Files
vpx/av1/encoder/ransac.c
Yaowu Xu f883b42cab Port renaming changes from AOMedia
Cherry-Picked the following commits:
0defd8f Changed "WebM" to "AOMedia" & "webm" to "aomedia"
54e6676 Replace "VPx" by "AVx"
5082a36 Change "Vpx" to "Avx"
7df44f1 Replace "Vp9" w/ "Av1"
967f722 Remove kVp9CodecId
828f30c Change "Vp8" to "AOM"
030b5ff AUTHORS regenerated
2524cae Add ref-mv experimental flag
016762b Change copyright notice to AOMedia form
81e5526 Replace vp9 w/ av1
9b94565 Add missing files
fa8ca9f Change "vp9" to "av1"
ec838b7  Convert "vp8" to "aom"
80edfa0 Change "VP9" to "AV1"
d1a11fb Change "vp8" to "aom"
7b58251 Point to WebM test data
dd1a5c8 Replace "VP8" with "AOM"
ff00fc0 Change "VPX" to "AOM"
01dee0b Change "vp10" to "av1" in source code
cebe6f0 Convert "vpx" to "aom"
17b0567 rename vp10*.mk to av1_*.mk
fe5f8a8 rename files vp10_* to av1_*

Change-Id: I6fc3d18eb11fc171e46140c836ad5339cf6c9419
2016-08-31 18:19:03 -07:00

941 lines
25 KiB
C

/*
* (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <memory.h>
#include <math.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "av1/encoder/ransac.h"
#define MAX_PARAMDIM 9
#define MAX_MINPTS 4
#define MAX_DEGENERATE_ITER 10
#define MINPTS_MULTIPLIER 5
// svdcmp
// Adopted from Numerical Recipes in C
static const double TINY_NEAR_ZERO = 1.0E-12;
static inline double SIGN(double a, double b) {
return ((b) >= 0 ? fabs(a) : -fabs(a));
}
static inline double PYTHAG(double a, double b) {
double absa, absb, ct;
absa = fabs(a);
absb = fabs(b);
if (absa > absb) {
ct = absb / absa;
return absa * sqrt(1.0 + ct * ct);
} else {
ct = absa / absb;
return (absb == 0) ? 0 : absb * sqrt(1.0 + ct * ct);
}
}
int IMIN(int a, int b) { return (((a) < (b)) ? (a) : (b)); }
int IMAX(int a, int b) { return (((a) < (b)) ? (b) : (a)); }
void MultiplyMat(double *m1, double *m2, double *res, const int M1,
const int N1, const int N2) {
int timesInner = N1;
int timesRows = M1;
int timesCols = N2;
double sum;
int row, col, inner;
for (row = 0; row < timesRows; ++row) {
for (col = 0; col < timesCols; ++col) {
sum = 0;
for (inner = 0; inner < timesInner; ++inner)
sum += m1[row * N1 + inner] * m2[inner * N2 + col];
*(res++) = sum;
}
}
}
static int svdcmp_(double **u, int m, int n, double w[], double **v) {
const int max_its = 30;
int flag, i, its, j, jj, k, l, nm;
double anorm, c, f, g, h, s, scale, x, y, z;
double *rv1 = (double *)malloc(sizeof(*rv1) * (n + 1));
g = scale = anorm = 0.0;
for (i = 0; i < n; i++) {
l = i + 1;
rv1[i] = scale * g;
g = s = scale = 0.0;
if (i < m) {
for (k = i; k < m; k++) scale += fabs(u[k][i]);
if (scale) {
for (k = i; k < m; k++) {
u[k][i] /= scale;
s += u[k][i] * u[k][i];
}
f = u[i][i];
g = -SIGN(sqrt(s), f);
h = f * g - s;
u[i][i] = f - g;
for (j = l; j < n; j++) {
for (s = 0.0, k = i; k < m; k++) s += u[k][i] * u[k][j];
f = s / h;
for (k = i; k < m; k++) u[k][j] += f * u[k][i];
}
for (k = i; k < m; k++) u[k][i] *= scale;
}
}
w[i] = scale * g;
g = s = scale = 0.0;
if (i < m && i != n - 1) {
for (k = l; k < n; k++) scale += fabs(u[i][k]);
if (scale) {
for (k = l; k < n; k++) {
u[i][k] /= scale;
s += u[i][k] * u[i][k];
}
f = u[i][l];
g = -SIGN(sqrt(s), f);
h = f * g - s;
u[i][l] = f - g;
for (k = l; k < n; k++) rv1[k] = u[i][k] / h;
for (j = l; j < m; j++) {
for (s = 0.0, k = l; k < n; k++) s += u[j][k] * u[i][k];
for (k = l; k < n; k++) u[j][k] += s * rv1[k];
}
for (k = l; k < n; k++) u[i][k] *= scale;
}
}
anorm = fmax(anorm, (fabs(w[i]) + fabs(rv1[i])));
}
for (i = n - 1; i >= 0; i--) {
if (i < n - 1) {
if (g) {
for (j = l; j < n; j++) v[j][i] = (u[i][j] / u[i][l]) / g;
for (j = l; j < n; j++) {
for (s = 0.0, k = l; k < n; k++) s += u[i][k] * v[k][j];
for (k = l; k < n; k++) v[k][j] += s * v[k][i];
}
}
for (j = l; j < n; j++) v[i][j] = v[j][i] = 0.0;
}
v[i][i] = 1.0;
g = rv1[i];
l = i;
}
for (i = IMIN(m, n) - 1; i >= 0; i--) {
l = i + 1;
g = w[i];
for (j = l; j < n; j++) u[i][j] = 0.0;
if (g) {
g = 1.0 / g;
for (j = l; j < n; j++) {
for (s = 0.0, k = l; k < m; k++) s += u[k][i] * u[k][j];
f = (s / u[i][i]) * g;
for (k = i; k < m; k++) u[k][j] += f * u[k][i];
}
for (j = i; j < m; j++) u[j][i] *= g;
} else {
for (j = i; j < m; j++) u[j][i] = 0.0;
}
++u[i][i];
}
for (k = n - 1; k >= 0; k--) {
for (its = 0; its < max_its; its++) {
flag = 1;
for (l = k; l >= 0; l--) {
nm = l - 1;
if ((double)(fabs(rv1[l]) + anorm) == anorm || nm < 0) {
flag = 0;
break;
}
if ((double)(fabs(w[nm]) + anorm) == anorm) break;
}
if (flag) {
c = 0.0;
s = 1.0;
for (i = l; i <= k; i++) {
f = s * rv1[i];
rv1[i] = c * rv1[i];
if ((double)(fabs(f) + anorm) == anorm) break;
g = w[i];
h = PYTHAG(f, g);
w[i] = h;
h = 1.0 / h;
c = g * h;
s = -f * h;
for (j = 0; j < m; j++) {
y = u[j][nm];
z = u[j][i];
u[j][nm] = y * c + z * s;
u[j][i] = z * c - y * s;
}
}
}
z = w[k];
if (l == k) {
if (z < 0.0) {
w[k] = -z;
for (j = 0; j < n; j++) v[j][k] = -v[j][k];
}
break;
}
if (its == max_its - 1) {
return 1;
}
assert(k > 0);
x = w[l];
nm = k - 1;
y = w[nm];
g = rv1[nm];
h = rv1[k];
f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y);
g = PYTHAG(f, 1.0);
f = ((x - z) * (x + z) + h * ((y / (f + SIGN(g, f))) - h)) / x;
c = s = 1.0;
for (j = l; j <= nm; j++) {
i = j + 1;
g = rv1[i];
y = w[i];
h = s * g;
g = c * g;
z = PYTHAG(f, h);
rv1[j] = z;
c = f / z;
s = h / z;
f = x * c + g * s;
g = g * c - x * s;
h = y * s;
y *= c;
for (jj = 0; jj < n; jj++) {
x = v[jj][j];
z = v[jj][i];
v[jj][j] = x * c + z * s;
v[jj][i] = z * c - x * s;
}
z = PYTHAG(f, h);
w[j] = z;
if (z) {
z = 1.0 / z;
c = f * z;
s = h * z;
}
f = c * g + s * y;
x = c * y - s * g;
for (jj = 0; jj < m; jj++) {
y = u[jj][j];
z = u[jj][i];
u[jj][j] = y * c + z * s;
u[jj][i] = z * c - y * s;
}
}
rv1[l] = 0.0;
rv1[k] = f;
w[k] = x;
}
}
free(rv1);
return 0;
}
static int SVD(double *U, double *W, double *V, double *matx, int M, int N) {
// Assumes allocation for U is MxN
double **nrU, **nrV;
int problem, i;
nrU = (double **)malloc((M) * sizeof(*nrU));
nrV = (double **)malloc((N) * sizeof(*nrV));
problem = !(nrU && nrV);
if (!problem) {
problem = 0;
for (i = 0; i < M; i++) {
nrU[i] = &U[i * N];
}
for (i = 0; i < N; i++) {
nrV[i] = &V[i * N];
}
}
if (problem) {
return 1;
}
/* copy from given matx into nrU */
for (i = 0; i < M; i++) {
memcpy(&(nrU[i][0]), matx + N * i, N * sizeof(*matx));
}
/* HERE IT IS: do SVD */
if (svdcmp_(nrU, M, N, W, nrV)) {
return 1;
}
/* free Numerical Recipes arrays */
free(nrU);
free(nrV);
return 0;
}
int PseudoInverse(double *inv, double *matx, const int M, const int N) {
double *U, *W, *V, ans;
int i, j, k;
U = (double *)malloc(M * N * sizeof(*matx));
W = (double *)malloc(N * sizeof(*matx));
V = (double *)malloc(N * N * sizeof(*matx));
if (!(U && W && V)) {
return 1;
}
if (SVD(U, W, V, matx, M, N)) {
return 1;
}
for (i = 0; i < N; i++) {
if (fabs(W[i]) < TINY_NEAR_ZERO) {
return 1;
}
}
for (i = 0; i < N; i++) {
for (j = 0; j < M; j++) {
ans = 0;
for (k = 0; k < N; k++) {
ans += V[k + N * i] * U[k + N * j] / W[k];
}
inv[j + M * i] = ans;
}
}
free(U);
free(W);
free(V);
return 0;
}
////////////////////////////////////////////////////////////////////////////////
// ransac
typedef int (*isDegenerateType)(double *p);
typedef void (*normalizeType)(double *p, int np, double *T);
typedef void (*denormalizeType)(double *H, double *T1, double *T2);
typedef int (*findTransformationType)(int points, double *points1,
double *points2, double *H);
static int get_rand_indices(int npoints, int minpts, int *indices) {
int i, j;
unsigned int seed = (unsigned int)npoints;
int ptr = rand_r(&seed) % npoints;
if (minpts > npoints) return 0;
indices[0] = ptr;
ptr = (ptr == npoints - 1 ? 0 : ptr + 1);
i = 1;
while (i < minpts) {
int index = rand_r(&seed) % npoints;
while (index) {
ptr = (ptr == npoints - 1 ? 0 : ptr + 1);
for (j = 0; j < i; ++j) {
if (indices[j] == ptr) break;
}
if (j == i) index--;
}
indices[i++] = ptr;
}
return 1;
}
int ransac_(double *matched_points, int npoints, int *number_of_inliers,
int *best_inlier_mask, double *bestH, const int minpts,
const int paramdim, isDegenerateType isDegenerate,
normalizeType normalize, denormalizeType denormalize,
findTransformationType findTransformation,
ProjectPointsType projectpoints, TransformationType type) {
static const double INLIER_THRESHOLD_NORMALIZED = 0.1;
static const double INLIER_THRESHOLD_UNNORMALIZED = 1.0;
static const double PROBABILITY_REQUIRED = 0.9;
static const double EPS = 1e-12;
static const int MIN_TRIALS = 20;
const double inlier_threshold =
(normalize && denormalize ? INLIER_THRESHOLD_NORMALIZED
: INLIER_THRESHOLD_UNNORMALIZED);
int N = 10000, trial_count = 0;
int i;
int ret_val = 0;
int max_inliers = 0;
double best_variance = 0.0;
double H[MAX_PARAMDIM];
WarpedMotionParams wm;
double points1[2 * MAX_MINPTS];
double points2[2 * MAX_MINPTS];
int indices[MAX_MINPTS];
double *best_inlier_set1;
double *best_inlier_set2;
double *inlier_set1;
double *inlier_set2;
double *corners1;
int *corners1_int;
double *corners2;
int *image1_coord;
int *inlier_mask;
double *cnp1, *cnp2;
double T1[9], T2[9];
// srand((unsigned)time(NULL)) ;
// better to make this deterministic for a given sequence for ease of testing
srand(npoints);
*number_of_inliers = 0;
if (npoints < minpts * MINPTS_MULTIPLIER) {
printf("Cannot find motion with %d matches\n", npoints);
return 1;
}
memset(&wm, 0, sizeof(wm));
best_inlier_set1 = (double *)malloc(sizeof(*best_inlier_set1) * npoints * 2);
best_inlier_set2 = (double *)malloc(sizeof(*best_inlier_set2) * npoints * 2);
inlier_set1 = (double *)malloc(sizeof(*inlier_set1) * npoints * 2);
inlier_set2 = (double *)malloc(sizeof(*inlier_set2) * npoints * 2);
corners1 = (double *)malloc(sizeof(*corners1) * npoints * 2);
corners1_int = (int *)malloc(sizeof(*corners1_int) * npoints * 2);
corners2 = (double *)malloc(sizeof(*corners2) * npoints * 2);
image1_coord = (int *)malloc(sizeof(*image1_coord) * npoints * 2);
inlier_mask = (int *)malloc(sizeof(*inlier_mask) * npoints);
for (cnp1 = corners1, cnp2 = corners2, i = 0; i < npoints; ++i) {
*(cnp1++) = *(matched_points++);
*(cnp1++) = *(matched_points++);
*(cnp2++) = *(matched_points++);
*(cnp2++) = *(matched_points++);
}
matched_points -= 4 * npoints;
if (normalize && denormalize) {
normalize(corners1, npoints, T1);
normalize(corners2, npoints, T2);
}
while (N > trial_count) {
int num_inliers = 0;
double sum_distance = 0.0;
double sum_distance_squared = 0.0;
int degenerate = 1;
int num_degenerate_iter = 0;
while (degenerate) {
num_degenerate_iter++;
if (!get_rand_indices(npoints, minpts, indices)) {
ret_val = 1;
goto finish_ransac;
}
i = 0;
while (i < minpts) {
int index = indices[i];
// add to list
points1[i * 2] = corners1[index * 2];
points1[i * 2 + 1] = corners1[index * 2 + 1];
points2[i * 2] = corners2[index * 2];
points2[i * 2 + 1] = corners2[index * 2 + 1];
i++;
}
degenerate = isDegenerate(points1);
if (num_degenerate_iter > MAX_DEGENERATE_ITER) {
ret_val = 1;
goto finish_ransac;
}
}
if (findTransformation(minpts, points1, points2, H)) {
trial_count++;
continue;
}
for (i = 0; i < npoints; ++i) {
corners1_int[2 * i] = (int)corners1[i * 2];
corners1_int[2 * i + 1] = (int)corners1[i * 2 + 1];
}
av1_integerize_model(H, type, &wm);
projectpoints(wm.wmmat, corners1_int, image1_coord, npoints, 2, 2, 0, 0);
for (i = 0; i < npoints; ++i) {
double dx =
(image1_coord[i * 2] >> WARPEDPIXEL_PREC_BITS) - corners2[i * 2];
double dy = (image1_coord[i * 2 + 1] >> WARPEDPIXEL_PREC_BITS) -
corners2[i * 2 + 1];
double distance = sqrt(dx * dx + dy * dy);
inlier_mask[i] = distance < inlier_threshold;
if (inlier_mask[i]) {
inlier_set1[num_inliers * 2] = corners1[i * 2];
inlier_set1[num_inliers * 2 + 1] = corners1[i * 2 + 1];
inlier_set2[num_inliers * 2] = corners2[i * 2];
inlier_set2[num_inliers * 2 + 1] = corners2[i * 2 + 1];
num_inliers++;
sum_distance += distance;
sum_distance_squared += distance * distance;
}
}
if (num_inliers >= max_inliers) {
double mean_distance = sum_distance / ((double)num_inliers);
double variance = sum_distance_squared / ((double)num_inliers - 1.0) -
mean_distance * mean_distance * ((double)num_inliers) /
((double)num_inliers - 1.0);
if ((num_inliers > max_inliers) ||
(num_inliers == max_inliers && variance < best_variance)) {
best_variance = variance;
max_inliers = num_inliers;
memcpy(bestH, H, paramdim * sizeof(*bestH));
memcpy(best_inlier_set1, inlier_set1,
num_inliers * 2 * sizeof(*best_inlier_set1));
memcpy(best_inlier_set2, inlier_set2,
num_inliers * 2 * sizeof(*best_inlier_set2));
memcpy(best_inlier_mask, inlier_mask,
npoints * sizeof(*best_inlier_mask));
if (num_inliers > 0) {
double fracinliers = (double)num_inliers / (double)npoints;
double pNoOutliers = 1 - pow(fracinliers, minpts);
int temp;
pNoOutliers = fmax(EPS, pNoOutliers);
pNoOutliers = fmin(1 - EPS, pNoOutliers);
temp = (int)(log(1.0 - PROBABILITY_REQUIRED) / log(pNoOutliers));
if (temp > 0 && temp < N) {
N = IMAX(temp, MIN_TRIALS);
}
}
}
}
trial_count++;
}
findTransformation(max_inliers, best_inlier_set1, best_inlier_set2, bestH);
if (normalize && denormalize) {
denormalize(bestH, T1, T2);
}
*number_of_inliers = max_inliers;
finish_ransac:
free(best_inlier_set1);
free(best_inlier_set2);
free(inlier_set1);
free(inlier_set2);
free(corners1);
free(corners2);
free(image1_coord);
free(inlier_mask);
return ret_val;
}
///////////////////////////////////////////////////////////////////////////////
static void normalizeHomography(double *pts, int n, double *T) {
// Assume the points are 2d coordinates with scale = 1
double *p = pts;
double mean[2] = { 0, 0 };
double msqe = 0;
double scale;
int i;
for (i = 0; i < n; ++i, p += 2) {
mean[0] += p[0];
mean[1] += p[1];
}
mean[0] /= n;
mean[1] /= n;
for (p = pts, i = 0; i < n; ++i, p += 2) {
p[0] -= mean[0];
p[1] -= mean[1];
msqe += sqrt(p[0] * p[0] + p[1] * p[1]);
}
msqe /= n;
scale = sqrt(2) / msqe;
T[0] = scale;
T[1] = 0;
T[2] = -scale * mean[0];
T[3] = 0;
T[4] = scale;
T[5] = -scale * mean[1];
T[6] = 0;
T[7] = 0;
T[8] = 1;
for (p = pts, i = 0; i < n; ++i, p += 2) {
p[0] *= scale;
p[1] *= scale;
}
}
static void invnormalize_mat(double *T, double *iT) {
double is = 1.0 / T[0];
double m0 = -T[2] * is;
double m1 = -T[5] * is;
iT[0] = is;
iT[1] = 0;
iT[2] = m0;
iT[3] = 0;
iT[4] = is;
iT[5] = m1;
iT[6] = 0;
iT[7] = 0;
iT[8] = 1;
}
static void denormalizeHomography(double *H, double *T1, double *T2) {
double iT2[9];
double H2[9];
invnormalize_mat(T2, iT2);
MultiplyMat(H, T1, H2, 3, 3, 3);
MultiplyMat(iT2, H2, H, 3, 3, 3);
}
static void denormalizeAffine(double *H, double *T1, double *T2) {
double Ha[MAX_PARAMDIM];
Ha[0] = H[0];
Ha[1] = H[1];
Ha[2] = H[4];
Ha[3] = H[2];
Ha[4] = H[3];
Ha[5] = H[5];
Ha[6] = Ha[7] = 0;
Ha[8] = 1;
denormalizeHomography(Ha, T1, T2);
H[0] = Ha[2];
H[1] = Ha[5];
H[2] = Ha[0];
H[3] = Ha[1];
H[4] = Ha[3];
H[5] = Ha[4];
}
static void denormalizeRotZoom(double *H, double *T1, double *T2) {
double Ha[MAX_PARAMDIM];
Ha[0] = H[0];
Ha[1] = H[1];
Ha[2] = H[2];
Ha[3] = -H[1];
Ha[4] = H[0];
Ha[5] = H[3];
Ha[6] = Ha[7] = 0;
Ha[8] = 1;
denormalizeHomography(Ha, T1, T2);
H[0] = Ha[2];
H[1] = Ha[5];
H[2] = Ha[0];
H[3] = Ha[1];
}
static void denormalizeTranslation(double *H, double *T1, double *T2) {
double Ha[MAX_PARAMDIM];
Ha[0] = 1;
Ha[1] = 0;
Ha[2] = H[0];
Ha[3] = 0;
Ha[4] = 1;
Ha[5] = H[1];
Ha[6] = Ha[7] = 0;
Ha[8] = 1;
denormalizeHomography(Ha, T1, T2);
H[0] = Ha[2];
H[1] = Ha[5];
}
static int is_collinear3(double *p1, double *p2, double *p3) {
static const double collinear_eps = 1e-3;
const double v =
(p2[0] - p1[0]) * (p3[1] - p1[1]) - (p2[1] - p1[1]) * (p3[0] - p1[0]);
return fabs(v) < collinear_eps;
}
static int isDegenerateTranslation(double *p) {
return (p[0] - p[2]) * (p[0] - p[2]) + (p[1] - p[3]) * (p[1] - p[3]) <= 2;
}
static int isDegenerateAffine(double *p) {
return is_collinear3(p, p + 2, p + 4);
}
static int isDegenerateHomography(double *p) {
return is_collinear3(p, p + 2, p + 4) || is_collinear3(p, p + 2, p + 6) ||
is_collinear3(p, p + 4, p + 6) || is_collinear3(p + 2, p + 4, p + 6);
}
int findTranslation(const int np, double *pts1, double *pts2, double *mat) {
int i;
double sx, sy, dx, dy;
double sumx, sumy;
double T1[9], T2[9];
normalizeHomography(pts1, np, T1);
normalizeHomography(pts2, np, T2);
sumx = 0;
sumy = 0;
for (i = 0; i < np; ++i) {
dx = *(pts2++);
dy = *(pts2++);
sx = *(pts1++);
sy = *(pts1++);
sumx += dx - sx;
sumy += dy - sy;
}
mat[0] = sumx / np;
mat[1] = sumy / np;
denormalizeTranslation(mat, T1, T2);
return 0;
}
int findRotZoom(const int np, double *pts1, double *pts2, double *mat) {
const int np2 = np * 2;
double *a = (double *)malloc(sizeof(*a) * np2 * 9);
double *b = a + np2 * 4;
double *temp = b + np2;
int i;
double sx, sy, dx, dy;
double T1[9], T2[9];
normalizeHomography(pts1, np, T1);
normalizeHomography(pts2, np, T2);
for (i = 0; i < np; ++i) {
dx = *(pts2++);
dy = *(pts2++);
sx = *(pts1++);
sy = *(pts1++);
a[i * 2 * 4 + 0] = sx;
a[i * 2 * 4 + 1] = sy;
a[i * 2 * 4 + 2] = 1;
a[i * 2 * 4 + 3] = 0;
a[(i * 2 + 1) * 4 + 0] = sy;
a[(i * 2 + 1) * 4 + 1] = -sx;
a[(i * 2 + 1) * 4 + 2] = 0;
a[(i * 2 + 1) * 4 + 3] = 1;
b[2 * i] = dx;
b[2 * i + 1] = dy;
}
if (PseudoInverse(temp, a, np2, 4)) {
free(a);
return 1;
}
MultiplyMat(temp, b, mat, 4, np2, 1);
denormalizeRotZoom(mat, T1, T2);
free(a);
return 0;
}
int findAffine(const int np, double *pts1, double *pts2, double *mat) {
const int np2 = np * 2;
double *a = (double *)malloc(sizeof(*a) * np2 * 13);
double *b = a + np2 * 6;
double *temp = b + np2;
int i;
double sx, sy, dx, dy;
double T1[9], T2[9];
normalizeHomography(pts1, np, T1);
normalizeHomography(pts2, np, T2);
for (i = 0; i < np; ++i) {
dx = *(pts2++);
dy = *(pts2++);
sx = *(pts1++);
sy = *(pts1++);
a[i * 2 * 6 + 0] = sx;
a[i * 2 * 6 + 1] = sy;
a[i * 2 * 6 + 2] = 0;
a[i * 2 * 6 + 3] = 0;
a[i * 2 * 6 + 4] = 1;
a[i * 2 * 6 + 5] = 0;
a[(i * 2 + 1) * 6 + 0] = 0;
a[(i * 2 + 1) * 6 + 1] = 0;
a[(i * 2 + 1) * 6 + 2] = sx;
a[(i * 2 + 1) * 6 + 3] = sy;
a[(i * 2 + 1) * 6 + 4] = 0;
a[(i * 2 + 1) * 6 + 5] = 1;
b[2 * i] = dx;
b[2 * i + 1] = dy;
}
if (PseudoInverse(temp, a, np2, 6)) {
free(a);
return 1;
}
MultiplyMat(temp, b, mat, 6, np2, 1);
denormalizeAffine(mat, T1, T2);
free(a);
return 0;
}
int findHomography(const int np, double *pts1, double *pts2, double *mat) {
// Implemented from Peter Kovesi's normalized implementation
const int np3 = np * 3;
double *a = (double *)malloc(sizeof(*a) * np3 * 18);
double *U = a + np3 * 9;
double S[9], V[9 * 9];
int i, mini;
double sx, sy, dx, dy;
double T1[9], T2[9];
normalizeHomography(pts1, np, T1);
normalizeHomography(pts2, np, T2);
for (i = 0; i < np; ++i) {
dx = *(pts2++);
dy = *(pts2++);
sx = *(pts1++);
sy = *(pts1++);
a[i * 3 * 9 + 0] = a[i * 3 * 9 + 1] = a[i * 3 * 9 + 2] = 0;
a[i * 3 * 9 + 3] = -sx;
a[i * 3 * 9 + 4] = -sy;
a[i * 3 * 9 + 5] = -1;
a[i * 3 * 9 + 6] = dy * sx;
a[i * 3 * 9 + 7] = dy * sy;
a[i * 3 * 9 + 8] = dy;
a[(i * 3 + 1) * 9 + 0] = sx;
a[(i * 3 + 1) * 9 + 1] = sy;
a[(i * 3 + 1) * 9 + 2] = 1;
a[(i * 3 + 1) * 9 + 3] = a[(i * 3 + 1) * 9 + 4] = a[(i * 3 + 1) * 9 + 5] =
0;
a[(i * 3 + 1) * 9 + 6] = -dx * sx;
a[(i * 3 + 1) * 9 + 7] = -dx * sy;
a[(i * 3 + 1) * 9 + 8] = -dx;
a[(i * 3 + 2) * 9 + 0] = -dy * sx;
a[(i * 3 + 2) * 9 + 1] = -dy * sy;
a[(i * 3 + 2) * 9 + 2] = -dy;
a[(i * 3 + 2) * 9 + 3] = dx * sx;
a[(i * 3 + 2) * 9 + 4] = dx * sy;
a[(i * 3 + 2) * 9 + 5] = dx;
a[(i * 3 + 2) * 9 + 6] = a[(i * 3 + 2) * 9 + 7] = a[(i * 3 + 2) * 9 + 8] =
0;
}
if (SVD(U, S, V, a, np3, 9)) {
free(a);
return 1;
} else {
double minS = 1e12;
mini = -1;
for (i = 0; i < 9; ++i) {
if (S[i] < minS) {
minS = S[i];
mini = i;
}
}
}
for (i = 0; i < 9; i++) mat[i] = V[i * 9 + mini];
denormalizeHomography(mat, T1, T2);
free(a);
if (mat[8] == 0.0) {
return 1;
}
return 0;
}
int findHomographyScale1(const int np, double *pts1, double *pts2,
double *mat) {
// This implementation assumes h33 = 1, but does not seem to give good results
const int np2 = np * 2;
double *a = (double *)malloc(sizeof(*a) * np2 * 17);
double *b = a + np2 * 8;
double *temp = b + np2;
int i, j;
double sx, sy, dx, dy;
double T1[9], T2[9];
normalizeHomography(pts1, np, T1);
normalizeHomography(pts2, np, T2);
for (i = 0, j = np; i < np; ++i, ++j) {
dx = *(pts2++);
dy = *(pts2++);
sx = *(pts1++);
sy = *(pts1++);
a[i * 8 + 0] = a[j * 8 + 3] = sx;
a[i * 8 + 1] = a[j * 8 + 4] = sy;
a[i * 8 + 2] = a[j * 8 + 5] = 1;
a[i * 8 + 3] = a[i * 8 + 4] = a[i * 8 + 5] = a[j * 8 + 0] = a[j * 8 + 1] =
a[j * 8 + 2] = 0;
a[i * 8 + 6] = -dx * sx;
a[i * 8 + 7] = -dx * sy;
a[j * 8 + 6] = -dy * sx;
a[j * 8 + 7] = -dy * sy;
b[i] = dx;
b[j] = dy;
}
if (PseudoInverse(temp, a, np2, 8)) {
free(a);
return 1;
}
MultiplyMat(temp, b, &*mat, 8, np2, 1);
mat[8] = 1;
denormalizeHomography(mat, T1, T2);
free(a);
return 0;
}
int ransacTranslation(double *matched_points, int npoints,
int *number_of_inliers, int *best_inlier_mask,
double *bestH) {
return ransac_(matched_points, npoints, number_of_inliers, best_inlier_mask,
bestH, 3, 2, isDegenerateTranslation,
NULL, // normalizeHomography,
NULL, // denormalizeRotZoom,
findTranslation, projectPointsTranslation, TRANSLATION);
}
int ransacRotZoom(double *matched_points, int npoints, int *number_of_inliers,
int *best_inlier_mask, double *bestH) {
return ransac_(matched_points, npoints, number_of_inliers, best_inlier_mask,
bestH, 3, 4, isDegenerateAffine,
NULL, // normalizeHomography,
NULL, // denormalizeRotZoom,
findRotZoom, projectPointsRotZoom, ROTZOOM);
}
int ransacAffine(double *matched_points, int npoints, int *number_of_inliers,
int *best_inlier_mask, double *bestH) {
return ransac_(matched_points, npoints, number_of_inliers, best_inlier_mask,
bestH, 3, 6, isDegenerateAffine,
NULL, // normalizeHomography,
NULL, // denormalizeAffine,
findAffine, projectPointsAffine, AFFINE);
}
int ransacHomography(double *matched_points, int npoints,
int *number_of_inliers, int *best_inlier_mask,
double *bestH) {
int result = ransac_(matched_points, npoints, number_of_inliers,
best_inlier_mask, bestH, 4, 8, isDegenerateHomography,
NULL, // normalizeHomography,
NULL, // denormalizeHomography,
findHomography, projectPointsHomography, HOMOGRAPHY);
if (!result) {
// normalize so that H33 = 1
int i;
double m = 1.0 / bestH[8];
for (i = 0; i < 8; ++i) bestH[i] *= m;
bestH[8] = 1.0;
}
return result;
}