vpx/test/dct32x32_test.cc
Joshua Litt 51490e5654 Removing PARAMS macro for consistency
Change-Id: I23ed873a6c47b15491a2ffbcdd4f0fdeef1207a0
2013-11-19 09:28:18 -08:00

264 lines
8.4 KiB
C++

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
extern "C" {
#include "./vpx_config.h"
#include "vp9/common/vp9_entropy.h"
#include "./vp9_rtcd.h"
}
#include "vpx/vpx_integer.h"
using libvpx_test::ACMRandom;
namespace {
#ifdef _MSC_VER
static int round(double x) {
if (x < 0)
return static_cast<int>(ceil(x - 0.5));
else
return static_cast<int>(floor(x + 0.5));
}
#endif
const int kNumCoeffs = 1024;
const double kPi = 3.141592653589793238462643383279502884;
void reference_32x32_dct_1d(const double in[32], double out[32], int stride) {
const double kInvSqrt2 = 0.707106781186547524400844362104;
for (int k = 0; k < 32; k++) {
out[k] = 0.0;
for (int n = 0; n < 32; n++)
out[k] += in[n] * cos(kPi * (2 * n + 1) * k / 64.0);
if (k == 0)
out[k] = out[k] * kInvSqrt2;
}
}
void reference_32x32_dct_2d(const int16_t input[kNumCoeffs],
double output[kNumCoeffs]) {
// First transform columns
for (int i = 0; i < 32; ++i) {
double temp_in[32], temp_out[32];
for (int j = 0; j < 32; ++j)
temp_in[j] = input[j*32 + i];
reference_32x32_dct_1d(temp_in, temp_out, 1);
for (int j = 0; j < 32; ++j)
output[j * 32 + i] = temp_out[j];
}
// Then transform rows
for (int i = 0; i < 32; ++i) {
double temp_in[32], temp_out[32];
for (int j = 0; j < 32; ++j)
temp_in[j] = output[j + i*32];
reference_32x32_dct_1d(temp_in, temp_out, 1);
// Scale by some magic number
for (int j = 0; j < 32; ++j)
output[j + i * 32] = temp_out[j] / 4;
}
}
typedef void (*fwd_txfm_t)(const int16_t *in, int16_t *out, int stride);
typedef void (*inv_txfm_t)(const int16_t *in, uint8_t *out, int stride);
typedef std::tr1::tuple<fwd_txfm_t, inv_txfm_t, int> trans_32x32_param_t;
class Trans32x32Test : public ::testing::TestWithParam<trans_32x32_param_t> {
public:
virtual ~Trans32x32Test() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
version_ = GET_PARAM(2); // 0: high precision forward transform
// 1: low precision version for rd loop
}
virtual void TearDown() { libvpx_test::ClearSystemState(); }
protected:
int version_;
fwd_txfm_t fwd_txfm_;
inv_txfm_t inv_txfm_;
};
TEST_P(Trans32x32Test, AccuracyCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
uint32_t max_error = 0;
int64_t total_error = 0;
const int count_test_block = 1000;
DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, test_temp_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs);
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < kNumCoeffs; ++j) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
test_input_block[j] = src[j] - dst[j];
}
REGISTER_STATE_CHECK(fwd_txfm_(test_input_block, test_temp_block, 32));
REGISTER_STATE_CHECK(inv_txfm_(test_temp_block, dst, 32));
for (int j = 0; j < kNumCoeffs; ++j) {
const uint32_t diff = dst[j] - src[j];
const uint32_t error = diff * diff;
if (max_error < error)
max_error = error;
total_error += error;
}
}
if (version_ == 1) {
max_error /= 2;
total_error /= 45;
}
EXPECT_GE(1u, max_error)
<< "Error: 32x32 FDCT/IDCT has an individual round-trip error > 1";
EXPECT_GE(count_test_block, total_error)
<< "Error: 32x32 FDCT/IDCT has average round-trip error > 1 per block";
}
TEST_P(Trans32x32Test, CoeffCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, kNumCoeffs);
for (int i = 0; i < count_test_block; ++i) {
for (int j = 0; j < kNumCoeffs; ++j)
input_block[j] = rnd.Rand8() - rnd.Rand8();
const int stride = 32;
vp9_fdct32x32_c(input_block, output_ref_block, stride);
REGISTER_STATE_CHECK(fwd_txfm_(input_block, output_block, stride));
if (version_ == 0) {
for (int j = 0; j < kNumCoeffs; ++j)
EXPECT_EQ(output_block[j], output_ref_block[j])
<< "Error: 32x32 FDCT versions have mismatched coefficients";
} else {
for (int j = 0; j < kNumCoeffs; ++j)
EXPECT_GE(6, abs(output_block[j] - output_ref_block[j]))
<< "Error: 32x32 FDCT rd has mismatched coefficients";
}
}
}
TEST_P(Trans32x32Test, MemCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 2000;
DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, input_extreme_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, kNumCoeffs);
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < kNumCoeffs; ++j) {
input_block[j] = rnd.Rand8() - rnd.Rand8();
input_extreme_block[j] = rnd.Rand8() & 1 ? 255 : -255;
}
if (i == 0)
for (int j = 0; j < kNumCoeffs; ++j)
input_extreme_block[j] = 255;
if (i == 1)
for (int j = 0; j < kNumCoeffs; ++j)
input_extreme_block[j] = -255;
const int stride = 32;
vp9_fdct32x32_c(input_extreme_block, output_ref_block, stride);
REGISTER_STATE_CHECK(fwd_txfm_(input_extreme_block, output_block, stride));
// The minimum quant value is 4.
for (int j = 0; j < kNumCoeffs; ++j) {
if (version_ == 0) {
EXPECT_EQ(output_block[j], output_ref_block[j])
<< "Error: 32x32 FDCT versions have mismatched coefficients";
} else {
EXPECT_GE(6, abs(output_block[j] - output_ref_block[j]))
<< "Error: 32x32 FDCT rd has mismatched coefficients";
}
EXPECT_GE(4 * DCT_MAX_VALUE, abs(output_ref_block[j]))
<< "Error: 32x32 FDCT C has coefficient larger than 4*DCT_MAX_VALUE";
EXPECT_GE(4 * DCT_MAX_VALUE, abs(output_block[j]))
<< "Error: 32x32 FDCT has coefficient larger than "
<< "4*DCT_MAX_VALUE";
}
}
}
TEST_P(Trans32x32Test, InverseAccuracy) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
DECLARE_ALIGNED_ARRAY(16, int16_t, in, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, coeff, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs);
for (int i = 0; i < count_test_block; ++i) {
double out_r[kNumCoeffs];
// Initialize a test block with input range [-255, 255]
for (int j = 0; j < kNumCoeffs; ++j) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
in[j] = src[j] - dst[j];
}
reference_32x32_dct_2d(in, out_r);
for (int j = 0; j < kNumCoeffs; ++j)
coeff[j] = round(out_r[j]);
REGISTER_STATE_CHECK(inv_txfm_(coeff, dst, 32));
for (int j = 0; j < kNumCoeffs; ++j) {
const int diff = dst[j] - src[j];
const int error = diff * diff;
EXPECT_GE(1, error)
<< "Error: 32x32 IDCT has error " << error
<< " at index " << j;
}
}
}
using std::tr1::make_tuple;
INSTANTIATE_TEST_CASE_P(
C, Trans32x32Test,
::testing::Values(
make_tuple(&vp9_fdct32x32_c, &vp9_idct32x32_1024_add_c, 0),
make_tuple(&vp9_fdct32x32_rd_c, &vp9_idct32x32_1024_add_c, 1)));
#if HAVE_SSE2
INSTANTIATE_TEST_CASE_P(
SSE2, Trans32x32Test,
::testing::Values(
make_tuple(&vp9_fdct32x32_sse2,
&vp9_idct32x32_1024_add_sse2, 0),
make_tuple(&vp9_fdct32x32_rd_sse2,
&vp9_idct32x32_1024_add_sse2, 1)));
#endif
} // namespace