eob_ptr = 0;
}
}