vpx/vp9/decoder/x86/vp9_dequantize_sse2.c
Johann 32a5c52856 Merge branch 'master' into experimental
Conflicts:
	vp9/common/vp9_findnearmv.c
	vp9/common/vp9_rtcd_defs.sh
	vp9/decoder/vp9_decodframe.c
	vp9/decoder/x86/vp9_dequantize_sse2.c
	vp9/encoder/vp9_rdopt.c
	vp9/vp9_common.mk

Resolve file name changes in favor of master. Resolve rdopt changes in
favor of experimental, preserving the newer experiments.

Change-Id: If51ed8f457470281c7b20a5c1a2f4ce2cf76c20f
2013-04-26 12:57:10 -07:00

446 lines
16 KiB
C

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <emmintrin.h> // SSE2
#include "./vpx_config.h"
#include "vpx/vpx_integer.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_idct.h"
void vp9_add_residual_4x4_sse2(const int16_t *diff, uint8_t *dest, int stride) {
const int width = 4;
const __m128i zero = _mm_setzero_si128();
// Diff data
const __m128i d0 = _mm_loadl_epi64((const __m128i *)(diff + 0 * width));
const __m128i d1 = _mm_loadl_epi64((const __m128i *)(diff + 1 * width));
const __m128i d2 = _mm_loadl_epi64((const __m128i *)(diff + 2 * width));
const __m128i d3 = _mm_loadl_epi64((const __m128i *)(diff + 3 * width));
// Prediction data.
__m128i p0 = _mm_cvtsi32_si128(*(const int *)(dest + 0 * stride));
__m128i p1 = _mm_cvtsi32_si128(*(const int *)(dest + 1 * stride));
__m128i p2 = _mm_cvtsi32_si128(*(const int *)(dest + 2 * stride));
__m128i p3 = _mm_cvtsi32_si128(*(const int *)(dest + 3 * stride));
p0 = _mm_unpacklo_epi8(p0, zero);
p1 = _mm_unpacklo_epi8(p1, zero);
p2 = _mm_unpacklo_epi8(p2, zero);
p3 = _mm_unpacklo_epi8(p3, zero);
p0 = _mm_add_epi16(p0, d0);
p1 = _mm_add_epi16(p1, d1);
p2 = _mm_add_epi16(p2, d2);
p3 = _mm_add_epi16(p3, d3);
p0 = _mm_packus_epi16(p0, p1);
p2 = _mm_packus_epi16(p2, p3);
*(int *)dest = _mm_cvtsi128_si32(p0);
dest += stride;
p0 = _mm_srli_si128(p0, 8);
*(int *)dest = _mm_cvtsi128_si32(p0);
dest += stride;
*(int *)dest = _mm_cvtsi128_si32(p2);
dest += stride;
p2 = _mm_srli_si128(p2, 8);
*(int *)dest = _mm_cvtsi128_si32(p2);
}
void vp9_add_residual_8x8_sse2(const int16_t *diff, uint8_t *dest, int stride) {
const int width = 8;
const __m128i zero = _mm_setzero_si128();
// Diff data
const __m128i d0 = _mm_load_si128((const __m128i *)(diff + 0 * width));
const __m128i d1 = _mm_load_si128((const __m128i *)(diff + 1 * width));
const __m128i d2 = _mm_load_si128((const __m128i *)(diff + 2 * width));
const __m128i d3 = _mm_load_si128((const __m128i *)(diff + 3 * width));
const __m128i d4 = _mm_load_si128((const __m128i *)(diff + 4 * width));
const __m128i d5 = _mm_load_si128((const __m128i *)(diff + 5 * width));
const __m128i d6 = _mm_load_si128((const __m128i *)(diff + 6 * width));
const __m128i d7 = _mm_load_si128((const __m128i *)(diff + 7 * width));
// Prediction data.
__m128i p0 = _mm_loadl_epi64((const __m128i *)(dest + 0 * stride));
__m128i p1 = _mm_loadl_epi64((const __m128i *)(dest + 1 * stride));
__m128i p2 = _mm_loadl_epi64((const __m128i *)(dest + 2 * stride));
__m128i p3 = _mm_loadl_epi64((const __m128i *)(dest + 3 * stride));
__m128i p4 = _mm_loadl_epi64((const __m128i *)(dest + 4 * stride));
__m128i p5 = _mm_loadl_epi64((const __m128i *)(dest + 5 * stride));
__m128i p6 = _mm_loadl_epi64((const __m128i *)(dest + 6 * stride));
__m128i p7 = _mm_loadl_epi64((const __m128i *)(dest + 7 * stride));
p0 = _mm_unpacklo_epi8(p0, zero);
p1 = _mm_unpacklo_epi8(p1, zero);
p2 = _mm_unpacklo_epi8(p2, zero);
p3 = _mm_unpacklo_epi8(p3, zero);
p4 = _mm_unpacklo_epi8(p4, zero);
p5 = _mm_unpacklo_epi8(p5, zero);
p6 = _mm_unpacklo_epi8(p6, zero);
p7 = _mm_unpacklo_epi8(p7, zero);
p0 = _mm_add_epi16(p0, d0);
p1 = _mm_add_epi16(p1, d1);
p2 = _mm_add_epi16(p2, d2);
p3 = _mm_add_epi16(p3, d3);
p4 = _mm_add_epi16(p4, d4);
p5 = _mm_add_epi16(p5, d5);
p6 = _mm_add_epi16(p6, d6);
p7 = _mm_add_epi16(p7, d7);
p0 = _mm_packus_epi16(p0, p1);
p2 = _mm_packus_epi16(p2, p3);
p4 = _mm_packus_epi16(p4, p5);
p6 = _mm_packus_epi16(p6, p7);
_mm_storel_epi64((__m128i *)(dest + 0 * stride), p0);
p0 = _mm_srli_si128(p0, 8);
_mm_storel_epi64((__m128i *)(dest + 1 * stride), p0);
_mm_storel_epi64((__m128i *)(dest + 2 * stride), p2);
p2 = _mm_srli_si128(p2, 8);
_mm_storel_epi64((__m128i *)(dest + 3 * stride), p2);
_mm_storel_epi64((__m128i *)(dest + 4 * stride), p4);
p4 = _mm_srli_si128(p4, 8);
_mm_storel_epi64((__m128i *)(dest + 5 * stride), p4);
_mm_storel_epi64((__m128i *)(dest + 6 * stride), p6);
p6 = _mm_srli_si128(p6, 8);
_mm_storel_epi64((__m128i *)(dest + 7 * stride), p6);
}
void vp9_add_residual_16x16_sse2(const int16_t *diff, uint8_t *dest,
int stride) {
const int width = 16;
int i = 4;
const __m128i zero = _mm_setzero_si128();
// Diff data
__m128i d0, d1, d2, d3, d4, d5, d6, d7;
__m128i p0, p1, p2, p3, p4, p5, p6, p7;
do {
d0 = _mm_load_si128((const __m128i *)(diff + 0 * width));
d1 = _mm_load_si128((const __m128i *)(diff + 0 * width + 8));
d2 = _mm_load_si128((const __m128i *)(diff + 1 * width));
d3 = _mm_load_si128((const __m128i *)(diff + 1 * width + 8));
d4 = _mm_load_si128((const __m128i *)(diff + 2 * width));
d5 = _mm_load_si128((const __m128i *)(diff + 2 * width + 8));
d6 = _mm_load_si128((const __m128i *)(diff + 3 * width));
d7 = _mm_load_si128((const __m128i *)(diff + 3 * width + 8));
// Prediction data.
p1 = _mm_load_si128((const __m128i *)(dest + 0 * stride));
p3 = _mm_load_si128((const __m128i *)(dest + 1 * stride));
p5 = _mm_load_si128((const __m128i *)(dest + 2 * stride));
p7 = _mm_load_si128((const __m128i *)(dest + 3 * stride));
p0 = _mm_unpacklo_epi8(p1, zero);
p1 = _mm_unpackhi_epi8(p1, zero);
p2 = _mm_unpacklo_epi8(p3, zero);
p3 = _mm_unpackhi_epi8(p3, zero);
p4 = _mm_unpacklo_epi8(p5, zero);
p5 = _mm_unpackhi_epi8(p5, zero);
p6 = _mm_unpacklo_epi8(p7, zero);
p7 = _mm_unpackhi_epi8(p7, zero);
p0 = _mm_add_epi16(p0, d0);
p1 = _mm_add_epi16(p1, d1);
p2 = _mm_add_epi16(p2, d2);
p3 = _mm_add_epi16(p3, d3);
p4 = _mm_add_epi16(p4, d4);
p5 = _mm_add_epi16(p5, d5);
p6 = _mm_add_epi16(p6, d6);
p7 = _mm_add_epi16(p7, d7);
p0 = _mm_packus_epi16(p0, p1);
p1 = _mm_packus_epi16(p2, p3);
p2 = _mm_packus_epi16(p4, p5);
p3 = _mm_packus_epi16(p6, p7);
_mm_store_si128((__m128i *)(dest + 0 * stride), p0);
_mm_store_si128((__m128i *)(dest + 1 * stride), p1);
_mm_store_si128((__m128i *)(dest + 2 * stride), p2);
_mm_store_si128((__m128i *)(dest + 3 * stride), p3);
diff += 4 * width;
dest += 4 * stride;
} while (--i);
}
void vp9_add_residual_32x32_sse2(const int16_t *diff, uint8_t *dest,
int stride) {
const int width = 32;
int i = 16;
const __m128i zero = _mm_setzero_si128();
// Diff data
__m128i d0, d1, d2, d3, d4, d5, d6, d7;
__m128i p0, p1, p2, p3, p4, p5, p6, p7;
do {
d0 = _mm_load_si128((const __m128i *)(diff + 0 * width));
d1 = _mm_load_si128((const __m128i *)(diff + 0 * width + 8));
d2 = _mm_load_si128((const __m128i *)(diff + 0 * width + 16));
d3 = _mm_load_si128((const __m128i *)(diff + 0 * width + 24));
d4 = _mm_load_si128((const __m128i *)(diff + 1 * width));
d5 = _mm_load_si128((const __m128i *)(diff + 1 * width + 8));
d6 = _mm_load_si128((const __m128i *)(diff + 1 * width + 16));
d7 = _mm_load_si128((const __m128i *)(diff + 1 * width + 24));
// Prediction data.
p1 = _mm_load_si128((const __m128i *)(dest + 0 * stride));
p3 = _mm_load_si128((const __m128i *)(dest + 0 * stride + 16));
p5 = _mm_load_si128((const __m128i *)(dest + 1 * stride));
p7 = _mm_load_si128((const __m128i *)(dest + 1 * stride + 16));
p0 = _mm_unpacklo_epi8(p1, zero);
p1 = _mm_unpackhi_epi8(p1, zero);
p2 = _mm_unpacklo_epi8(p3, zero);
p3 = _mm_unpackhi_epi8(p3, zero);
p4 = _mm_unpacklo_epi8(p5, zero);
p5 = _mm_unpackhi_epi8(p5, zero);
p6 = _mm_unpacklo_epi8(p7, zero);
p7 = _mm_unpackhi_epi8(p7, zero);
p0 = _mm_add_epi16(p0, d0);
p1 = _mm_add_epi16(p1, d1);
p2 = _mm_add_epi16(p2, d2);
p3 = _mm_add_epi16(p3, d3);
p4 = _mm_add_epi16(p4, d4);
p5 = _mm_add_epi16(p5, d5);
p6 = _mm_add_epi16(p6, d6);
p7 = _mm_add_epi16(p7, d7);
p0 = _mm_packus_epi16(p0, p1);
p1 = _mm_packus_epi16(p2, p3);
p2 = _mm_packus_epi16(p4, p5);
p3 = _mm_packus_epi16(p6, p7);
_mm_store_si128((__m128i *)(dest + 0 * stride), p0);
_mm_store_si128((__m128i *)(dest + 0 * stride + 16), p1);
_mm_store_si128((__m128i *)(dest + 1 * stride), p2);
_mm_store_si128((__m128i *)(dest + 1 * stride + 16), p3);
diff += 2 * width;
dest += 2 * stride;
} while (--i);
}
void vp9_add_constant_residual_8x8_sse2(const int16_t diff, uint8_t *dest,
int stride) {
uint8_t abs_diff;
__m128i d;
// Prediction data.
__m128i p0 = _mm_loadl_epi64((const __m128i *)(dest + 0 * stride));
__m128i p1 = _mm_loadl_epi64((const __m128i *)(dest + 1 * stride));
__m128i p2 = _mm_loadl_epi64((const __m128i *)(dest + 2 * stride));
__m128i p3 = _mm_loadl_epi64((const __m128i *)(dest + 3 * stride));
__m128i p4 = _mm_loadl_epi64((const __m128i *)(dest + 4 * stride));
__m128i p5 = _mm_loadl_epi64((const __m128i *)(dest + 5 * stride));
__m128i p6 = _mm_loadl_epi64((const __m128i *)(dest + 6 * stride));
__m128i p7 = _mm_loadl_epi64((const __m128i *)(dest + 7 * stride));
p0 = _mm_unpacklo_epi64(p0, p1);
p2 = _mm_unpacklo_epi64(p2, p3);
p4 = _mm_unpacklo_epi64(p4, p5);
p6 = _mm_unpacklo_epi64(p6, p7);
// Clip diff value to [0, 255] range. Then, do addition or subtraction
// according to its sign.
if (diff >= 0) {
abs_diff = (diff > 255) ? 255 : diff;
d = _mm_shuffle_epi32(_mm_cvtsi32_si128((int)(abs_diff * 0x01010101u)), 0);
p0 = _mm_adds_epu8(p0, d);
p2 = _mm_adds_epu8(p2, d);
p4 = _mm_adds_epu8(p4, d);
p6 = _mm_adds_epu8(p6, d);
} else {
abs_diff = (diff < -255) ? 255 : -diff;
d = _mm_shuffle_epi32(_mm_cvtsi32_si128((int)(abs_diff * 0x01010101u)), 0);
p0 = _mm_subs_epu8(p0, d);
p2 = _mm_subs_epu8(p2, d);
p4 = _mm_subs_epu8(p4, d);
p6 = _mm_subs_epu8(p6, d);
}
_mm_storel_epi64((__m128i *)(dest + 0 * stride), p0);
p0 = _mm_srli_si128(p0, 8);
_mm_storel_epi64((__m128i *)(dest + 1 * stride), p0);
_mm_storel_epi64((__m128i *)(dest + 2 * stride), p2);
p2 = _mm_srli_si128(p2, 8);
_mm_storel_epi64((__m128i *)(dest + 3 * stride), p2);
_mm_storel_epi64((__m128i *)(dest + 4 * stride), p4);
p4 = _mm_srli_si128(p4, 8);
_mm_storel_epi64((__m128i *)(dest + 5 * stride), p4);
_mm_storel_epi64((__m128i *)(dest + 6 * stride), p6);
p6 = _mm_srli_si128(p6, 8);
_mm_storel_epi64((__m128i *)(dest + 7 * stride), p6);
}
void vp9_add_constant_residual_16x16_sse2(const int16_t diff, uint8_t *dest,
int stride) {
uint8_t abs_diff;
__m128i d;
// Prediction data.
__m128i p0 = _mm_load_si128((const __m128i *)(dest + 0 * stride));
__m128i p1 = _mm_load_si128((const __m128i *)(dest + 1 * stride));
__m128i p2 = _mm_load_si128((const __m128i *)(dest + 2 * stride));
__m128i p3 = _mm_load_si128((const __m128i *)(dest + 3 * stride));
__m128i p4 = _mm_load_si128((const __m128i *)(dest + 4 * stride));
__m128i p5 = _mm_load_si128((const __m128i *)(dest + 5 * stride));
__m128i p6 = _mm_load_si128((const __m128i *)(dest + 6 * stride));
__m128i p7 = _mm_load_si128((const __m128i *)(dest + 7 * stride));
__m128i p8 = _mm_load_si128((const __m128i *)(dest + 8 * stride));
__m128i p9 = _mm_load_si128((const __m128i *)(dest + 9 * stride));
__m128i p10 = _mm_load_si128((const __m128i *)(dest + 10 * stride));
__m128i p11 = _mm_load_si128((const __m128i *)(dest + 11 * stride));
__m128i p12 = _mm_load_si128((const __m128i *)(dest + 12 * stride));
__m128i p13 = _mm_load_si128((const __m128i *)(dest + 13 * stride));
__m128i p14 = _mm_load_si128((const __m128i *)(dest + 14 * stride));
__m128i p15 = _mm_load_si128((const __m128i *)(dest + 15 * stride));
// Clip diff value to [0, 255] range. Then, do addition or subtraction
// according to its sign.
if (diff >= 0) {
abs_diff = (diff > 255) ? 255 : diff;
d = _mm_shuffle_epi32(_mm_cvtsi32_si128((int)(abs_diff * 0x01010101u)), 0);
p0 = _mm_adds_epu8(p0, d);
p1 = _mm_adds_epu8(p1, d);
p2 = _mm_adds_epu8(p2, d);
p3 = _mm_adds_epu8(p3, d);
p4 = _mm_adds_epu8(p4, d);
p5 = _mm_adds_epu8(p5, d);
p6 = _mm_adds_epu8(p6, d);
p7 = _mm_adds_epu8(p7, d);
p8 = _mm_adds_epu8(p8, d);
p9 = _mm_adds_epu8(p9, d);
p10 = _mm_adds_epu8(p10, d);
p11 = _mm_adds_epu8(p11, d);
p12 = _mm_adds_epu8(p12, d);
p13 = _mm_adds_epu8(p13, d);
p14 = _mm_adds_epu8(p14, d);
p15 = _mm_adds_epu8(p15, d);
} else {
abs_diff = (diff < -255) ? 255 : -diff;
d = _mm_shuffle_epi32(_mm_cvtsi32_si128((int)(abs_diff * 0x01010101u)), 0);
p0 = _mm_subs_epu8(p0, d);
p1 = _mm_subs_epu8(p1, d);
p2 = _mm_subs_epu8(p2, d);
p3 = _mm_subs_epu8(p3, d);
p4 = _mm_subs_epu8(p4, d);
p5 = _mm_subs_epu8(p5, d);
p6 = _mm_subs_epu8(p6, d);
p7 = _mm_subs_epu8(p7, d);
p8 = _mm_subs_epu8(p8, d);
p9 = _mm_subs_epu8(p9, d);
p10 = _mm_subs_epu8(p10, d);
p11 = _mm_subs_epu8(p11, d);
p12 = _mm_subs_epu8(p12, d);
p13 = _mm_subs_epu8(p13, d);
p14 = _mm_subs_epu8(p14, d);
p15 = _mm_subs_epu8(p15, d);
}
// Store results
_mm_store_si128((__m128i *)(dest + 0 * stride), p0);
_mm_store_si128((__m128i *)(dest + 1 * stride), p1);
_mm_store_si128((__m128i *)(dest + 2 * stride), p2);
_mm_store_si128((__m128i *)(dest + 3 * stride), p3);
_mm_store_si128((__m128i *)(dest + 4 * stride), p4);
_mm_store_si128((__m128i *)(dest + 5 * stride), p5);
_mm_store_si128((__m128i *)(dest + 6 * stride), p6);
_mm_store_si128((__m128i *)(dest + 7 * stride), p7);
_mm_store_si128((__m128i *)(dest + 8 * stride), p8);
_mm_store_si128((__m128i *)(dest + 9 * stride), p9);
_mm_store_si128((__m128i *)(dest + 10 * stride), p10);
_mm_store_si128((__m128i *)(dest + 11 * stride), p11);
_mm_store_si128((__m128i *)(dest + 12 * stride), p12);
_mm_store_si128((__m128i *)(dest + 13 * stride), p13);
_mm_store_si128((__m128i *)(dest + 14 * stride), p14);
_mm_store_si128((__m128i *)(dest + 15 * stride), p15);
}
void vp9_add_constant_residual_32x32_sse2(const int16_t diff, uint8_t *dest,
int stride) {
uint8_t abs_diff;
__m128i d;
int i = 8;
if (diff >= 0) {
abs_diff = (diff > 255) ? 255 : diff;
d = _mm_shuffle_epi32(_mm_cvtsi32_si128((int)(abs_diff * 0x01010101u)), 0);
} else {
abs_diff = (diff < -255) ? 255 : -diff;
d = _mm_shuffle_epi32(_mm_cvtsi32_si128((int)(abs_diff * 0x01010101u)), 0);
}
do {
// Prediction data.
__m128i p0 = _mm_load_si128((const __m128i *)(dest + 0 * stride));
__m128i p1 = _mm_load_si128((const __m128i *)(dest + 0 * stride + 16));
__m128i p2 = _mm_load_si128((const __m128i *)(dest + 1 * stride));
__m128i p3 = _mm_load_si128((const __m128i *)(dest + 1 * stride + 16));
__m128i p4 = _mm_load_si128((const __m128i *)(dest + 2 * stride));
__m128i p5 = _mm_load_si128((const __m128i *)(dest + 2 * stride + 16));
__m128i p6 = _mm_load_si128((const __m128i *)(dest + 3 * stride));
__m128i p7 = _mm_load_si128((const __m128i *)(dest + 3 * stride + 16));
// Clip diff value to [0, 255] range. Then, do addition or subtraction
// according to its sign.
if (diff >= 0) {
p0 = _mm_adds_epu8(p0, d);
p1 = _mm_adds_epu8(p1, d);
p2 = _mm_adds_epu8(p2, d);
p3 = _mm_adds_epu8(p3, d);
p4 = _mm_adds_epu8(p4, d);
p5 = _mm_adds_epu8(p5, d);
p6 = _mm_adds_epu8(p6, d);
p7 = _mm_adds_epu8(p7, d);
} else {
p0 = _mm_subs_epu8(p0, d);
p1 = _mm_subs_epu8(p1, d);
p2 = _mm_subs_epu8(p2, d);
p3 = _mm_subs_epu8(p3, d);
p4 = _mm_subs_epu8(p4, d);
p5 = _mm_subs_epu8(p5, d);
p6 = _mm_subs_epu8(p6, d);
p7 = _mm_subs_epu8(p7, d);
}
// Store results
_mm_store_si128((__m128i *)(dest + 0 * stride), p0);
_mm_store_si128((__m128i *)(dest + 0 * stride + 16), p1);
_mm_store_si128((__m128i *)(dest + 1 * stride), p2);
_mm_store_si128((__m128i *)(dest + 1 * stride + 16), p3);
_mm_store_si128((__m128i *)(dest + 2 * stride), p4);
_mm_store_si128((__m128i *)(dest + 2 * stride + 16), p5);
_mm_store_si128((__m128i *)(dest + 3 * stride), p6);
_mm_store_si128((__m128i *)(dest + 3 * stride + 16), p7);
dest += 4 * stride;
} while (--i);
}