1299 lines
39 KiB
C
1299 lines
39 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
|
|
#include "vpx_config.h"
|
|
#include "encodemb.h"
|
|
#include "encodemv.h"
|
|
#include "vp8/common/common.h"
|
|
#include "onyx_int.h"
|
|
#include "vp8/common/extend.h"
|
|
#include "vp8/common/entropymode.h"
|
|
#include "vp8/common/quant_common.h"
|
|
#include "segmentation.h"
|
|
#include "vp8/common/setupintrarecon.h"
|
|
#include "encodeintra.h"
|
|
#include "vp8/common/reconinter.h"
|
|
#include "rdopt.h"
|
|
#include "pickinter.h"
|
|
#include "vp8/common/findnearmv.h"
|
|
#include <stdio.h>
|
|
#include <limits.h>
|
|
#include "vp8/common/invtrans.h"
|
|
#include "vpx_ports/vpx_timer.h"
|
|
|
|
extern void vp8_stuff_mb(VP8_COMP *cpi, MACROBLOCKD *x, TOKENEXTRA **t) ;
|
|
extern void vp8_calc_ref_frame_costs(int *ref_frame_cost,
|
|
int prob_intra,
|
|
int prob_last,
|
|
int prob_garf
|
|
);
|
|
extern void vp8_convert_rfct_to_prob(VP8_COMP *const cpi);
|
|
extern void vp8cx_initialize_me_consts(VP8_COMP *cpi, int QIndex);
|
|
extern void vp8_auto_select_speed(VP8_COMP *cpi);
|
|
extern void vp8cx_init_mbrthread_data(VP8_COMP *cpi,
|
|
MACROBLOCK *x,
|
|
MB_ROW_COMP *mbr_ei,
|
|
int mb_row,
|
|
int count);
|
|
void vp8_build_block_offsets(MACROBLOCK *x);
|
|
void vp8_setup_block_ptrs(MACROBLOCK *x);
|
|
int vp8cx_encode_inter_macroblock(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t, int recon_yoffset, int recon_uvoffset, int mb_row, int mb_col);
|
|
int vp8cx_encode_intra_macro_block(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t, int mb_row, int mb_col);
|
|
static void adjust_act_zbin( VP8_COMP *cpi, MACROBLOCK *x );
|
|
|
|
#ifdef MODE_STATS
|
|
unsigned int inter_y_modes[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
unsigned int inter_uv_modes[4] = {0, 0, 0, 0};
|
|
unsigned int inter_b_modes[15] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
unsigned int y_modes[5] = {0, 0, 0, 0, 0};
|
|
unsigned int uv_modes[4] = {0, 0, 0, 0};
|
|
unsigned int b_modes[14] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
#endif
|
|
|
|
|
|
/* activity_avg must be positive, or flat regions could get a zero weight
|
|
* (infinite lambda), which confounds analysis.
|
|
* This also avoids the need for divide by zero checks in
|
|
* vp8_activity_masking().
|
|
*/
|
|
#define VP8_ACTIVITY_AVG_MIN (64)
|
|
|
|
/* This is used as a reference when computing the source variance for the
|
|
* purposes of activity masking.
|
|
* Eventually this should be replaced by custom no-reference routines,
|
|
* which will be faster.
|
|
*/
|
|
static const unsigned char VP8_VAR_OFFS[16]=
|
|
{
|
|
128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128
|
|
};
|
|
|
|
|
|
// Original activity measure from Tim T's code.
|
|
static unsigned int tt_activity_measure( VP8_COMP *cpi, MACROBLOCK *x )
|
|
{
|
|
unsigned int act;
|
|
unsigned int sse;
|
|
/* TODO: This could also be done over smaller areas (8x8), but that would
|
|
* require extensive changes elsewhere, as lambda is assumed to be fixed
|
|
* over an entire MB in most of the code.
|
|
* Another option is to compute four 8x8 variances, and pick a single
|
|
* lambda using a non-linear combination (e.g., the smallest, or second
|
|
* smallest, etc.).
|
|
*/
|
|
act = vp8_variance16x16(x->src.y_buffer,
|
|
x->src.y_stride, VP8_VAR_OFFS, 0, &sse);
|
|
act = act<<4;
|
|
|
|
/* If the region is flat, lower the activity some more. */
|
|
if (act < 8<<12)
|
|
act = act < 5<<12 ? act : 5<<12;
|
|
|
|
return act;
|
|
}
|
|
|
|
// Stub for alternative experimental activity measures.
|
|
static unsigned int alt_activity_measure( VP8_COMP *cpi,
|
|
MACROBLOCK *x, int use_dc_pred )
|
|
{
|
|
return vp8_encode_intra(cpi,x, use_dc_pred);
|
|
}
|
|
|
|
|
|
// Measure the activity of the current macroblock
|
|
// What we measure here is TBD so abstracted to this function
|
|
#define ALT_ACT_MEASURE 1
|
|
static unsigned int mb_activity_measure( VP8_COMP *cpi, MACROBLOCK *x,
|
|
int mb_row, int mb_col)
|
|
{
|
|
unsigned int mb_activity;
|
|
|
|
if ( ALT_ACT_MEASURE )
|
|
{
|
|
int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
|
|
|
|
// Or use and alternative.
|
|
mb_activity = alt_activity_measure( cpi, x, use_dc_pred );
|
|
}
|
|
else
|
|
{
|
|
// Original activity measure from Tim T's code.
|
|
mb_activity = tt_activity_measure( cpi, x );
|
|
}
|
|
|
|
if ( mb_activity < VP8_ACTIVITY_AVG_MIN )
|
|
mb_activity = VP8_ACTIVITY_AVG_MIN;
|
|
|
|
return mb_activity;
|
|
}
|
|
|
|
// Calculate an "average" mb activity value for the frame
|
|
#define ACT_MEDIAN 0
|
|
static void calc_av_activity( VP8_COMP *cpi, int64_t activity_sum )
|
|
{
|
|
#if ACT_MEDIAN
|
|
// Find median: Simple n^2 algorithm for experimentation
|
|
{
|
|
unsigned int median;
|
|
unsigned int i,j;
|
|
unsigned int * sortlist;
|
|
unsigned int tmp;
|
|
|
|
// Create a list to sort to
|
|
CHECK_MEM_ERROR(sortlist,
|
|
vpx_calloc(sizeof(unsigned int),
|
|
cpi->common.MBs));
|
|
|
|
// Copy map to sort list
|
|
vpx_memcpy( sortlist, cpi->mb_activity_map,
|
|
sizeof(unsigned int) * cpi->common.MBs );
|
|
|
|
|
|
// Ripple each value down to its correct position
|
|
for ( i = 1; i < cpi->common.MBs; i ++ )
|
|
{
|
|
for ( j = i; j > 0; j -- )
|
|
{
|
|
if ( sortlist[j] < sortlist[j-1] )
|
|
{
|
|
// Swap values
|
|
tmp = sortlist[j-1];
|
|
sortlist[j-1] = sortlist[j];
|
|
sortlist[j] = tmp;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Even number MBs so estimate median as mean of two either side.
|
|
median = ( 1 + sortlist[cpi->common.MBs >> 1] +
|
|
sortlist[(cpi->common.MBs >> 1) + 1] ) >> 1;
|
|
|
|
cpi->activity_avg = median;
|
|
|
|
vpx_free(sortlist);
|
|
}
|
|
#else
|
|
// Simple mean for now
|
|
cpi->activity_avg = (unsigned int)(activity_sum/cpi->common.MBs);
|
|
#endif
|
|
|
|
if (cpi->activity_avg < VP8_ACTIVITY_AVG_MIN)
|
|
cpi->activity_avg = VP8_ACTIVITY_AVG_MIN;
|
|
|
|
// Experimental code: return fixed value normalized for several clips
|
|
if ( ALT_ACT_MEASURE )
|
|
cpi->activity_avg = 100000;
|
|
}
|
|
|
|
#define USE_ACT_INDEX 0
|
|
#define OUTPUT_NORM_ACT_STATS 0
|
|
|
|
#if USE_ACT_INDEX
|
|
// Calculate and activity index for each mb
|
|
static void calc_activity_index( VP8_COMP *cpi, MACROBLOCK *x )
|
|
{
|
|
VP8_COMMON *const cm = & cpi->common;
|
|
int mb_row, mb_col;
|
|
|
|
int64_t act;
|
|
int64_t a;
|
|
int64_t b;
|
|
|
|
#if OUTPUT_NORM_ACT_STATS
|
|
FILE *f = fopen("norm_act.stt", "a");
|
|
fprintf(f, "\n%12d\n", cpi->activity_avg );
|
|
#endif
|
|
|
|
// Reset pointers to start of activity map
|
|
x->mb_activity_ptr = cpi->mb_activity_map;
|
|
|
|
// Calculate normalized mb activity number.
|
|
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++)
|
|
{
|
|
// for each macroblock col in image
|
|
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++)
|
|
{
|
|
// Read activity from the map
|
|
act = *(x->mb_activity_ptr);
|
|
|
|
// Calculate a normalized activity number
|
|
a = act + 4*cpi->activity_avg;
|
|
b = 4*act + cpi->activity_avg;
|
|
|
|
if ( b >= a )
|
|
*(x->activity_ptr) = (int)((b + (a>>1))/a) - 1;
|
|
else
|
|
*(x->activity_ptr) = 1 - (int)((a + (b>>1))/b);
|
|
|
|
#if OUTPUT_NORM_ACT_STATS
|
|
fprintf(f, " %6d", *(x->mb_activity_ptr));
|
|
#endif
|
|
// Increment activity map pointers
|
|
x->mb_activity_ptr++;
|
|
}
|
|
|
|
#if OUTPUT_NORM_ACT_STATS
|
|
fprintf(f, "\n");
|
|
#endif
|
|
|
|
}
|
|
|
|
#if OUTPUT_NORM_ACT_STATS
|
|
fclose(f);
|
|
#endif
|
|
|
|
}
|
|
#endif
|
|
|
|
// Loop through all MBs. Note activity of each, average activity and
|
|
// calculate a normalized activity for each
|
|
static void build_activity_map( VP8_COMP *cpi )
|
|
{
|
|
MACROBLOCK *const x = & cpi->mb;
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
VP8_COMMON *const cm = & cpi->common;
|
|
|
|
#if ALT_ACT_MEASURE
|
|
YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
|
|
int recon_yoffset;
|
|
int recon_y_stride = new_yv12->y_stride;
|
|
#endif
|
|
|
|
int mb_row, mb_col;
|
|
unsigned int mb_activity;
|
|
int64_t activity_sum = 0;
|
|
|
|
// for each macroblock row in image
|
|
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++)
|
|
{
|
|
#if ALT_ACT_MEASURE
|
|
// reset above block coeffs
|
|
xd->up_available = (mb_row != 0);
|
|
recon_yoffset = (mb_row * recon_y_stride * 16);
|
|
#endif
|
|
// for each macroblock col in image
|
|
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++)
|
|
{
|
|
#if ALT_ACT_MEASURE
|
|
xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset;
|
|
xd->left_available = (mb_col != 0);
|
|
recon_yoffset += 16;
|
|
#endif
|
|
//Copy current mb to a buffer
|
|
vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16);
|
|
|
|
// measure activity
|
|
mb_activity = mb_activity_measure( cpi, x, mb_row, mb_col );
|
|
|
|
// Keep frame sum
|
|
activity_sum += mb_activity;
|
|
|
|
// Store MB level activity details.
|
|
*x->mb_activity_ptr = mb_activity;
|
|
|
|
// Increment activity map pointer
|
|
x->mb_activity_ptr++;
|
|
|
|
// adjust to the next column of source macroblocks
|
|
x->src.y_buffer += 16;
|
|
}
|
|
|
|
|
|
// adjust to the next row of mbs
|
|
x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
|
|
|
|
#if ALT_ACT_MEASURE
|
|
//extend the recon for intra prediction
|
|
vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16,
|
|
xd->dst.u_buffer + 8, xd->dst.v_buffer + 8);
|
|
#endif
|
|
|
|
}
|
|
|
|
// Calculate an "average" MB activity
|
|
calc_av_activity(cpi, activity_sum);
|
|
|
|
#if USE_ACT_INDEX
|
|
// Calculate an activity index number of each mb
|
|
calc_activity_index( cpi, x );
|
|
#endif
|
|
|
|
}
|
|
|
|
// Macroblock activity masking
|
|
void vp8_activity_masking(VP8_COMP *cpi, MACROBLOCK *x)
|
|
{
|
|
#if USE_ACT_INDEX
|
|
x->rdmult += *(x->mb_activity_ptr) * (x->rdmult >> 2);
|
|
x->errorperbit = x->rdmult * 100 /(110 * x->rddiv);
|
|
x->errorperbit += (x->errorperbit==0);
|
|
#else
|
|
int64_t a;
|
|
int64_t b;
|
|
int64_t act = *(x->mb_activity_ptr);
|
|
|
|
// Apply the masking to the RD multiplier.
|
|
a = act + (2*cpi->activity_avg);
|
|
b = (2*act) + cpi->activity_avg;
|
|
|
|
x->rdmult = (unsigned int)(((int64_t)x->rdmult*b + (a>>1))/a);
|
|
x->errorperbit = x->rdmult * 100 /(110 * x->rddiv);
|
|
x->errorperbit += (x->errorperbit==0);
|
|
#endif
|
|
|
|
// Activity based Zbin adjustment
|
|
adjust_act_zbin(cpi, x);
|
|
}
|
|
|
|
static
|
|
void encode_mb_row(VP8_COMP *cpi,
|
|
VP8_COMMON *cm,
|
|
int mb_row,
|
|
MACROBLOCK *x,
|
|
MACROBLOCKD *xd,
|
|
TOKENEXTRA **tp,
|
|
int *segment_counts,
|
|
int *totalrate)
|
|
{
|
|
int recon_yoffset, recon_uvoffset;
|
|
int mb_col;
|
|
int ref_fb_idx = cm->lst_fb_idx;
|
|
int dst_fb_idx = cm->new_fb_idx;
|
|
int recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride;
|
|
int recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride;
|
|
int map_index = (mb_row * cpi->common.mb_cols);
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
const int nsync = cpi->mt_sync_range;
|
|
const int rightmost_col = cm->mb_cols - 1;
|
|
volatile const int *last_row_current_mb_col;
|
|
|
|
if ((cpi->b_multi_threaded != 0) && (mb_row != 0))
|
|
last_row_current_mb_col = &cpi->mt_current_mb_col[mb_row - 1];
|
|
else
|
|
last_row_current_mb_col = &rightmost_col;
|
|
#endif
|
|
|
|
// reset above block coeffs
|
|
xd->above_context = cm->above_context;
|
|
|
|
xd->up_available = (mb_row != 0);
|
|
recon_yoffset = (mb_row * recon_y_stride * 16);
|
|
recon_uvoffset = (mb_row * recon_uv_stride * 8);
|
|
|
|
cpi->tplist[mb_row].start = *tp;
|
|
//printf("Main mb_row = %d\n", mb_row);
|
|
|
|
// Distance of Mb to the top & bottom edges, specified in 1/8th pel
|
|
// units as they are always compared to values that are in 1/8th pel units
|
|
xd->mb_to_top_edge = -((mb_row * 16) << 3);
|
|
xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3;
|
|
|
|
// Set up limit values for vertical motion vector components
|
|
// to prevent them extending beyond the UMV borders
|
|
x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16));
|
|
x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16)
|
|
+ (VP8BORDERINPIXELS - 16);
|
|
|
|
// Set the mb activity pointer to the start of the row.
|
|
x->mb_activity_ptr = &cpi->mb_activity_map[map_index];
|
|
|
|
// for each macroblock col in image
|
|
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++)
|
|
{
|
|
// Distance of Mb to the left & right edges, specified in
|
|
// 1/8th pel units as they are always compared to values
|
|
// that are in 1/8th pel units
|
|
xd->mb_to_left_edge = -((mb_col * 16) << 3);
|
|
xd->mb_to_right_edge = ((cm->mb_cols - 1 - mb_col) * 16) << 3;
|
|
|
|
// Set up limit values for horizontal motion vector components
|
|
// to prevent them extending beyond the UMV borders
|
|
x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16));
|
|
x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16)
|
|
+ (VP8BORDERINPIXELS - 16);
|
|
|
|
xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset;
|
|
xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset;
|
|
xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset;
|
|
xd->left_available = (mb_col != 0);
|
|
|
|
x->rddiv = cpi->RDDIV;
|
|
x->rdmult = cpi->RDMULT;
|
|
|
|
//Copy current mb to a buffer
|
|
vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16);
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
if ((cpi->b_multi_threaded != 0) && (mb_row != 0))
|
|
{
|
|
if ((mb_col & (nsync - 1)) == 0)
|
|
{
|
|
while (mb_col > (*last_row_current_mb_col - nsync)
|
|
&& (*last_row_current_mb_col) != (cm->mb_cols - 1))
|
|
{
|
|
x86_pause_hint();
|
|
thread_sleep(0);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if(cpi->oxcf.tuning == VP8_TUNE_SSIM)
|
|
vp8_activity_masking(cpi, x);
|
|
|
|
// Is segmentation enabled
|
|
// MB level adjustment to quantizer
|
|
if (xd->segmentation_enabled)
|
|
{
|
|
// Code to set segment id in xd->mbmi.segment_id for current MB (with range checking)
|
|
if (cpi->segmentation_map[map_index+mb_col] <= 3)
|
|
xd->mode_info_context->mbmi.segment_id = cpi->segmentation_map[map_index+mb_col];
|
|
else
|
|
xd->mode_info_context->mbmi.segment_id = 0;
|
|
|
|
vp8cx_mb_init_quantizer(cpi, x, 1);
|
|
}
|
|
else
|
|
xd->mode_info_context->mbmi.segment_id = 0; // Set to Segment 0 by default
|
|
|
|
x->active_ptr = cpi->active_map + map_index + mb_col;
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
*totalrate += vp8cx_encode_intra_macro_block(cpi, x, tp, mb_row, mb_col);
|
|
#ifdef MODE_STATS
|
|
y_modes[xd->mbmi.mode] ++;
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
*totalrate += vp8cx_encode_inter_macroblock(cpi, x, tp, recon_yoffset, recon_uvoffset, mb_row, mb_col);
|
|
|
|
#ifdef MODE_STATS
|
|
inter_y_modes[xd->mbmi.mode] ++;
|
|
|
|
if (xd->mbmi.mode == SPLITMV)
|
|
{
|
|
int b;
|
|
|
|
for (b = 0; b < xd->mbmi.partition_count; b++)
|
|
{
|
|
inter_b_modes[x->partition->bmi[b].mode] ++;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
// Count of last ref frame 0,0 useage
|
|
if ((xd->mode_info_context->mbmi.mode == ZEROMV) && (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME))
|
|
cpi->inter_zz_count ++;
|
|
|
|
// Special case code for cyclic refresh
|
|
// If cyclic update enabled then copy xd->mbmi.segment_id; (which may have been updated based on mode
|
|
// during vp8cx_encode_inter_macroblock()) back into the global sgmentation map
|
|
if ((cpi->current_layer == 0) &&
|
|
(cpi->cyclic_refresh_mode_enabled && xd->segmentation_enabled))
|
|
{
|
|
cpi->segmentation_map[map_index+mb_col] = xd->mode_info_context->mbmi.segment_id;
|
|
|
|
// If the block has been refreshed mark it as clean (the magnitude of the -ve influences how long it will be before we consider another refresh):
|
|
// Else if it was coded (last frame 0,0) and has not already been refreshed then mark it as a candidate for cleanup next time (marked 0)
|
|
// else mark it as dirty (1).
|
|
if (xd->mode_info_context->mbmi.segment_id)
|
|
cpi->cyclic_refresh_map[map_index+mb_col] = -1;
|
|
else if ((xd->mode_info_context->mbmi.mode == ZEROMV) && (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME))
|
|
{
|
|
if (cpi->cyclic_refresh_map[map_index+mb_col] == 1)
|
|
cpi->cyclic_refresh_map[map_index+mb_col] = 0;
|
|
}
|
|
else
|
|
cpi->cyclic_refresh_map[map_index+mb_col] = 1;
|
|
|
|
}
|
|
}
|
|
|
|
cpi->tplist[mb_row].stop = *tp;
|
|
|
|
// Increment pointer into gf useage flags structure.
|
|
x->gf_active_ptr++;
|
|
|
|
// Increment the activity mask pointers.
|
|
x->mb_activity_ptr++;
|
|
|
|
// adjust to the next column of macroblocks
|
|
x->src.y_buffer += 16;
|
|
x->src.u_buffer += 8;
|
|
x->src.v_buffer += 8;
|
|
|
|
recon_yoffset += 16;
|
|
recon_uvoffset += 8;
|
|
|
|
// Keep track of segment useage
|
|
segment_counts[xd->mode_info_context->mbmi.segment_id] ++;
|
|
|
|
// skip to next mb
|
|
xd->mode_info_context++;
|
|
x->partition_info++;
|
|
|
|
xd->above_context++;
|
|
#if CONFIG_MULTITHREAD
|
|
if (cpi->b_multi_threaded != 0)
|
|
{
|
|
cpi->mt_current_mb_col[mb_row] = mb_col;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
//extend the recon for intra prediction
|
|
vp8_extend_mb_row(
|
|
&cm->yv12_fb[dst_fb_idx],
|
|
xd->dst.y_buffer + 16,
|
|
xd->dst.u_buffer + 8,
|
|
xd->dst.v_buffer + 8);
|
|
|
|
// this is to account for the border
|
|
xd->mode_info_context++;
|
|
x->partition_info++;
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
if ((cpi->b_multi_threaded != 0) && (mb_row == cm->mb_rows - 1))
|
|
{
|
|
sem_post(&cpi->h_event_end_encoding); /* signal frame encoding end */
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void init_encode_frame_mb_context(VP8_COMP *cpi)
|
|
{
|
|
MACROBLOCK *const x = & cpi->mb;
|
|
VP8_COMMON *const cm = & cpi->common;
|
|
MACROBLOCKD *const xd = & x->e_mbd;
|
|
|
|
// GF active flags data structure
|
|
x->gf_active_ptr = (signed char *)cpi->gf_active_flags;
|
|
|
|
// Activity map pointer
|
|
x->mb_activity_ptr = cpi->mb_activity_map;
|
|
|
|
x->act_zbin_adj = 0;
|
|
|
|
x->partition_info = x->pi;
|
|
|
|
xd->mode_info_context = cm->mi;
|
|
xd->mode_info_stride = cm->mode_info_stride;
|
|
|
|
xd->frame_type = cm->frame_type;
|
|
|
|
// reset intra mode contexts
|
|
if (cm->frame_type == KEY_FRAME)
|
|
vp8_init_mbmode_probs(cm);
|
|
|
|
// Copy data over into macro block data sturctures.
|
|
x->src = * cpi->Source;
|
|
xd->pre = cm->yv12_fb[cm->lst_fb_idx];
|
|
xd->dst = cm->yv12_fb[cm->new_fb_idx];
|
|
|
|
// set up frame for intra coded blocks
|
|
vp8_setup_intra_recon(&cm->yv12_fb[cm->new_fb_idx]);
|
|
|
|
vp8_build_block_offsets(x);
|
|
|
|
vp8_setup_block_dptrs(&x->e_mbd);
|
|
|
|
vp8_setup_block_ptrs(x);
|
|
|
|
xd->mode_info_context->mbmi.mode = DC_PRED;
|
|
xd->mode_info_context->mbmi.uv_mode = DC_PRED;
|
|
|
|
xd->left_context = &cm->left_context;
|
|
|
|
vp8_zero(cpi->count_mb_ref_frame_usage)
|
|
vp8_zero(cpi->ymode_count)
|
|
vp8_zero(cpi->uv_mode_count)
|
|
|
|
x->mvc = cm->fc.mvc;
|
|
|
|
vpx_memset(cm->above_context, 0,
|
|
sizeof(ENTROPY_CONTEXT_PLANES) * cm->mb_cols);
|
|
|
|
// Special case treatment when GF and ARF are not sensible options for reference
|
|
if (cpi->ref_frame_flags == VP8_LAST_FLAG)
|
|
vp8_calc_ref_frame_costs(x->ref_frame_cost,
|
|
cpi->prob_intra_coded,255,128);
|
|
else if ((cpi->oxcf.number_of_layers > 1) &&
|
|
(cpi->ref_frame_flags == VP8_GOLD_FLAG))
|
|
vp8_calc_ref_frame_costs(x->ref_frame_cost,
|
|
cpi->prob_intra_coded,1,255);
|
|
else if ((cpi->oxcf.number_of_layers > 1) &&
|
|
(cpi->ref_frame_flags == VP8_ALT_FLAG))
|
|
vp8_calc_ref_frame_costs(x->ref_frame_cost,
|
|
cpi->prob_intra_coded,1,1);
|
|
else
|
|
vp8_calc_ref_frame_costs(x->ref_frame_cost,
|
|
cpi->prob_intra_coded,
|
|
cpi->prob_last_coded,
|
|
cpi->prob_gf_coded);
|
|
|
|
xd->fullpixel_mask = 0xffffffff;
|
|
if(cm->full_pixel)
|
|
xd->fullpixel_mask = 0xfffffff8;
|
|
}
|
|
|
|
void vp8_encode_frame(VP8_COMP *cpi)
|
|
{
|
|
int mb_row;
|
|
MACROBLOCK *const x = & cpi->mb;
|
|
VP8_COMMON *const cm = & cpi->common;
|
|
MACROBLOCKD *const xd = & x->e_mbd;
|
|
|
|
TOKENEXTRA *tp = cpi->tok;
|
|
int segment_counts[MAX_MB_SEGMENTS];
|
|
int totalrate;
|
|
|
|
vpx_memset(segment_counts, 0, sizeof(segment_counts));
|
|
totalrate = 0;
|
|
|
|
if (cpi->compressor_speed == 2)
|
|
{
|
|
if (cpi->oxcf.cpu_used < 0)
|
|
cpi->Speed = -(cpi->oxcf.cpu_used);
|
|
else
|
|
vp8_auto_select_speed(cpi);
|
|
}
|
|
|
|
// Functions setup for all frame types so we can use MC in AltRef
|
|
if (cm->mcomp_filter_type == SIXTAP)
|
|
{
|
|
xd->subpixel_predict = vp8_sixtap_predict4x4;
|
|
xd->subpixel_predict8x4 = vp8_sixtap_predict8x4;
|
|
xd->subpixel_predict8x8 = vp8_sixtap_predict8x8;
|
|
xd->subpixel_predict16x16 = vp8_sixtap_predict16x16;
|
|
}
|
|
else
|
|
{
|
|
xd->subpixel_predict = vp8_bilinear_predict4x4;
|
|
xd->subpixel_predict8x4 = vp8_bilinear_predict8x4;
|
|
xd->subpixel_predict8x8 = vp8_bilinear_predict8x8;
|
|
xd->subpixel_predict16x16 = vp8_bilinear_predict16x16;
|
|
}
|
|
|
|
// Reset frame count of inter 0,0 motion vector usage.
|
|
cpi->inter_zz_count = 0;
|
|
|
|
cpi->prediction_error = 0;
|
|
cpi->intra_error = 0;
|
|
cpi->skip_true_count = 0;
|
|
|
|
#if 0
|
|
// Experimental code
|
|
cpi->frame_distortion = 0;
|
|
cpi->last_mb_distortion = 0;
|
|
#endif
|
|
|
|
xd->mode_info_context = cm->mi;
|
|
|
|
vp8_zero(cpi->MVcount);
|
|
vp8_zero(cpi->coef_counts);
|
|
|
|
vp8cx_frame_init_quantizer(cpi);
|
|
|
|
vp8_initialize_rd_consts(cpi,
|
|
vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q));
|
|
|
|
vp8cx_initialize_me_consts(cpi, cm->base_qindex);
|
|
|
|
if(cpi->oxcf.tuning == VP8_TUNE_SSIM)
|
|
{
|
|
// Initialize encode frame context.
|
|
init_encode_frame_mb_context(cpi);
|
|
|
|
// Build a frame level activity map
|
|
build_activity_map(cpi);
|
|
}
|
|
|
|
// re-initencode frame context.
|
|
init_encode_frame_mb_context(cpi);
|
|
|
|
{
|
|
struct vpx_usec_timer emr_timer;
|
|
vpx_usec_timer_start(&emr_timer);
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
if (cpi->b_multi_threaded)
|
|
{
|
|
int i;
|
|
|
|
vp8cx_init_mbrthread_data(cpi, x, cpi->mb_row_ei, 1, cpi->encoding_thread_count);
|
|
|
|
for (i = 0; i < cm->mb_rows; i++)
|
|
cpi->mt_current_mb_col[i] = -1;
|
|
|
|
for (i = 0; i < cpi->encoding_thread_count; i++)
|
|
{
|
|
sem_post(&cpi->h_event_start_encoding[i]);
|
|
}
|
|
|
|
for (mb_row = 0; mb_row < cm->mb_rows; mb_row += (cpi->encoding_thread_count + 1))
|
|
{
|
|
vp8_zero(cm->left_context)
|
|
|
|
tp = cpi->tok + mb_row * (cm->mb_cols * 16 * 24);
|
|
|
|
encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate);
|
|
|
|
// adjust to the next row of mbs
|
|
x->src.y_buffer += 16 * x->src.y_stride * (cpi->encoding_thread_count + 1) - 16 * cm->mb_cols;
|
|
x->src.u_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols;
|
|
x->src.v_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols;
|
|
|
|
xd->mode_info_context += xd->mode_info_stride * cpi->encoding_thread_count;
|
|
x->partition_info += xd->mode_info_stride * cpi->encoding_thread_count;
|
|
x->gf_active_ptr += cm->mb_cols * cpi->encoding_thread_count;
|
|
|
|
}
|
|
|
|
sem_wait(&cpi->h_event_end_encoding); /* wait for other threads to finish */
|
|
|
|
cpi->tok_count = 0;
|
|
|
|
for (mb_row = 0; mb_row < cm->mb_rows; mb_row ++)
|
|
{
|
|
cpi->tok_count += cpi->tplist[mb_row].stop - cpi->tplist[mb_row].start;
|
|
}
|
|
|
|
if (xd->segmentation_enabled)
|
|
{
|
|
int i, j;
|
|
|
|
if (xd->segmentation_enabled)
|
|
{
|
|
|
|
for (i = 0; i < cpi->encoding_thread_count; i++)
|
|
{
|
|
for (j = 0; j < 4; j++)
|
|
segment_counts[j] += cpi->mb_row_ei[i].segment_counts[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < cpi->encoding_thread_count; i++)
|
|
{
|
|
totalrate += cpi->mb_row_ei[i].totalrate;
|
|
}
|
|
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
// for each macroblock row in image
|
|
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++)
|
|
{
|
|
|
|
vp8_zero(cm->left_context)
|
|
|
|
encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate);
|
|
|
|
// adjust to the next row of mbs
|
|
x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
|
|
x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
|
|
x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
|
|
}
|
|
|
|
cpi->tok_count = tp - cpi->tok;
|
|
|
|
}
|
|
|
|
vpx_usec_timer_mark(&emr_timer);
|
|
cpi->time_encode_mb_row += vpx_usec_timer_elapsed(&emr_timer);
|
|
|
|
}
|
|
|
|
|
|
// Work out the segment probabilites if segmentation is enabled
|
|
if (xd->segmentation_enabled)
|
|
{
|
|
int tot_count;
|
|
int i;
|
|
|
|
// Set to defaults
|
|
vpx_memset(xd->mb_segment_tree_probs, 255 , sizeof(xd->mb_segment_tree_probs));
|
|
|
|
tot_count = segment_counts[0] + segment_counts[1] + segment_counts[2] + segment_counts[3];
|
|
|
|
if (tot_count)
|
|
{
|
|
xd->mb_segment_tree_probs[0] = ((segment_counts[0] + segment_counts[1]) * 255) / tot_count;
|
|
|
|
tot_count = segment_counts[0] + segment_counts[1];
|
|
|
|
if (tot_count > 0)
|
|
{
|
|
xd->mb_segment_tree_probs[1] = (segment_counts[0] * 255) / tot_count;
|
|
}
|
|
|
|
tot_count = segment_counts[2] + segment_counts[3];
|
|
|
|
if (tot_count > 0)
|
|
xd->mb_segment_tree_probs[2] = (segment_counts[2] * 255) / tot_count;
|
|
|
|
// Zero probabilities not allowed
|
|
for (i = 0; i < MB_FEATURE_TREE_PROBS; i ++)
|
|
{
|
|
if (xd->mb_segment_tree_probs[i] == 0)
|
|
xd->mb_segment_tree_probs[i] = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// 256 rate units to the bit
|
|
cpi->projected_frame_size = totalrate >> 8; // projected_frame_size in units of BYTES
|
|
|
|
// Make a note of the percentage MBs coded Intra.
|
|
if (cm->frame_type == KEY_FRAME)
|
|
{
|
|
cpi->this_frame_percent_intra = 100;
|
|
}
|
|
else
|
|
{
|
|
int tot_modes;
|
|
|
|
tot_modes = cpi->count_mb_ref_frame_usage[INTRA_FRAME]
|
|
+ cpi->count_mb_ref_frame_usage[LAST_FRAME]
|
|
+ cpi->count_mb_ref_frame_usage[GOLDEN_FRAME]
|
|
+ cpi->count_mb_ref_frame_usage[ALTREF_FRAME];
|
|
|
|
if (tot_modes)
|
|
cpi->this_frame_percent_intra = cpi->count_mb_ref_frame_usage[INTRA_FRAME] * 100 / tot_modes;
|
|
|
|
}
|
|
|
|
#if 0
|
|
{
|
|
int cnt = 0;
|
|
int flag[2] = {0, 0};
|
|
|
|
for (cnt = 0; cnt < MVPcount; cnt++)
|
|
{
|
|
if (cm->fc.pre_mvc[0][cnt] != cm->fc.mvc[0][cnt])
|
|
{
|
|
flag[0] = 1;
|
|
vpx_memcpy(cm->fc.pre_mvc[0], cm->fc.mvc[0], MVPcount);
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (cnt = 0; cnt < MVPcount; cnt++)
|
|
{
|
|
if (cm->fc.pre_mvc[1][cnt] != cm->fc.mvc[1][cnt])
|
|
{
|
|
flag[1] = 1;
|
|
vpx_memcpy(cm->fc.pre_mvc[1], cm->fc.mvc[1], MVPcount);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (flag[0] || flag[1])
|
|
vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *) cm->fc.mvc, flag);
|
|
}
|
|
#endif
|
|
|
|
// Adjust the projected reference frame useage probability numbers to reflect
|
|
// what we have just seen. This may be usefull when we make multiple itterations
|
|
// of the recode loop rather than continuing to use values from the previous frame.
|
|
if ((cm->frame_type != KEY_FRAME) && ((cpi->oxcf.number_of_layers > 1) ||
|
|
(!cm->refresh_alt_ref_frame && !cm->refresh_golden_frame)))
|
|
{
|
|
vp8_convert_rfct_to_prob(cpi);
|
|
}
|
|
|
|
#if 0
|
|
// Keep record of the total distortion this time around for future use
|
|
cpi->last_frame_distortion = cpi->frame_distortion;
|
|
#endif
|
|
|
|
}
|
|
void vp8_setup_block_ptrs(MACROBLOCK *x)
|
|
{
|
|
int r, c;
|
|
int i;
|
|
|
|
for (r = 0; r < 4; r++)
|
|
{
|
|
for (c = 0; c < 4; c++)
|
|
{
|
|
x->block[r*4+c].src_diff = x->src_diff + r * 4 * 16 + c * 4;
|
|
}
|
|
}
|
|
|
|
for (r = 0; r < 2; r++)
|
|
{
|
|
for (c = 0; c < 2; c++)
|
|
{
|
|
x->block[16 + r*2+c].src_diff = x->src_diff + 256 + r * 4 * 8 + c * 4;
|
|
}
|
|
}
|
|
|
|
|
|
for (r = 0; r < 2; r++)
|
|
{
|
|
for (c = 0; c < 2; c++)
|
|
{
|
|
x->block[20 + r*2+c].src_diff = x->src_diff + 320 + r * 4 * 8 + c * 4;
|
|
}
|
|
}
|
|
|
|
x->block[24].src_diff = x->src_diff + 384;
|
|
|
|
|
|
for (i = 0; i < 25; i++)
|
|
{
|
|
x->block[i].coeff = x->coeff + i * 16;
|
|
}
|
|
}
|
|
|
|
void vp8_build_block_offsets(MACROBLOCK *x)
|
|
{
|
|
int block = 0;
|
|
int br, bc;
|
|
|
|
vp8_build_block_doffsets(&x->e_mbd);
|
|
|
|
// y blocks
|
|
x->thismb_ptr = &x->thismb[0];
|
|
for (br = 0; br < 4; br++)
|
|
{
|
|
for (bc = 0; bc < 4; bc++)
|
|
{
|
|
BLOCK *this_block = &x->block[block];
|
|
//this_block->base_src = &x->src.y_buffer;
|
|
//this_block->src_stride = x->src.y_stride;
|
|
//this_block->src = 4 * br * this_block->src_stride + 4 * bc;
|
|
this_block->base_src = &x->thismb_ptr;
|
|
this_block->src_stride = 16;
|
|
this_block->src = 4 * br * 16 + 4 * bc;
|
|
++block;
|
|
}
|
|
}
|
|
|
|
// u blocks
|
|
for (br = 0; br < 2; br++)
|
|
{
|
|
for (bc = 0; bc < 2; bc++)
|
|
{
|
|
BLOCK *this_block = &x->block[block];
|
|
this_block->base_src = &x->src.u_buffer;
|
|
this_block->src_stride = x->src.uv_stride;
|
|
this_block->src = 4 * br * this_block->src_stride + 4 * bc;
|
|
++block;
|
|
}
|
|
}
|
|
|
|
// v blocks
|
|
for (br = 0; br < 2; br++)
|
|
{
|
|
for (bc = 0; bc < 2; bc++)
|
|
{
|
|
BLOCK *this_block = &x->block[block];
|
|
this_block->base_src = &x->src.v_buffer;
|
|
this_block->src_stride = x->src.uv_stride;
|
|
this_block->src = 4 * br * this_block->src_stride + 4 * bc;
|
|
++block;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void sum_intra_stats(VP8_COMP *cpi, MACROBLOCK *x)
|
|
{
|
|
const MACROBLOCKD *xd = & x->e_mbd;
|
|
const MB_PREDICTION_MODE m = xd->mode_info_context->mbmi.mode;
|
|
const MB_PREDICTION_MODE uvm = xd->mode_info_context->mbmi.uv_mode;
|
|
|
|
#ifdef MODE_STATS
|
|
const int is_key = cpi->common.frame_type == KEY_FRAME;
|
|
|
|
++ (is_key ? uv_modes : inter_uv_modes)[uvm];
|
|
|
|
if (m == B_PRED)
|
|
{
|
|
unsigned int *const bct = is_key ? b_modes : inter_b_modes;
|
|
|
|
int b = 0;
|
|
|
|
do
|
|
{
|
|
++ bct[xd->block[b].bmi.mode];
|
|
}
|
|
while (++b < 16);
|
|
}
|
|
|
|
#endif
|
|
|
|
++cpi->ymode_count[m];
|
|
++cpi->uv_mode_count[uvm];
|
|
|
|
}
|
|
|
|
// Experimental stub function to create a per MB zbin adjustment based on
|
|
// some previously calculated measure of MB activity.
|
|
static void adjust_act_zbin( VP8_COMP *cpi, MACROBLOCK *x )
|
|
{
|
|
#if USE_ACT_INDEX
|
|
x->act_zbin_adj = *(x->mb_activity_ptr);
|
|
#else
|
|
int64_t a;
|
|
int64_t b;
|
|
int64_t act = *(x->mb_activity_ptr);
|
|
|
|
// Apply the masking to the RD multiplier.
|
|
a = act + 4*cpi->activity_avg;
|
|
b = 4*act + cpi->activity_avg;
|
|
|
|
if ( act > cpi->activity_avg )
|
|
x->act_zbin_adj = (int)(((int64_t)b + (a>>1))/a) - 1;
|
|
else
|
|
x->act_zbin_adj = 1 - (int)(((int64_t)a + (b>>1))/b);
|
|
#endif
|
|
}
|
|
|
|
int vp8cx_encode_intra_macro_block(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t,
|
|
int mb_row, int mb_col)
|
|
{
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
int rate;
|
|
|
|
if (cpi->sf.RD && cpi->compressor_speed != 2)
|
|
vp8_rd_pick_intra_mode(cpi, x, &rate);
|
|
else
|
|
vp8_pick_intra_mode(cpi, x, &rate);
|
|
|
|
if(cpi->oxcf.tuning == VP8_TUNE_SSIM)
|
|
{
|
|
adjust_act_zbin( cpi, x );
|
|
vp8_update_zbin_extra(cpi, x);
|
|
}
|
|
|
|
if (x->e_mbd.mode_info_context->mbmi.mode == B_PRED)
|
|
vp8_encode_intra4x4mby(x);
|
|
else
|
|
vp8_encode_intra16x16mby(x);
|
|
|
|
vp8_encode_intra16x16mbuv(x);
|
|
|
|
sum_intra_stats(cpi, x);
|
|
|
|
vp8_tokenize_mb(cpi, &x->e_mbd, t);
|
|
|
|
if (xd->mode_info_context->mbmi.mode != B_PRED)
|
|
vp8_inverse_transform_mby(xd);
|
|
|
|
vp8_dequant_idct_add_uv_block
|
|
(xd->qcoeff+16*16, xd->dequant_uv,
|
|
xd->dst.u_buffer, xd->dst.v_buffer,
|
|
xd->dst.uv_stride, xd->eobs+16);
|
|
return rate;
|
|
}
|
|
#ifdef SPEEDSTATS
|
|
extern int cnt_pm;
|
|
#endif
|
|
|
|
extern void vp8_fix_contexts(MACROBLOCKD *x);
|
|
|
|
int vp8cx_encode_inter_macroblock
|
|
(
|
|
VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t,
|
|
int recon_yoffset, int recon_uvoffset,
|
|
int mb_row, int mb_col
|
|
)
|
|
{
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
int intra_error = 0;
|
|
int rate;
|
|
int distortion;
|
|
|
|
x->skip = 0;
|
|
|
|
if (xd->segmentation_enabled)
|
|
x->encode_breakout = cpi->segment_encode_breakout[xd->mode_info_context->mbmi.segment_id];
|
|
else
|
|
x->encode_breakout = cpi->oxcf.encode_breakout;
|
|
|
|
if (cpi->sf.RD)
|
|
{
|
|
int zbin_mode_boost_enabled = cpi->zbin_mode_boost_enabled;
|
|
|
|
/* Are we using the fast quantizer for the mode selection? */
|
|
if(cpi->sf.use_fastquant_for_pick)
|
|
{
|
|
cpi->mb.quantize_b = vp8_fast_quantize_b;
|
|
cpi->mb.quantize_b_pair = vp8_fast_quantize_b_pair;
|
|
|
|
/* the fast quantizer does not use zbin_extra, so
|
|
* do not recalculate */
|
|
cpi->zbin_mode_boost_enabled = 0;
|
|
}
|
|
vp8_rd_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate,
|
|
&distortion, &intra_error);
|
|
|
|
/* switch back to the regular quantizer for the encode */
|
|
if (cpi->sf.improved_quant)
|
|
{
|
|
cpi->mb.quantize_b = vp8_regular_quantize_b;
|
|
cpi->mb.quantize_b_pair = vp8_regular_quantize_b_pair;
|
|
}
|
|
|
|
/* restore cpi->zbin_mode_boost_enabled */
|
|
cpi->zbin_mode_boost_enabled = zbin_mode_boost_enabled;
|
|
|
|
}
|
|
else
|
|
{
|
|
vp8_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate,
|
|
&distortion, &intra_error, mb_row, mb_col);
|
|
}
|
|
|
|
cpi->prediction_error += distortion;
|
|
cpi->intra_error += intra_error;
|
|
|
|
if(cpi->oxcf.tuning == VP8_TUNE_SSIM)
|
|
{
|
|
// Adjust the zbin based on this MB rate.
|
|
adjust_act_zbin( cpi, x );
|
|
}
|
|
|
|
#if 0
|
|
// Experimental RD code
|
|
cpi->frame_distortion += distortion;
|
|
cpi->last_mb_distortion = distortion;
|
|
#endif
|
|
|
|
// MB level adjutment to quantizer setup
|
|
if (xd->segmentation_enabled)
|
|
{
|
|
// If cyclic update enabled
|
|
if (cpi->current_layer == 0 && cpi->cyclic_refresh_mode_enabled)
|
|
{
|
|
// Clear segment_id back to 0 if not coded (last frame 0,0)
|
|
if ((xd->mode_info_context->mbmi.segment_id == 1) &&
|
|
((xd->mode_info_context->mbmi.ref_frame != LAST_FRAME) || (xd->mode_info_context->mbmi.mode != ZEROMV)))
|
|
{
|
|
xd->mode_info_context->mbmi.segment_id = 0;
|
|
|
|
/* segment_id changed, so update */
|
|
vp8cx_mb_init_quantizer(cpi, x, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
// Experimental code. Special case for gf and arf zeromv modes.
|
|
// Increase zbin size to supress noise
|
|
cpi->zbin_mode_boost = 0;
|
|
if (cpi->zbin_mode_boost_enabled)
|
|
{
|
|
if ( xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME )
|
|
{
|
|
if (xd->mode_info_context->mbmi.mode == ZEROMV)
|
|
{
|
|
if (xd->mode_info_context->mbmi.ref_frame != LAST_FRAME)
|
|
cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST;
|
|
else
|
|
cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST;
|
|
}
|
|
else if (xd->mode_info_context->mbmi.mode == SPLITMV)
|
|
cpi->zbin_mode_boost = 0;
|
|
else
|
|
cpi->zbin_mode_boost = MV_ZBIN_BOOST;
|
|
}
|
|
}
|
|
|
|
/* The fast quantizer doesn't use zbin_extra, only do so with
|
|
* the regular quantizer. */
|
|
if (cpi->sf.improved_quant)
|
|
vp8_update_zbin_extra(cpi, x);
|
|
}
|
|
|
|
cpi->count_mb_ref_frame_usage[xd->mode_info_context->mbmi.ref_frame] ++;
|
|
|
|
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME)
|
|
{
|
|
vp8_encode_intra16x16mbuv(x);
|
|
|
|
if (xd->mode_info_context->mbmi.mode == B_PRED)
|
|
{
|
|
vp8_encode_intra4x4mby(x);
|
|
}
|
|
else
|
|
{
|
|
vp8_encode_intra16x16mby(x);
|
|
}
|
|
|
|
sum_intra_stats(cpi, x);
|
|
}
|
|
else
|
|
{
|
|
int ref_fb_idx;
|
|
|
|
if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)
|
|
ref_fb_idx = cpi->common.lst_fb_idx;
|
|
else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME)
|
|
ref_fb_idx = cpi->common.gld_fb_idx;
|
|
else
|
|
ref_fb_idx = cpi->common.alt_fb_idx;
|
|
|
|
xd->pre.y_buffer = cpi->common.yv12_fb[ref_fb_idx].y_buffer + recon_yoffset;
|
|
xd->pre.u_buffer = cpi->common.yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset;
|
|
xd->pre.v_buffer = cpi->common.yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset;
|
|
|
|
if (!x->skip)
|
|
{
|
|
vp8_encode_inter16x16(x);
|
|
}
|
|
else
|
|
vp8_build_inter16x16_predictors_mb(xd, xd->dst.y_buffer,
|
|
xd->dst.u_buffer, xd->dst.v_buffer,
|
|
xd->dst.y_stride, xd->dst.uv_stride);
|
|
|
|
}
|
|
|
|
if (!x->skip)
|
|
{
|
|
vp8_tokenize_mb(cpi, xd, t);
|
|
|
|
if (xd->mode_info_context->mbmi.mode != B_PRED)
|
|
vp8_inverse_transform_mby(xd);
|
|
|
|
vp8_dequant_idct_add_uv_block
|
|
(xd->qcoeff+16*16, xd->dequant_uv,
|
|
xd->dst.u_buffer, xd->dst.v_buffer,
|
|
xd->dst.uv_stride, xd->eobs+16);
|
|
}
|
|
else
|
|
{
|
|
/* always set mb_skip_coeff as it is needed by the loopfilter */
|
|
xd->mode_info_context->mbmi.mb_skip_coeff = 1;
|
|
|
|
if (cpi->common.mb_no_coeff_skip)
|
|
{
|
|
cpi->skip_true_count ++;
|
|
vp8_fix_contexts(xd);
|
|
}
|
|
else
|
|
{
|
|
vp8_stuff_mb(cpi, xd, t);
|
|
}
|
|
}
|
|
|
|
return rate;
|
|
}
|