85a541a421
Reapply this patch:
ff0107f
Amend and improve VP8 multithreading implementation
Amended the patch to add a unit test, and fix an asan error.
BUG=webm:851
Change-Id: I6572c03256169c64e80248bf5a5e99f59a2fc93c
5457 lines
178 KiB
C
5457 lines
178 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "vpx_config.h"
|
|
#include "./vpx_scale_rtcd.h"
|
|
#include "./vpx_dsp_rtcd.h"
|
|
#include "./vp8_rtcd.h"
|
|
#include "vp8/common/onyxc_int.h"
|
|
#include "vp8/common/blockd.h"
|
|
#include "onyx_int.h"
|
|
#include "vp8/common/systemdependent.h"
|
|
#include "vp8/encoder/quantize.h"
|
|
#include "vp8/common/alloccommon.h"
|
|
#include "mcomp.h"
|
|
#include "firstpass.h"
|
|
#include "vpx_dsp/psnr.h"
|
|
#include "vpx_scale/vpx_scale.h"
|
|
#include "vp8/common/extend.h"
|
|
#include "ratectrl.h"
|
|
#include "vp8/common/quant_common.h"
|
|
#include "segmentation.h"
|
|
#if CONFIG_POSTPROC
|
|
#include "vp8/common/postproc.h"
|
|
#endif
|
|
#include "vpx_mem/vpx_mem.h"
|
|
#include "vp8/common/reconintra.h"
|
|
#include "vp8/common/swapyv12buffer.h"
|
|
#include "vp8/common/threading.h"
|
|
#include "vpx_ports/system_state.h"
|
|
#include "vpx_ports/vpx_timer.h"
|
|
#if ARCH_ARM
|
|
#include "vpx_ports/arm.h"
|
|
#endif
|
|
#if CONFIG_MULTI_RES_ENCODING
|
|
#include "mr_dissim.h"
|
|
#endif
|
|
#include "encodeframe.h"
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <limits.h>
|
|
|
|
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
|
|
extern int vp8_update_coef_context(VP8_COMP *cpi);
|
|
extern void vp8_update_coef_probs(VP8_COMP *cpi);
|
|
#endif
|
|
|
|
extern void vp8cx_pick_filter_level_fast(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi);
|
|
extern void vp8cx_set_alt_lf_level(VP8_COMP *cpi, int filt_val);
|
|
extern void vp8cx_pick_filter_level(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi);
|
|
|
|
extern void vp8_deblock_frame(YV12_BUFFER_CONFIG *source,
|
|
YV12_BUFFER_CONFIG *post, int filt_lvl,
|
|
int low_var_thresh, int flag);
|
|
extern void print_parms(VP8_CONFIG *ocf, char *filenam);
|
|
extern unsigned int vp8_get_processor_freq();
|
|
extern void print_tree_update_probs();
|
|
extern int vp8cx_create_encoder_threads(VP8_COMP *cpi);
|
|
extern void vp8cx_remove_encoder_threads(VP8_COMP *cpi);
|
|
|
|
int vp8_estimate_entropy_savings(VP8_COMP *cpi);
|
|
|
|
int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest);
|
|
|
|
extern void vp8_temporal_filter_prepare_c(VP8_COMP *cpi, int distance);
|
|
|
|
static void set_default_lf_deltas(VP8_COMP *cpi);
|
|
|
|
extern const int vp8_gf_interval_table[101];
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
#include "math.h"
|
|
#include "vpx_dsp/ssim.h"
|
|
#endif
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
FILE *yuv_file;
|
|
#endif
|
|
#ifdef OUTPUT_YUV_DENOISED
|
|
FILE *yuv_denoised_file;
|
|
#endif
|
|
|
|
#if 0
|
|
FILE *framepsnr;
|
|
FILE *kf_list;
|
|
FILE *keyfile;
|
|
#endif
|
|
|
|
#if 0
|
|
extern int skip_true_count;
|
|
extern int skip_false_count;
|
|
#endif
|
|
|
|
#ifdef VP8_ENTROPY_STATS
|
|
extern int intra_mode_stats[10][10][10];
|
|
#endif
|
|
|
|
#ifdef SPEEDSTATS
|
|
unsigned int frames_at_speed[16] = { 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0 };
|
|
unsigned int tot_pm = 0;
|
|
unsigned int cnt_pm = 0;
|
|
unsigned int tot_ef = 0;
|
|
unsigned int cnt_ef = 0;
|
|
#endif
|
|
|
|
#ifdef MODE_STATS
|
|
extern unsigned __int64 Sectionbits[50];
|
|
extern int y_modes[5];
|
|
extern int uv_modes[4];
|
|
extern int b_modes[10];
|
|
|
|
extern int inter_y_modes[10];
|
|
extern int inter_uv_modes[4];
|
|
extern unsigned int inter_b_modes[15];
|
|
#endif
|
|
|
|
extern const int vp8_bits_per_mb[2][QINDEX_RANGE];
|
|
|
|
extern const int qrounding_factors[129];
|
|
extern const int qzbin_factors[129];
|
|
extern void vp8cx_init_quantizer(VP8_COMP *cpi);
|
|
extern const int vp8cx_base_skip_false_prob[128];
|
|
|
|
/* Tables relating active max Q to active min Q */
|
|
static const unsigned char kf_low_motion_minq[QINDEX_RANGE] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5,
|
|
5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 10, 10, 11,
|
|
11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16,
|
|
17, 17, 18, 18, 18, 18, 19, 20, 20, 21, 21, 22, 23, 23
|
|
};
|
|
static const unsigned char kf_high_motion_minq[QINDEX_RANGE] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5,
|
|
5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10,
|
|
10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16,
|
|
16, 16, 16, 17, 17, 18, 18, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21,
|
|
22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28, 29, 30
|
|
};
|
|
static const unsigned char gf_low_motion_minq[QINDEX_RANGE] = {
|
|
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3,
|
|
3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8,
|
|
8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15,
|
|
15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24,
|
|
25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34,
|
|
34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40, 40, 41, 41, 42, 42, 43, 44,
|
|
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58
|
|
};
|
|
static const unsigned char gf_mid_motion_minq[QINDEX_RANGE] = {
|
|
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5,
|
|
5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11,
|
|
11, 11, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 18,
|
|
18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
|
|
28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37,
|
|
37, 38, 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 44, 45, 46, 47, 48, 49, 50,
|
|
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
|
|
};
|
|
static const unsigned char gf_high_motion_minq[QINDEX_RANGE] = {
|
|
0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5,
|
|
5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11,
|
|
12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21,
|
|
21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30,
|
|
31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40,
|
|
40, 41, 41, 42, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
|
|
57, 58, 59, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80
|
|
};
|
|
static const unsigned char inter_minq[QINDEX_RANGE] = {
|
|
0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11,
|
|
11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 22, 23, 24,
|
|
24, 25, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38,
|
|
39, 39, 40, 41, 42, 42, 43, 44, 45, 46, 46, 47, 48, 49, 50, 50, 51, 52, 53,
|
|
54, 55, 55, 56, 57, 58, 59, 60, 60, 61, 62, 63, 64, 65, 66, 67, 67, 68, 69,
|
|
70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 86,
|
|
87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
|
|
};
|
|
|
|
#ifdef PACKET_TESTING
|
|
extern FILE *vpxlogc;
|
|
#endif
|
|
|
|
static void save_layer_context(VP8_COMP *cpi) {
|
|
LAYER_CONTEXT *lc = &cpi->layer_context[cpi->current_layer];
|
|
|
|
/* Save layer dependent coding state */
|
|
lc->target_bandwidth = cpi->target_bandwidth;
|
|
lc->starting_buffer_level = cpi->oxcf.starting_buffer_level;
|
|
lc->optimal_buffer_level = cpi->oxcf.optimal_buffer_level;
|
|
lc->maximum_buffer_size = cpi->oxcf.maximum_buffer_size;
|
|
lc->starting_buffer_level_in_ms = cpi->oxcf.starting_buffer_level_in_ms;
|
|
lc->optimal_buffer_level_in_ms = cpi->oxcf.optimal_buffer_level_in_ms;
|
|
lc->maximum_buffer_size_in_ms = cpi->oxcf.maximum_buffer_size_in_ms;
|
|
lc->buffer_level = cpi->buffer_level;
|
|
lc->bits_off_target = cpi->bits_off_target;
|
|
lc->total_actual_bits = cpi->total_actual_bits;
|
|
lc->worst_quality = cpi->worst_quality;
|
|
lc->active_worst_quality = cpi->active_worst_quality;
|
|
lc->best_quality = cpi->best_quality;
|
|
lc->active_best_quality = cpi->active_best_quality;
|
|
lc->ni_av_qi = cpi->ni_av_qi;
|
|
lc->ni_tot_qi = cpi->ni_tot_qi;
|
|
lc->ni_frames = cpi->ni_frames;
|
|
lc->avg_frame_qindex = cpi->avg_frame_qindex;
|
|
lc->rate_correction_factor = cpi->rate_correction_factor;
|
|
lc->key_frame_rate_correction_factor = cpi->key_frame_rate_correction_factor;
|
|
lc->gf_rate_correction_factor = cpi->gf_rate_correction_factor;
|
|
lc->zbin_over_quant = cpi->mb.zbin_over_quant;
|
|
lc->inter_frame_target = cpi->inter_frame_target;
|
|
lc->total_byte_count = cpi->total_byte_count;
|
|
lc->filter_level = cpi->common.filter_level;
|
|
|
|
lc->last_frame_percent_intra = cpi->last_frame_percent_intra;
|
|
|
|
memcpy(lc->count_mb_ref_frame_usage, cpi->mb.count_mb_ref_frame_usage,
|
|
sizeof(cpi->mb.count_mb_ref_frame_usage));
|
|
}
|
|
|
|
static void restore_layer_context(VP8_COMP *cpi, const int layer) {
|
|
LAYER_CONTEXT *lc = &cpi->layer_context[layer];
|
|
|
|
/* Restore layer dependent coding state */
|
|
cpi->current_layer = layer;
|
|
cpi->target_bandwidth = lc->target_bandwidth;
|
|
cpi->oxcf.target_bandwidth = lc->target_bandwidth;
|
|
cpi->oxcf.starting_buffer_level = lc->starting_buffer_level;
|
|
cpi->oxcf.optimal_buffer_level = lc->optimal_buffer_level;
|
|
cpi->oxcf.maximum_buffer_size = lc->maximum_buffer_size;
|
|
cpi->oxcf.starting_buffer_level_in_ms = lc->starting_buffer_level_in_ms;
|
|
cpi->oxcf.optimal_buffer_level_in_ms = lc->optimal_buffer_level_in_ms;
|
|
cpi->oxcf.maximum_buffer_size_in_ms = lc->maximum_buffer_size_in_ms;
|
|
cpi->buffer_level = lc->buffer_level;
|
|
cpi->bits_off_target = lc->bits_off_target;
|
|
cpi->total_actual_bits = lc->total_actual_bits;
|
|
cpi->active_worst_quality = lc->active_worst_quality;
|
|
cpi->active_best_quality = lc->active_best_quality;
|
|
cpi->ni_av_qi = lc->ni_av_qi;
|
|
cpi->ni_tot_qi = lc->ni_tot_qi;
|
|
cpi->ni_frames = lc->ni_frames;
|
|
cpi->avg_frame_qindex = lc->avg_frame_qindex;
|
|
cpi->rate_correction_factor = lc->rate_correction_factor;
|
|
cpi->key_frame_rate_correction_factor = lc->key_frame_rate_correction_factor;
|
|
cpi->gf_rate_correction_factor = lc->gf_rate_correction_factor;
|
|
cpi->mb.zbin_over_quant = lc->zbin_over_quant;
|
|
cpi->inter_frame_target = lc->inter_frame_target;
|
|
cpi->total_byte_count = lc->total_byte_count;
|
|
cpi->common.filter_level = lc->filter_level;
|
|
|
|
cpi->last_frame_percent_intra = lc->last_frame_percent_intra;
|
|
|
|
memcpy(cpi->mb.count_mb_ref_frame_usage, lc->count_mb_ref_frame_usage,
|
|
sizeof(cpi->mb.count_mb_ref_frame_usage));
|
|
}
|
|
|
|
static int rescale(int val, int num, int denom) {
|
|
int64_t llnum = num;
|
|
int64_t llden = denom;
|
|
int64_t llval = val;
|
|
|
|
return (int)(llval * llnum / llden);
|
|
}
|
|
|
|
static void init_temporal_layer_context(VP8_COMP *cpi, VP8_CONFIG *oxcf,
|
|
const int layer,
|
|
double prev_layer_framerate) {
|
|
LAYER_CONTEXT *lc = &cpi->layer_context[layer];
|
|
|
|
lc->framerate = cpi->output_framerate / cpi->oxcf.rate_decimator[layer];
|
|
lc->target_bandwidth = cpi->oxcf.target_bitrate[layer] * 1000;
|
|
|
|
lc->starting_buffer_level_in_ms = oxcf->starting_buffer_level;
|
|
lc->optimal_buffer_level_in_ms = oxcf->optimal_buffer_level;
|
|
lc->maximum_buffer_size_in_ms = oxcf->maximum_buffer_size;
|
|
|
|
lc->starting_buffer_level =
|
|
rescale((int)(oxcf->starting_buffer_level), lc->target_bandwidth, 1000);
|
|
|
|
if (oxcf->optimal_buffer_level == 0) {
|
|
lc->optimal_buffer_level = lc->target_bandwidth / 8;
|
|
} else {
|
|
lc->optimal_buffer_level =
|
|
rescale((int)(oxcf->optimal_buffer_level), lc->target_bandwidth, 1000);
|
|
}
|
|
|
|
if (oxcf->maximum_buffer_size == 0) {
|
|
lc->maximum_buffer_size = lc->target_bandwidth / 8;
|
|
} else {
|
|
lc->maximum_buffer_size =
|
|
rescale((int)(oxcf->maximum_buffer_size), lc->target_bandwidth, 1000);
|
|
}
|
|
|
|
/* Work out the average size of a frame within this layer */
|
|
if (layer > 0) {
|
|
lc->avg_frame_size_for_layer =
|
|
(int)((cpi->oxcf.target_bitrate[layer] -
|
|
cpi->oxcf.target_bitrate[layer - 1]) *
|
|
1000 / (lc->framerate - prev_layer_framerate));
|
|
}
|
|
|
|
lc->active_worst_quality = cpi->oxcf.worst_allowed_q;
|
|
lc->active_best_quality = cpi->oxcf.best_allowed_q;
|
|
lc->avg_frame_qindex = cpi->oxcf.worst_allowed_q;
|
|
|
|
lc->buffer_level = lc->starting_buffer_level;
|
|
lc->bits_off_target = lc->starting_buffer_level;
|
|
|
|
lc->total_actual_bits = 0;
|
|
lc->ni_av_qi = 0;
|
|
lc->ni_tot_qi = 0;
|
|
lc->ni_frames = 0;
|
|
lc->rate_correction_factor = 1.0;
|
|
lc->key_frame_rate_correction_factor = 1.0;
|
|
lc->gf_rate_correction_factor = 1.0;
|
|
lc->inter_frame_target = 0;
|
|
}
|
|
|
|
// Upon a run-time change in temporal layers, reset the layer context parameters
|
|
// for any "new" layers. For "existing" layers, let them inherit the parameters
|
|
// from the previous layer state (at the same layer #). In future we may want
|
|
// to better map the previous layer state(s) to the "new" ones.
|
|
static void reset_temporal_layer_change(VP8_COMP *cpi, VP8_CONFIG *oxcf,
|
|
const int prev_num_layers) {
|
|
int i;
|
|
double prev_layer_framerate = 0;
|
|
const int curr_num_layers = cpi->oxcf.number_of_layers;
|
|
// If the previous state was 1 layer, get current layer context from cpi.
|
|
// We need this to set the layer context for the new layers below.
|
|
if (prev_num_layers == 1) {
|
|
cpi->current_layer = 0;
|
|
save_layer_context(cpi);
|
|
}
|
|
for (i = 0; i < curr_num_layers; ++i) {
|
|
LAYER_CONTEXT *lc = &cpi->layer_context[i];
|
|
if (i >= prev_num_layers) {
|
|
init_temporal_layer_context(cpi, oxcf, i, prev_layer_framerate);
|
|
}
|
|
// The initial buffer levels are set based on their starting levels.
|
|
// We could set the buffer levels based on the previous state (normalized
|
|
// properly by the layer bandwidths) but we would need to keep track of
|
|
// the previous set of layer bandwidths (i.e., target_bitrate[i])
|
|
// before the layer change. For now, reset to the starting levels.
|
|
lc->buffer_level =
|
|
cpi->oxcf.starting_buffer_level_in_ms * cpi->oxcf.target_bitrate[i];
|
|
lc->bits_off_target = lc->buffer_level;
|
|
// TDOD(marpan): Should we set the rate_correction_factor and
|
|
// active_worst/best_quality to values derived from the previous layer
|
|
// state (to smooth-out quality dips/rate fluctuation at transition)?
|
|
|
|
// We need to treat the 1 layer case separately: oxcf.target_bitrate[i]
|
|
// is not set for 1 layer, and the restore_layer_context/save_context()
|
|
// are not called in the encoding loop, so we need to call it here to
|
|
// pass the layer context state to |cpi|.
|
|
if (curr_num_layers == 1) {
|
|
lc->target_bandwidth = cpi->oxcf.target_bandwidth;
|
|
lc->buffer_level =
|
|
cpi->oxcf.starting_buffer_level_in_ms * lc->target_bandwidth / 1000;
|
|
lc->bits_off_target = lc->buffer_level;
|
|
restore_layer_context(cpi, 0);
|
|
}
|
|
prev_layer_framerate = cpi->output_framerate / cpi->oxcf.rate_decimator[i];
|
|
}
|
|
}
|
|
|
|
static void setup_features(VP8_COMP *cpi) {
|
|
// If segmentation enabled set the update flags
|
|
if (cpi->mb.e_mbd.segmentation_enabled) {
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
|
|
} else {
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 0;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 0;
|
|
}
|
|
|
|
cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 0;
|
|
cpi->mb.e_mbd.mode_ref_lf_delta_update = 0;
|
|
memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
|
|
memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
|
|
memset(cpi->mb.e_mbd.last_ref_lf_deltas, 0,
|
|
sizeof(cpi->mb.e_mbd.ref_lf_deltas));
|
|
memset(cpi->mb.e_mbd.last_mode_lf_deltas, 0,
|
|
sizeof(cpi->mb.e_mbd.mode_lf_deltas));
|
|
|
|
set_default_lf_deltas(cpi);
|
|
}
|
|
|
|
static void dealloc_raw_frame_buffers(VP8_COMP *cpi);
|
|
|
|
void vp8_initialize_enc(void) {
|
|
static volatile int init_done = 0;
|
|
|
|
if (!init_done) {
|
|
vpx_dsp_rtcd();
|
|
vp8_init_intra_predictors();
|
|
init_done = 1;
|
|
}
|
|
}
|
|
|
|
static void dealloc_compressor_data(VP8_COMP *cpi) {
|
|
vpx_free(cpi->tplist);
|
|
cpi->tplist = NULL;
|
|
|
|
/* Delete last frame MV storage buffers */
|
|
vpx_free(cpi->lfmv);
|
|
cpi->lfmv = 0;
|
|
|
|
vpx_free(cpi->lf_ref_frame_sign_bias);
|
|
cpi->lf_ref_frame_sign_bias = 0;
|
|
|
|
vpx_free(cpi->lf_ref_frame);
|
|
cpi->lf_ref_frame = 0;
|
|
|
|
/* Delete sementation map */
|
|
vpx_free(cpi->segmentation_map);
|
|
cpi->segmentation_map = 0;
|
|
|
|
vpx_free(cpi->active_map);
|
|
cpi->active_map = 0;
|
|
|
|
vp8_de_alloc_frame_buffers(&cpi->common);
|
|
|
|
vp8_yv12_de_alloc_frame_buffer(&cpi->pick_lf_lvl_frame);
|
|
vp8_yv12_de_alloc_frame_buffer(&cpi->scaled_source);
|
|
dealloc_raw_frame_buffers(cpi);
|
|
|
|
vpx_free(cpi->tok);
|
|
cpi->tok = 0;
|
|
|
|
/* Structure used to monitor GF usage */
|
|
vpx_free(cpi->gf_active_flags);
|
|
cpi->gf_active_flags = 0;
|
|
|
|
/* Activity mask based per mb zbin adjustments */
|
|
vpx_free(cpi->mb_activity_map);
|
|
cpi->mb_activity_map = 0;
|
|
|
|
vpx_free(cpi->mb.pip);
|
|
cpi->mb.pip = 0;
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
/* De-allocate mutex */
|
|
if (cpi->pmutex != NULL) {
|
|
VP8_COMMON *const pc = &cpi->common;
|
|
int i;
|
|
|
|
for (i = 0; i < pc->mb_rows; ++i) {
|
|
pthread_mutex_destroy(&cpi->pmutex[i]);
|
|
}
|
|
vpx_free(cpi->pmutex);
|
|
cpi->pmutex = NULL;
|
|
}
|
|
|
|
vpx_free(cpi->mt_current_mb_col);
|
|
cpi->mt_current_mb_col = NULL;
|
|
#endif
|
|
}
|
|
|
|
static void enable_segmentation(VP8_COMP *cpi) {
|
|
/* Set the appropriate feature bit */
|
|
cpi->mb.e_mbd.segmentation_enabled = 1;
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
|
|
}
|
|
static void disable_segmentation(VP8_COMP *cpi) {
|
|
/* Clear the appropriate feature bit */
|
|
cpi->mb.e_mbd.segmentation_enabled = 0;
|
|
}
|
|
|
|
/* Valid values for a segment are 0 to 3
|
|
* Segmentation map is arrange as [Rows][Columns]
|
|
*/
|
|
static void set_segmentation_map(VP8_COMP *cpi,
|
|
unsigned char *segmentation_map) {
|
|
/* Copy in the new segmentation map */
|
|
memcpy(cpi->segmentation_map, segmentation_map,
|
|
(cpi->common.mb_rows * cpi->common.mb_cols));
|
|
|
|
/* Signal that the map should be updated. */
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
|
|
}
|
|
|
|
/* The values given for each segment can be either deltas (from the default
|
|
* value chosen for the frame) or absolute values.
|
|
*
|
|
* Valid range for abs values is:
|
|
* (0-127 for MB_LVL_ALT_Q), (0-63 for SEGMENT_ALT_LF)
|
|
* Valid range for delta values are:
|
|
* (+/-127 for MB_LVL_ALT_Q), (+/-63 for SEGMENT_ALT_LF)
|
|
*
|
|
* abs_delta = SEGMENT_DELTADATA (deltas)
|
|
* abs_delta = SEGMENT_ABSDATA (use the absolute values given).
|
|
*
|
|
*/
|
|
static void set_segment_data(VP8_COMP *cpi, signed char *feature_data,
|
|
unsigned char abs_delta) {
|
|
cpi->mb.e_mbd.mb_segement_abs_delta = abs_delta;
|
|
memcpy(cpi->segment_feature_data, feature_data,
|
|
sizeof(cpi->segment_feature_data));
|
|
}
|
|
|
|
/* A simple function to cyclically refresh the background at a lower Q */
|
|
static void cyclic_background_refresh(VP8_COMP *cpi, int Q, int lf_adjustment) {
|
|
unsigned char *seg_map = cpi->segmentation_map;
|
|
signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS];
|
|
int i;
|
|
int block_count = cpi->cyclic_refresh_mode_max_mbs_perframe;
|
|
int mbs_in_frame = cpi->common.mb_rows * cpi->common.mb_cols;
|
|
|
|
cpi->cyclic_refresh_q = Q / 2;
|
|
|
|
if (cpi->oxcf.screen_content_mode) {
|
|
// Modify quality ramp-up based on Q. Above some Q level, increase the
|
|
// number of blocks to be refreshed, and reduce it below the thredhold.
|
|
// Turn-off under certain conditions (i.e., away from key frame, and if
|
|
// we are at good quality (low Q) and most of the blocks were
|
|
// skipped-encoded
|
|
// in previous frame.
|
|
int qp_thresh = (cpi->oxcf.screen_content_mode == 2) ? 80 : 100;
|
|
if (Q >= qp_thresh) {
|
|
cpi->cyclic_refresh_mode_max_mbs_perframe =
|
|
(cpi->common.mb_rows * cpi->common.mb_cols) / 10;
|
|
} else if (cpi->frames_since_key > 250 && Q < 20 &&
|
|
cpi->mb.skip_true_count > (int)(0.95 * mbs_in_frame)) {
|
|
cpi->cyclic_refresh_mode_max_mbs_perframe = 0;
|
|
} else {
|
|
cpi->cyclic_refresh_mode_max_mbs_perframe =
|
|
(cpi->common.mb_rows * cpi->common.mb_cols) / 20;
|
|
}
|
|
block_count = cpi->cyclic_refresh_mode_max_mbs_perframe;
|
|
}
|
|
|
|
// Set every macroblock to be eligible for update.
|
|
// For key frame this will reset seg map to 0.
|
|
memset(cpi->segmentation_map, 0, mbs_in_frame);
|
|
|
|
if (cpi->common.frame_type != KEY_FRAME && block_count > 0) {
|
|
/* Cycle through the macro_block rows */
|
|
/* MB loop to set local segmentation map */
|
|
i = cpi->cyclic_refresh_mode_index;
|
|
assert(i < mbs_in_frame);
|
|
do {
|
|
/* If the MB is as a candidate for clean up then mark it for
|
|
* possible boost/refresh (segment 1) The segment id may get
|
|
* reset to 0 later if the MB gets coded anything other than
|
|
* last frame 0,0 as only (last frame 0,0) MBs are eligable for
|
|
* refresh : that is to say Mbs likely to be background blocks.
|
|
*/
|
|
if (cpi->cyclic_refresh_map[i] == 0) {
|
|
seg_map[i] = 1;
|
|
block_count--;
|
|
} else if (cpi->cyclic_refresh_map[i] < 0) {
|
|
cpi->cyclic_refresh_map[i]++;
|
|
}
|
|
|
|
i++;
|
|
if (i == mbs_in_frame) i = 0;
|
|
|
|
} while (block_count && i != cpi->cyclic_refresh_mode_index);
|
|
|
|
cpi->cyclic_refresh_mode_index = i;
|
|
|
|
#if CONFIG_TEMPORAL_DENOISING
|
|
if (cpi->oxcf.noise_sensitivity > 0) {
|
|
if (cpi->denoiser.denoiser_mode == kDenoiserOnYUVAggressive &&
|
|
Q < (int)cpi->denoiser.denoise_pars.qp_thresh &&
|
|
(cpi->frames_since_key >
|
|
2 * cpi->denoiser.denoise_pars.consec_zerolast)) {
|
|
// Under aggressive denoising, use segmentation to turn off loop
|
|
// filter below some qp thresh. The filter is reduced for all
|
|
// blocks that have been encoded as ZEROMV LAST x frames in a row,
|
|
// where x is set by cpi->denoiser.denoise_pars.consec_zerolast.
|
|
// This is to avoid "dot" artifacts that can occur from repeated
|
|
// loop filtering on noisy input source.
|
|
cpi->cyclic_refresh_q = Q;
|
|
// lf_adjustment = -MAX_LOOP_FILTER;
|
|
lf_adjustment = -40;
|
|
for (i = 0; i < mbs_in_frame; ++i) {
|
|
seg_map[i] = (cpi->consec_zero_last[i] >
|
|
cpi->denoiser.denoise_pars.consec_zerolast)
|
|
? 1
|
|
: 0;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Activate segmentation. */
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
|
|
enable_segmentation(cpi);
|
|
|
|
/* Set up the quant segment data */
|
|
feature_data[MB_LVL_ALT_Q][0] = 0;
|
|
feature_data[MB_LVL_ALT_Q][1] = (cpi->cyclic_refresh_q - Q);
|
|
feature_data[MB_LVL_ALT_Q][2] = 0;
|
|
feature_data[MB_LVL_ALT_Q][3] = 0;
|
|
|
|
/* Set up the loop segment data */
|
|
feature_data[MB_LVL_ALT_LF][0] = 0;
|
|
feature_data[MB_LVL_ALT_LF][1] = lf_adjustment;
|
|
feature_data[MB_LVL_ALT_LF][2] = 0;
|
|
feature_data[MB_LVL_ALT_LF][3] = 0;
|
|
|
|
/* Initialise the feature data structure */
|
|
set_segment_data(cpi, &feature_data[0][0], SEGMENT_DELTADATA);
|
|
}
|
|
|
|
static void set_default_lf_deltas(VP8_COMP *cpi) {
|
|
cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 1;
|
|
cpi->mb.e_mbd.mode_ref_lf_delta_update = 1;
|
|
|
|
memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
|
|
memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
|
|
|
|
/* Test of ref frame deltas */
|
|
cpi->mb.e_mbd.ref_lf_deltas[INTRA_FRAME] = 2;
|
|
cpi->mb.e_mbd.ref_lf_deltas[LAST_FRAME] = 0;
|
|
cpi->mb.e_mbd.ref_lf_deltas[GOLDEN_FRAME] = -2;
|
|
cpi->mb.e_mbd.ref_lf_deltas[ALTREF_FRAME] = -2;
|
|
|
|
cpi->mb.e_mbd.mode_lf_deltas[0] = 4; /* BPRED */
|
|
|
|
if (cpi->oxcf.Mode == MODE_REALTIME) {
|
|
cpi->mb.e_mbd.mode_lf_deltas[1] = -12; /* Zero */
|
|
} else {
|
|
cpi->mb.e_mbd.mode_lf_deltas[1] = -2; /* Zero */
|
|
}
|
|
|
|
cpi->mb.e_mbd.mode_lf_deltas[2] = 2; /* New mv */
|
|
cpi->mb.e_mbd.mode_lf_deltas[3] = 4; /* Split mv */
|
|
}
|
|
|
|
/* Convenience macros for mapping speed and mode into a continuous
|
|
* range
|
|
*/
|
|
#define GOOD(x) (x + 1)
|
|
#define RT(x) (x + 7)
|
|
|
|
static int speed_map(int speed, const int *map) {
|
|
int res;
|
|
|
|
do {
|
|
res = *map++;
|
|
} while (speed >= *map++);
|
|
return res;
|
|
}
|
|
|
|
static const int thresh_mult_map_znn[] = {
|
|
/* map common to zero, nearest, and near */
|
|
0, GOOD(2), 1500, GOOD(3), 2000, RT(0), 1000, RT(2), 2000, INT_MAX
|
|
};
|
|
|
|
static const int thresh_mult_map_vhpred[] = { 1000, GOOD(2), 1500, GOOD(3),
|
|
2000, RT(0), 1000, RT(1),
|
|
2000, RT(7), INT_MAX, INT_MAX };
|
|
|
|
static const int thresh_mult_map_bpred[] = { 2000, GOOD(0), 2500, GOOD(2),
|
|
5000, GOOD(3), 7500, RT(0),
|
|
2500, RT(1), 5000, RT(6),
|
|
INT_MAX, INT_MAX };
|
|
|
|
static const int thresh_mult_map_tm[] = { 1000, GOOD(2), 1500, GOOD(3),
|
|
2000, RT(0), 0, RT(1),
|
|
1000, RT(2), 2000, RT(7),
|
|
INT_MAX, INT_MAX };
|
|
|
|
static const int thresh_mult_map_new1[] = { 1000, GOOD(2), 2000,
|
|
RT(0), 2000, INT_MAX };
|
|
|
|
static const int thresh_mult_map_new2[] = { 1000, GOOD(2), 2000, GOOD(3),
|
|
2500, GOOD(5), 4000, RT(0),
|
|
2000, RT(2), 2500, RT(5),
|
|
4000, INT_MAX };
|
|
|
|
static const int thresh_mult_map_split1[] = {
|
|
2500, GOOD(0), 1700, GOOD(2), 10000, GOOD(3), 25000, GOOD(4), INT_MAX,
|
|
RT(0), 5000, RT(1), 10000, RT(2), 25000, RT(3), INT_MAX, INT_MAX
|
|
};
|
|
|
|
static const int thresh_mult_map_split2[] = {
|
|
5000, GOOD(0), 4500, GOOD(2), 20000, GOOD(3), 50000, GOOD(4), INT_MAX,
|
|
RT(0), 10000, RT(1), 20000, RT(2), 50000, RT(3), INT_MAX, INT_MAX
|
|
};
|
|
|
|
static const int mode_check_freq_map_zn2[] = {
|
|
/* {zero,nearest}{2,3} */
|
|
0, RT(10), 1 << 1, RT(11), 1 << 2, RT(12), 1 << 3, INT_MAX
|
|
};
|
|
|
|
static const int mode_check_freq_map_vhbpred[] = {
|
|
0, GOOD(5), 2, RT(0), 0, RT(3), 2, RT(5), 4, INT_MAX
|
|
};
|
|
|
|
static const int mode_check_freq_map_near2[] = {
|
|
0, GOOD(5), 2, RT(0), 0, RT(3), 2,
|
|
RT(10), 1 << 2, RT(11), 1 << 3, RT(12), 1 << 4, INT_MAX
|
|
};
|
|
|
|
static const int mode_check_freq_map_new1[] = {
|
|
0, RT(10), 1 << 1, RT(11), 1 << 2, RT(12), 1 << 3, INT_MAX
|
|
};
|
|
|
|
static const int mode_check_freq_map_new2[] = { 0, GOOD(5), 4, RT(0),
|
|
0, RT(3), 4, RT(10),
|
|
1 << 3, RT(11), 1 << 4, RT(12),
|
|
1 << 5, INT_MAX };
|
|
|
|
static const int mode_check_freq_map_split1[] = {
|
|
0, GOOD(2), 2, GOOD(3), 7, RT(1), 2, RT(2), 7, INT_MAX
|
|
};
|
|
|
|
static const int mode_check_freq_map_split2[] = {
|
|
0, GOOD(1), 2, GOOD(2), 4, GOOD(3), 15, RT(1), 4, RT(2), 15, INT_MAX
|
|
};
|
|
|
|
void vp8_set_speed_features(VP8_COMP *cpi) {
|
|
SPEED_FEATURES *sf = &cpi->sf;
|
|
int Mode = cpi->compressor_speed;
|
|
int Speed = cpi->Speed;
|
|
int i;
|
|
VP8_COMMON *cm = &cpi->common;
|
|
int last_improved_quant = sf->improved_quant;
|
|
int ref_frames;
|
|
|
|
/* Initialise default mode frequency sampling variables */
|
|
for (i = 0; i < MAX_MODES; ++i) {
|
|
cpi->mode_check_freq[i] = 0;
|
|
}
|
|
|
|
cpi->mb.mbs_tested_so_far = 0;
|
|
cpi->mb.mbs_zero_last_dot_suppress = 0;
|
|
|
|
/* best quality defaults */
|
|
sf->RD = 1;
|
|
sf->search_method = NSTEP;
|
|
sf->improved_quant = 1;
|
|
sf->improved_dct = 1;
|
|
sf->auto_filter = 1;
|
|
sf->recode_loop = 1;
|
|
sf->quarter_pixel_search = 1;
|
|
sf->half_pixel_search = 1;
|
|
sf->iterative_sub_pixel = 1;
|
|
sf->optimize_coefficients = 1;
|
|
sf->use_fastquant_for_pick = 0;
|
|
sf->no_skip_block4x4_search = 1;
|
|
|
|
sf->first_step = 0;
|
|
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
|
|
sf->improved_mv_pred = 1;
|
|
|
|
/* default thresholds to 0 */
|
|
for (i = 0; i < MAX_MODES; ++i) sf->thresh_mult[i] = 0;
|
|
|
|
/* Count enabled references */
|
|
ref_frames = 1;
|
|
if (cpi->ref_frame_flags & VP8_LAST_FRAME) ref_frames++;
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FRAME) ref_frames++;
|
|
if (cpi->ref_frame_flags & VP8_ALTR_FRAME) ref_frames++;
|
|
|
|
/* Convert speed to continuous range, with clamping */
|
|
if (Mode == 0) {
|
|
Speed = 0;
|
|
} else if (Mode == 2) {
|
|
Speed = RT(Speed);
|
|
} else {
|
|
if (Speed > 5) Speed = 5;
|
|
Speed = GOOD(Speed);
|
|
}
|
|
|
|
sf->thresh_mult[THR_ZERO1] = sf->thresh_mult[THR_NEAREST1] =
|
|
sf->thresh_mult[THR_NEAR1] = sf->thresh_mult[THR_DC] = 0; /* always */
|
|
|
|
sf->thresh_mult[THR_ZERO2] = sf->thresh_mult[THR_ZERO3] =
|
|
sf->thresh_mult[THR_NEAREST2] = sf->thresh_mult[THR_NEAREST3] =
|
|
sf->thresh_mult[THR_NEAR2] = sf->thresh_mult[THR_NEAR3] =
|
|
speed_map(Speed, thresh_mult_map_znn);
|
|
|
|
sf->thresh_mult[THR_V_PRED] = sf->thresh_mult[THR_H_PRED] =
|
|
speed_map(Speed, thresh_mult_map_vhpred);
|
|
sf->thresh_mult[THR_B_PRED] = speed_map(Speed, thresh_mult_map_bpred);
|
|
sf->thresh_mult[THR_TM] = speed_map(Speed, thresh_mult_map_tm);
|
|
sf->thresh_mult[THR_NEW1] = speed_map(Speed, thresh_mult_map_new1);
|
|
sf->thresh_mult[THR_NEW2] = sf->thresh_mult[THR_NEW3] =
|
|
speed_map(Speed, thresh_mult_map_new2);
|
|
sf->thresh_mult[THR_SPLIT1] = speed_map(Speed, thresh_mult_map_split1);
|
|
sf->thresh_mult[THR_SPLIT2] = sf->thresh_mult[THR_SPLIT3] =
|
|
speed_map(Speed, thresh_mult_map_split2);
|
|
|
|
// Special case for temporal layers.
|
|
// Reduce the thresholds for zero/nearest/near for GOLDEN, if GOLDEN is
|
|
// used as second reference. We don't modify thresholds for ALTREF case
|
|
// since ALTREF is usually used as long-term reference in temporal layers.
|
|
if ((cpi->Speed <= 6) && (cpi->oxcf.number_of_layers > 1) &&
|
|
(cpi->ref_frame_flags & VP8_LAST_FRAME) &&
|
|
(cpi->ref_frame_flags & VP8_GOLD_FRAME)) {
|
|
if (cpi->closest_reference_frame == GOLDEN_FRAME) {
|
|
sf->thresh_mult[THR_ZERO2] = sf->thresh_mult[THR_ZERO2] >> 3;
|
|
sf->thresh_mult[THR_NEAREST2] = sf->thresh_mult[THR_NEAREST2] >> 3;
|
|
sf->thresh_mult[THR_NEAR2] = sf->thresh_mult[THR_NEAR2] >> 3;
|
|
} else {
|
|
sf->thresh_mult[THR_ZERO2] = sf->thresh_mult[THR_ZERO2] >> 1;
|
|
sf->thresh_mult[THR_NEAREST2] = sf->thresh_mult[THR_NEAREST2] >> 1;
|
|
sf->thresh_mult[THR_NEAR2] = sf->thresh_mult[THR_NEAR2] >> 1;
|
|
}
|
|
}
|
|
|
|
cpi->mode_check_freq[THR_ZERO1] = cpi->mode_check_freq[THR_NEAREST1] =
|
|
cpi->mode_check_freq[THR_NEAR1] = cpi->mode_check_freq[THR_TM] =
|
|
cpi->mode_check_freq[THR_DC] = 0; /* always */
|
|
|
|
cpi->mode_check_freq[THR_ZERO2] = cpi->mode_check_freq[THR_ZERO3] =
|
|
cpi->mode_check_freq[THR_NEAREST2] = cpi->mode_check_freq[THR_NEAREST3] =
|
|
speed_map(Speed, mode_check_freq_map_zn2);
|
|
|
|
cpi->mode_check_freq[THR_NEAR2] = cpi->mode_check_freq[THR_NEAR3] =
|
|
speed_map(Speed, mode_check_freq_map_near2);
|
|
|
|
cpi->mode_check_freq[THR_V_PRED] = cpi->mode_check_freq[THR_H_PRED] =
|
|
cpi->mode_check_freq[THR_B_PRED] =
|
|
speed_map(Speed, mode_check_freq_map_vhbpred);
|
|
cpi->mode_check_freq[THR_NEW1] = speed_map(Speed, mode_check_freq_map_new1);
|
|
cpi->mode_check_freq[THR_NEW2] = cpi->mode_check_freq[THR_NEW3] =
|
|
speed_map(Speed, mode_check_freq_map_new2);
|
|
cpi->mode_check_freq[THR_SPLIT1] =
|
|
speed_map(Speed, mode_check_freq_map_split1);
|
|
cpi->mode_check_freq[THR_SPLIT2] = cpi->mode_check_freq[THR_SPLIT3] =
|
|
speed_map(Speed, mode_check_freq_map_split2);
|
|
Speed = cpi->Speed;
|
|
switch (Mode) {
|
|
#if !CONFIG_REALTIME_ONLY
|
|
case 0: /* best quality mode */
|
|
sf->first_step = 0;
|
|
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
|
|
break;
|
|
case 1:
|
|
case 3:
|
|
if (Speed > 0) {
|
|
/* Disable coefficient optimization above speed 0 */
|
|
sf->optimize_coefficients = 0;
|
|
sf->use_fastquant_for_pick = 1;
|
|
sf->no_skip_block4x4_search = 0;
|
|
|
|
sf->first_step = 1;
|
|
}
|
|
|
|
if (Speed > 2) {
|
|
sf->improved_quant = 0;
|
|
sf->improved_dct = 0;
|
|
|
|
/* Only do recode loop on key frames, golden frames and
|
|
* alt ref frames
|
|
*/
|
|
sf->recode_loop = 2;
|
|
}
|
|
|
|
if (Speed > 3) {
|
|
sf->auto_filter = 1;
|
|
sf->recode_loop = 0; /* recode loop off */
|
|
sf->RD = 0; /* Turn rd off */
|
|
}
|
|
|
|
if (Speed > 4) {
|
|
sf->auto_filter = 0; /* Faster selection of loop filter */
|
|
}
|
|
|
|
break;
|
|
#endif
|
|
case 2:
|
|
sf->optimize_coefficients = 0;
|
|
sf->recode_loop = 0;
|
|
sf->auto_filter = 1;
|
|
sf->iterative_sub_pixel = 1;
|
|
sf->search_method = NSTEP;
|
|
|
|
if (Speed > 0) {
|
|
sf->improved_quant = 0;
|
|
sf->improved_dct = 0;
|
|
|
|
sf->use_fastquant_for_pick = 1;
|
|
sf->no_skip_block4x4_search = 0;
|
|
sf->first_step = 1;
|
|
}
|
|
|
|
if (Speed > 2) sf->auto_filter = 0; /* Faster selection of loop filter */
|
|
|
|
if (Speed > 3) {
|
|
sf->RD = 0;
|
|
sf->auto_filter = 1;
|
|
}
|
|
|
|
if (Speed > 4) {
|
|
sf->auto_filter = 0; /* Faster selection of loop filter */
|
|
sf->search_method = HEX;
|
|
sf->iterative_sub_pixel = 0;
|
|
}
|
|
|
|
if (Speed > 6) {
|
|
unsigned int sum = 0;
|
|
unsigned int total_mbs = cm->MBs;
|
|
int thresh;
|
|
unsigned int total_skip;
|
|
|
|
int min = 2000;
|
|
|
|
if (cpi->oxcf.encode_breakout > 2000) min = cpi->oxcf.encode_breakout;
|
|
|
|
min >>= 7;
|
|
|
|
for (i = 0; i < min; ++i) {
|
|
sum += cpi->mb.error_bins[i];
|
|
}
|
|
|
|
total_skip = sum;
|
|
sum = 0;
|
|
|
|
/* i starts from 2 to make sure thresh started from 2048 */
|
|
for (; i < 1024; ++i) {
|
|
sum += cpi->mb.error_bins[i];
|
|
|
|
if (10 * sum >=
|
|
(unsigned int)(cpi->Speed - 6) * (total_mbs - total_skip)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
i--;
|
|
thresh = (i << 7);
|
|
|
|
if (thresh < 2000) thresh = 2000;
|
|
|
|
if (ref_frames > 1) {
|
|
sf->thresh_mult[THR_NEW1] = thresh;
|
|
sf->thresh_mult[THR_NEAREST1] = thresh >> 1;
|
|
sf->thresh_mult[THR_NEAR1] = thresh >> 1;
|
|
}
|
|
|
|
if (ref_frames > 2) {
|
|
sf->thresh_mult[THR_NEW2] = thresh << 1;
|
|
sf->thresh_mult[THR_NEAREST2] = thresh;
|
|
sf->thresh_mult[THR_NEAR2] = thresh;
|
|
}
|
|
|
|
if (ref_frames > 3) {
|
|
sf->thresh_mult[THR_NEW3] = thresh << 1;
|
|
sf->thresh_mult[THR_NEAREST3] = thresh;
|
|
sf->thresh_mult[THR_NEAR3] = thresh;
|
|
}
|
|
|
|
sf->improved_mv_pred = 0;
|
|
}
|
|
|
|
if (Speed > 8) sf->quarter_pixel_search = 0;
|
|
|
|
if (cm->version == 0) {
|
|
cm->filter_type = NORMAL_LOOPFILTER;
|
|
|
|
if (Speed >= 14) cm->filter_type = SIMPLE_LOOPFILTER;
|
|
} else {
|
|
cm->filter_type = SIMPLE_LOOPFILTER;
|
|
}
|
|
|
|
/* This has a big hit on quality. Last resort */
|
|
if (Speed >= 15) sf->half_pixel_search = 0;
|
|
|
|
memset(cpi->mb.error_bins, 0, sizeof(cpi->mb.error_bins));
|
|
|
|
}; /* switch */
|
|
|
|
/* Slow quant, dct and trellis not worthwhile for first pass
|
|
* so make sure they are always turned off.
|
|
*/
|
|
if (cpi->pass == 1) {
|
|
sf->improved_quant = 0;
|
|
sf->optimize_coefficients = 0;
|
|
sf->improved_dct = 0;
|
|
}
|
|
|
|
if (cpi->sf.search_method == NSTEP) {
|
|
vp8_init3smotion_compensation(&cpi->mb,
|
|
cm->yv12_fb[cm->lst_fb_idx].y_stride);
|
|
} else if (cpi->sf.search_method == DIAMOND) {
|
|
vp8_init_dsmotion_compensation(&cpi->mb,
|
|
cm->yv12_fb[cm->lst_fb_idx].y_stride);
|
|
}
|
|
|
|
if (cpi->sf.improved_dct) {
|
|
cpi->mb.short_fdct8x4 = vp8_short_fdct8x4;
|
|
cpi->mb.short_fdct4x4 = vp8_short_fdct4x4;
|
|
} else {
|
|
/* No fast FDCT defined for any platform at this time. */
|
|
cpi->mb.short_fdct8x4 = vp8_short_fdct8x4;
|
|
cpi->mb.short_fdct4x4 = vp8_short_fdct4x4;
|
|
}
|
|
|
|
cpi->mb.short_walsh4x4 = vp8_short_walsh4x4;
|
|
|
|
if (cpi->sf.improved_quant) {
|
|
cpi->mb.quantize_b = vp8_regular_quantize_b;
|
|
} else {
|
|
cpi->mb.quantize_b = vp8_fast_quantize_b;
|
|
}
|
|
if (cpi->sf.improved_quant != last_improved_quant) vp8cx_init_quantizer(cpi);
|
|
|
|
if (cpi->sf.iterative_sub_pixel == 1) {
|
|
cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step_iteratively;
|
|
} else if (cpi->sf.quarter_pixel_search) {
|
|
cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step;
|
|
} else if (cpi->sf.half_pixel_search) {
|
|
cpi->find_fractional_mv_step = vp8_find_best_half_pixel_step;
|
|
} else {
|
|
cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step;
|
|
}
|
|
|
|
if (cpi->sf.optimize_coefficients == 1 && cpi->pass != 1) {
|
|
cpi->mb.optimize = 1;
|
|
} else {
|
|
cpi->mb.optimize = 0;
|
|
}
|
|
|
|
if (cpi->common.full_pixel) {
|
|
cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step;
|
|
}
|
|
|
|
#ifdef SPEEDSTATS
|
|
frames_at_speed[cpi->Speed]++;
|
|
#endif
|
|
}
|
|
#undef GOOD
|
|
#undef RT
|
|
|
|
static void alloc_raw_frame_buffers(VP8_COMP *cpi) {
|
|
#if VP8_TEMPORAL_ALT_REF
|
|
int width = (cpi->oxcf.Width + 15) & ~15;
|
|
int height = (cpi->oxcf.Height + 15) & ~15;
|
|
#endif
|
|
|
|
cpi->lookahead = vp8_lookahead_init(cpi->oxcf.Width, cpi->oxcf.Height,
|
|
cpi->oxcf.lag_in_frames);
|
|
if (!cpi->lookahead) {
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate lag buffers");
|
|
}
|
|
|
|
#if VP8_TEMPORAL_ALT_REF
|
|
|
|
if (vp8_yv12_alloc_frame_buffer(&cpi->alt_ref_buffer, width, height,
|
|
VP8BORDERINPIXELS)) {
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate altref buffer");
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
static void dealloc_raw_frame_buffers(VP8_COMP *cpi) {
|
|
#if VP8_TEMPORAL_ALT_REF
|
|
vp8_yv12_de_alloc_frame_buffer(&cpi->alt_ref_buffer);
|
|
#endif
|
|
vp8_lookahead_destroy(cpi->lookahead);
|
|
}
|
|
|
|
static int vp8_alloc_partition_data(VP8_COMP *cpi) {
|
|
vpx_free(cpi->mb.pip);
|
|
|
|
cpi->mb.pip =
|
|
vpx_calloc((cpi->common.mb_cols + 1) * (cpi->common.mb_rows + 1),
|
|
sizeof(PARTITION_INFO));
|
|
if (!cpi->mb.pip) return 1;
|
|
|
|
cpi->mb.pi = cpi->mb.pip + cpi->common.mode_info_stride + 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void vp8_alloc_compressor_data(VP8_COMP *cpi) {
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
int width = cm->Width;
|
|
int height = cm->Height;
|
|
#if CONFIG_MULTITHREAD
|
|
int prev_mb_rows = cm->mb_rows;
|
|
#endif
|
|
|
|
if (vp8_alloc_frame_buffers(cm, width, height)) {
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate frame buffers");
|
|
}
|
|
|
|
if (vp8_alloc_partition_data(cpi)) {
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate partition data");
|
|
}
|
|
|
|
if ((width & 0xf) != 0) width += 16 - (width & 0xf);
|
|
|
|
if ((height & 0xf) != 0) height += 16 - (height & 0xf);
|
|
|
|
if (vp8_yv12_alloc_frame_buffer(&cpi->pick_lf_lvl_frame, width, height,
|
|
VP8BORDERINPIXELS)) {
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate last frame buffer");
|
|
}
|
|
|
|
if (vp8_yv12_alloc_frame_buffer(&cpi->scaled_source, width, height,
|
|
VP8BORDERINPIXELS)) {
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate scaled source buffer");
|
|
}
|
|
|
|
vpx_free(cpi->tok);
|
|
|
|
{
|
|
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
|
|
unsigned int tokens = 8 * 24 * 16; /* one MB for each thread */
|
|
#else
|
|
unsigned int tokens = cm->mb_rows * cm->mb_cols * 24 * 16;
|
|
#endif
|
|
CHECK_MEM_ERROR(cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok)));
|
|
}
|
|
|
|
/* Data used for real time vc mode to see if gf needs refreshing */
|
|
cpi->zeromv_count = 0;
|
|
|
|
/* Structures used to monitor GF usage */
|
|
vpx_free(cpi->gf_active_flags);
|
|
CHECK_MEM_ERROR(
|
|
cpi->gf_active_flags,
|
|
vpx_calloc(sizeof(*cpi->gf_active_flags), cm->mb_rows * cm->mb_cols));
|
|
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
|
|
|
|
vpx_free(cpi->mb_activity_map);
|
|
CHECK_MEM_ERROR(
|
|
cpi->mb_activity_map,
|
|
vpx_calloc(sizeof(*cpi->mb_activity_map), cm->mb_rows * cm->mb_cols));
|
|
|
|
/* allocate memory for storing last frame's MVs for MV prediction. */
|
|
vpx_free(cpi->lfmv);
|
|
CHECK_MEM_ERROR(cpi->lfmv, vpx_calloc((cm->mb_rows + 2) * (cm->mb_cols + 2),
|
|
sizeof(*cpi->lfmv)));
|
|
vpx_free(cpi->lf_ref_frame_sign_bias);
|
|
CHECK_MEM_ERROR(cpi->lf_ref_frame_sign_bias,
|
|
vpx_calloc((cm->mb_rows + 2) * (cm->mb_cols + 2),
|
|
sizeof(*cpi->lf_ref_frame_sign_bias)));
|
|
vpx_free(cpi->lf_ref_frame);
|
|
CHECK_MEM_ERROR(cpi->lf_ref_frame,
|
|
vpx_calloc((cm->mb_rows + 2) * (cm->mb_cols + 2),
|
|
sizeof(*cpi->lf_ref_frame)));
|
|
|
|
/* Create the encoder segmentation map and set all entries to 0 */
|
|
vpx_free(cpi->segmentation_map);
|
|
CHECK_MEM_ERROR(
|
|
cpi->segmentation_map,
|
|
vpx_calloc(cm->mb_rows * cm->mb_cols, sizeof(*cpi->segmentation_map)));
|
|
cpi->cyclic_refresh_mode_index = 0;
|
|
vpx_free(cpi->active_map);
|
|
CHECK_MEM_ERROR(cpi->active_map, vpx_calloc(cm->mb_rows * cm->mb_cols,
|
|
sizeof(*cpi->active_map)));
|
|
memset(cpi->active_map, 1, (cm->mb_rows * cm->mb_cols));
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
if (width < 640) {
|
|
cpi->mt_sync_range = 1;
|
|
} else if (width <= 1280) {
|
|
cpi->mt_sync_range = 4;
|
|
} else if (width <= 2560) {
|
|
cpi->mt_sync_range = 8;
|
|
} else {
|
|
cpi->mt_sync_range = 16;
|
|
}
|
|
|
|
if (cpi->oxcf.multi_threaded > 1) {
|
|
int i;
|
|
|
|
/* De-allocate and re-allocate mutex */
|
|
if (cpi->pmutex != NULL) {
|
|
for (i = 0; i < prev_mb_rows; ++i) {
|
|
pthread_mutex_destroy(&cpi->pmutex[i]);
|
|
}
|
|
vpx_free(cpi->pmutex);
|
|
cpi->pmutex = NULL;
|
|
}
|
|
|
|
CHECK_MEM_ERROR(cpi->pmutex,
|
|
vpx_malloc(sizeof(*cpi->pmutex) * cm->mb_rows));
|
|
if (cpi->pmutex) {
|
|
for (i = 0; i < cm->mb_rows; ++i) {
|
|
pthread_mutex_init(&cpi->pmutex[i], NULL);
|
|
}
|
|
}
|
|
|
|
vpx_free(cpi->mt_current_mb_col);
|
|
CHECK_MEM_ERROR(cpi->mt_current_mb_col,
|
|
vpx_malloc(sizeof(*cpi->mt_current_mb_col) * cm->mb_rows));
|
|
}
|
|
|
|
#endif
|
|
|
|
vpx_free(cpi->tplist);
|
|
CHECK_MEM_ERROR(cpi->tplist, vpx_malloc(sizeof(TOKENLIST) * cm->mb_rows));
|
|
|
|
#if CONFIG_TEMPORAL_DENOISING
|
|
if (cpi->oxcf.noise_sensitivity > 0) {
|
|
vp8_denoiser_free(&cpi->denoiser);
|
|
if (vp8_denoiser_allocate(&cpi->denoiser, width, height, cm->mb_rows,
|
|
cm->mb_cols, cpi->oxcf.noise_sensitivity)) {
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate denoiser");
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Quant MOD */
|
|
static const int q_trans[] = {
|
|
0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 17, 18, 19,
|
|
20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 39, 41,
|
|
43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 64, 67, 70, 73, 76, 79,
|
|
82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127,
|
|
};
|
|
|
|
int vp8_reverse_trans(int x) {
|
|
int i;
|
|
|
|
for (i = 0; i < 64; ++i) {
|
|
if (q_trans[i] >= x) return i;
|
|
}
|
|
|
|
return 63;
|
|
}
|
|
void vp8_new_framerate(VP8_COMP *cpi, double framerate) {
|
|
if (framerate < .1) framerate = 30;
|
|
|
|
cpi->framerate = framerate;
|
|
cpi->output_framerate = framerate;
|
|
cpi->per_frame_bandwidth =
|
|
(int)(cpi->oxcf.target_bandwidth / cpi->output_framerate);
|
|
cpi->av_per_frame_bandwidth = cpi->per_frame_bandwidth;
|
|
cpi->min_frame_bandwidth = (int)(cpi->av_per_frame_bandwidth *
|
|
cpi->oxcf.two_pass_vbrmin_section / 100);
|
|
|
|
/* Set Maximum gf/arf interval */
|
|
cpi->max_gf_interval = ((int)(cpi->output_framerate / 2.0) + 2);
|
|
|
|
if (cpi->max_gf_interval < 12) cpi->max_gf_interval = 12;
|
|
|
|
/* Extended interval for genuinely static scenes */
|
|
cpi->twopass.static_scene_max_gf_interval = cpi->key_frame_frequency >> 1;
|
|
|
|
/* Special conditions when altr ref frame enabled in lagged compress mode */
|
|
if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames) {
|
|
if (cpi->max_gf_interval > cpi->oxcf.lag_in_frames - 1) {
|
|
cpi->max_gf_interval = cpi->oxcf.lag_in_frames - 1;
|
|
}
|
|
|
|
if (cpi->twopass.static_scene_max_gf_interval >
|
|
cpi->oxcf.lag_in_frames - 1) {
|
|
cpi->twopass.static_scene_max_gf_interval = cpi->oxcf.lag_in_frames - 1;
|
|
}
|
|
}
|
|
|
|
if (cpi->max_gf_interval > cpi->twopass.static_scene_max_gf_interval) {
|
|
cpi->max_gf_interval = cpi->twopass.static_scene_max_gf_interval;
|
|
}
|
|
}
|
|
|
|
static void init_config(VP8_COMP *cpi, VP8_CONFIG *oxcf) {
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
cpi->oxcf = *oxcf;
|
|
|
|
cpi->auto_gold = 1;
|
|
cpi->auto_adjust_gold_quantizer = 1;
|
|
|
|
cm->version = oxcf->Version;
|
|
vp8_setup_version(cm);
|
|
|
|
/* Frame rate is not available on the first frame, as it's derived from
|
|
* the observed timestamps. The actual value used here doesn't matter
|
|
* too much, as it will adapt quickly.
|
|
*/
|
|
if (oxcf->timebase.num > 0) {
|
|
cpi->framerate =
|
|
(double)(oxcf->timebase.den) / (double)(oxcf->timebase.num);
|
|
} else {
|
|
cpi->framerate = 30;
|
|
}
|
|
|
|
/* If the reciprocal of the timebase seems like a reasonable framerate,
|
|
* then use that as a guess, otherwise use 30.
|
|
*/
|
|
if (cpi->framerate > 180) cpi->framerate = 30;
|
|
|
|
cpi->ref_framerate = cpi->framerate;
|
|
|
|
cpi->ref_frame_flags = VP8_ALTR_FRAME | VP8_GOLD_FRAME | VP8_LAST_FRAME;
|
|
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 1;
|
|
cm->refresh_entropy_probs = 1;
|
|
|
|
/* change includes all joint functionality */
|
|
vp8_change_config(cpi, oxcf);
|
|
|
|
/* Initialize active best and worst q and average q values. */
|
|
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
|
|
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
|
|
cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q;
|
|
|
|
/* Initialise the starting buffer levels */
|
|
cpi->buffer_level = cpi->oxcf.starting_buffer_level;
|
|
cpi->bits_off_target = cpi->oxcf.starting_buffer_level;
|
|
|
|
cpi->rolling_target_bits = cpi->av_per_frame_bandwidth;
|
|
cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth;
|
|
cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth;
|
|
cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth;
|
|
|
|
cpi->total_actual_bits = 0;
|
|
cpi->total_target_vs_actual = 0;
|
|
|
|
/* Temporal scalabilty */
|
|
if (cpi->oxcf.number_of_layers > 1) {
|
|
unsigned int i;
|
|
double prev_layer_framerate = 0;
|
|
|
|
for (i = 0; i < cpi->oxcf.number_of_layers; ++i) {
|
|
init_temporal_layer_context(cpi, oxcf, i, prev_layer_framerate);
|
|
prev_layer_framerate =
|
|
cpi->output_framerate / cpi->oxcf.rate_decimator[i];
|
|
}
|
|
}
|
|
|
|
#if VP8_TEMPORAL_ALT_REF
|
|
{
|
|
int i;
|
|
|
|
cpi->fixed_divide[0] = 0;
|
|
|
|
for (i = 1; i < 512; ++i) cpi->fixed_divide[i] = 0x80000 / i;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void update_layer_contexts(VP8_COMP *cpi) {
|
|
VP8_CONFIG *oxcf = &cpi->oxcf;
|
|
|
|
/* Update snapshots of the layer contexts to reflect new parameters */
|
|
if (oxcf->number_of_layers > 1) {
|
|
unsigned int i;
|
|
double prev_layer_framerate = 0;
|
|
|
|
assert(oxcf->number_of_layers <= VPX_TS_MAX_LAYERS);
|
|
for (i = 0; i < oxcf->number_of_layers && i < VPX_TS_MAX_LAYERS; ++i) {
|
|
LAYER_CONTEXT *lc = &cpi->layer_context[i];
|
|
|
|
lc->framerate = cpi->ref_framerate / oxcf->rate_decimator[i];
|
|
lc->target_bandwidth = oxcf->target_bitrate[i] * 1000;
|
|
|
|
lc->starting_buffer_level = rescale(
|
|
(int)oxcf->starting_buffer_level_in_ms, lc->target_bandwidth, 1000);
|
|
|
|
if (oxcf->optimal_buffer_level == 0) {
|
|
lc->optimal_buffer_level = lc->target_bandwidth / 8;
|
|
} else {
|
|
lc->optimal_buffer_level = rescale(
|
|
(int)oxcf->optimal_buffer_level_in_ms, lc->target_bandwidth, 1000);
|
|
}
|
|
|
|
if (oxcf->maximum_buffer_size == 0) {
|
|
lc->maximum_buffer_size = lc->target_bandwidth / 8;
|
|
} else {
|
|
lc->maximum_buffer_size = rescale((int)oxcf->maximum_buffer_size_in_ms,
|
|
lc->target_bandwidth, 1000);
|
|
}
|
|
|
|
/* Work out the average size of a frame within this layer */
|
|
if (i > 0) {
|
|
lc->avg_frame_size_for_layer =
|
|
(int)((oxcf->target_bitrate[i] - oxcf->target_bitrate[i - 1]) *
|
|
1000 / (lc->framerate - prev_layer_framerate));
|
|
}
|
|
|
|
prev_layer_framerate = lc->framerate;
|
|
}
|
|
}
|
|
}
|
|
|
|
void vp8_change_config(VP8_COMP *cpi, VP8_CONFIG *oxcf) {
|
|
VP8_COMMON *cm = &cpi->common;
|
|
int last_w, last_h;
|
|
unsigned int prev_number_of_layers;
|
|
|
|
if (!cpi) return;
|
|
|
|
if (!oxcf) return;
|
|
|
|
if (cm->version != oxcf->Version) {
|
|
cm->version = oxcf->Version;
|
|
vp8_setup_version(cm);
|
|
}
|
|
|
|
last_w = cpi->oxcf.Width;
|
|
last_h = cpi->oxcf.Height;
|
|
prev_number_of_layers = cpi->oxcf.number_of_layers;
|
|
|
|
cpi->oxcf = *oxcf;
|
|
|
|
switch (cpi->oxcf.Mode) {
|
|
case MODE_REALTIME:
|
|
cpi->pass = 0;
|
|
cpi->compressor_speed = 2;
|
|
|
|
if (cpi->oxcf.cpu_used < -16) {
|
|
cpi->oxcf.cpu_used = -16;
|
|
}
|
|
|
|
if (cpi->oxcf.cpu_used > 16) cpi->oxcf.cpu_used = 16;
|
|
|
|
break;
|
|
|
|
case MODE_GOODQUALITY:
|
|
cpi->pass = 0;
|
|
cpi->compressor_speed = 1;
|
|
|
|
if (cpi->oxcf.cpu_used < -5) {
|
|
cpi->oxcf.cpu_used = -5;
|
|
}
|
|
|
|
if (cpi->oxcf.cpu_used > 5) cpi->oxcf.cpu_used = 5;
|
|
|
|
break;
|
|
|
|
case MODE_BESTQUALITY:
|
|
cpi->pass = 0;
|
|
cpi->compressor_speed = 0;
|
|
break;
|
|
|
|
case MODE_FIRSTPASS:
|
|
cpi->pass = 1;
|
|
cpi->compressor_speed = 1;
|
|
break;
|
|
case MODE_SECONDPASS:
|
|
cpi->pass = 2;
|
|
cpi->compressor_speed = 1;
|
|
|
|
if (cpi->oxcf.cpu_used < -5) {
|
|
cpi->oxcf.cpu_used = -5;
|
|
}
|
|
|
|
if (cpi->oxcf.cpu_used > 5) cpi->oxcf.cpu_used = 5;
|
|
|
|
break;
|
|
case MODE_SECONDPASS_BEST:
|
|
cpi->pass = 2;
|
|
cpi->compressor_speed = 0;
|
|
break;
|
|
}
|
|
|
|
if (cpi->pass == 0) cpi->auto_worst_q = 1;
|
|
|
|
cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q];
|
|
cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q];
|
|
cpi->oxcf.cq_level = q_trans[cpi->oxcf.cq_level];
|
|
|
|
if (oxcf->fixed_q >= 0) {
|
|
if (oxcf->worst_allowed_q < 0) {
|
|
cpi->oxcf.fixed_q = q_trans[0];
|
|
} else {
|
|
cpi->oxcf.fixed_q = q_trans[oxcf->worst_allowed_q];
|
|
}
|
|
|
|
if (oxcf->alt_q < 0) {
|
|
cpi->oxcf.alt_q = q_trans[0];
|
|
} else {
|
|
cpi->oxcf.alt_q = q_trans[oxcf->alt_q];
|
|
}
|
|
|
|
if (oxcf->key_q < 0) {
|
|
cpi->oxcf.key_q = q_trans[0];
|
|
} else {
|
|
cpi->oxcf.key_q = q_trans[oxcf->key_q];
|
|
}
|
|
|
|
if (oxcf->gold_q < 0) {
|
|
cpi->oxcf.gold_q = q_trans[0];
|
|
} else {
|
|
cpi->oxcf.gold_q = q_trans[oxcf->gold_q];
|
|
}
|
|
}
|
|
|
|
cpi->baseline_gf_interval =
|
|
cpi->oxcf.alt_freq ? cpi->oxcf.alt_freq : DEFAULT_GF_INTERVAL;
|
|
|
|
// GF behavior for 1 pass CBR, used when error_resilience is off.
|
|
if (!cpi->oxcf.error_resilient_mode &&
|
|
cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER &&
|
|
cpi->oxcf.Mode == MODE_REALTIME)
|
|
cpi->baseline_gf_interval = cpi->gf_interval_onepass_cbr;
|
|
|
|
#if (CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
|
|
cpi->oxcf.token_partitions = 3;
|
|
#endif
|
|
|
|
if (cpi->oxcf.token_partitions >= 0 && cpi->oxcf.token_partitions <= 3) {
|
|
cm->multi_token_partition = (TOKEN_PARTITION)cpi->oxcf.token_partitions;
|
|
}
|
|
|
|
setup_features(cpi);
|
|
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_MB_SEGMENTS; ++i) {
|
|
cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
|
|
}
|
|
}
|
|
|
|
/* At the moment the first order values may not be > MAXQ */
|
|
if (cpi->oxcf.fixed_q > MAXQ) cpi->oxcf.fixed_q = MAXQ;
|
|
|
|
/* local file playback mode == really big buffer */
|
|
if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK) {
|
|
cpi->oxcf.starting_buffer_level = 60000;
|
|
cpi->oxcf.optimal_buffer_level = 60000;
|
|
cpi->oxcf.maximum_buffer_size = 240000;
|
|
cpi->oxcf.starting_buffer_level_in_ms = 60000;
|
|
cpi->oxcf.optimal_buffer_level_in_ms = 60000;
|
|
cpi->oxcf.maximum_buffer_size_in_ms = 240000;
|
|
}
|
|
|
|
/* Convert target bandwidth from Kbit/s to Bit/s */
|
|
cpi->oxcf.target_bandwidth *= 1000;
|
|
|
|
cpi->oxcf.starting_buffer_level = rescale(
|
|
(int)cpi->oxcf.starting_buffer_level, cpi->oxcf.target_bandwidth, 1000);
|
|
|
|
/* Set or reset optimal and maximum buffer levels. */
|
|
if (cpi->oxcf.optimal_buffer_level == 0) {
|
|
cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8;
|
|
} else {
|
|
cpi->oxcf.optimal_buffer_level = rescale(
|
|
(int)cpi->oxcf.optimal_buffer_level, cpi->oxcf.target_bandwidth, 1000);
|
|
}
|
|
|
|
if (cpi->oxcf.maximum_buffer_size == 0) {
|
|
cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8;
|
|
} else {
|
|
cpi->oxcf.maximum_buffer_size = rescale((int)cpi->oxcf.maximum_buffer_size,
|
|
cpi->oxcf.target_bandwidth, 1000);
|
|
}
|
|
// Under a configuration change, where maximum_buffer_size may change,
|
|
// keep buffer level clipped to the maximum allowed buffer size.
|
|
if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size) {
|
|
cpi->bits_off_target = cpi->oxcf.maximum_buffer_size;
|
|
cpi->buffer_level = cpi->bits_off_target;
|
|
}
|
|
|
|
/* Set up frame rate and related parameters rate control values. */
|
|
vp8_new_framerate(cpi, cpi->framerate);
|
|
|
|
/* Set absolute upper and lower quality limits */
|
|
cpi->worst_quality = cpi->oxcf.worst_allowed_q;
|
|
cpi->best_quality = cpi->oxcf.best_allowed_q;
|
|
|
|
/* active values should only be modified if out of new range */
|
|
if (cpi->active_worst_quality > cpi->oxcf.worst_allowed_q) {
|
|
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
|
|
}
|
|
/* less likely */
|
|
else if (cpi->active_worst_quality < cpi->oxcf.best_allowed_q) {
|
|
cpi->active_worst_quality = cpi->oxcf.best_allowed_q;
|
|
}
|
|
if (cpi->active_best_quality < cpi->oxcf.best_allowed_q) {
|
|
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
|
|
}
|
|
/* less likely */
|
|
else if (cpi->active_best_quality > cpi->oxcf.worst_allowed_q) {
|
|
cpi->active_best_quality = cpi->oxcf.worst_allowed_q;
|
|
}
|
|
|
|
cpi->buffered_mode = cpi->oxcf.optimal_buffer_level > 0;
|
|
|
|
cpi->cq_target_quality = cpi->oxcf.cq_level;
|
|
|
|
/* Only allow dropped frames in buffered mode */
|
|
cpi->drop_frames_allowed = cpi->oxcf.allow_df && cpi->buffered_mode;
|
|
|
|
cpi->target_bandwidth = cpi->oxcf.target_bandwidth;
|
|
|
|
// Check if the number of temporal layers has changed, and if so reset the
|
|
// pattern counter and set/initialize the temporal layer context for the
|
|
// new layer configuration.
|
|
if (cpi->oxcf.number_of_layers != prev_number_of_layers) {
|
|
// If the number of temporal layers are changed we must start at the
|
|
// base of the pattern cycle, so set the layer id to 0 and reset
|
|
// the temporal pattern counter.
|
|
if (cpi->temporal_layer_id > 0) {
|
|
cpi->temporal_layer_id = 0;
|
|
}
|
|
cpi->temporal_pattern_counter = 0;
|
|
reset_temporal_layer_change(cpi, oxcf, prev_number_of_layers);
|
|
}
|
|
|
|
if (!cpi->initial_width) {
|
|
cpi->initial_width = cpi->oxcf.Width;
|
|
cpi->initial_height = cpi->oxcf.Height;
|
|
}
|
|
|
|
cm->Width = cpi->oxcf.Width;
|
|
cm->Height = cpi->oxcf.Height;
|
|
assert(cm->Width <= cpi->initial_width);
|
|
assert(cm->Height <= cpi->initial_height);
|
|
|
|
/* TODO(jkoleszar): if an internal spatial resampling is active,
|
|
* and we downsize the input image, maybe we should clear the
|
|
* internal scale immediately rather than waiting for it to
|
|
* correct.
|
|
*/
|
|
|
|
/* VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs) */
|
|
if (cpi->oxcf.Sharpness > 7) cpi->oxcf.Sharpness = 7;
|
|
|
|
cm->sharpness_level = cpi->oxcf.Sharpness;
|
|
|
|
if (cm->horiz_scale != NORMAL || cm->vert_scale != NORMAL) {
|
|
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
|
|
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
|
|
|
|
Scale2Ratio(cm->horiz_scale, &hr, &hs);
|
|
Scale2Ratio(cm->vert_scale, &vr, &vs);
|
|
|
|
/* always go to the next whole number */
|
|
cm->Width = (hs - 1 + cpi->oxcf.Width * hr) / hs;
|
|
cm->Height = (vs - 1 + cpi->oxcf.Height * vr) / vs;
|
|
}
|
|
|
|
if (last_w != cpi->oxcf.Width || last_h != cpi->oxcf.Height) {
|
|
cpi->force_next_frame_intra = 1;
|
|
}
|
|
|
|
if (((cm->Width + 15) & ~15) != cm->yv12_fb[cm->lst_fb_idx].y_width ||
|
|
((cm->Height + 15) & ~15) != cm->yv12_fb[cm->lst_fb_idx].y_height ||
|
|
cm->yv12_fb[cm->lst_fb_idx].y_width == 0) {
|
|
dealloc_raw_frame_buffers(cpi);
|
|
alloc_raw_frame_buffers(cpi);
|
|
vp8_alloc_compressor_data(cpi);
|
|
}
|
|
|
|
if (cpi->oxcf.fixed_q >= 0) {
|
|
cpi->last_q[0] = cpi->oxcf.fixed_q;
|
|
cpi->last_q[1] = cpi->oxcf.fixed_q;
|
|
}
|
|
|
|
cpi->Speed = cpi->oxcf.cpu_used;
|
|
|
|
/* force to allowlag to 0 if lag_in_frames is 0; */
|
|
if (cpi->oxcf.lag_in_frames == 0) {
|
|
cpi->oxcf.allow_lag = 0;
|
|
}
|
|
/* Limit on lag buffers as these are not currently dynamically allocated */
|
|
else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS) {
|
|
cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS;
|
|
}
|
|
|
|
/* YX Temp */
|
|
cpi->alt_ref_source = NULL;
|
|
cpi->is_src_frame_alt_ref = 0;
|
|
|
|
#if CONFIG_TEMPORAL_DENOISING
|
|
if (cpi->oxcf.noise_sensitivity) {
|
|
if (!cpi->denoiser.yv12_mc_running_avg.buffer_alloc) {
|
|
int width = (cpi->oxcf.Width + 15) & ~15;
|
|
int height = (cpi->oxcf.Height + 15) & ~15;
|
|
if (vp8_denoiser_allocate(&cpi->denoiser, width, height, cm->mb_rows,
|
|
cm->mb_cols, cpi->oxcf.noise_sensitivity)) {
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate denoiser");
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
/* Experimental RD Code */
|
|
cpi->frame_distortion = 0;
|
|
cpi->last_frame_distortion = 0;
|
|
#endif
|
|
}
|
|
|
|
#ifndef M_LOG2_E
|
|
#define M_LOG2_E 0.693147180559945309417
|
|
#endif
|
|
#define log2f(x) (log(x) / (float)M_LOG2_E)
|
|
|
|
static void cal_mvsadcosts(int *mvsadcost[2]) {
|
|
int i = 1;
|
|
|
|
mvsadcost[0][0] = 300;
|
|
mvsadcost[1][0] = 300;
|
|
|
|
do {
|
|
double z = 256 * (2 * (log2f(8 * i) + .6));
|
|
mvsadcost[0][i] = (int)z;
|
|
mvsadcost[1][i] = (int)z;
|
|
mvsadcost[0][-i] = (int)z;
|
|
mvsadcost[1][-i] = (int)z;
|
|
} while (++i <= mvfp_max);
|
|
}
|
|
|
|
struct VP8_COMP *vp8_create_compressor(VP8_CONFIG *oxcf) {
|
|
int i;
|
|
|
|
VP8_COMP *cpi;
|
|
VP8_COMMON *cm;
|
|
|
|
cpi = vpx_memalign(32, sizeof(VP8_COMP));
|
|
/* Check that the CPI instance is valid */
|
|
if (!cpi) return 0;
|
|
|
|
cm = &cpi->common;
|
|
|
|
memset(cpi, 0, sizeof(VP8_COMP));
|
|
|
|
if (setjmp(cm->error.jmp)) {
|
|
cpi->common.error.setjmp = 0;
|
|
vp8_remove_compressor(&cpi);
|
|
return 0;
|
|
}
|
|
|
|
cpi->common.error.setjmp = 1;
|
|
|
|
CHECK_MEM_ERROR(cpi->mb.ss, vpx_calloc(sizeof(search_site),
|
|
(MAX_MVSEARCH_STEPS * 8) + 1));
|
|
|
|
vp8_create_common(&cpi->common);
|
|
|
|
init_config(cpi, oxcf);
|
|
|
|
memcpy(cpi->base_skip_false_prob, vp8cx_base_skip_false_prob,
|
|
sizeof(vp8cx_base_skip_false_prob));
|
|
cpi->common.current_video_frame = 0;
|
|
cpi->temporal_pattern_counter = 0;
|
|
cpi->temporal_layer_id = -1;
|
|
cpi->kf_overspend_bits = 0;
|
|
cpi->kf_bitrate_adjustment = 0;
|
|
cpi->frames_till_gf_update_due = 0;
|
|
cpi->gf_overspend_bits = 0;
|
|
cpi->non_gf_bitrate_adjustment = 0;
|
|
cpi->prob_last_coded = 128;
|
|
cpi->prob_gf_coded = 128;
|
|
cpi->prob_intra_coded = 63;
|
|
|
|
/* Prime the recent reference frame usage counters.
|
|
* Hereafter they will be maintained as a sort of moving average
|
|
*/
|
|
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
|
|
|
|
/* Set reference frame sign bias for ALTREF frame to 1 (for now) */
|
|
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
|
|
|
|
cpi->twopass.gf_decay_rate = 0;
|
|
cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
|
|
|
|
cpi->gold_is_last = 0;
|
|
cpi->alt_is_last = 0;
|
|
cpi->gold_is_alt = 0;
|
|
|
|
cpi->active_map_enabled = 0;
|
|
|
|
#if 0
|
|
/* Experimental code for lagged and one pass */
|
|
/* Initialise one_pass GF frames stats */
|
|
/* Update stats used for GF selection */
|
|
if (cpi->pass == 0)
|
|
{
|
|
cpi->one_pass_frame_index = 0;
|
|
|
|
for (i = 0; i < MAX_LAG_BUFFERS; ++i)
|
|
{
|
|
cpi->one_pass_frame_stats[i].frames_so_far = 0;
|
|
cpi->one_pass_frame_stats[i].frame_intra_error = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_coded_error = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_pcnt_inter = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_pcnt_motion = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_mvr = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_mvr_abs = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_mvc = 0.0;
|
|
cpi->one_pass_frame_stats[i].frame_mvc_abs = 0.0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
cpi->mse_source_denoised = 0;
|
|
|
|
/* Should we use the cyclic refresh method.
|
|
* Currently there is no external control for this.
|
|
* Enable it for error_resilient_mode, or for 1 pass CBR mode.
|
|
*/
|
|
cpi->cyclic_refresh_mode_enabled =
|
|
(cpi->oxcf.error_resilient_mode ||
|
|
(cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER &&
|
|
cpi->oxcf.Mode <= 2));
|
|
cpi->cyclic_refresh_mode_max_mbs_perframe =
|
|
(cpi->common.mb_rows * cpi->common.mb_cols) / 7;
|
|
if (cpi->oxcf.number_of_layers == 1) {
|
|
cpi->cyclic_refresh_mode_max_mbs_perframe =
|
|
(cpi->common.mb_rows * cpi->common.mb_cols) / 20;
|
|
} else if (cpi->oxcf.number_of_layers == 2) {
|
|
cpi->cyclic_refresh_mode_max_mbs_perframe =
|
|
(cpi->common.mb_rows * cpi->common.mb_cols) / 10;
|
|
}
|
|
cpi->cyclic_refresh_mode_index = 0;
|
|
cpi->cyclic_refresh_q = 32;
|
|
|
|
// GF behavior for 1 pass CBR, used when error_resilience is off.
|
|
cpi->gf_update_onepass_cbr = 0;
|
|
cpi->gf_noboost_onepass_cbr = 0;
|
|
if (!cpi->oxcf.error_resilient_mode &&
|
|
cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER && cpi->oxcf.Mode <= 2) {
|
|
cpi->gf_update_onepass_cbr = 1;
|
|
cpi->gf_noboost_onepass_cbr = 1;
|
|
cpi->gf_interval_onepass_cbr =
|
|
cpi->cyclic_refresh_mode_max_mbs_perframe > 0
|
|
? (2 * (cpi->common.mb_rows * cpi->common.mb_cols) /
|
|
cpi->cyclic_refresh_mode_max_mbs_perframe)
|
|
: 10;
|
|
cpi->gf_interval_onepass_cbr =
|
|
VPXMIN(40, VPXMAX(6, cpi->gf_interval_onepass_cbr));
|
|
cpi->baseline_gf_interval = cpi->gf_interval_onepass_cbr;
|
|
}
|
|
|
|
if (cpi->cyclic_refresh_mode_enabled) {
|
|
CHECK_MEM_ERROR(cpi->cyclic_refresh_map,
|
|
vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
|
|
} else {
|
|
cpi->cyclic_refresh_map = (signed char *)NULL;
|
|
}
|
|
|
|
CHECK_MEM_ERROR(cpi->consec_zero_last,
|
|
vpx_calloc(cm->mb_rows * cm->mb_cols, 1));
|
|
CHECK_MEM_ERROR(cpi->consec_zero_last_mvbias,
|
|
vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
|
|
|
|
#ifdef VP8_ENTROPY_STATS
|
|
init_context_counters();
|
|
#endif
|
|
|
|
/*Initialize the feed-forward activity masking.*/
|
|
cpi->activity_avg = 90 << 12;
|
|
|
|
/* Give a sensible default for the first frame. */
|
|
cpi->frames_since_key = 8;
|
|
cpi->key_frame_frequency = cpi->oxcf.key_freq;
|
|
cpi->this_key_frame_forced = 0;
|
|
cpi->next_key_frame_forced = 0;
|
|
|
|
cpi->source_alt_ref_pending = 0;
|
|
cpi->source_alt_ref_active = 0;
|
|
cpi->common.refresh_alt_ref_frame = 0;
|
|
|
|
cpi->force_maxqp = 0;
|
|
|
|
cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
|
|
#if CONFIG_INTERNAL_STATS
|
|
cpi->b_calculate_ssimg = 0;
|
|
|
|
cpi->count = 0;
|
|
cpi->bytes = 0;
|
|
|
|
if (cpi->b_calculate_psnr) {
|
|
cpi->total_sq_error = 0.0;
|
|
cpi->total_sq_error2 = 0.0;
|
|
cpi->total_y = 0.0;
|
|
cpi->total_u = 0.0;
|
|
cpi->total_v = 0.0;
|
|
cpi->total = 0.0;
|
|
cpi->totalp_y = 0.0;
|
|
cpi->totalp_u = 0.0;
|
|
cpi->totalp_v = 0.0;
|
|
cpi->totalp = 0.0;
|
|
cpi->tot_recode_hits = 0;
|
|
cpi->summed_quality = 0;
|
|
cpi->summed_weights = 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
cpi->first_time_stamp_ever = 0x7FFFFFFF;
|
|
|
|
cpi->frames_till_gf_update_due = 0;
|
|
cpi->key_frame_count = 1;
|
|
|
|
cpi->ni_av_qi = cpi->oxcf.worst_allowed_q;
|
|
cpi->ni_tot_qi = 0;
|
|
cpi->ni_frames = 0;
|
|
cpi->total_byte_count = 0;
|
|
|
|
cpi->drop_frame = 0;
|
|
|
|
cpi->rate_correction_factor = 1.0;
|
|
cpi->key_frame_rate_correction_factor = 1.0;
|
|
cpi->gf_rate_correction_factor = 1.0;
|
|
cpi->twopass.est_max_qcorrection_factor = 1.0;
|
|
|
|
for (i = 0; i < KEY_FRAME_CONTEXT; ++i) {
|
|
cpi->prior_key_frame_distance[i] = (int)cpi->output_framerate;
|
|
}
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
yuv_file = fopen("bd.yuv", "ab");
|
|
#endif
|
|
#ifdef OUTPUT_YUV_DENOISED
|
|
yuv_denoised_file = fopen("denoised.yuv", "ab");
|
|
#endif
|
|
|
|
#if 0
|
|
framepsnr = fopen("framepsnr.stt", "a");
|
|
kf_list = fopen("kf_list.stt", "w");
|
|
#endif
|
|
|
|
cpi->output_pkt_list = oxcf->output_pkt_list;
|
|
|
|
#if !CONFIG_REALTIME_ONLY
|
|
|
|
if (cpi->pass == 1) {
|
|
vp8_init_first_pass(cpi);
|
|
} else if (cpi->pass == 2) {
|
|
size_t packet_sz = sizeof(FIRSTPASS_STATS);
|
|
int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz);
|
|
|
|
cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
|
|
cpi->twopass.stats_in = cpi->twopass.stats_in_start;
|
|
cpi->twopass.stats_in_end =
|
|
(void *)((char *)cpi->twopass.stats_in + (packets - 1) * packet_sz);
|
|
vp8_init_second_pass(cpi);
|
|
}
|
|
|
|
#endif
|
|
|
|
if (cpi->compressor_speed == 2) {
|
|
cpi->avg_encode_time = 0;
|
|
cpi->avg_pick_mode_time = 0;
|
|
}
|
|
|
|
vp8_set_speed_features(cpi);
|
|
|
|
/* Set starting values of RD threshold multipliers (128 = *1) */
|
|
for (i = 0; i < MAX_MODES; ++i) {
|
|
cpi->mb.rd_thresh_mult[i] = 128;
|
|
}
|
|
|
|
#ifdef VP8_ENTROPY_STATS
|
|
init_mv_ref_counts();
|
|
#endif
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
if (vp8cx_create_encoder_threads(cpi)) {
|
|
vp8_remove_compressor(&cpi);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
cpi->fn_ptr[BLOCK_16X16].sdf = vpx_sad16x16;
|
|
cpi->fn_ptr[BLOCK_16X16].vf = vpx_variance16x16;
|
|
cpi->fn_ptr[BLOCK_16X16].svf = vpx_sub_pixel_variance16x16;
|
|
cpi->fn_ptr[BLOCK_16X16].sdx3f = vpx_sad16x16x3;
|
|
cpi->fn_ptr[BLOCK_16X16].sdx8f = vpx_sad16x16x8;
|
|
cpi->fn_ptr[BLOCK_16X16].sdx4df = vpx_sad16x16x4d;
|
|
|
|
cpi->fn_ptr[BLOCK_16X8].sdf = vpx_sad16x8;
|
|
cpi->fn_ptr[BLOCK_16X8].vf = vpx_variance16x8;
|
|
cpi->fn_ptr[BLOCK_16X8].svf = vpx_sub_pixel_variance16x8;
|
|
cpi->fn_ptr[BLOCK_16X8].sdx3f = vpx_sad16x8x3;
|
|
cpi->fn_ptr[BLOCK_16X8].sdx8f = vpx_sad16x8x8;
|
|
cpi->fn_ptr[BLOCK_16X8].sdx4df = vpx_sad16x8x4d;
|
|
|
|
cpi->fn_ptr[BLOCK_8X16].sdf = vpx_sad8x16;
|
|
cpi->fn_ptr[BLOCK_8X16].vf = vpx_variance8x16;
|
|
cpi->fn_ptr[BLOCK_8X16].svf = vpx_sub_pixel_variance8x16;
|
|
cpi->fn_ptr[BLOCK_8X16].sdx3f = vpx_sad8x16x3;
|
|
cpi->fn_ptr[BLOCK_8X16].sdx8f = vpx_sad8x16x8;
|
|
cpi->fn_ptr[BLOCK_8X16].sdx4df = vpx_sad8x16x4d;
|
|
|
|
cpi->fn_ptr[BLOCK_8X8].sdf = vpx_sad8x8;
|
|
cpi->fn_ptr[BLOCK_8X8].vf = vpx_variance8x8;
|
|
cpi->fn_ptr[BLOCK_8X8].svf = vpx_sub_pixel_variance8x8;
|
|
cpi->fn_ptr[BLOCK_8X8].sdx3f = vpx_sad8x8x3;
|
|
cpi->fn_ptr[BLOCK_8X8].sdx8f = vpx_sad8x8x8;
|
|
cpi->fn_ptr[BLOCK_8X8].sdx4df = vpx_sad8x8x4d;
|
|
|
|
cpi->fn_ptr[BLOCK_4X4].sdf = vpx_sad4x4;
|
|
cpi->fn_ptr[BLOCK_4X4].vf = vpx_variance4x4;
|
|
cpi->fn_ptr[BLOCK_4X4].svf = vpx_sub_pixel_variance4x4;
|
|
cpi->fn_ptr[BLOCK_4X4].sdx3f = vpx_sad4x4x3;
|
|
cpi->fn_ptr[BLOCK_4X4].sdx8f = vpx_sad4x4x8;
|
|
cpi->fn_ptr[BLOCK_4X4].sdx4df = vpx_sad4x4x4d;
|
|
|
|
#if ARCH_X86 || ARCH_X86_64
|
|
cpi->fn_ptr[BLOCK_16X16].copymem = vp8_copy32xn;
|
|
cpi->fn_ptr[BLOCK_16X8].copymem = vp8_copy32xn;
|
|
cpi->fn_ptr[BLOCK_8X16].copymem = vp8_copy32xn;
|
|
cpi->fn_ptr[BLOCK_8X8].copymem = vp8_copy32xn;
|
|
cpi->fn_ptr[BLOCK_4X4].copymem = vp8_copy32xn;
|
|
#endif
|
|
|
|
cpi->full_search_sad = vp8_full_search_sad;
|
|
cpi->diamond_search_sad = vp8_diamond_search_sad;
|
|
cpi->refining_search_sad = vp8_refining_search_sad;
|
|
|
|
/* make sure frame 1 is okay */
|
|
cpi->mb.error_bins[0] = cpi->common.MBs;
|
|
|
|
/* vp8cx_init_quantizer() is first called here. Add check in
|
|
* vp8cx_frame_init_quantizer() so that vp8cx_init_quantizer is only
|
|
* called later when needed. This will avoid unnecessary calls of
|
|
* vp8cx_init_quantizer() for every frame.
|
|
*/
|
|
vp8cx_init_quantizer(cpi);
|
|
|
|
vp8_loop_filter_init(cm);
|
|
|
|
cpi->common.error.setjmp = 0;
|
|
|
|
#if CONFIG_MULTI_RES_ENCODING
|
|
|
|
/* Calculate # of MBs in a row in lower-resolution level image. */
|
|
if (cpi->oxcf.mr_encoder_id > 0) vp8_cal_low_res_mb_cols(cpi);
|
|
|
|
#endif
|
|
|
|
/* setup RD costs to MACROBLOCK struct */
|
|
|
|
cpi->mb.mvcost[0] = &cpi->rd_costs.mvcosts[0][mv_max + 1];
|
|
cpi->mb.mvcost[1] = &cpi->rd_costs.mvcosts[1][mv_max + 1];
|
|
cpi->mb.mvsadcost[0] = &cpi->rd_costs.mvsadcosts[0][mvfp_max + 1];
|
|
cpi->mb.mvsadcost[1] = &cpi->rd_costs.mvsadcosts[1][mvfp_max + 1];
|
|
|
|
cal_mvsadcosts(cpi->mb.mvsadcost);
|
|
|
|
cpi->mb.mbmode_cost = cpi->rd_costs.mbmode_cost;
|
|
cpi->mb.intra_uv_mode_cost = cpi->rd_costs.intra_uv_mode_cost;
|
|
cpi->mb.bmode_costs = cpi->rd_costs.bmode_costs;
|
|
cpi->mb.inter_bmode_costs = cpi->rd_costs.inter_bmode_costs;
|
|
cpi->mb.token_costs = cpi->rd_costs.token_costs;
|
|
|
|
/* setup block ptrs & offsets */
|
|
vp8_setup_block_ptrs(&cpi->mb);
|
|
vp8_setup_block_dptrs(&cpi->mb.e_mbd);
|
|
|
|
return cpi;
|
|
}
|
|
|
|
void vp8_remove_compressor(VP8_COMP **ptr) {
|
|
VP8_COMP *cpi = *ptr;
|
|
|
|
if (!cpi) return;
|
|
|
|
if (cpi && (cpi->common.current_video_frame > 0)) {
|
|
#if !CONFIG_REALTIME_ONLY
|
|
|
|
if (cpi->pass == 2) {
|
|
vp8_end_second_pass(cpi);
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef VP8_ENTROPY_STATS
|
|
print_context_counters();
|
|
print_tree_update_probs();
|
|
print_mode_context();
|
|
#endif
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
|
|
if (cpi->pass != 1) {
|
|
FILE *f = fopen("opsnr.stt", "a");
|
|
double time_encoded =
|
|
(cpi->last_end_time_stamp_seen - cpi->first_time_stamp_ever) /
|
|
10000000.000;
|
|
double total_encode_time =
|
|
(cpi->time_receive_data + cpi->time_compress_data) / 1000.000;
|
|
double dr = (double)cpi->bytes * 8.0 / 1000.0 / time_encoded;
|
|
const double target_rate = (double)cpi->oxcf.target_bandwidth / 1000;
|
|
const double rate_err = ((100.0 * (dr - target_rate)) / target_rate);
|
|
|
|
if (cpi->b_calculate_psnr) {
|
|
if (cpi->oxcf.number_of_layers > 1) {
|
|
int i;
|
|
|
|
fprintf(f,
|
|
"Layer\tBitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\t"
|
|
"GLPsnrP\tVPXSSIM\n");
|
|
for (i = 0; i < (int)cpi->oxcf.number_of_layers; ++i) {
|
|
double dr =
|
|
(double)cpi->bytes_in_layer[i] * 8.0 / 1000.0 / time_encoded;
|
|
double samples = 3.0 / 2 * cpi->frames_in_layer[i] *
|
|
cpi->common.Width * cpi->common.Height;
|
|
double total_psnr =
|
|
vpx_sse_to_psnr(samples, 255.0, cpi->total_error2[i]);
|
|
double total_psnr2 =
|
|
vpx_sse_to_psnr(samples, 255.0, cpi->total_error2_p[i]);
|
|
double total_ssim =
|
|
100 * pow(cpi->sum_ssim[i] / cpi->sum_weights[i], 8.0);
|
|
|
|
fprintf(f,
|
|
"%5d\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
|
|
"%7.3f\t%7.3f\n",
|
|
i, dr, cpi->sum_psnr[i] / cpi->frames_in_layer[i],
|
|
total_psnr, cpi->sum_psnr_p[i] / cpi->frames_in_layer[i],
|
|
total_psnr2, total_ssim);
|
|
}
|
|
} else {
|
|
double samples =
|
|
3.0 / 2 * cpi->count * cpi->common.Width * cpi->common.Height;
|
|
double total_psnr =
|
|
vpx_sse_to_psnr(samples, 255.0, cpi->total_sq_error);
|
|
double total_psnr2 =
|
|
vpx_sse_to_psnr(samples, 255.0, cpi->total_sq_error2);
|
|
double total_ssim =
|
|
100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0);
|
|
|
|
fprintf(f,
|
|
"Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\t"
|
|
"GLPsnrP\tVPXSSIM\n");
|
|
fprintf(f,
|
|
"%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
|
|
"%7.3f\n",
|
|
dr, cpi->total / cpi->count, total_psnr,
|
|
cpi->totalp / cpi->count, total_psnr2, total_ssim);
|
|
}
|
|
}
|
|
fclose(f);
|
|
#if 0
|
|
f = fopen("qskip.stt", "a");
|
|
fprintf(f, "minq:%d -maxq:%d skiptrue:skipfalse = %d:%d\n", cpi->oxcf.best_allowed_q, cpi->oxcf.worst_allowed_q, skiptruecount, skipfalsecount);
|
|
fclose(f);
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef SPEEDSTATS
|
|
|
|
if (cpi->compressor_speed == 2) {
|
|
int i;
|
|
FILE *f = fopen("cxspeed.stt", "a");
|
|
cnt_pm /= cpi->common.MBs;
|
|
|
|
for (i = 0; i < 16; ++i) fprintf(f, "%5d", frames_at_speed[i]);
|
|
|
|
fprintf(f, "\n");
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef MODE_STATS
|
|
{
|
|
extern int count_mb_seg[4];
|
|
FILE *f = fopen("modes.stt", "a");
|
|
double dr = (double)cpi->framerate * (double)bytes * (double)8 /
|
|
(double)count / (double)1000;
|
|
fprintf(f, "intra_mode in Intra Frames:\n");
|
|
fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d\n", y_modes[0], y_modes[1],
|
|
y_modes[2], y_modes[3], y_modes[4]);
|
|
fprintf(f, "UV:%8d, %8d, %8d, %8d\n", uv_modes[0], uv_modes[1],
|
|
uv_modes[2], uv_modes[3]);
|
|
fprintf(f, "B: ");
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 10; ++i) fprintf(f, "%8d, ", b_modes[i]);
|
|
|
|
fprintf(f, "\n");
|
|
}
|
|
|
|
fprintf(f, "Modes in Inter Frames:\n");
|
|
fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d\n",
|
|
inter_y_modes[0], inter_y_modes[1], inter_y_modes[2],
|
|
inter_y_modes[3], inter_y_modes[4], inter_y_modes[5],
|
|
inter_y_modes[6], inter_y_modes[7], inter_y_modes[8],
|
|
inter_y_modes[9]);
|
|
fprintf(f, "UV:%8d, %8d, %8d, %8d\n", inter_uv_modes[0],
|
|
inter_uv_modes[1], inter_uv_modes[2], inter_uv_modes[3]);
|
|
fprintf(f, "B: ");
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 15; ++i) fprintf(f, "%8d, ", inter_b_modes[i]);
|
|
|
|
fprintf(f, "\n");
|
|
}
|
|
fprintf(f, "P:%8d, %8d, %8d, %8d\n", count_mb_seg[0], count_mb_seg[1],
|
|
count_mb_seg[2], count_mb_seg[3]);
|
|
fprintf(f, "PB:%8d, %8d, %8d, %8d\n", inter_b_modes[LEFT4X4],
|
|
inter_b_modes[ABOVE4X4], inter_b_modes[ZERO4X4],
|
|
inter_b_modes[NEW4X4]);
|
|
|
|
fclose(f);
|
|
}
|
|
#endif
|
|
|
|
#ifdef VP8_ENTROPY_STATS
|
|
{
|
|
int i, j, k;
|
|
FILE *fmode = fopen("modecontext.c", "w");
|
|
|
|
fprintf(fmode, "\n#include \"entropymode.h\"\n\n");
|
|
fprintf(fmode, "const unsigned int vp8_kf_default_bmode_counts ");
|
|
fprintf(fmode,
|
|
"[VP8_BINTRAMODES] [VP8_BINTRAMODES] [VP8_BINTRAMODES] =\n{\n");
|
|
|
|
for (i = 0; i < 10; ++i) {
|
|
fprintf(fmode, " { /* Above Mode : %d */\n", i);
|
|
|
|
for (j = 0; j < 10; ++j) {
|
|
fprintf(fmode, " {");
|
|
|
|
for (k = 0; k < 10; ++k) {
|
|
if (!intra_mode_stats[i][j][k])
|
|
fprintf(fmode, " %5d, ", 1);
|
|
else
|
|
fprintf(fmode, " %5d, ", intra_mode_stats[i][j][k]);
|
|
}
|
|
|
|
fprintf(fmode, "}, /* left_mode %d */\n", j);
|
|
}
|
|
|
|
fprintf(fmode, " },\n");
|
|
}
|
|
|
|
fprintf(fmode, "};\n");
|
|
fclose(fmode);
|
|
}
|
|
#endif
|
|
|
|
#if defined(SECTIONBITS_OUTPUT)
|
|
|
|
if (0) {
|
|
int i;
|
|
FILE *f = fopen("tokenbits.stt", "a");
|
|
|
|
for (i = 0; i < 28; ++i) fprintf(f, "%8d", (int)(Sectionbits[i] / 256));
|
|
|
|
fprintf(f, "\n");
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
|
|
#if 0
|
|
{
|
|
printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
|
|
printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
|
|
printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->time_receive_data / 1000, cpi->time_encode_mb_row / 1000, cpi->time_compress_data / 1000, (cpi->time_receive_data + cpi->time_compress_data) / 1000);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
vp8cx_remove_encoder_threads(cpi);
|
|
#endif
|
|
|
|
#if CONFIG_TEMPORAL_DENOISING
|
|
vp8_denoiser_free(&cpi->denoiser);
|
|
#endif
|
|
dealloc_compressor_data(cpi);
|
|
vpx_free(cpi->mb.ss);
|
|
vpx_free(cpi->tok);
|
|
vpx_free(cpi->cyclic_refresh_map);
|
|
vpx_free(cpi->consec_zero_last);
|
|
vpx_free(cpi->consec_zero_last_mvbias);
|
|
|
|
vp8_remove_common(&cpi->common);
|
|
vpx_free(cpi);
|
|
*ptr = 0;
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
fclose(yuv_file);
|
|
#endif
|
|
#ifdef OUTPUT_YUV_DENOISED
|
|
fclose(yuv_denoised_file);
|
|
#endif
|
|
|
|
#if 0
|
|
|
|
if (keyfile)
|
|
fclose(keyfile);
|
|
|
|
if (framepsnr)
|
|
fclose(framepsnr);
|
|
|
|
if (kf_list)
|
|
fclose(kf_list);
|
|
|
|
#endif
|
|
}
|
|
|
|
static uint64_t calc_plane_error(unsigned char *orig, int orig_stride,
|
|
unsigned char *recon, int recon_stride,
|
|
unsigned int cols, unsigned int rows) {
|
|
unsigned int row, col;
|
|
uint64_t total_sse = 0;
|
|
int diff;
|
|
|
|
for (row = 0; row + 16 <= rows; row += 16) {
|
|
for (col = 0; col + 16 <= cols; col += 16) {
|
|
unsigned int sse;
|
|
|
|
vpx_mse16x16(orig + col, orig_stride, recon + col, recon_stride, &sse);
|
|
total_sse += sse;
|
|
}
|
|
|
|
/* Handle odd-sized width */
|
|
if (col < cols) {
|
|
unsigned int border_row, border_col;
|
|
unsigned char *border_orig = orig;
|
|
unsigned char *border_recon = recon;
|
|
|
|
for (border_row = 0; border_row < 16; ++border_row) {
|
|
for (border_col = col; border_col < cols; ++border_col) {
|
|
diff = border_orig[border_col] - border_recon[border_col];
|
|
total_sse += diff * diff;
|
|
}
|
|
|
|
border_orig += orig_stride;
|
|
border_recon += recon_stride;
|
|
}
|
|
}
|
|
|
|
orig += orig_stride * 16;
|
|
recon += recon_stride * 16;
|
|
}
|
|
|
|
/* Handle odd-sized height */
|
|
for (; row < rows; ++row) {
|
|
for (col = 0; col < cols; ++col) {
|
|
diff = orig[col] - recon[col];
|
|
total_sse += diff * diff;
|
|
}
|
|
|
|
orig += orig_stride;
|
|
recon += recon_stride;
|
|
}
|
|
|
|
vpx_clear_system_state();
|
|
return total_sse;
|
|
}
|
|
|
|
static void generate_psnr_packet(VP8_COMP *cpi) {
|
|
YV12_BUFFER_CONFIG *orig = cpi->Source;
|
|
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
|
|
struct vpx_codec_cx_pkt pkt;
|
|
uint64_t sse;
|
|
int i;
|
|
unsigned int width = cpi->common.Width;
|
|
unsigned int height = cpi->common.Height;
|
|
|
|
pkt.kind = VPX_CODEC_PSNR_PKT;
|
|
sse = calc_plane_error(orig->y_buffer, orig->y_stride, recon->y_buffer,
|
|
recon->y_stride, width, height);
|
|
pkt.data.psnr.sse[0] = sse;
|
|
pkt.data.psnr.sse[1] = sse;
|
|
pkt.data.psnr.samples[0] = width * height;
|
|
pkt.data.psnr.samples[1] = width * height;
|
|
|
|
width = (width + 1) / 2;
|
|
height = (height + 1) / 2;
|
|
|
|
sse = calc_plane_error(orig->u_buffer, orig->uv_stride, recon->u_buffer,
|
|
recon->uv_stride, width, height);
|
|
pkt.data.psnr.sse[0] += sse;
|
|
pkt.data.psnr.sse[2] = sse;
|
|
pkt.data.psnr.samples[0] += width * height;
|
|
pkt.data.psnr.samples[2] = width * height;
|
|
|
|
sse = calc_plane_error(orig->v_buffer, orig->uv_stride, recon->v_buffer,
|
|
recon->uv_stride, width, height);
|
|
pkt.data.psnr.sse[0] += sse;
|
|
pkt.data.psnr.sse[3] = sse;
|
|
pkt.data.psnr.samples[0] += width * height;
|
|
pkt.data.psnr.samples[3] = width * height;
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
pkt.data.psnr.psnr[i] = vpx_sse_to_psnr(pkt.data.psnr.samples[i], 255.0,
|
|
(double)(pkt.data.psnr.sse[i]));
|
|
}
|
|
|
|
vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
|
|
}
|
|
|
|
int vp8_use_as_reference(VP8_COMP *cpi, int ref_frame_flags) {
|
|
if (ref_frame_flags > 7) return -1;
|
|
|
|
cpi->ref_frame_flags = ref_frame_flags;
|
|
return 0;
|
|
}
|
|
int vp8_update_reference(VP8_COMP *cpi, int ref_frame_flags) {
|
|
if (ref_frame_flags > 7) return -1;
|
|
|
|
cpi->common.refresh_golden_frame = 0;
|
|
cpi->common.refresh_alt_ref_frame = 0;
|
|
cpi->common.refresh_last_frame = 0;
|
|
|
|
if (ref_frame_flags & VP8_LAST_FRAME) cpi->common.refresh_last_frame = 1;
|
|
|
|
if (ref_frame_flags & VP8_GOLD_FRAME) cpi->common.refresh_golden_frame = 1;
|
|
|
|
if (ref_frame_flags & VP8_ALTR_FRAME) cpi->common.refresh_alt_ref_frame = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vp8_get_reference(VP8_COMP *cpi, enum vpx_ref_frame_type ref_frame_flag,
|
|
YV12_BUFFER_CONFIG *sd) {
|
|
VP8_COMMON *cm = &cpi->common;
|
|
int ref_fb_idx;
|
|
|
|
if (ref_frame_flag == VP8_LAST_FRAME) {
|
|
ref_fb_idx = cm->lst_fb_idx;
|
|
} else if (ref_frame_flag == VP8_GOLD_FRAME) {
|
|
ref_fb_idx = cm->gld_fb_idx;
|
|
} else if (ref_frame_flag == VP8_ALTR_FRAME) {
|
|
ref_fb_idx = cm->alt_fb_idx;
|
|
} else {
|
|
return -1;
|
|
}
|
|
|
|
vp8_yv12_copy_frame(&cm->yv12_fb[ref_fb_idx], sd);
|
|
|
|
return 0;
|
|
}
|
|
int vp8_set_reference(VP8_COMP *cpi, enum vpx_ref_frame_type ref_frame_flag,
|
|
YV12_BUFFER_CONFIG *sd) {
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
int ref_fb_idx;
|
|
|
|
if (ref_frame_flag == VP8_LAST_FRAME) {
|
|
ref_fb_idx = cm->lst_fb_idx;
|
|
} else if (ref_frame_flag == VP8_GOLD_FRAME) {
|
|
ref_fb_idx = cm->gld_fb_idx;
|
|
} else if (ref_frame_flag == VP8_ALTR_FRAME) {
|
|
ref_fb_idx = cm->alt_fb_idx;
|
|
} else {
|
|
return -1;
|
|
}
|
|
|
|
vp8_yv12_copy_frame(sd, &cm->yv12_fb[ref_fb_idx]);
|
|
|
|
return 0;
|
|
}
|
|
int vp8_update_entropy(VP8_COMP *cpi, int update) {
|
|
VP8_COMMON *cm = &cpi->common;
|
|
cm->refresh_entropy_probs = update;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if defined(OUTPUT_YUV_SRC) || defined(OUTPUT_YUV_DENOISED)
|
|
void vp8_write_yuv_frame(FILE *yuv_file, YV12_BUFFER_CONFIG *s) {
|
|
unsigned char *src = s->y_buffer;
|
|
int h = s->y_height;
|
|
|
|
do {
|
|
fwrite(src, s->y_width, 1, yuv_file);
|
|
src += s->y_stride;
|
|
} while (--h);
|
|
|
|
src = s->u_buffer;
|
|
h = s->uv_height;
|
|
|
|
do {
|
|
fwrite(src, s->uv_width, 1, yuv_file);
|
|
src += s->uv_stride;
|
|
} while (--h);
|
|
|
|
src = s->v_buffer;
|
|
h = s->uv_height;
|
|
|
|
do {
|
|
fwrite(src, s->uv_width, 1, yuv_file);
|
|
src += s->uv_stride;
|
|
} while (--h);
|
|
}
|
|
#endif
|
|
|
|
static void scale_and_extend_source(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi) {
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
/* are we resizing the image */
|
|
if (cm->horiz_scale != 0 || cm->vert_scale != 0) {
|
|
#if CONFIG_SPATIAL_RESAMPLING
|
|
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
|
|
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
|
|
int tmp_height;
|
|
|
|
if (cm->vert_scale == 3) {
|
|
tmp_height = 9;
|
|
} else {
|
|
tmp_height = 11;
|
|
}
|
|
|
|
Scale2Ratio(cm->horiz_scale, &hr, &hs);
|
|
Scale2Ratio(cm->vert_scale, &vr, &vs);
|
|
|
|
vpx_scale_frame(sd, &cpi->scaled_source, cm->temp_scale_frame.y_buffer,
|
|
tmp_height, hs, hr, vs, vr, 0);
|
|
|
|
vp8_yv12_extend_frame_borders(&cpi->scaled_source);
|
|
cpi->Source = &cpi->scaled_source;
|
|
#endif
|
|
} else {
|
|
cpi->Source = sd;
|
|
}
|
|
}
|
|
|
|
static int resize_key_frame(VP8_COMP *cpi) {
|
|
#if CONFIG_SPATIAL_RESAMPLING
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
/* Do we need to apply resampling for one pass cbr.
|
|
* In one pass this is more limited than in two pass cbr.
|
|
* The test and any change is only made once per key frame sequence.
|
|
*/
|
|
if (cpi->oxcf.allow_spatial_resampling &&
|
|
(cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)) {
|
|
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
|
|
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
|
|
int new_width, new_height;
|
|
|
|
/* If we are below the resample DOWN watermark then scale down a
|
|
* notch.
|
|
*/
|
|
if (cpi->buffer_level < (cpi->oxcf.resample_down_water_mark *
|
|
cpi->oxcf.optimal_buffer_level / 100)) {
|
|
cm->horiz_scale =
|
|
(cm->horiz_scale < ONETWO) ? cm->horiz_scale + 1 : ONETWO;
|
|
cm->vert_scale = (cm->vert_scale < ONETWO) ? cm->vert_scale + 1 : ONETWO;
|
|
}
|
|
/* Should we now start scaling back up */
|
|
else if (cpi->buffer_level > (cpi->oxcf.resample_up_water_mark *
|
|
cpi->oxcf.optimal_buffer_level / 100)) {
|
|
cm->horiz_scale =
|
|
(cm->horiz_scale > NORMAL) ? cm->horiz_scale - 1 : NORMAL;
|
|
cm->vert_scale = (cm->vert_scale > NORMAL) ? cm->vert_scale - 1 : NORMAL;
|
|
}
|
|
|
|
/* Get the new height and width */
|
|
Scale2Ratio(cm->horiz_scale, &hr, &hs);
|
|
Scale2Ratio(cm->vert_scale, &vr, &vs);
|
|
new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs;
|
|
new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs;
|
|
|
|
/* If the image size has changed we need to reallocate the buffers
|
|
* and resample the source image
|
|
*/
|
|
if ((cm->Width != new_width) || (cm->Height != new_height)) {
|
|
cm->Width = new_width;
|
|
cm->Height = new_height;
|
|
vp8_alloc_compressor_data(cpi);
|
|
scale_and_extend_source(cpi->un_scaled_source, cpi);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static void update_alt_ref_frame_stats(VP8_COMP *cpi) {
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
/* Select an interval before next GF or altref */
|
|
if (!cpi->auto_gold) cpi->frames_till_gf_update_due = DEFAULT_GF_INTERVAL;
|
|
|
|
if ((cpi->pass != 2) && cpi->frames_till_gf_update_due) {
|
|
cpi->current_gf_interval = cpi->frames_till_gf_update_due;
|
|
|
|
/* Set the bits per frame that we should try and recover in
|
|
* subsequent inter frames to account for the extra GF spend...
|
|
* note that his does not apply for GF updates that occur
|
|
* coincident with a key frame as the extra cost of key frames is
|
|
* dealt with elsewhere.
|
|
*/
|
|
cpi->gf_overspend_bits += cpi->projected_frame_size;
|
|
cpi->non_gf_bitrate_adjustment =
|
|
cpi->gf_overspend_bits / cpi->frames_till_gf_update_due;
|
|
}
|
|
|
|
/* Update data structure that monitors level of reference to last GF */
|
|
memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
|
|
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
|
|
|
|
/* this frame refreshes means next frames don't unless specified by user */
|
|
cpi->frames_since_golden = 0;
|
|
|
|
/* Clear the alternate reference update pending flag. */
|
|
cpi->source_alt_ref_pending = 0;
|
|
|
|
/* Set the alternate reference frame active flag */
|
|
cpi->source_alt_ref_active = 1;
|
|
}
|
|
static void update_golden_frame_stats(VP8_COMP *cpi) {
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
/* Update the Golden frame usage counts. */
|
|
if (cm->refresh_golden_frame) {
|
|
/* Select an interval before next GF */
|
|
if (!cpi->auto_gold) cpi->frames_till_gf_update_due = DEFAULT_GF_INTERVAL;
|
|
|
|
if ((cpi->pass != 2) && (cpi->frames_till_gf_update_due > 0)) {
|
|
cpi->current_gf_interval = cpi->frames_till_gf_update_due;
|
|
|
|
/* Set the bits per frame that we should try and recover in
|
|
* subsequent inter frames to account for the extra GF spend...
|
|
* note that his does not apply for GF updates that occur
|
|
* coincident with a key frame as the extra cost of key frames
|
|
* is dealt with elsewhere.
|
|
*/
|
|
if ((cm->frame_type != KEY_FRAME) && !cpi->source_alt_ref_active) {
|
|
/* Calcluate GF bits to be recovered
|
|
* Projected size - av frame bits available for inter
|
|
* frames for clip as a whole
|
|
*/
|
|
cpi->gf_overspend_bits +=
|
|
(cpi->projected_frame_size - cpi->inter_frame_target);
|
|
}
|
|
|
|
cpi->non_gf_bitrate_adjustment =
|
|
cpi->gf_overspend_bits / cpi->frames_till_gf_update_due;
|
|
}
|
|
|
|
/* Update data structure that monitors level of reference to last GF */
|
|
memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
|
|
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
|
|
|
|
/* this frame refreshes means next frames don't unless specified by
|
|
* user
|
|
*/
|
|
cm->refresh_golden_frame = 0;
|
|
cpi->frames_since_golden = 0;
|
|
|
|
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
|
|
|
|
/* ******** Fixed Q test code only ************ */
|
|
/* If we are going to use the ALT reference for the next group of
|
|
* frames set a flag to say so.
|
|
*/
|
|
if (cpi->oxcf.fixed_q >= 0 && cpi->oxcf.play_alternate &&
|
|
!cpi->common.refresh_alt_ref_frame) {
|
|
cpi->source_alt_ref_pending = 1;
|
|
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
|
|
}
|
|
|
|
if (!cpi->source_alt_ref_pending) cpi->source_alt_ref_active = 0;
|
|
|
|
/* Decrement count down till next gf */
|
|
if (cpi->frames_till_gf_update_due > 0) cpi->frames_till_gf_update_due--;
|
|
|
|
} else if (!cpi->common.refresh_alt_ref_frame) {
|
|
/* Decrement count down till next gf */
|
|
if (cpi->frames_till_gf_update_due > 0) cpi->frames_till_gf_update_due--;
|
|
|
|
if (cpi->frames_till_alt_ref_frame) cpi->frames_till_alt_ref_frame--;
|
|
|
|
cpi->frames_since_golden++;
|
|
|
|
if (cpi->frames_since_golden > 1) {
|
|
cpi->recent_ref_frame_usage[INTRA_FRAME] +=
|
|
cpi->mb.count_mb_ref_frame_usage[INTRA_FRAME];
|
|
cpi->recent_ref_frame_usage[LAST_FRAME] +=
|
|
cpi->mb.count_mb_ref_frame_usage[LAST_FRAME];
|
|
cpi->recent_ref_frame_usage[GOLDEN_FRAME] +=
|
|
cpi->mb.count_mb_ref_frame_usage[GOLDEN_FRAME];
|
|
cpi->recent_ref_frame_usage[ALTREF_FRAME] +=
|
|
cpi->mb.count_mb_ref_frame_usage[ALTREF_FRAME];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* This function updates the reference frame probability estimates that
|
|
* will be used during mode selection
|
|
*/
|
|
static void update_rd_ref_frame_probs(VP8_COMP *cpi) {
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
const int *const rfct = cpi->mb.count_mb_ref_frame_usage;
|
|
const int rf_intra = rfct[INTRA_FRAME];
|
|
const int rf_inter =
|
|
rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
cpi->prob_intra_coded = 255;
|
|
cpi->prob_last_coded = 128;
|
|
cpi->prob_gf_coded = 128;
|
|
} else if (!(rf_intra + rf_inter)) {
|
|
cpi->prob_intra_coded = 63;
|
|
cpi->prob_last_coded = 128;
|
|
cpi->prob_gf_coded = 128;
|
|
}
|
|
|
|
/* update reference frame costs since we can do better than what we got
|
|
* last frame.
|
|
*/
|
|
if (cpi->oxcf.number_of_layers == 1) {
|
|
if (cpi->common.refresh_alt_ref_frame) {
|
|
cpi->prob_intra_coded += 40;
|
|
if (cpi->prob_intra_coded > 255) cpi->prob_intra_coded = 255;
|
|
cpi->prob_last_coded = 200;
|
|
cpi->prob_gf_coded = 1;
|
|
} else if (cpi->frames_since_golden == 0) {
|
|
cpi->prob_last_coded = 214;
|
|
} else if (cpi->frames_since_golden == 1) {
|
|
cpi->prob_last_coded = 192;
|
|
cpi->prob_gf_coded = 220;
|
|
} else if (cpi->source_alt_ref_active) {
|
|
cpi->prob_gf_coded -= 20;
|
|
|
|
if (cpi->prob_gf_coded < 10) cpi->prob_gf_coded = 10;
|
|
}
|
|
if (!cpi->source_alt_ref_active) cpi->prob_gf_coded = 255;
|
|
}
|
|
}
|
|
|
|
#if !CONFIG_REALTIME_ONLY
|
|
/* 1 = key, 0 = inter */
|
|
static int decide_key_frame(VP8_COMP *cpi) {
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
int code_key_frame = 0;
|
|
|
|
cpi->kf_boost = 0;
|
|
|
|
if (cpi->Speed > 11) return 0;
|
|
|
|
/* Clear down mmx registers */
|
|
vpx_clear_system_state();
|
|
|
|
if ((cpi->compressor_speed == 2) && (cpi->Speed >= 5) && (cpi->sf.RD == 0)) {
|
|
double change = 1.0 *
|
|
abs((int)(cpi->mb.intra_error - cpi->last_intra_error)) /
|
|
(1 + cpi->last_intra_error);
|
|
double change2 =
|
|
1.0 *
|
|
abs((int)(cpi->mb.prediction_error - cpi->last_prediction_error)) /
|
|
(1 + cpi->last_prediction_error);
|
|
double minerror = cm->MBs * 256;
|
|
|
|
cpi->last_intra_error = cpi->mb.intra_error;
|
|
cpi->last_prediction_error = cpi->mb.prediction_error;
|
|
|
|
if (10 * cpi->mb.intra_error / (1 + cpi->mb.prediction_error) < 15 &&
|
|
cpi->mb.prediction_error > minerror &&
|
|
(change > .25 || change2 > .25)) {
|
|
/*(change > 1.4 || change < .75)&& cpi->this_frame_percent_intra >
|
|
* cpi->last_frame_percent_intra + 3*/
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* If the following are true we might as well code a key frame */
|
|
if (((cpi->this_frame_percent_intra == 100) &&
|
|
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra + 2))) ||
|
|
((cpi->this_frame_percent_intra > 95) &&
|
|
(cpi->this_frame_percent_intra >=
|
|
(cpi->last_frame_percent_intra + 5)))) {
|
|
code_key_frame = 1;
|
|
}
|
|
/* in addition if the following are true and this is not a golden frame
|
|
* then code a key frame Note that on golden frames there often seems
|
|
* to be a pop in intra useage anyway hence this restriction is
|
|
* designed to prevent spurious key frames. The Intra pop needs to be
|
|
* investigated.
|
|
*/
|
|
else if (((cpi->this_frame_percent_intra > 60) &&
|
|
(cpi->this_frame_percent_intra >
|
|
(cpi->last_frame_percent_intra * 2))) ||
|
|
((cpi->this_frame_percent_intra > 75) &&
|
|
(cpi->this_frame_percent_intra >
|
|
(cpi->last_frame_percent_intra * 3 / 2))) ||
|
|
((cpi->this_frame_percent_intra > 90) &&
|
|
(cpi->this_frame_percent_intra >
|
|
(cpi->last_frame_percent_intra + 10)))) {
|
|
if (!cm->refresh_golden_frame) code_key_frame = 1;
|
|
}
|
|
|
|
return code_key_frame;
|
|
}
|
|
|
|
static void Pass1Encode(VP8_COMP *cpi, size_t *size, unsigned char *dest,
|
|
unsigned int *frame_flags) {
|
|
(void)size;
|
|
(void)dest;
|
|
(void)frame_flags;
|
|
vp8_set_quantizer(cpi, 26);
|
|
|
|
vp8_first_pass(cpi);
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame)
|
|
{
|
|
|
|
/* write the frame */
|
|
FILE *yframe;
|
|
int i;
|
|
char filename[255];
|
|
|
|
sprintf(filename, "cx\\y%04d.raw", this_frame);
|
|
yframe = fopen(filename, "wb");
|
|
|
|
for (i = 0; i < frame->y_height; ++i)
|
|
fwrite(frame->y_buffer + i * frame->y_stride, frame->y_width, 1, yframe);
|
|
|
|
fclose(yframe);
|
|
sprintf(filename, "cx\\u%04d.raw", this_frame);
|
|
yframe = fopen(filename, "wb");
|
|
|
|
for (i = 0; i < frame->uv_height; ++i)
|
|
fwrite(frame->u_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe);
|
|
|
|
fclose(yframe);
|
|
sprintf(filename, "cx\\v%04d.raw", this_frame);
|
|
yframe = fopen(filename, "wb");
|
|
|
|
for (i = 0; i < frame->uv_height; ++i)
|
|
fwrite(frame->v_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe);
|
|
|
|
fclose(yframe);
|
|
}
|
|
#endif
|
|
/* return of 0 means drop frame */
|
|
|
|
#if !CONFIG_REALTIME_ONLY
|
|
/* Function to test for conditions that indeicate we should loop
|
|
* back and recode a frame.
|
|
*/
|
|
static int recode_loop_test(VP8_COMP *cpi, int high_limit, int low_limit, int q,
|
|
int maxq, int minq) {
|
|
int force_recode = 0;
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
/* Is frame recode allowed at all
|
|
* Yes if either recode mode 1 is selected or mode two is selcted
|
|
* and the frame is a key frame. golden frame or alt_ref_frame
|
|
*/
|
|
if ((cpi->sf.recode_loop == 1) ||
|
|
((cpi->sf.recode_loop == 2) &&
|
|
((cm->frame_type == KEY_FRAME) || cm->refresh_golden_frame ||
|
|
cm->refresh_alt_ref_frame))) {
|
|
/* General over and under shoot tests */
|
|
if (((cpi->projected_frame_size > high_limit) && (q < maxq)) ||
|
|
((cpi->projected_frame_size < low_limit) && (q > minq))) {
|
|
force_recode = 1;
|
|
}
|
|
/* Special Constrained quality tests */
|
|
else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
|
|
/* Undershoot and below auto cq level */
|
|
if ((q > cpi->cq_target_quality) &&
|
|
(cpi->projected_frame_size < ((cpi->this_frame_target * 7) >> 3))) {
|
|
force_recode = 1;
|
|
}
|
|
/* Severe undershoot and between auto and user cq level */
|
|
else if ((q > cpi->oxcf.cq_level) &&
|
|
(cpi->projected_frame_size < cpi->min_frame_bandwidth) &&
|
|
(cpi->active_best_quality > cpi->oxcf.cq_level)) {
|
|
force_recode = 1;
|
|
cpi->active_best_quality = cpi->oxcf.cq_level;
|
|
}
|
|
}
|
|
}
|
|
|
|
return force_recode;
|
|
}
|
|
#endif // !CONFIG_REALTIME_ONLY
|
|
|
|
static void update_reference_frames(VP8_COMP *cpi) {
|
|
VP8_COMMON *cm = &cpi->common;
|
|
YV12_BUFFER_CONFIG *yv12_fb = cm->yv12_fb;
|
|
|
|
/* At this point the new frame has been encoded.
|
|
* If any buffer copy / swapping is signaled it should be done here.
|
|
*/
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
yv12_fb[cm->new_fb_idx].flags |= VP8_GOLD_FRAME | VP8_ALTR_FRAME;
|
|
|
|
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME;
|
|
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME;
|
|
|
|
cm->alt_fb_idx = cm->gld_fb_idx = cm->new_fb_idx;
|
|
|
|
cpi->current_ref_frames[GOLDEN_FRAME] = cm->current_video_frame;
|
|
cpi->current_ref_frames[ALTREF_FRAME] = cm->current_video_frame;
|
|
} else /* For non key frames */
|
|
{
|
|
if (cm->refresh_alt_ref_frame) {
|
|
assert(!cm->copy_buffer_to_arf);
|
|
|
|
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_ALTR_FRAME;
|
|
cm->yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME;
|
|
cm->alt_fb_idx = cm->new_fb_idx;
|
|
|
|
cpi->current_ref_frames[ALTREF_FRAME] = cm->current_video_frame;
|
|
} else if (cm->copy_buffer_to_arf) {
|
|
assert(!(cm->copy_buffer_to_arf & ~0x3));
|
|
|
|
if (cm->copy_buffer_to_arf == 1) {
|
|
if (cm->alt_fb_idx != cm->lst_fb_idx) {
|
|
yv12_fb[cm->lst_fb_idx].flags |= VP8_ALTR_FRAME;
|
|
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME;
|
|
cm->alt_fb_idx = cm->lst_fb_idx;
|
|
|
|
cpi->current_ref_frames[ALTREF_FRAME] =
|
|
cpi->current_ref_frames[LAST_FRAME];
|
|
}
|
|
} else /* if (cm->copy_buffer_to_arf == 2) */
|
|
{
|
|
if (cm->alt_fb_idx != cm->gld_fb_idx) {
|
|
yv12_fb[cm->gld_fb_idx].flags |= VP8_ALTR_FRAME;
|
|
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME;
|
|
cm->alt_fb_idx = cm->gld_fb_idx;
|
|
|
|
cpi->current_ref_frames[ALTREF_FRAME] =
|
|
cpi->current_ref_frames[GOLDEN_FRAME];
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cm->refresh_golden_frame) {
|
|
assert(!cm->copy_buffer_to_gf);
|
|
|
|
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_GOLD_FRAME;
|
|
cm->yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME;
|
|
cm->gld_fb_idx = cm->new_fb_idx;
|
|
|
|
cpi->current_ref_frames[GOLDEN_FRAME] = cm->current_video_frame;
|
|
} else if (cm->copy_buffer_to_gf) {
|
|
assert(!(cm->copy_buffer_to_arf & ~0x3));
|
|
|
|
if (cm->copy_buffer_to_gf == 1) {
|
|
if (cm->gld_fb_idx != cm->lst_fb_idx) {
|
|
yv12_fb[cm->lst_fb_idx].flags |= VP8_GOLD_FRAME;
|
|
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME;
|
|
cm->gld_fb_idx = cm->lst_fb_idx;
|
|
|
|
cpi->current_ref_frames[GOLDEN_FRAME] =
|
|
cpi->current_ref_frames[LAST_FRAME];
|
|
}
|
|
} else /* if (cm->copy_buffer_to_gf == 2) */
|
|
{
|
|
if (cm->alt_fb_idx != cm->gld_fb_idx) {
|
|
yv12_fb[cm->alt_fb_idx].flags |= VP8_GOLD_FRAME;
|
|
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME;
|
|
cm->gld_fb_idx = cm->alt_fb_idx;
|
|
|
|
cpi->current_ref_frames[GOLDEN_FRAME] =
|
|
cpi->current_ref_frames[ALTREF_FRAME];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cm->refresh_last_frame) {
|
|
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_LAST_FRAME;
|
|
cm->yv12_fb[cm->lst_fb_idx].flags &= ~VP8_LAST_FRAME;
|
|
cm->lst_fb_idx = cm->new_fb_idx;
|
|
|
|
cpi->current_ref_frames[LAST_FRAME] = cm->current_video_frame;
|
|
}
|
|
|
|
#if CONFIG_TEMPORAL_DENOISING
|
|
if (cpi->oxcf.noise_sensitivity) {
|
|
/* we shouldn't have to keep multiple copies as we know in advance which
|
|
* buffer we should start - for now to get something up and running
|
|
* I've chosen to copy the buffers
|
|
*/
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
int i;
|
|
for (i = LAST_FRAME; i < MAX_REF_FRAMES; ++i)
|
|
vp8_yv12_copy_frame(cpi->Source, &cpi->denoiser.yv12_running_avg[i]);
|
|
} else /* For non key frames */
|
|
{
|
|
vp8_yv12_extend_frame_borders(
|
|
&cpi->denoiser.yv12_running_avg[INTRA_FRAME]);
|
|
|
|
if (cm->refresh_alt_ref_frame || cm->copy_buffer_to_arf) {
|
|
vp8_yv12_copy_frame(&cpi->denoiser.yv12_running_avg[INTRA_FRAME],
|
|
&cpi->denoiser.yv12_running_avg[ALTREF_FRAME]);
|
|
}
|
|
if (cm->refresh_golden_frame || cm->copy_buffer_to_gf) {
|
|
vp8_yv12_copy_frame(&cpi->denoiser.yv12_running_avg[INTRA_FRAME],
|
|
&cpi->denoiser.yv12_running_avg[GOLDEN_FRAME]);
|
|
}
|
|
if (cm->refresh_last_frame) {
|
|
vp8_yv12_copy_frame(&cpi->denoiser.yv12_running_avg[INTRA_FRAME],
|
|
&cpi->denoiser.yv12_running_avg[LAST_FRAME]);
|
|
}
|
|
}
|
|
if (cpi->oxcf.noise_sensitivity == 4)
|
|
vp8_yv12_copy_frame(cpi->Source, &cpi->denoiser.yv12_last_source);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static int measure_square_diff_partial(YV12_BUFFER_CONFIG *source,
|
|
YV12_BUFFER_CONFIG *dest,
|
|
VP8_COMP *cpi) {
|
|
int i, j;
|
|
int Total = 0;
|
|
int num_blocks = 0;
|
|
int skip = 2;
|
|
int min_consec_zero_last = 10;
|
|
int tot_num_blocks = (source->y_height * source->y_width) >> 8;
|
|
unsigned char *src = source->y_buffer;
|
|
unsigned char *dst = dest->y_buffer;
|
|
|
|
/* Loop through the Y plane, every |skip| blocks along rows and colmumns,
|
|
* summing the square differences, and only for blocks that have been
|
|
* zero_last mode at least |x| frames in a row.
|
|
*/
|
|
for (i = 0; i < source->y_height; i += 16 * skip) {
|
|
int block_index_row = (i >> 4) * cpi->common.mb_cols;
|
|
for (j = 0; j < source->y_width; j += 16 * skip) {
|
|
int index = block_index_row + (j >> 4);
|
|
if (cpi->consec_zero_last[index] >= min_consec_zero_last) {
|
|
unsigned int sse;
|
|
Total += vpx_mse16x16(src + j, source->y_stride, dst + j,
|
|
dest->y_stride, &sse);
|
|
num_blocks++;
|
|
}
|
|
}
|
|
src += 16 * skip * source->y_stride;
|
|
dst += 16 * skip * dest->y_stride;
|
|
}
|
|
// Only return non-zero if we have at least ~1/16 samples for estimate.
|
|
if (num_blocks > (tot_num_blocks >> 4)) {
|
|
return (Total / num_blocks);
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#if CONFIG_TEMPORAL_DENOISING
|
|
static void process_denoiser_mode_change(VP8_COMP *cpi) {
|
|
const VP8_COMMON *const cm = &cpi->common;
|
|
int i, j;
|
|
int total = 0;
|
|
int num_blocks = 0;
|
|
// Number of blocks skipped along row/column in computing the
|
|
// nmse (normalized mean square error) of source.
|
|
int skip = 2;
|
|
// Only select blocks for computing nmse that have been encoded
|
|
// as ZERO LAST min_consec_zero_last frames in a row.
|
|
// Scale with number of temporal layers.
|
|
int min_consec_zero_last = 12 / cpi->oxcf.number_of_layers;
|
|
// Decision is tested for changing the denoising mode every
|
|
// num_mode_change times this function is called. Note that this
|
|
// function called every 8 frames, so (8 * num_mode_change) is number
|
|
// of frames where denoising mode change is tested for switch.
|
|
int num_mode_change = 20;
|
|
// Framerate factor, to compensate for larger mse at lower framerates.
|
|
// Use ref_framerate, which is full source framerate for temporal layers.
|
|
// TODO(marpan): Adjust this factor.
|
|
int fac_framerate = cpi->ref_framerate < 25.0f ? 80 : 100;
|
|
int tot_num_blocks = cm->mb_rows * cm->mb_cols;
|
|
int ystride = cpi->Source->y_stride;
|
|
unsigned char *src = cpi->Source->y_buffer;
|
|
unsigned char *dst = cpi->denoiser.yv12_last_source.y_buffer;
|
|
static const unsigned char const_source[16] = { 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128 };
|
|
int bandwidth = (int)(cpi->target_bandwidth);
|
|
// For temporal layers, use full bandwidth (top layer).
|
|
if (cpi->oxcf.number_of_layers > 1) {
|
|
LAYER_CONTEXT *lc = &cpi->layer_context[cpi->oxcf.number_of_layers - 1];
|
|
bandwidth = (int)(lc->target_bandwidth);
|
|
}
|
|
// Loop through the Y plane, every skip blocks along rows and columns,
|
|
// summing the normalized mean square error, only for blocks that have
|
|
// been encoded as ZEROMV LAST at least min_consec_zero_last least frames in
|
|
// a row and have small sum difference between current and previous frame.
|
|
// Normalization here is by the contrast of the current frame block.
|
|
for (i = 0; i < cm->Height; i += 16 * skip) {
|
|
int block_index_row = (i >> 4) * cm->mb_cols;
|
|
for (j = 0; j < cm->Width; j += 16 * skip) {
|
|
int index = block_index_row + (j >> 4);
|
|
if (cpi->consec_zero_last[index] >= min_consec_zero_last) {
|
|
unsigned int sse;
|
|
const unsigned int var =
|
|
vpx_variance16x16(src + j, ystride, dst + j, ystride, &sse);
|
|
// Only consider this block as valid for noise measurement
|
|
// if the sum_diff average of the current and previous frame
|
|
// is small (to avoid effects from lighting change).
|
|
if ((sse - var) < 128) {
|
|
unsigned int sse2;
|
|
const unsigned int act =
|
|
vpx_variance16x16(src + j, ystride, const_source, 0, &sse2);
|
|
if (act > 0) total += sse / act;
|
|
num_blocks++;
|
|
}
|
|
}
|
|
}
|
|
src += 16 * skip * ystride;
|
|
dst += 16 * skip * ystride;
|
|
}
|
|
total = total * fac_framerate / 100;
|
|
|
|
// Only consider this frame as valid sample if we have computed nmse over
|
|
// at least ~1/16 blocks, and Total > 0 (Total == 0 can happen if the
|
|
// application inputs duplicate frames, or contrast is all zero).
|
|
if (total > 0 && (num_blocks > (tot_num_blocks >> 4))) {
|
|
// Update the recursive mean square source_diff.
|
|
total = (total << 8) / num_blocks;
|
|
if (cpi->denoiser.nmse_source_diff_count == 0) {
|
|
// First sample in new interval.
|
|
cpi->denoiser.nmse_source_diff = total;
|
|
cpi->denoiser.qp_avg = cm->base_qindex;
|
|
} else {
|
|
// For subsequent samples, use average with weight ~1/4 for new sample.
|
|
cpi->denoiser.nmse_source_diff =
|
|
(int)((total + 3 * cpi->denoiser.nmse_source_diff) >> 2);
|
|
cpi->denoiser.qp_avg =
|
|
(int)((cm->base_qindex + 3 * cpi->denoiser.qp_avg) >> 2);
|
|
}
|
|
cpi->denoiser.nmse_source_diff_count++;
|
|
}
|
|
// Check for changing the denoiser mode, when we have obtained #samples =
|
|
// num_mode_change. Condition the change also on the bitrate and QP.
|
|
if (cpi->denoiser.nmse_source_diff_count == num_mode_change) {
|
|
// Check for going up: from normal to aggressive mode.
|
|
if ((cpi->denoiser.denoiser_mode == kDenoiserOnYUV) &&
|
|
(cpi->denoiser.nmse_source_diff >
|
|
cpi->denoiser.threshold_aggressive_mode) &&
|
|
(cpi->denoiser.qp_avg < cpi->denoiser.qp_threshold_up &&
|
|
bandwidth > cpi->denoiser.bitrate_threshold)) {
|
|
vp8_denoiser_set_parameters(&cpi->denoiser, kDenoiserOnYUVAggressive);
|
|
} else {
|
|
// Check for going down: from aggressive to normal mode.
|
|
if (((cpi->denoiser.denoiser_mode == kDenoiserOnYUVAggressive) &&
|
|
(cpi->denoiser.nmse_source_diff <
|
|
cpi->denoiser.threshold_aggressive_mode)) ||
|
|
((cpi->denoiser.denoiser_mode == kDenoiserOnYUVAggressive) &&
|
|
(cpi->denoiser.qp_avg > cpi->denoiser.qp_threshold_down ||
|
|
bandwidth < cpi->denoiser.bitrate_threshold))) {
|
|
vp8_denoiser_set_parameters(&cpi->denoiser, kDenoiserOnYUV);
|
|
}
|
|
}
|
|
// Reset metric and counter for next interval.
|
|
cpi->denoiser.nmse_source_diff = 0;
|
|
cpi->denoiser.qp_avg = 0;
|
|
cpi->denoiser.nmse_source_diff_count = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void vp8_loopfilter_frame(VP8_COMP *cpi, VP8_COMMON *cm) {
|
|
const FRAME_TYPE frame_type = cm->frame_type;
|
|
|
|
int update_any_ref_buffers = 1;
|
|
if (cpi->common.refresh_last_frame == 0 &&
|
|
cpi->common.refresh_golden_frame == 0 &&
|
|
cpi->common.refresh_alt_ref_frame == 0) {
|
|
update_any_ref_buffers = 0;
|
|
}
|
|
|
|
if (cm->no_lpf) {
|
|
cm->filter_level = 0;
|
|
} else {
|
|
struct vpx_usec_timer timer;
|
|
|
|
vpx_clear_system_state();
|
|
|
|
vpx_usec_timer_start(&timer);
|
|
if (cpi->sf.auto_filter == 0) {
|
|
#if CONFIG_TEMPORAL_DENOISING
|
|
if (cpi->oxcf.noise_sensitivity && cm->frame_type != KEY_FRAME) {
|
|
// Use the denoised buffer for selecting base loop filter level.
|
|
// Denoised signal for current frame is stored in INTRA_FRAME.
|
|
// No denoising on key frames.
|
|
vp8cx_pick_filter_level_fast(
|
|
&cpi->denoiser.yv12_running_avg[INTRA_FRAME], cpi);
|
|
} else {
|
|
vp8cx_pick_filter_level_fast(cpi->Source, cpi);
|
|
}
|
|
#else
|
|
vp8cx_pick_filter_level_fast(cpi->Source, cpi);
|
|
#endif
|
|
} else {
|
|
#if CONFIG_TEMPORAL_DENOISING
|
|
if (cpi->oxcf.noise_sensitivity && cm->frame_type != KEY_FRAME) {
|
|
// Use the denoised buffer for selecting base loop filter level.
|
|
// Denoised signal for current frame is stored in INTRA_FRAME.
|
|
// No denoising on key frames.
|
|
vp8cx_pick_filter_level(&cpi->denoiser.yv12_running_avg[INTRA_FRAME],
|
|
cpi);
|
|
} else {
|
|
vp8cx_pick_filter_level(cpi->Source, cpi);
|
|
}
|
|
#else
|
|
vp8cx_pick_filter_level(cpi->Source, cpi);
|
|
#endif
|
|
}
|
|
|
|
if (cm->filter_level > 0) {
|
|
vp8cx_set_alt_lf_level(cpi, cm->filter_level);
|
|
}
|
|
|
|
vpx_usec_timer_mark(&timer);
|
|
cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
|
|
}
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
if (cpi->b_multi_threaded) {
|
|
sem_post(&cpi->h_event_end_lpf); /* signal that we have set filter_level */
|
|
}
|
|
#endif
|
|
|
|
// No need to apply loop-filter if the encoded frame does not update
|
|
// any reference buffers.
|
|
if (cm->filter_level > 0 && update_any_ref_buffers) {
|
|
vp8_loop_filter_frame(cm, &cpi->mb.e_mbd, frame_type);
|
|
}
|
|
|
|
vp8_yv12_extend_frame_borders(cm->frame_to_show);
|
|
}
|
|
|
|
static void encode_frame_to_data_rate(VP8_COMP *cpi, size_t *size,
|
|
unsigned char *dest,
|
|
unsigned char *dest_end,
|
|
unsigned int *frame_flags) {
|
|
int Q;
|
|
int frame_over_shoot_limit;
|
|
int frame_under_shoot_limit;
|
|
|
|
int Loop = 0;
|
|
int loop_count;
|
|
|
|
VP8_COMMON *cm = &cpi->common;
|
|
int active_worst_qchanged = 0;
|
|
|
|
#if !CONFIG_REALTIME_ONLY
|
|
int q_low;
|
|
int q_high;
|
|
int zbin_oq_high;
|
|
int zbin_oq_low = 0;
|
|
int top_index;
|
|
int bottom_index;
|
|
int overshoot_seen = 0;
|
|
int undershoot_seen = 0;
|
|
#endif
|
|
|
|
int drop_mark = (int)(cpi->oxcf.drop_frames_water_mark *
|
|
cpi->oxcf.optimal_buffer_level / 100);
|
|
int drop_mark75 = drop_mark * 2 / 3;
|
|
int drop_mark50 = drop_mark / 4;
|
|
int drop_mark25 = drop_mark / 8;
|
|
|
|
/* Clear down mmx registers to allow floating point in what follows */
|
|
vpx_clear_system_state();
|
|
|
|
if (cpi->force_next_frame_intra) {
|
|
cm->frame_type = KEY_FRAME; /* delayed intra frame */
|
|
cpi->force_next_frame_intra = 0;
|
|
}
|
|
|
|
/* For an alt ref frame in 2 pass we skip the call to the second pass
|
|
* function that sets the target bandwidth
|
|
*/
|
|
switch (cpi->pass) {
|
|
#if !CONFIG_REALTIME_ONLY
|
|
case 2:
|
|
if (cpi->common.refresh_alt_ref_frame) {
|
|
/* Per frame bit target for the alt ref frame */
|
|
cpi->per_frame_bandwidth = cpi->twopass.gf_bits;
|
|
/* per second target bitrate */
|
|
cpi->target_bandwidth =
|
|
(int)(cpi->twopass.gf_bits * cpi->output_framerate);
|
|
}
|
|
break;
|
|
#endif // !CONFIG_REALTIME_ONLY
|
|
default:
|
|
cpi->per_frame_bandwidth =
|
|
(int)(cpi->target_bandwidth / cpi->output_framerate);
|
|
break;
|
|
}
|
|
|
|
/* Default turn off buffer to buffer copying */
|
|
cm->copy_buffer_to_gf = 0;
|
|
cm->copy_buffer_to_arf = 0;
|
|
|
|
/* Clear zbin over-quant value and mode boost values. */
|
|
cpi->mb.zbin_over_quant = 0;
|
|
cpi->mb.zbin_mode_boost = 0;
|
|
|
|
/* Enable or disable mode based tweaking of the zbin
|
|
* For 2 Pass Only used where GF/ARF prediction quality
|
|
* is above a threshold
|
|
*/
|
|
cpi->mb.zbin_mode_boost_enabled = 1;
|
|
if (cpi->pass == 2) {
|
|
if (cpi->gfu_boost <= 400) {
|
|
cpi->mb.zbin_mode_boost_enabled = 0;
|
|
}
|
|
}
|
|
|
|
/* Current default encoder behaviour for the altref sign bias */
|
|
if (cpi->source_alt_ref_active) {
|
|
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
|
|
} else {
|
|
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 0;
|
|
}
|
|
|
|
/* Check to see if a key frame is signaled
|
|
* For two pass with auto key frame enabled cm->frame_type may already
|
|
* be set, but not for one pass.
|
|
*/
|
|
if ((cm->current_video_frame == 0) || (cm->frame_flags & FRAMEFLAGS_KEY) ||
|
|
(cpi->oxcf.auto_key &&
|
|
(cpi->frames_since_key % cpi->key_frame_frequency == 0))) {
|
|
/* Key frame from VFW/auto-keyframe/first frame */
|
|
cm->frame_type = KEY_FRAME;
|
|
#if CONFIG_TEMPORAL_DENOISING
|
|
if (cpi->oxcf.noise_sensitivity == 4) {
|
|
// For adaptive mode, reset denoiser to normal mode on key frame.
|
|
vp8_denoiser_set_parameters(&cpi->denoiser, kDenoiserOnYUV);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if CONFIG_MULTI_RES_ENCODING
|
|
if (cpi->oxcf.mr_total_resolutions > 1) {
|
|
LOWER_RES_FRAME_INFO *low_res_frame_info =
|
|
(LOWER_RES_FRAME_INFO *)cpi->oxcf.mr_low_res_mode_info;
|
|
|
|
if (cpi->oxcf.mr_encoder_id) {
|
|
// TODO(marpan): This constraint shouldn't be needed, as we would like
|
|
// to allow for key frame setting (forced or periodic) defined per
|
|
// spatial layer. For now, keep this in.
|
|
cm->frame_type = low_res_frame_info->frame_type;
|
|
|
|
// Check if lower resolution is available for motion vector reuse.
|
|
if (cm->frame_type != KEY_FRAME) {
|
|
cpi->mr_low_res_mv_avail = 1;
|
|
cpi->mr_low_res_mv_avail &= !(low_res_frame_info->is_frame_dropped);
|
|
|
|
if (cpi->ref_frame_flags & VP8_LAST_FRAME)
|
|
cpi->mr_low_res_mv_avail &=
|
|
(cpi->current_ref_frames[LAST_FRAME] ==
|
|
low_res_frame_info->low_res_ref_frames[LAST_FRAME]);
|
|
|
|
if (cpi->ref_frame_flags & VP8_GOLD_FRAME)
|
|
cpi->mr_low_res_mv_avail &=
|
|
(cpi->current_ref_frames[GOLDEN_FRAME] ==
|
|
low_res_frame_info->low_res_ref_frames[GOLDEN_FRAME]);
|
|
|
|
// Don't use altref to determine whether low res is available.
|
|
// TODO (marpan): Should we make this type of condition on a
|
|
// per-reference frame basis?
|
|
/*
|
|
if (cpi->ref_frame_flags & VP8_ALTR_FRAME)
|
|
cpi->mr_low_res_mv_avail &= (cpi->current_ref_frames[ALTREF_FRAME]
|
|
== low_res_frame_info->low_res_ref_frames[ALTREF_FRAME]);
|
|
*/
|
|
}
|
|
}
|
|
|
|
// On a key frame: For the lowest resolution, keep track of the key frame
|
|
// counter value. For the higher resolutions, reset the current video
|
|
// frame counter to that of the lowest resolution.
|
|
// This is done to the handle the case where we may stop/start encoding
|
|
// higher layer(s). The restart-encoding of higher layer is only signaled
|
|
// by a key frame for now.
|
|
// TODO (marpan): Add flag to indicate restart-encoding of higher layer.
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
if (cpi->oxcf.mr_encoder_id) {
|
|
// If the initial starting value of the buffer level is zero (this can
|
|
// happen because we may have not started encoding this higher stream),
|
|
// then reset it to non-zero value based on |starting_buffer_level|.
|
|
if (cpi->common.current_video_frame == 0 && cpi->buffer_level == 0) {
|
|
unsigned int i;
|
|
cpi->bits_off_target = cpi->oxcf.starting_buffer_level;
|
|
cpi->buffer_level = cpi->oxcf.starting_buffer_level;
|
|
for (i = 0; i < cpi->oxcf.number_of_layers; ++i) {
|
|
LAYER_CONTEXT *lc = &cpi->layer_context[i];
|
|
lc->bits_off_target = lc->starting_buffer_level;
|
|
lc->buffer_level = lc->starting_buffer_level;
|
|
}
|
|
}
|
|
cpi->common.current_video_frame =
|
|
low_res_frame_info->key_frame_counter_value;
|
|
} else {
|
|
low_res_frame_info->key_frame_counter_value =
|
|
cpi->common.current_video_frame;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Find the reference frame closest to the current frame.
|
|
cpi->closest_reference_frame = LAST_FRAME;
|
|
if (cm->frame_type != KEY_FRAME) {
|
|
int i;
|
|
MV_REFERENCE_FRAME closest_ref = INTRA_FRAME;
|
|
if (cpi->ref_frame_flags & VP8_LAST_FRAME) {
|
|
closest_ref = LAST_FRAME;
|
|
} else if (cpi->ref_frame_flags & VP8_GOLD_FRAME) {
|
|
closest_ref = GOLDEN_FRAME;
|
|
} else if (cpi->ref_frame_flags & VP8_ALTR_FRAME) {
|
|
closest_ref = ALTREF_FRAME;
|
|
}
|
|
for (i = 1; i <= 3; ++i) {
|
|
vpx_ref_frame_type_t ref_frame_type =
|
|
(vpx_ref_frame_type_t)((i == 3) ? 4 : i);
|
|
if (cpi->ref_frame_flags & ref_frame_type) {
|
|
if ((cm->current_video_frame - cpi->current_ref_frames[i]) <
|
|
(cm->current_video_frame - cpi->current_ref_frames[closest_ref])) {
|
|
closest_ref = i;
|
|
}
|
|
}
|
|
}
|
|
cpi->closest_reference_frame = closest_ref;
|
|
}
|
|
|
|
/* Set various flags etc to special state if it is a key frame */
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
int i;
|
|
|
|
// Set the loop filter deltas and segmentation map update
|
|
setup_features(cpi);
|
|
|
|
/* The alternate reference frame cannot be active for a key frame */
|
|
cpi->source_alt_ref_active = 0;
|
|
|
|
/* Reset the RD threshold multipliers to default of * 1 (128) */
|
|
for (i = 0; i < MAX_MODES; ++i) {
|
|
cpi->mb.rd_thresh_mult[i] = 128;
|
|
}
|
|
|
|
// Reset the zero_last counter to 0 on key frame.
|
|
memset(cpi->consec_zero_last, 0, cm->mb_rows * cm->mb_cols);
|
|
memset(cpi->consec_zero_last_mvbias, 0,
|
|
(cpi->common.mb_rows * cpi->common.mb_cols));
|
|
}
|
|
|
|
#if 0
|
|
/* Experimental code for lagged compress and one pass
|
|
* Initialise one_pass GF frames stats
|
|
* Update stats used for GF selection
|
|
*/
|
|
{
|
|
cpi->one_pass_frame_index = cm->current_video_frame % MAX_LAG_BUFFERS;
|
|
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frames_so_far = 0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_intra_error = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_coded_error = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_inter = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_motion = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr_abs = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc = 0.0;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc_abs = 0.0;
|
|
}
|
|
#endif
|
|
|
|
update_rd_ref_frame_probs(cpi);
|
|
|
|
if (cpi->drop_frames_allowed) {
|
|
/* The reset to decimation 0 is only done here for one pass.
|
|
* Once it is set two pass leaves decimation on till the next kf.
|
|
*/
|
|
if ((cpi->buffer_level > drop_mark) && (cpi->decimation_factor > 0)) {
|
|
cpi->decimation_factor--;
|
|
}
|
|
|
|
if (cpi->buffer_level > drop_mark75 && cpi->decimation_factor > 0) {
|
|
cpi->decimation_factor = 1;
|
|
|
|
} else if (cpi->buffer_level < drop_mark25 &&
|
|
(cpi->decimation_factor == 2 || cpi->decimation_factor == 3)) {
|
|
cpi->decimation_factor = 3;
|
|
} else if (cpi->buffer_level < drop_mark50 &&
|
|
(cpi->decimation_factor == 1 || cpi->decimation_factor == 2)) {
|
|
cpi->decimation_factor = 2;
|
|
} else if (cpi->buffer_level < drop_mark75 &&
|
|
(cpi->decimation_factor == 0 || cpi->decimation_factor == 1)) {
|
|
cpi->decimation_factor = 1;
|
|
}
|
|
}
|
|
|
|
/* The following decimates the frame rate according to a regular
|
|
* pattern (i.e. to 1/2 or 2/3 frame rate) This can be used to help
|
|
* prevent buffer under-run in CBR mode. Alternatively it might be
|
|
* desirable in some situations to drop frame rate but throw more bits
|
|
* at each frame.
|
|
*
|
|
* Note that dropping a key frame can be problematic if spatial
|
|
* resampling is also active
|
|
*/
|
|
if (cpi->decimation_factor > 0) {
|
|
switch (cpi->decimation_factor) {
|
|
case 1:
|
|
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 3 / 2;
|
|
break;
|
|
case 2:
|
|
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4;
|
|
break;
|
|
case 3:
|
|
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4;
|
|
break;
|
|
}
|
|
|
|
/* Note that we should not throw out a key frame (especially when
|
|
* spatial resampling is enabled).
|
|
*/
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
cpi->decimation_count = cpi->decimation_factor;
|
|
} else if (cpi->decimation_count > 0) {
|
|
cpi->decimation_count--;
|
|
|
|
cpi->bits_off_target += cpi->av_per_frame_bandwidth;
|
|
if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size) {
|
|
cpi->bits_off_target = cpi->oxcf.maximum_buffer_size;
|
|
}
|
|
|
|
#if CONFIG_MULTI_RES_ENCODING
|
|
vp8_store_drop_frame_info(cpi);
|
|
#endif
|
|
|
|
cm->current_video_frame++;
|
|
cpi->frames_since_key++;
|
|
// We advance the temporal pattern for dropped frames.
|
|
cpi->temporal_pattern_counter++;
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
cpi->count++;
|
|
#endif
|
|
|
|
cpi->buffer_level = cpi->bits_off_target;
|
|
|
|
if (cpi->oxcf.number_of_layers > 1) {
|
|
unsigned int i;
|
|
|
|
/* Propagate bits saved by dropping the frame to higher
|
|
* layers
|
|
*/
|
|
for (i = cpi->current_layer + 1; i < cpi->oxcf.number_of_layers; ++i) {
|
|
LAYER_CONTEXT *lc = &cpi->layer_context[i];
|
|
lc->bits_off_target += (int)(lc->target_bandwidth / lc->framerate);
|
|
if (lc->bits_off_target > lc->maximum_buffer_size) {
|
|
lc->bits_off_target = lc->maximum_buffer_size;
|
|
}
|
|
lc->buffer_level = lc->bits_off_target;
|
|
}
|
|
}
|
|
|
|
return;
|
|
} else {
|
|
cpi->decimation_count = cpi->decimation_factor;
|
|
}
|
|
} else {
|
|
cpi->decimation_count = 0;
|
|
}
|
|
|
|
/* Decide how big to make the frame */
|
|
if (!vp8_pick_frame_size(cpi)) {
|
|
/*TODO: 2 drop_frame and return code could be put together. */
|
|
#if CONFIG_MULTI_RES_ENCODING
|
|
vp8_store_drop_frame_info(cpi);
|
|
#endif
|
|
cm->current_video_frame++;
|
|
cpi->frames_since_key++;
|
|
// We advance the temporal pattern for dropped frames.
|
|
cpi->temporal_pattern_counter++;
|
|
return;
|
|
}
|
|
|
|
/* Reduce active_worst_allowed_q for CBR if our buffer is getting too full.
|
|
* This has a knock on effect on active best quality as well.
|
|
* For CBR if the buffer reaches its maximum level then we can no longer
|
|
* save up bits for later frames so we might as well use them up
|
|
* on the current frame.
|
|
*/
|
|
if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
|
|
(cpi->buffer_level >= cpi->oxcf.optimal_buffer_level) &&
|
|
cpi->buffered_mode) {
|
|
/* Max adjustment is 1/4 */
|
|
int Adjustment = cpi->active_worst_quality / 4;
|
|
|
|
if (Adjustment) {
|
|
int buff_lvl_step;
|
|
|
|
if (cpi->buffer_level < cpi->oxcf.maximum_buffer_size) {
|
|
buff_lvl_step = (int)((cpi->oxcf.maximum_buffer_size -
|
|
cpi->oxcf.optimal_buffer_level) /
|
|
Adjustment);
|
|
|
|
if (buff_lvl_step) {
|
|
Adjustment =
|
|
(int)((cpi->buffer_level - cpi->oxcf.optimal_buffer_level) /
|
|
buff_lvl_step);
|
|
} else {
|
|
Adjustment = 0;
|
|
}
|
|
}
|
|
|
|
cpi->active_worst_quality -= Adjustment;
|
|
|
|
if (cpi->active_worst_quality < cpi->active_best_quality) {
|
|
cpi->active_worst_quality = cpi->active_best_quality;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set an active best quality and if necessary active worst quality
|
|
* There is some odd behavior for one pass here that needs attention.
|
|
*/
|
|
if ((cpi->pass == 2) || (cpi->ni_frames > 150)) {
|
|
vpx_clear_system_state();
|
|
|
|
Q = cpi->active_worst_quality;
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
if (cpi->pass == 2) {
|
|
if (cpi->gfu_boost > 600) {
|
|
cpi->active_best_quality = kf_low_motion_minq[Q];
|
|
} else {
|
|
cpi->active_best_quality = kf_high_motion_minq[Q];
|
|
}
|
|
|
|
/* Special case for key frames forced because we have reached
|
|
* the maximum key frame interval. Here force the Q to a range
|
|
* based on the ambient Q to reduce the risk of popping
|
|
*/
|
|
if (cpi->this_key_frame_forced) {
|
|
if (cpi->active_best_quality > cpi->avg_frame_qindex * 7 / 8) {
|
|
cpi->active_best_quality = cpi->avg_frame_qindex * 7 / 8;
|
|
} else if (cpi->active_best_quality<cpi->avg_frame_qindex>> 2) {
|
|
cpi->active_best_quality = cpi->avg_frame_qindex >> 2;
|
|
}
|
|
}
|
|
}
|
|
/* One pass more conservative */
|
|
else {
|
|
cpi->active_best_quality = kf_high_motion_minq[Q];
|
|
}
|
|
}
|
|
|
|
else if (cpi->oxcf.number_of_layers == 1 &&
|
|
(cm->refresh_golden_frame || cpi->common.refresh_alt_ref_frame)) {
|
|
/* Use the lower of cpi->active_worst_quality and recent
|
|
* average Q as basis for GF/ARF Q limit unless last frame was
|
|
* a key frame.
|
|
*/
|
|
if ((cpi->frames_since_key > 1) &&
|
|
(cpi->avg_frame_qindex < cpi->active_worst_quality)) {
|
|
Q = cpi->avg_frame_qindex;
|
|
}
|
|
|
|
/* For constrained quality dont allow Q less than the cq level */
|
|
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
|
|
(Q < cpi->cq_target_quality)) {
|
|
Q = cpi->cq_target_quality;
|
|
}
|
|
|
|
if (cpi->pass == 2) {
|
|
if (cpi->gfu_boost > 1000) {
|
|
cpi->active_best_quality = gf_low_motion_minq[Q];
|
|
} else if (cpi->gfu_boost < 400) {
|
|
cpi->active_best_quality = gf_high_motion_minq[Q];
|
|
} else {
|
|
cpi->active_best_quality = gf_mid_motion_minq[Q];
|
|
}
|
|
|
|
/* Constrained quality use slightly lower active best. */
|
|
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
|
|
cpi->active_best_quality = cpi->active_best_quality * 15 / 16;
|
|
}
|
|
}
|
|
/* One pass more conservative */
|
|
else {
|
|
cpi->active_best_quality = gf_high_motion_minq[Q];
|
|
}
|
|
} else {
|
|
cpi->active_best_quality = inter_minq[Q];
|
|
|
|
/* For the constant/constrained quality mode we dont want
|
|
* q to fall below the cq level.
|
|
*/
|
|
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
|
|
(cpi->active_best_quality < cpi->cq_target_quality)) {
|
|
/* If we are strongly undershooting the target rate in the last
|
|
* frames then use the user passed in cq value not the auto
|
|
* cq value.
|
|
*/
|
|
if (cpi->rolling_actual_bits < cpi->min_frame_bandwidth) {
|
|
cpi->active_best_quality = cpi->oxcf.cq_level;
|
|
} else {
|
|
cpi->active_best_quality = cpi->cq_target_quality;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If CBR and the buffer is as full then it is reasonable to allow
|
|
* higher quality on the frames to prevent bits just going to waste.
|
|
*/
|
|
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
|
|
/* Note that the use of >= here elliminates the risk of a devide
|
|
* by 0 error in the else if clause
|
|
*/
|
|
if (cpi->buffer_level >= cpi->oxcf.maximum_buffer_size) {
|
|
cpi->active_best_quality = cpi->best_quality;
|
|
|
|
} else if (cpi->buffer_level > cpi->oxcf.optimal_buffer_level) {
|
|
int Fraction =
|
|
(int)(((cpi->buffer_level - cpi->oxcf.optimal_buffer_level) * 128) /
|
|
(cpi->oxcf.maximum_buffer_size -
|
|
cpi->oxcf.optimal_buffer_level));
|
|
int min_qadjustment =
|
|
((cpi->active_best_quality - cpi->best_quality) * Fraction) / 128;
|
|
|
|
cpi->active_best_quality -= min_qadjustment;
|
|
}
|
|
}
|
|
}
|
|
/* Make sure constrained quality mode limits are adhered to for the first
|
|
* few frames of one pass encodes
|
|
*/
|
|
else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
|
|
if ((cm->frame_type == KEY_FRAME) || cm->refresh_golden_frame ||
|
|
cpi->common.refresh_alt_ref_frame) {
|
|
cpi->active_best_quality = cpi->best_quality;
|
|
} else if (cpi->active_best_quality < cpi->cq_target_quality) {
|
|
cpi->active_best_quality = cpi->cq_target_quality;
|
|
}
|
|
}
|
|
|
|
/* Clip the active best and worst quality values to limits */
|
|
if (cpi->active_worst_quality > cpi->worst_quality) {
|
|
cpi->active_worst_quality = cpi->worst_quality;
|
|
}
|
|
|
|
if (cpi->active_best_quality < cpi->best_quality) {
|
|
cpi->active_best_quality = cpi->best_quality;
|
|
}
|
|
|
|
if (cpi->active_worst_quality < cpi->active_best_quality) {
|
|
cpi->active_worst_quality = cpi->active_best_quality;
|
|
}
|
|
|
|
/* Determine initial Q to try */
|
|
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
|
|
|
|
#if !CONFIG_REALTIME_ONLY
|
|
|
|
/* Set highest allowed value for Zbin over quant */
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
zbin_oq_high = 0;
|
|
} else if ((cpi->oxcf.number_of_layers == 1) &&
|
|
((cm->refresh_alt_ref_frame ||
|
|
(cm->refresh_golden_frame && !cpi->source_alt_ref_active)))) {
|
|
zbin_oq_high = 16;
|
|
} else {
|
|
zbin_oq_high = ZBIN_OQ_MAX;
|
|
}
|
|
#endif
|
|
|
|
/* Setup background Q adjustment for error resilient mode.
|
|
* For multi-layer encodes only enable this for the base layer.
|
|
*/
|
|
if (cpi->cyclic_refresh_mode_enabled) {
|
|
// Special case for screen_content_mode with golden frame updates.
|
|
int disable_cr_gf =
|
|
(cpi->oxcf.screen_content_mode == 2 && cm->refresh_golden_frame);
|
|
if (cpi->current_layer == 0 && cpi->force_maxqp == 0 && !disable_cr_gf) {
|
|
cyclic_background_refresh(cpi, Q, 0);
|
|
} else {
|
|
disable_segmentation(cpi);
|
|
}
|
|
}
|
|
|
|
vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit,
|
|
&frame_over_shoot_limit);
|
|
|
|
#if !CONFIG_REALTIME_ONLY
|
|
/* Limit Q range for the adaptive loop. */
|
|
bottom_index = cpi->active_best_quality;
|
|
top_index = cpi->active_worst_quality;
|
|
q_low = cpi->active_best_quality;
|
|
q_high = cpi->active_worst_quality;
|
|
#endif
|
|
|
|
vp8_save_coding_context(cpi);
|
|
|
|
loop_count = 0;
|
|
|
|
scale_and_extend_source(cpi->un_scaled_source, cpi);
|
|
|
|
#if CONFIG_TEMPORAL_DENOISING && CONFIG_POSTPROC
|
|
// Option to apply spatial blur under the aggressive or adaptive
|
|
// (temporal denoising) mode.
|
|
if (cpi->oxcf.noise_sensitivity >= 3) {
|
|
if (cpi->denoiser.denoise_pars.spatial_blur != 0) {
|
|
vp8_de_noise(cm, cpi->Source, cpi->Source,
|
|
cpi->denoiser.denoise_pars.spatial_blur, 1, 0, 0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if !(CONFIG_REALTIME_ONLY) && CONFIG_POSTPROC && !(CONFIG_TEMPORAL_DENOISING)
|
|
|
|
if (cpi->oxcf.noise_sensitivity > 0) {
|
|
unsigned char *src;
|
|
int l = 0;
|
|
|
|
switch (cpi->oxcf.noise_sensitivity) {
|
|
case 1: l = 20; break;
|
|
case 2: l = 40; break;
|
|
case 3: l = 60; break;
|
|
case 4: l = 80; break;
|
|
case 5: l = 100; break;
|
|
case 6: l = 150; break;
|
|
}
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
vp8_de_noise(cm, cpi->Source, cpi->Source, l, 1, 0, 1);
|
|
} else {
|
|
vp8_de_noise(cm, cpi->Source, cpi->Source, l, 1, 0, 1);
|
|
|
|
src = cpi->Source->y_buffer;
|
|
|
|
if (cpi->Source->y_stride < 0) {
|
|
src += cpi->Source->y_stride * (cpi->Source->y_height - 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
vp8_write_yuv_frame(yuv_file, cpi->Source);
|
|
#endif
|
|
|
|
do {
|
|
vpx_clear_system_state();
|
|
|
|
vp8_set_quantizer(cpi, Q);
|
|
|
|
/* setup skip prob for costing in mode/mv decision */
|
|
if (cpi->common.mb_no_coeff_skip) {
|
|
cpi->prob_skip_false = cpi->base_skip_false_prob[Q];
|
|
|
|
if (cm->frame_type != KEY_FRAME) {
|
|
if (cpi->common.refresh_alt_ref_frame) {
|
|
if (cpi->last_skip_false_probs[2] != 0) {
|
|
cpi->prob_skip_false = cpi->last_skip_false_probs[2];
|
|
}
|
|
|
|
/*
|
|
if(cpi->last_skip_false_probs[2]!=0 && abs(Q-
|
|
cpi->last_skip_probs_q[2])<=16 )
|
|
cpi->prob_skip_false = cpi->last_skip_false_probs[2];
|
|
else if (cpi->last_skip_false_probs[2]!=0)
|
|
cpi->prob_skip_false = (cpi->last_skip_false_probs[2] +
|
|
cpi->prob_skip_false ) / 2;
|
|
*/
|
|
} else if (cpi->common.refresh_golden_frame) {
|
|
if (cpi->last_skip_false_probs[1] != 0) {
|
|
cpi->prob_skip_false = cpi->last_skip_false_probs[1];
|
|
}
|
|
|
|
/*
|
|
if(cpi->last_skip_false_probs[1]!=0 && abs(Q-
|
|
cpi->last_skip_probs_q[1])<=16 )
|
|
cpi->prob_skip_false = cpi->last_skip_false_probs[1];
|
|
else if (cpi->last_skip_false_probs[1]!=0)
|
|
cpi->prob_skip_false = (cpi->last_skip_false_probs[1] +
|
|
cpi->prob_skip_false ) / 2;
|
|
*/
|
|
} else {
|
|
if (cpi->last_skip_false_probs[0] != 0) {
|
|
cpi->prob_skip_false = cpi->last_skip_false_probs[0];
|
|
}
|
|
|
|
/*
|
|
if(cpi->last_skip_false_probs[0]!=0 && abs(Q-
|
|
cpi->last_skip_probs_q[0])<=16 )
|
|
cpi->prob_skip_false = cpi->last_skip_false_probs[0];
|
|
else if(cpi->last_skip_false_probs[0]!=0)
|
|
cpi->prob_skip_false = (cpi->last_skip_false_probs[0] +
|
|
cpi->prob_skip_false ) / 2;
|
|
*/
|
|
}
|
|
|
|
/* as this is for cost estimate, let's make sure it does not
|
|
* go extreme eitehr way
|
|
*/
|
|
if (cpi->prob_skip_false < 5) cpi->prob_skip_false = 5;
|
|
|
|
if (cpi->prob_skip_false > 250) cpi->prob_skip_false = 250;
|
|
|
|
if (cpi->oxcf.number_of_layers == 1 && cpi->is_src_frame_alt_ref) {
|
|
cpi->prob_skip_false = 1;
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
|
|
if (cpi->pass != 1)
|
|
{
|
|
FILE *f = fopen("skip.stt", "a");
|
|
fprintf(f, "%d, %d, %4d ", cpi->common.refresh_golden_frame, cpi->common.refresh_alt_ref_frame, cpi->prob_skip_false);
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
if (resize_key_frame(cpi)) {
|
|
/* If the frame size has changed, need to reset Q, quantizer,
|
|
* and background refresh.
|
|
*/
|
|
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
|
|
if (cpi->cyclic_refresh_mode_enabled) {
|
|
if (cpi->current_layer == 0) {
|
|
cyclic_background_refresh(cpi, Q, 0);
|
|
} else {
|
|
disable_segmentation(cpi);
|
|
}
|
|
}
|
|
// Reset the zero_last counter to 0 on key frame.
|
|
memset(cpi->consec_zero_last, 0, cm->mb_rows * cm->mb_cols);
|
|
memset(cpi->consec_zero_last_mvbias, 0,
|
|
(cpi->common.mb_rows * cpi->common.mb_cols));
|
|
vp8_set_quantizer(cpi, Q);
|
|
}
|
|
|
|
vp8_setup_key_frame(cpi);
|
|
}
|
|
|
|
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
|
|
{
|
|
if (cpi->oxcf.error_resilient_mode) cm->refresh_entropy_probs = 0;
|
|
|
|
if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS) {
|
|
if (cm->frame_type == KEY_FRAME) cm->refresh_entropy_probs = 1;
|
|
}
|
|
|
|
if (cm->refresh_entropy_probs == 0) {
|
|
/* save a copy for later refresh */
|
|
memcpy(&cm->lfc, &cm->fc, sizeof(cm->fc));
|
|
}
|
|
|
|
vp8_update_coef_context(cpi);
|
|
|
|
vp8_update_coef_probs(cpi);
|
|
|
|
/* transform / motion compensation build reconstruction frame
|
|
* +pack coef partitions
|
|
*/
|
|
vp8_encode_frame(cpi);
|
|
|
|
/* cpi->projected_frame_size is not needed for RT mode */
|
|
}
|
|
#else
|
|
/* transform / motion compensation build reconstruction frame */
|
|
vp8_encode_frame(cpi);
|
|
if (cpi->oxcf.screen_content_mode == 2) {
|
|
if (vp8_drop_encodedframe_overshoot(cpi, Q)) return;
|
|
}
|
|
|
|
cpi->projected_frame_size -= vp8_estimate_entropy_savings(cpi);
|
|
cpi->projected_frame_size =
|
|
(cpi->projected_frame_size > 0) ? cpi->projected_frame_size : 0;
|
|
#endif
|
|
vpx_clear_system_state();
|
|
|
|
/* Test to see if the stats generated for this frame indicate that
|
|
* we should have coded a key frame (assuming that we didn't)!
|
|
*/
|
|
|
|
if (cpi->pass != 2 && cpi->oxcf.auto_key && cm->frame_type != KEY_FRAME &&
|
|
cpi->compressor_speed != 2) {
|
|
#if !CONFIG_REALTIME_ONLY
|
|
if (decide_key_frame(cpi)) {
|
|
/* Reset all our sizing numbers and recode */
|
|
cm->frame_type = KEY_FRAME;
|
|
|
|
vp8_pick_frame_size(cpi);
|
|
|
|
/* Clear the Alt reference frame active flag when we have
|
|
* a key frame
|
|
*/
|
|
cpi->source_alt_ref_active = 0;
|
|
|
|
// Set the loop filter deltas and segmentation map update
|
|
setup_features(cpi);
|
|
|
|
vp8_restore_coding_context(cpi);
|
|
|
|
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
|
|
|
|
vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit,
|
|
&frame_over_shoot_limit);
|
|
|
|
/* Limit Q range for the adaptive loop. */
|
|
bottom_index = cpi->active_best_quality;
|
|
top_index = cpi->active_worst_quality;
|
|
q_low = cpi->active_best_quality;
|
|
q_high = cpi->active_worst_quality;
|
|
|
|
loop_count++;
|
|
Loop = 1;
|
|
|
|
continue;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
vpx_clear_system_state();
|
|
|
|
if (frame_over_shoot_limit == 0) frame_over_shoot_limit = 1;
|
|
|
|
/* Are we are overshooting and up against the limit of active max Q. */
|
|
if (((cpi->pass != 2) ||
|
|
(cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)) &&
|
|
(Q == cpi->active_worst_quality) &&
|
|
(cpi->active_worst_quality < cpi->worst_quality) &&
|
|
(cpi->projected_frame_size > frame_over_shoot_limit)) {
|
|
int over_size_percent =
|
|
((cpi->projected_frame_size - frame_over_shoot_limit) * 100) /
|
|
frame_over_shoot_limit;
|
|
|
|
/* If so is there any scope for relaxing it */
|
|
while ((cpi->active_worst_quality < cpi->worst_quality) &&
|
|
(over_size_percent > 0)) {
|
|
cpi->active_worst_quality++;
|
|
/* Assume 1 qstep = about 4% on frame size. */
|
|
over_size_percent = (int)(over_size_percent * 0.96);
|
|
}
|
|
#if !CONFIG_REALTIME_ONLY
|
|
top_index = cpi->active_worst_quality;
|
|
#endif // !CONFIG_REALTIME_ONLY
|
|
/* If we have updated the active max Q do not call
|
|
* vp8_update_rate_correction_factors() this loop.
|
|
*/
|
|
active_worst_qchanged = 1;
|
|
} else {
|
|
active_worst_qchanged = 0;
|
|
}
|
|
|
|
#if CONFIG_REALTIME_ONLY
|
|
Loop = 0;
|
|
#else
|
|
/* Special case handling for forced key frames */
|
|
if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) {
|
|
int last_q = Q;
|
|
int kf_err = vp8_calc_ss_err(cpi->Source, &cm->yv12_fb[cm->new_fb_idx]);
|
|
|
|
/* The key frame is not good enough */
|
|
if (kf_err > ((cpi->ambient_err * 7) >> 3)) {
|
|
/* Lower q_high */
|
|
q_high = (Q > q_low) ? (Q - 1) : q_low;
|
|
|
|
/* Adjust Q */
|
|
Q = (q_high + q_low) >> 1;
|
|
}
|
|
/* The key frame is much better than the previous frame */
|
|
else if (kf_err < (cpi->ambient_err >> 1)) {
|
|
/* Raise q_low */
|
|
q_low = (Q < q_high) ? (Q + 1) : q_high;
|
|
|
|
/* Adjust Q */
|
|
Q = (q_high + q_low + 1) >> 1;
|
|
}
|
|
|
|
/* Clamp Q to upper and lower limits: */
|
|
if (Q > q_high) {
|
|
Q = q_high;
|
|
} else if (Q < q_low) {
|
|
Q = q_low;
|
|
}
|
|
|
|
Loop = Q != last_q;
|
|
}
|
|
|
|
/* Is the projected frame size out of range and are we allowed
|
|
* to attempt to recode.
|
|
*/
|
|
else if (recode_loop_test(cpi, frame_over_shoot_limit,
|
|
frame_under_shoot_limit, Q, top_index,
|
|
bottom_index)) {
|
|
int last_q = Q;
|
|
int Retries = 0;
|
|
|
|
/* Frame size out of permitted range. Update correction factor
|
|
* & compute new Q to try...
|
|
*/
|
|
|
|
/* Frame is too large */
|
|
if (cpi->projected_frame_size > cpi->this_frame_target) {
|
|
/* Raise Qlow as to at least the current value */
|
|
q_low = (Q < q_high) ? (Q + 1) : q_high;
|
|
|
|
/* If we are using over quant do the same for zbin_oq_low */
|
|
if (cpi->mb.zbin_over_quant > 0) {
|
|
zbin_oq_low = (cpi->mb.zbin_over_quant < zbin_oq_high)
|
|
? (cpi->mb.zbin_over_quant + 1)
|
|
: zbin_oq_high;
|
|
}
|
|
|
|
if (undershoot_seen) {
|
|
/* Update rate_correction_factor unless
|
|
* cpi->active_worst_quality has changed.
|
|
*/
|
|
if (!active_worst_qchanged) {
|
|
vp8_update_rate_correction_factors(cpi, 1);
|
|
}
|
|
|
|
Q = (q_high + q_low + 1) / 2;
|
|
|
|
/* Adjust cpi->zbin_over_quant (only allowed when Q
|
|
* is max)
|
|
*/
|
|
if (Q < MAXQ) {
|
|
cpi->mb.zbin_over_quant = 0;
|
|
} else {
|
|
zbin_oq_low = (cpi->mb.zbin_over_quant < zbin_oq_high)
|
|
? (cpi->mb.zbin_over_quant + 1)
|
|
: zbin_oq_high;
|
|
cpi->mb.zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2;
|
|
}
|
|
} else {
|
|
/* Update rate_correction_factor unless
|
|
* cpi->active_worst_quality has changed.
|
|
*/
|
|
if (!active_worst_qchanged) {
|
|
vp8_update_rate_correction_factors(cpi, 0);
|
|
}
|
|
|
|
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
|
|
|
|
while (((Q < q_low) || (cpi->mb.zbin_over_quant < zbin_oq_low)) &&
|
|
(Retries < 10)) {
|
|
vp8_update_rate_correction_factors(cpi, 0);
|
|
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
|
|
Retries++;
|
|
}
|
|
}
|
|
|
|
overshoot_seen = 1;
|
|
}
|
|
/* Frame is too small */
|
|
else {
|
|
if (cpi->mb.zbin_over_quant == 0) {
|
|
/* Lower q_high if not using over quant */
|
|
q_high = (Q > q_low) ? (Q - 1) : q_low;
|
|
} else {
|
|
/* else lower zbin_oq_high */
|
|
zbin_oq_high = (cpi->mb.zbin_over_quant > zbin_oq_low)
|
|
? (cpi->mb.zbin_over_quant - 1)
|
|
: zbin_oq_low;
|
|
}
|
|
|
|
if (overshoot_seen) {
|
|
/* Update rate_correction_factor unless
|
|
* cpi->active_worst_quality has changed.
|
|
*/
|
|
if (!active_worst_qchanged) {
|
|
vp8_update_rate_correction_factors(cpi, 1);
|
|
}
|
|
|
|
Q = (q_high + q_low) / 2;
|
|
|
|
/* Adjust cpi->zbin_over_quant (only allowed when Q
|
|
* is max)
|
|
*/
|
|
if (Q < MAXQ) {
|
|
cpi->mb.zbin_over_quant = 0;
|
|
} else {
|
|
cpi->mb.zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2;
|
|
}
|
|
} else {
|
|
/* Update rate_correction_factor unless
|
|
* cpi->active_worst_quality has changed.
|
|
*/
|
|
if (!active_worst_qchanged) {
|
|
vp8_update_rate_correction_factors(cpi, 0);
|
|
}
|
|
|
|
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
|
|
|
|
/* Special case reset for qlow for constrained quality.
|
|
* This should only trigger where there is very substantial
|
|
* undershoot on a frame and the auto cq level is above
|
|
* the user passsed in value.
|
|
*/
|
|
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
|
|
(Q < q_low)) {
|
|
q_low = Q;
|
|
}
|
|
|
|
while (((Q > q_high) || (cpi->mb.zbin_over_quant > zbin_oq_high)) &&
|
|
(Retries < 10)) {
|
|
vp8_update_rate_correction_factors(cpi, 0);
|
|
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
|
|
Retries++;
|
|
}
|
|
}
|
|
|
|
undershoot_seen = 1;
|
|
}
|
|
|
|
/* Clamp Q to upper and lower limits: */
|
|
if (Q > q_high) {
|
|
Q = q_high;
|
|
} else if (Q < q_low) {
|
|
Q = q_low;
|
|
}
|
|
|
|
/* Clamp cpi->zbin_over_quant */
|
|
cpi->mb.zbin_over_quant = (cpi->mb.zbin_over_quant < zbin_oq_low)
|
|
? zbin_oq_low
|
|
: (cpi->mb.zbin_over_quant > zbin_oq_high)
|
|
? zbin_oq_high
|
|
: cpi->mb.zbin_over_quant;
|
|
|
|
Loop = Q != last_q;
|
|
} else {
|
|
Loop = 0;
|
|
}
|
|
#endif // CONFIG_REALTIME_ONLY
|
|
|
|
if (cpi->is_src_frame_alt_ref) Loop = 0;
|
|
|
|
if (Loop == 1) {
|
|
vp8_restore_coding_context(cpi);
|
|
loop_count++;
|
|
#if CONFIG_INTERNAL_STATS
|
|
cpi->tot_recode_hits++;
|
|
#endif
|
|
}
|
|
} while (Loop == 1);
|
|
|
|
#if defined(DROP_UNCODED_FRAMES)
|
|
/* if there are no coded macroblocks at all drop this frame */
|
|
if (cpi->common.MBs == cpi->mb.skip_true_count &&
|
|
(cpi->drop_frame_count & 7) != 7 && cm->frame_type != KEY_FRAME) {
|
|
cpi->common.current_video_frame++;
|
|
cpi->frames_since_key++;
|
|
cpi->drop_frame_count++;
|
|
// We advance the temporal pattern for dropped frames.
|
|
cpi->temporal_pattern_counter++;
|
|
return;
|
|
}
|
|
cpi->drop_frame_count = 0;
|
|
#endif
|
|
|
|
#if 0
|
|
/* Experimental code for lagged and one pass
|
|
* Update stats used for one pass GF selection
|
|
*/
|
|
{
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_coded_error = (double)cpi->prediction_error;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_intra_error = (double)cpi->intra_error;
|
|
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_pcnt_inter = (double)(100 - cpi->this_frame_percent_intra) / 100.0;
|
|
}
|
|
#endif
|
|
|
|
/* Special case code to reduce pulsing when key frames are forced at a
|
|
* fixed interval. Note the reconstruction error if it is the frame before
|
|
* the force key frame
|
|
*/
|
|
if (cpi->next_key_frame_forced && (cpi->twopass.frames_to_key == 0)) {
|
|
cpi->ambient_err =
|
|
vp8_calc_ss_err(cpi->Source, &cm->yv12_fb[cm->new_fb_idx]);
|
|
}
|
|
|
|
/* This frame's MVs are saved and will be used in next frame's MV predictor.
|
|
* Last frame has one more line(add to bottom) and one more column(add to
|
|
* right) than cm->mip. The edge elements are initialized to 0.
|
|
*/
|
|
#if CONFIG_MULTI_RES_ENCODING
|
|
if (!cpi->oxcf.mr_encoder_id && cm->show_frame)
|
|
#else
|
|
if (cm->show_frame) /* do not save for altref frame */
|
|
#endif
|
|
{
|
|
int mb_row;
|
|
int mb_col;
|
|
/* Point to beginning of allocated MODE_INFO arrays. */
|
|
MODE_INFO *tmp = cm->mip;
|
|
|
|
if (cm->frame_type != KEY_FRAME) {
|
|
for (mb_row = 0; mb_row < cm->mb_rows + 1; ++mb_row) {
|
|
for (mb_col = 0; mb_col < cm->mb_cols + 1; ++mb_col) {
|
|
if (tmp->mbmi.ref_frame != INTRA_FRAME) {
|
|
cpi->lfmv[mb_col + mb_row * (cm->mode_info_stride + 1)].as_int =
|
|
tmp->mbmi.mv.as_int;
|
|
}
|
|
|
|
cpi->lf_ref_frame_sign_bias[mb_col +
|
|
mb_row * (cm->mode_info_stride + 1)] =
|
|
cm->ref_frame_sign_bias[tmp->mbmi.ref_frame];
|
|
cpi->lf_ref_frame[mb_col + mb_row * (cm->mode_info_stride + 1)] =
|
|
tmp->mbmi.ref_frame;
|
|
tmp++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Count last ref frame 0,0 usage on current encoded frame. */
|
|
{
|
|
int mb_row;
|
|
int mb_col;
|
|
/* Point to beginning of MODE_INFO arrays. */
|
|
MODE_INFO *tmp = cm->mi;
|
|
|
|
cpi->zeromv_count = 0;
|
|
|
|
if (cm->frame_type != KEY_FRAME) {
|
|
for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
|
|
for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
|
|
if (tmp->mbmi.mode == ZEROMV && tmp->mbmi.ref_frame == LAST_FRAME) {
|
|
cpi->zeromv_count++;
|
|
}
|
|
tmp++;
|
|
}
|
|
tmp++;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_MULTI_RES_ENCODING
|
|
vp8_cal_dissimilarity(cpi);
|
|
#endif
|
|
|
|
/* Update the GF useage maps.
|
|
* This is done after completing the compression of a frame when all
|
|
* modes etc. are finalized but before loop filter
|
|
*/
|
|
if (cpi->oxcf.number_of_layers == 1) {
|
|
vp8_update_gf_useage_maps(cpi, cm, &cpi->mb);
|
|
}
|
|
|
|
if (cm->frame_type == KEY_FRAME) cm->refresh_last_frame = 1;
|
|
|
|
#if 0
|
|
{
|
|
FILE *f = fopen("gfactive.stt", "a");
|
|
fprintf(f, "%8d %8d %8d %8d %8d\n", cm->current_video_frame, (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols), cpi->this_iiratio, cpi->next_iiratio, cm->refresh_golden_frame);
|
|
fclose(f);
|
|
}
|
|
#endif
|
|
|
|
/* For inter frames the current default behavior is that when
|
|
* cm->refresh_golden_frame is set we copy the old GF over to the ARF buffer
|
|
* This is purely an encoder decision at present.
|
|
*/
|
|
if (!cpi->oxcf.error_resilient_mode && cm->refresh_golden_frame) {
|
|
cm->copy_buffer_to_arf = 2;
|
|
} else {
|
|
cm->copy_buffer_to_arf = 0;
|
|
}
|
|
|
|
cm->frame_to_show = &cm->yv12_fb[cm->new_fb_idx];
|
|
|
|
#if CONFIG_TEMPORAL_DENOISING
|
|
// Get some measure of the amount of noise, by measuring the (partial) mse
|
|
// between source and denoised buffer, for y channel. Partial refers to
|
|
// computing the sse for a sub-sample of the frame (i.e., skip x blocks along
|
|
// row/column),
|
|
// and only for blocks in that set that are consecutive ZEROMV_LAST mode.
|
|
// Do this every ~8 frames, to further reduce complexity.
|
|
// TODO(marpan): Keep this for now for the case cpi->oxcf.noise_sensitivity <
|
|
// 4,
|
|
// should be removed in favor of the process_denoiser_mode_change() function
|
|
// below.
|
|
if (cpi->oxcf.noise_sensitivity > 0 && cpi->oxcf.noise_sensitivity < 4 &&
|
|
!cpi->oxcf.screen_content_mode && cpi->frames_since_key % 8 == 0 &&
|
|
cm->frame_type != KEY_FRAME) {
|
|
cpi->mse_source_denoised = measure_square_diff_partial(
|
|
&cpi->denoiser.yv12_running_avg[INTRA_FRAME], cpi->Source, cpi);
|
|
}
|
|
|
|
// For the adaptive denoising mode (noise_sensitivity == 4), sample the mse
|
|
// of source diff (between current and previous frame), and determine if we
|
|
// should switch the denoiser mode. Sampling refers to computing the mse for
|
|
// a sub-sample of the frame (i.e., skip x blocks along row/column), and
|
|
// only for blocks in that set that have used ZEROMV LAST, along with some
|
|
// constraint on the sum diff between blocks. This process is called every
|
|
// ~8 frames, to further reduce complexity.
|
|
if (cpi->oxcf.noise_sensitivity == 4 && !cpi->oxcf.screen_content_mode &&
|
|
cpi->frames_since_key % 8 == 0 && cm->frame_type != KEY_FRAME) {
|
|
process_denoiser_mode_change(cpi);
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
if (cpi->b_multi_threaded) {
|
|
/* start loopfilter in separate thread */
|
|
sem_post(&cpi->h_event_start_lpf);
|
|
cpi->b_lpf_running = 1;
|
|
} else
|
|
#endif
|
|
{
|
|
vp8_loopfilter_frame(cpi, cm);
|
|
}
|
|
|
|
update_reference_frames(cpi);
|
|
|
|
#ifdef OUTPUT_YUV_DENOISED
|
|
vp8_write_yuv_frame(yuv_denoised_file,
|
|
&cpi->denoiser.yv12_running_avg[INTRA_FRAME]);
|
|
#endif
|
|
|
|
#if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
|
|
if (cpi->oxcf.error_resilient_mode) {
|
|
cm->refresh_entropy_probs = 0;
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
/* wait that filter_level is picked so that we can continue with stream
|
|
* packing */
|
|
if (cpi->b_multi_threaded) sem_wait(&cpi->h_event_end_lpf);
|
|
#endif
|
|
|
|
/* build the bitstream */
|
|
vp8_pack_bitstream(cpi, dest, dest_end, size);
|
|
|
|
/* Move storing frame_type out of the above loop since it is also
|
|
* needed in motion search besides loopfilter */
|
|
cm->last_frame_type = cm->frame_type;
|
|
|
|
/* Update rate control heuristics */
|
|
cpi->total_byte_count += (*size);
|
|
cpi->projected_frame_size = (int)(*size) << 3;
|
|
|
|
if (cpi->oxcf.number_of_layers > 1) {
|
|
unsigned int i;
|
|
for (i = cpi->current_layer + 1; i < cpi->oxcf.number_of_layers; ++i) {
|
|
cpi->layer_context[i].total_byte_count += (*size);
|
|
}
|
|
}
|
|
|
|
if (!active_worst_qchanged) vp8_update_rate_correction_factors(cpi, 2);
|
|
|
|
cpi->last_q[cm->frame_type] = cm->base_qindex;
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
vp8_adjust_key_frame_context(cpi);
|
|
}
|
|
|
|
/* Keep a record of ambient average Q. */
|
|
if (cm->frame_type != KEY_FRAME) {
|
|
cpi->avg_frame_qindex =
|
|
(2 + 3 * cpi->avg_frame_qindex + cm->base_qindex) >> 2;
|
|
}
|
|
|
|
/* Keep a record from which we can calculate the average Q excluding
|
|
* GF updates and key frames
|
|
*/
|
|
if ((cm->frame_type != KEY_FRAME) &&
|
|
((cpi->oxcf.number_of_layers > 1) ||
|
|
(!cm->refresh_golden_frame && !cm->refresh_alt_ref_frame))) {
|
|
cpi->ni_frames++;
|
|
|
|
/* Calculate the average Q for normal inter frames (not key or GFU
|
|
* frames).
|
|
*/
|
|
if (cpi->pass == 2) {
|
|
cpi->ni_tot_qi += Q;
|
|
cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames);
|
|
} else {
|
|
/* Damp value for first few frames */
|
|
if (cpi->ni_frames > 150) {
|
|
cpi->ni_tot_qi += Q;
|
|
cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames);
|
|
}
|
|
/* For one pass, early in the clip ... average the current frame Q
|
|
* value with the worstq entered by the user as a dampening measure
|
|
*/
|
|
else {
|
|
cpi->ni_tot_qi += Q;
|
|
cpi->ni_av_qi =
|
|
((cpi->ni_tot_qi / cpi->ni_frames) + cpi->worst_quality + 1) / 2;
|
|
}
|
|
|
|
/* If the average Q is higher than what was used in the last
|
|
* frame (after going through the recode loop to keep the frame
|
|
* size within range) then use the last frame value - 1. The -1
|
|
* is designed to stop Q and hence the data rate, from
|
|
* progressively falling away during difficult sections, but at
|
|
* the same time reduce the number of itterations around the
|
|
* recode loop.
|
|
*/
|
|
if (Q > cpi->ni_av_qi) cpi->ni_av_qi = Q - 1;
|
|
}
|
|
}
|
|
|
|
/* Update the buffer level variable. */
|
|
/* Non-viewable frames are a special case and are treated as pure overhead. */
|
|
if (!cm->show_frame) {
|
|
cpi->bits_off_target -= cpi->projected_frame_size;
|
|
} else {
|
|
cpi->bits_off_target +=
|
|
cpi->av_per_frame_bandwidth - cpi->projected_frame_size;
|
|
}
|
|
|
|
/* Clip the buffer level to the maximum specified buffer size */
|
|
if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size) {
|
|
cpi->bits_off_target = cpi->oxcf.maximum_buffer_size;
|
|
}
|
|
|
|
// If the frame dropper is not enabled, don't let the buffer level go below
|
|
// some threshold, given here by -|maximum_buffer_size|. For now we only do
|
|
// this for screen content input.
|
|
if (cpi->drop_frames_allowed == 0 && cpi->oxcf.screen_content_mode &&
|
|
cpi->bits_off_target < -cpi->oxcf.maximum_buffer_size) {
|
|
cpi->bits_off_target = -cpi->oxcf.maximum_buffer_size;
|
|
}
|
|
|
|
/* Rolling monitors of whether we are over or underspending used to
|
|
* help regulate min and Max Q in two pass.
|
|
*/
|
|
cpi->rolling_target_bits =
|
|
((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4;
|
|
cpi->rolling_actual_bits =
|
|
((cpi->rolling_actual_bits * 3) + cpi->projected_frame_size + 2) / 4;
|
|
cpi->long_rolling_target_bits =
|
|
((cpi->long_rolling_target_bits * 31) + cpi->this_frame_target + 16) / 32;
|
|
cpi->long_rolling_actual_bits =
|
|
((cpi->long_rolling_actual_bits * 31) + cpi->projected_frame_size + 16) /
|
|
32;
|
|
|
|
/* Actual bits spent */
|
|
cpi->total_actual_bits += cpi->projected_frame_size;
|
|
|
|
/* Debug stats */
|
|
cpi->total_target_vs_actual +=
|
|
(cpi->this_frame_target - cpi->projected_frame_size);
|
|
|
|
cpi->buffer_level = cpi->bits_off_target;
|
|
|
|
/* Propagate values to higher temporal layers */
|
|
if (cpi->oxcf.number_of_layers > 1) {
|
|
unsigned int i;
|
|
|
|
for (i = cpi->current_layer + 1; i < cpi->oxcf.number_of_layers; ++i) {
|
|
LAYER_CONTEXT *lc = &cpi->layer_context[i];
|
|
int bits_off_for_this_layer = (int)(lc->target_bandwidth / lc->framerate -
|
|
cpi->projected_frame_size);
|
|
|
|
lc->bits_off_target += bits_off_for_this_layer;
|
|
|
|
/* Clip buffer level to maximum buffer size for the layer */
|
|
if (lc->bits_off_target > lc->maximum_buffer_size) {
|
|
lc->bits_off_target = lc->maximum_buffer_size;
|
|
}
|
|
|
|
lc->total_actual_bits += cpi->projected_frame_size;
|
|
lc->total_target_vs_actual += bits_off_for_this_layer;
|
|
lc->buffer_level = lc->bits_off_target;
|
|
}
|
|
}
|
|
|
|
/* Update bits left to the kf and gf groups to account for overshoot
|
|
* or undershoot on these frames
|
|
*/
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
cpi->twopass.kf_group_bits +=
|
|
cpi->this_frame_target - cpi->projected_frame_size;
|
|
|
|
if (cpi->twopass.kf_group_bits < 0) cpi->twopass.kf_group_bits = 0;
|
|
} else if (cm->refresh_golden_frame || cm->refresh_alt_ref_frame) {
|
|
cpi->twopass.gf_group_bits +=
|
|
cpi->this_frame_target - cpi->projected_frame_size;
|
|
|
|
if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0;
|
|
}
|
|
|
|
if (cm->frame_type != KEY_FRAME) {
|
|
if (cpi->common.refresh_alt_ref_frame) {
|
|
cpi->last_skip_false_probs[2] = cpi->prob_skip_false;
|
|
cpi->last_skip_probs_q[2] = cm->base_qindex;
|
|
} else if (cpi->common.refresh_golden_frame) {
|
|
cpi->last_skip_false_probs[1] = cpi->prob_skip_false;
|
|
cpi->last_skip_probs_q[1] = cm->base_qindex;
|
|
} else {
|
|
cpi->last_skip_false_probs[0] = cpi->prob_skip_false;
|
|
cpi->last_skip_probs_q[0] = cm->base_qindex;
|
|
|
|
/* update the baseline */
|
|
cpi->base_skip_false_prob[cm->base_qindex] = cpi->prob_skip_false;
|
|
}
|
|
}
|
|
|
|
#if 0 && CONFIG_INTERNAL_STATS
|
|
{
|
|
FILE *f = fopen("tmp.stt", "a");
|
|
|
|
vpx_clear_system_state();
|
|
|
|
if (cpi->twopass.total_left_stats.coded_error != 0.0)
|
|
fprintf(f, "%10d %10d %10d %10d %10d %10"PRId64" %10"PRId64
|
|
"%10"PRId64" %10d %6d %6d %6d %6d %5d %5d %5d %8d "
|
|
"%8.2lf %"PRId64" %10.3lf %10"PRId64" %8d\n",
|
|
cpi->common.current_video_frame, cpi->this_frame_target,
|
|
cpi->projected_frame_size,
|
|
(cpi->projected_frame_size - cpi->this_frame_target),
|
|
cpi->total_target_vs_actual,
|
|
cpi->buffer_level,
|
|
(cpi->oxcf.starting_buffer_level-cpi->bits_off_target),
|
|
cpi->total_actual_bits, cm->base_qindex,
|
|
cpi->active_best_quality, cpi->active_worst_quality,
|
|
cpi->ni_av_qi, cpi->cq_target_quality,
|
|
cm->refresh_golden_frame, cm->refresh_alt_ref_frame,
|
|
cm->frame_type, cpi->gfu_boost,
|
|
cpi->twopass.est_max_qcorrection_factor,
|
|
cpi->twopass.bits_left,
|
|
cpi->twopass.total_left_stats.coded_error,
|
|
(double)cpi->twopass.bits_left /
|
|
cpi->twopass.total_left_stats.coded_error,
|
|
cpi->tot_recode_hits);
|
|
else
|
|
fprintf(f, "%10d %10d %10d %10d %10d %10"PRId64" %10"PRId64
|
|
"%10"PRId64" %10d %6d %6d %6d %6d %5d %5d %5d %8d "
|
|
"%8.2lf %"PRId64" %10.3lf %8d\n",
|
|
cpi->common.current_video_frame, cpi->this_frame_target,
|
|
cpi->projected_frame_size,
|
|
(cpi->projected_frame_size - cpi->this_frame_target),
|
|
cpi->total_target_vs_actual,
|
|
cpi->buffer_level,
|
|
(cpi->oxcf.starting_buffer_level-cpi->bits_off_target),
|
|
cpi->total_actual_bits, cm->base_qindex,
|
|
cpi->active_best_quality, cpi->active_worst_quality,
|
|
cpi->ni_av_qi, cpi->cq_target_quality,
|
|
cm->refresh_golden_frame, cm->refresh_alt_ref_frame,
|
|
cm->frame_type, cpi->gfu_boost,
|
|
cpi->twopass.est_max_qcorrection_factor,
|
|
cpi->twopass.bits_left,
|
|
cpi->twopass.total_left_stats.coded_error,
|
|
cpi->tot_recode_hits);
|
|
|
|
fclose(f);
|
|
|
|
{
|
|
FILE *fmodes = fopen("Modes.stt", "a");
|
|
|
|
fprintf(fmodes, "%6d:%1d:%1d:%1d ",
|
|
cpi->common.current_video_frame,
|
|
cm->frame_type, cm->refresh_golden_frame,
|
|
cm->refresh_alt_ref_frame);
|
|
|
|
fprintf(fmodes, "\n");
|
|
|
|
fclose(fmodes);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
if (cm->refresh_golden_frame == 1) {
|
|
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_GOLDEN;
|
|
} else {
|
|
cm->frame_flags = cm->frame_flags & ~FRAMEFLAGS_GOLDEN;
|
|
}
|
|
|
|
if (cm->refresh_alt_ref_frame == 1) {
|
|
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_ALTREF;
|
|
} else {
|
|
cm->frame_flags = cm->frame_flags & ~FRAMEFLAGS_ALTREF;
|
|
}
|
|
|
|
if (cm->refresh_last_frame & cm->refresh_golden_frame) { /* both refreshed */
|
|
cpi->gold_is_last = 1;
|
|
} else if (cm->refresh_last_frame ^ cm->refresh_golden_frame) {
|
|
/* 1 refreshed but not the other */
|
|
cpi->gold_is_last = 0;
|
|
}
|
|
|
|
if (cm->refresh_last_frame & cm->refresh_alt_ref_frame) { /* both refreshed */
|
|
cpi->alt_is_last = 1;
|
|
} else if (cm->refresh_last_frame ^ cm->refresh_alt_ref_frame) {
|
|
/* 1 refreshed but not the other */
|
|
cpi->alt_is_last = 0;
|
|
}
|
|
|
|
if (cm->refresh_alt_ref_frame &
|
|
cm->refresh_golden_frame) { /* both refreshed */
|
|
cpi->gold_is_alt = 1;
|
|
} else if (cm->refresh_alt_ref_frame ^ cm->refresh_golden_frame) {
|
|
/* 1 refreshed but not the other */
|
|
cpi->gold_is_alt = 0;
|
|
}
|
|
|
|
cpi->ref_frame_flags = VP8_ALTR_FRAME | VP8_GOLD_FRAME | VP8_LAST_FRAME;
|
|
|
|
if (cpi->gold_is_last) cpi->ref_frame_flags &= ~VP8_GOLD_FRAME;
|
|
|
|
if (cpi->alt_is_last) cpi->ref_frame_flags &= ~VP8_ALTR_FRAME;
|
|
|
|
if (cpi->gold_is_alt) cpi->ref_frame_flags &= ~VP8_ALTR_FRAME;
|
|
|
|
if (!cpi->oxcf.error_resilient_mode) {
|
|
if (cpi->oxcf.play_alternate && cm->refresh_alt_ref_frame &&
|
|
(cm->frame_type != KEY_FRAME)) {
|
|
/* Update the alternate reference frame stats as appropriate. */
|
|
update_alt_ref_frame_stats(cpi);
|
|
} else {
|
|
/* Update the Golden frame stats as appropriate. */
|
|
update_golden_frame_stats(cpi);
|
|
}
|
|
}
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
/* Tell the caller that the frame was coded as a key frame */
|
|
*frame_flags = cm->frame_flags | FRAMEFLAGS_KEY;
|
|
|
|
/* As this frame is a key frame the next defaults to an inter frame. */
|
|
cm->frame_type = INTER_FRAME;
|
|
|
|
cpi->last_frame_percent_intra = 100;
|
|
} else {
|
|
*frame_flags = cm->frame_flags & ~FRAMEFLAGS_KEY;
|
|
|
|
cpi->last_frame_percent_intra = cpi->this_frame_percent_intra;
|
|
}
|
|
|
|
/* Clear the one shot update flags for segmentation map and mode/ref
|
|
* loop filter deltas.
|
|
*/
|
|
cpi->mb.e_mbd.update_mb_segmentation_map = 0;
|
|
cpi->mb.e_mbd.update_mb_segmentation_data = 0;
|
|
cpi->mb.e_mbd.mode_ref_lf_delta_update = 0;
|
|
|
|
/* Dont increment frame counters if this was an altref buffer update
|
|
* not a real frame
|
|
*/
|
|
if (cm->show_frame) {
|
|
cm->current_video_frame++;
|
|
cpi->frames_since_key++;
|
|
cpi->temporal_pattern_counter++;
|
|
}
|
|
|
|
/* reset to normal state now that we are done. */
|
|
|
|
#if 0
|
|
{
|
|
char filename[512];
|
|
FILE *recon_file;
|
|
sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame);
|
|
recon_file = fopen(filename, "wb");
|
|
fwrite(cm->yv12_fb[cm->lst_fb_idx].buffer_alloc,
|
|
cm->yv12_fb[cm->lst_fb_idx].frame_size, 1, recon_file);
|
|
fclose(recon_file);
|
|
}
|
|
#endif
|
|
|
|
/* DEBUG */
|
|
/* vp8_write_yuv_frame("encoder_recon.yuv", cm->frame_to_show); */
|
|
}
|
|
#if !CONFIG_REALTIME_ONLY
|
|
static void Pass2Encode(VP8_COMP *cpi, size_t *size, unsigned char *dest,
|
|
unsigned char *dest_end, unsigned int *frame_flags) {
|
|
if (!cpi->common.refresh_alt_ref_frame) vp8_second_pass(cpi);
|
|
|
|
encode_frame_to_data_rate(cpi, size, dest, dest_end, frame_flags);
|
|
cpi->twopass.bits_left -= 8 * (int)(*size);
|
|
|
|
if (!cpi->common.refresh_alt_ref_frame) {
|
|
double two_pass_min_rate =
|
|
(double)(cpi->oxcf.target_bandwidth *
|
|
cpi->oxcf.two_pass_vbrmin_section / 100);
|
|
cpi->twopass.bits_left += (int64_t)(two_pass_min_rate / cpi->framerate);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
int vp8_receive_raw_frame(VP8_COMP *cpi, unsigned int frame_flags,
|
|
YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
|
|
int64_t end_time) {
|
|
struct vpx_usec_timer timer;
|
|
int res = 0;
|
|
|
|
vpx_usec_timer_start(&timer);
|
|
|
|
/* Reinit the lookahead buffer if the frame size changes */
|
|
if (sd->y_width != cpi->oxcf.Width || sd->y_height != cpi->oxcf.Height) {
|
|
assert(cpi->oxcf.lag_in_frames < 2);
|
|
dealloc_raw_frame_buffers(cpi);
|
|
alloc_raw_frame_buffers(cpi);
|
|
}
|
|
|
|
if (vp8_lookahead_push(cpi->lookahead, sd, time_stamp, end_time, frame_flags,
|
|
cpi->active_map_enabled ? cpi->active_map : NULL)) {
|
|
res = -1;
|
|
}
|
|
vpx_usec_timer_mark(&timer);
|
|
cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
|
|
|
|
return res;
|
|
}
|
|
|
|
static int frame_is_reference(const VP8_COMP *cpi) {
|
|
const VP8_COMMON *cm = &cpi->common;
|
|
const MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
|
|
return cm->frame_type == KEY_FRAME || cm->refresh_last_frame ||
|
|
cm->refresh_golden_frame || cm->refresh_alt_ref_frame ||
|
|
cm->copy_buffer_to_gf || cm->copy_buffer_to_arf ||
|
|
cm->refresh_entropy_probs || xd->mode_ref_lf_delta_update ||
|
|
xd->update_mb_segmentation_map || xd->update_mb_segmentation_data;
|
|
}
|
|
|
|
int vp8_get_compressed_data(VP8_COMP *cpi, unsigned int *frame_flags,
|
|
size_t *size, unsigned char *dest,
|
|
unsigned char *dest_end, int64_t *time_stamp,
|
|
int64_t *time_end, int flush) {
|
|
VP8_COMMON *cm;
|
|
struct vpx_usec_timer tsctimer;
|
|
struct vpx_usec_timer ticktimer;
|
|
struct vpx_usec_timer cmptimer;
|
|
YV12_BUFFER_CONFIG *force_src_buffer = NULL;
|
|
|
|
if (!cpi) return -1;
|
|
|
|
cm = &cpi->common;
|
|
|
|
if (setjmp(cpi->common.error.jmp)) {
|
|
cpi->common.error.setjmp = 0;
|
|
vpx_clear_system_state();
|
|
return VPX_CODEC_CORRUPT_FRAME;
|
|
}
|
|
|
|
cpi->common.error.setjmp = 1;
|
|
|
|
vpx_usec_timer_start(&cmptimer);
|
|
|
|
cpi->source = NULL;
|
|
|
|
#if !CONFIG_REALTIME_ONLY
|
|
/* Should we code an alternate reference frame */
|
|
if (cpi->oxcf.error_resilient_mode == 0 && cpi->oxcf.play_alternate &&
|
|
cpi->source_alt_ref_pending) {
|
|
if ((cpi->source = vp8_lookahead_peek(
|
|
cpi->lookahead, cpi->frames_till_gf_update_due, PEEK_FORWARD))) {
|
|
cpi->alt_ref_source = cpi->source;
|
|
if (cpi->oxcf.arnr_max_frames > 0) {
|
|
vp8_temporal_filter_prepare_c(cpi, cpi->frames_till_gf_update_due);
|
|
force_src_buffer = &cpi->alt_ref_buffer;
|
|
}
|
|
cpi->frames_till_alt_ref_frame = cpi->frames_till_gf_update_due;
|
|
cm->refresh_alt_ref_frame = 1;
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 0;
|
|
cm->show_frame = 0;
|
|
/* Clear Pending alt Ref flag. */
|
|
cpi->source_alt_ref_pending = 0;
|
|
cpi->is_src_frame_alt_ref = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (!cpi->source) {
|
|
/* Read last frame source if we are encoding first pass. */
|
|
if (cpi->pass == 1 && cm->current_video_frame > 0) {
|
|
if ((cpi->last_source =
|
|
vp8_lookahead_peek(cpi->lookahead, 1, PEEK_BACKWARD)) == NULL) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if ((cpi->source = vp8_lookahead_pop(cpi->lookahead, flush))) {
|
|
cm->show_frame = 1;
|
|
|
|
cpi->is_src_frame_alt_ref =
|
|
cpi->alt_ref_source && (cpi->source == cpi->alt_ref_source);
|
|
|
|
if (cpi->is_src_frame_alt_ref) cpi->alt_ref_source = NULL;
|
|
}
|
|
}
|
|
|
|
if (cpi->source) {
|
|
cpi->Source = force_src_buffer ? force_src_buffer : &cpi->source->img;
|
|
cpi->un_scaled_source = cpi->Source;
|
|
*time_stamp = cpi->source->ts_start;
|
|
*time_end = cpi->source->ts_end;
|
|
*frame_flags = cpi->source->flags;
|
|
|
|
if (cpi->pass == 1 && cm->current_video_frame > 0) {
|
|
cpi->last_frame_unscaled_source = &cpi->last_source->img;
|
|
}
|
|
} else {
|
|
*size = 0;
|
|
#if !CONFIG_REALTIME_ONLY
|
|
|
|
if (flush && cpi->pass == 1 && !cpi->twopass.first_pass_done) {
|
|
vp8_end_first_pass(cpi); /* get last stats packet */
|
|
cpi->twopass.first_pass_done = 1;
|
|
}
|
|
|
|
#endif
|
|
|
|
return -1;
|
|
}
|
|
|
|
if (cpi->source->ts_start < cpi->first_time_stamp_ever) {
|
|
cpi->first_time_stamp_ever = cpi->source->ts_start;
|
|
cpi->last_end_time_stamp_seen = cpi->source->ts_start;
|
|
}
|
|
|
|
/* adjust frame rates based on timestamps given */
|
|
if (cm->show_frame) {
|
|
int64_t this_duration;
|
|
int step = 0;
|
|
|
|
if (cpi->source->ts_start == cpi->first_time_stamp_ever) {
|
|
this_duration = cpi->source->ts_end - cpi->source->ts_start;
|
|
step = 1;
|
|
} else {
|
|
int64_t last_duration;
|
|
|
|
this_duration = cpi->source->ts_end - cpi->last_end_time_stamp_seen;
|
|
last_duration = cpi->last_end_time_stamp_seen - cpi->last_time_stamp_seen;
|
|
/* do a step update if the duration changes by 10% */
|
|
if (last_duration) {
|
|
step = (int)(((this_duration - last_duration) * 10 / last_duration));
|
|
}
|
|
}
|
|
|
|
if (this_duration) {
|
|
if (step) {
|
|
cpi->ref_framerate = 10000000.0 / this_duration;
|
|
} else {
|
|
double avg_duration, interval;
|
|
|
|
/* Average this frame's rate into the last second's average
|
|
* frame rate. If we haven't seen 1 second yet, then average
|
|
* over the whole interval seen.
|
|
*/
|
|
interval = (double)(cpi->source->ts_end - cpi->first_time_stamp_ever);
|
|
if (interval > 10000000.0) interval = 10000000;
|
|
|
|
avg_duration = 10000000.0 / cpi->ref_framerate;
|
|
avg_duration *= (interval - avg_duration + this_duration);
|
|
avg_duration /= interval;
|
|
|
|
cpi->ref_framerate = 10000000.0 / avg_duration;
|
|
}
|
|
#if CONFIG_MULTI_RES_ENCODING
|
|
if (cpi->oxcf.mr_total_resolutions > 1) {
|
|
LOWER_RES_FRAME_INFO *low_res_frame_info =
|
|
(LOWER_RES_FRAME_INFO *)cpi->oxcf.mr_low_res_mode_info;
|
|
// Frame rate should be the same for all spatial layers in
|
|
// multi-res-encoding (simulcast), so we constrain the frame for
|
|
// higher layers to be that of lowest resolution. This is needed
|
|
// as he application may decide to skip encoding a high layer and
|
|
// then start again, in which case a big jump in time-stamps will
|
|
// be received for that high layer, which will yield an incorrect
|
|
// frame rate (from time-stamp adjustment in above calculation).
|
|
if (cpi->oxcf.mr_encoder_id) {
|
|
cpi->ref_framerate = low_res_frame_info->low_res_framerate;
|
|
} else {
|
|
// Keep track of frame rate for lowest resolution.
|
|
low_res_frame_info->low_res_framerate = cpi->ref_framerate;
|
|
}
|
|
}
|
|
#endif
|
|
if (cpi->oxcf.number_of_layers > 1) {
|
|
unsigned int i;
|
|
|
|
/* Update frame rates for each layer */
|
|
assert(cpi->oxcf.number_of_layers <= VPX_TS_MAX_LAYERS);
|
|
for (i = 0; i < cpi->oxcf.number_of_layers && i < VPX_TS_MAX_LAYERS;
|
|
++i) {
|
|
LAYER_CONTEXT *lc = &cpi->layer_context[i];
|
|
lc->framerate = cpi->ref_framerate / cpi->oxcf.rate_decimator[i];
|
|
}
|
|
} else {
|
|
vp8_new_framerate(cpi, cpi->ref_framerate);
|
|
}
|
|
}
|
|
|
|
cpi->last_time_stamp_seen = cpi->source->ts_start;
|
|
cpi->last_end_time_stamp_seen = cpi->source->ts_end;
|
|
}
|
|
|
|
if (cpi->oxcf.number_of_layers > 1) {
|
|
int layer;
|
|
|
|
update_layer_contexts(cpi);
|
|
|
|
/* Restore layer specific context & set frame rate */
|
|
if (cpi->temporal_layer_id >= 0) {
|
|
layer = cpi->temporal_layer_id;
|
|
} else {
|
|
layer =
|
|
cpi->oxcf
|
|
.layer_id[cpi->temporal_pattern_counter % cpi->oxcf.periodicity];
|
|
}
|
|
restore_layer_context(cpi, layer);
|
|
vp8_new_framerate(cpi, cpi->layer_context[layer].framerate);
|
|
}
|
|
|
|
if (cpi->compressor_speed == 2) {
|
|
vpx_usec_timer_start(&tsctimer);
|
|
vpx_usec_timer_start(&ticktimer);
|
|
}
|
|
|
|
cpi->lf_zeromv_pct = (cpi->zeromv_count * 100) / cm->MBs;
|
|
|
|
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
|
|
{
|
|
int i;
|
|
const int num_part = (1 << cm->multi_token_partition);
|
|
/* the available bytes in dest */
|
|
const unsigned long dest_size = dest_end - dest;
|
|
const int tok_part_buff_size = (dest_size * 9) / (10 * num_part);
|
|
|
|
unsigned char *dp = dest;
|
|
|
|
cpi->partition_d[0] = dp;
|
|
dp += dest_size / 10; /* reserve 1/10 for control partition */
|
|
cpi->partition_d_end[0] = dp;
|
|
|
|
for (i = 0; i < num_part; ++i) {
|
|
cpi->partition_d[i + 1] = dp;
|
|
dp += tok_part_buff_size;
|
|
cpi->partition_d_end[i + 1] = dp;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* start with a 0 size frame */
|
|
*size = 0;
|
|
|
|
/* Clear down mmx registers */
|
|
vpx_clear_system_state();
|
|
|
|
cm->frame_type = INTER_FRAME;
|
|
cm->frame_flags = *frame_flags;
|
|
|
|
#if 0
|
|
|
|
if (cm->refresh_alt_ref_frame)
|
|
{
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 0;
|
|
}
|
|
else
|
|
{
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 1;
|
|
}
|
|
|
|
#endif
|
|
/* find a free buffer for the new frame */
|
|
{
|
|
int i = 0;
|
|
for (; i < NUM_YV12_BUFFERS; ++i) {
|
|
if (!cm->yv12_fb[i].flags) {
|
|
cm->new_fb_idx = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(i < NUM_YV12_BUFFERS);
|
|
}
|
|
switch (cpi->pass) {
|
|
#if !CONFIG_REALTIME_ONLY
|
|
case 1: Pass1Encode(cpi, size, dest, frame_flags); break;
|
|
case 2: Pass2Encode(cpi, size, dest, dest_end, frame_flags); break;
|
|
#endif // !CONFIG_REALTIME_ONLY
|
|
default:
|
|
encode_frame_to_data_rate(cpi, size, dest, dest_end, frame_flags);
|
|
break;
|
|
}
|
|
|
|
if (cpi->compressor_speed == 2) {
|
|
unsigned int duration, duration2;
|
|
vpx_usec_timer_mark(&tsctimer);
|
|
vpx_usec_timer_mark(&ticktimer);
|
|
|
|
duration = (int)(vpx_usec_timer_elapsed(&ticktimer));
|
|
duration2 = (unsigned int)((double)duration / 2);
|
|
|
|
if (cm->frame_type != KEY_FRAME) {
|
|
if (cpi->avg_encode_time == 0) {
|
|
cpi->avg_encode_time = duration;
|
|
} else {
|
|
cpi->avg_encode_time = (7 * cpi->avg_encode_time + duration) >> 3;
|
|
}
|
|
}
|
|
|
|
if (duration2) {
|
|
{
|
|
if (cpi->avg_pick_mode_time == 0) {
|
|
cpi->avg_pick_mode_time = duration2;
|
|
} else {
|
|
cpi->avg_pick_mode_time =
|
|
(7 * cpi->avg_pick_mode_time + duration2) >> 3;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cm->refresh_entropy_probs == 0) {
|
|
memcpy(&cm->fc, &cm->lfc, sizeof(cm->fc));
|
|
}
|
|
|
|
/* Save the contexts separately for alt ref, gold and last. */
|
|
/* (TODO jbb -> Optimize this with pointers to avoid extra copies. ) */
|
|
if (cm->refresh_alt_ref_frame) memcpy(&cpi->lfc_a, &cm->fc, sizeof(cm->fc));
|
|
|
|
if (cm->refresh_golden_frame) memcpy(&cpi->lfc_g, &cm->fc, sizeof(cm->fc));
|
|
|
|
if (cm->refresh_last_frame) memcpy(&cpi->lfc_n, &cm->fc, sizeof(cm->fc));
|
|
|
|
/* if its a dropped frame honor the requests on subsequent frames */
|
|
if (*size > 0) {
|
|
cpi->droppable = !frame_is_reference(cpi);
|
|
|
|
/* return to normal state */
|
|
cm->refresh_entropy_probs = 1;
|
|
cm->refresh_alt_ref_frame = 0;
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 1;
|
|
cm->frame_type = INTER_FRAME;
|
|
}
|
|
|
|
/* Save layer specific state */
|
|
if (cpi->oxcf.number_of_layers > 1) save_layer_context(cpi);
|
|
|
|
vpx_usec_timer_mark(&cmptimer);
|
|
cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
|
|
|
|
if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame) {
|
|
generate_psnr_packet(cpi);
|
|
}
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
|
|
if (cpi->pass != 1) {
|
|
cpi->bytes += *size;
|
|
|
|
if (cm->show_frame) {
|
|
cpi->common.show_frame_mi = cpi->common.mi;
|
|
cpi->count++;
|
|
|
|
if (cpi->b_calculate_psnr) {
|
|
uint64_t ye, ue, ve;
|
|
double frame_psnr;
|
|
YV12_BUFFER_CONFIG *orig = cpi->Source;
|
|
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
|
|
unsigned int y_width = cpi->common.Width;
|
|
unsigned int y_height = cpi->common.Height;
|
|
unsigned int uv_width = (y_width + 1) / 2;
|
|
unsigned int uv_height = (y_height + 1) / 2;
|
|
int y_samples = y_height * y_width;
|
|
int uv_samples = uv_height * uv_width;
|
|
int t_samples = y_samples + 2 * uv_samples;
|
|
double sq_error;
|
|
|
|
ye = calc_plane_error(orig->y_buffer, orig->y_stride, recon->y_buffer,
|
|
recon->y_stride, y_width, y_height);
|
|
|
|
ue = calc_plane_error(orig->u_buffer, orig->uv_stride, recon->u_buffer,
|
|
recon->uv_stride, uv_width, uv_height);
|
|
|
|
ve = calc_plane_error(orig->v_buffer, orig->uv_stride, recon->v_buffer,
|
|
recon->uv_stride, uv_width, uv_height);
|
|
|
|
sq_error = (double)(ye + ue + ve);
|
|
|
|
frame_psnr = vpx_sse_to_psnr(t_samples, 255.0, sq_error);
|
|
|
|
cpi->total_y += vpx_sse_to_psnr(y_samples, 255.0, (double)ye);
|
|
cpi->total_u += vpx_sse_to_psnr(uv_samples, 255.0, (double)ue);
|
|
cpi->total_v += vpx_sse_to_psnr(uv_samples, 255.0, (double)ve);
|
|
cpi->total_sq_error += sq_error;
|
|
cpi->total += frame_psnr;
|
|
#if CONFIG_POSTPROC
|
|
{
|
|
YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer;
|
|
double sq_error2;
|
|
double frame_psnr2, frame_ssim2 = 0;
|
|
double weight = 0;
|
|
|
|
vp8_deblock(cm, cm->frame_to_show, &cm->post_proc_buffer,
|
|
cm->filter_level * 10 / 6, 1, 0);
|
|
vpx_clear_system_state();
|
|
|
|
ye = calc_plane_error(orig->y_buffer, orig->y_stride, pp->y_buffer,
|
|
pp->y_stride, y_width, y_height);
|
|
|
|
ue = calc_plane_error(orig->u_buffer, orig->uv_stride, pp->u_buffer,
|
|
pp->uv_stride, uv_width, uv_height);
|
|
|
|
ve = calc_plane_error(orig->v_buffer, orig->uv_stride, pp->v_buffer,
|
|
pp->uv_stride, uv_width, uv_height);
|
|
|
|
sq_error2 = (double)(ye + ue + ve);
|
|
|
|
frame_psnr2 = vpx_sse_to_psnr(t_samples, 255.0, sq_error2);
|
|
|
|
cpi->totalp_y += vpx_sse_to_psnr(y_samples, 255.0, (double)ye);
|
|
cpi->totalp_u += vpx_sse_to_psnr(uv_samples, 255.0, (double)ue);
|
|
cpi->totalp_v += vpx_sse_to_psnr(uv_samples, 255.0, (double)ve);
|
|
cpi->total_sq_error2 += sq_error2;
|
|
cpi->totalp += frame_psnr2;
|
|
|
|
frame_ssim2 =
|
|
vpx_calc_ssim(cpi->Source, &cm->post_proc_buffer, &weight);
|
|
|
|
cpi->summed_quality += frame_ssim2 * weight;
|
|
cpi->summed_weights += weight;
|
|
|
|
if (cpi->oxcf.number_of_layers > 1) {
|
|
unsigned int i;
|
|
|
|
for (i = cpi->current_layer; i < cpi->oxcf.number_of_layers; ++i) {
|
|
cpi->frames_in_layer[i]++;
|
|
|
|
cpi->bytes_in_layer[i] += *size;
|
|
cpi->sum_psnr[i] += frame_psnr;
|
|
cpi->sum_psnr_p[i] += frame_psnr2;
|
|
cpi->total_error2[i] += sq_error;
|
|
cpi->total_error2_p[i] += sq_error2;
|
|
cpi->sum_ssim[i] += frame_ssim2 * weight;
|
|
cpi->sum_weights[i] += weight;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
|
|
if (cpi->common.frame_type != 0 && cpi->common.base_qindex == cpi->oxcf.worst_allowed_q)
|
|
{
|
|
skiptruecount += cpi->skip_true_count;
|
|
skipfalsecount += cpi->skip_false_count;
|
|
}
|
|
|
|
#endif
|
|
#if 0
|
|
|
|
if (cpi->pass != 1)
|
|
{
|
|
FILE *f = fopen("skip.stt", "a");
|
|
fprintf(f, "frame:%4d flags:%4x Q:%4d P:%4d Size:%5d\n", cpi->common.current_video_frame, *frame_flags, cpi->common.base_qindex, cpi->prob_skip_false, *size);
|
|
|
|
if (cpi->is_src_frame_alt_ref == 1)
|
|
fprintf(f, "skipcount: %4d framesize: %d\n", cpi->skip_true_count , *size);
|
|
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
#endif
|
|
|
|
cpi->common.error.setjmp = 0;
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
/* wait for the lpf thread done */
|
|
if (cpi->b_multi_threaded && cpi->b_lpf_running) {
|
|
sem_wait(&cpi->h_event_end_lpf);
|
|
cpi->b_lpf_running = 0;
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vp8_get_preview_raw_frame(VP8_COMP *cpi, YV12_BUFFER_CONFIG *dest,
|
|
vp8_ppflags_t *flags) {
|
|
if (cpi->common.refresh_alt_ref_frame) {
|
|
return -1;
|
|
} else {
|
|
int ret;
|
|
|
|
#if CONFIG_POSTPROC
|
|
cpi->common.show_frame_mi = cpi->common.mi;
|
|
ret = vp8_post_proc_frame(&cpi->common, dest, flags);
|
|
#else
|
|
(void)flags;
|
|
|
|
if (cpi->common.frame_to_show) {
|
|
*dest = *cpi->common.frame_to_show;
|
|
dest->y_width = cpi->common.Width;
|
|
dest->y_height = cpi->common.Height;
|
|
dest->uv_height = cpi->common.Height / 2;
|
|
ret = 0;
|
|
} else {
|
|
ret = -1;
|
|
}
|
|
|
|
#endif
|
|
vpx_clear_system_state();
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
int vp8_set_roimap(VP8_COMP *cpi, unsigned char *map, unsigned int rows,
|
|
unsigned int cols, int delta_q[4], int delta_lf[4],
|
|
unsigned int threshold[4]) {
|
|
signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS];
|
|
int internal_delta_q[MAX_MB_SEGMENTS];
|
|
const int range = 63;
|
|
int i;
|
|
|
|
// This method is currently incompatible with the cyclic refresh method
|
|
if (cpi->cyclic_refresh_mode_enabled) return -1;
|
|
|
|
// Check number of rows and columns match
|
|
if (cpi->common.mb_rows != (int)rows || cpi->common.mb_cols != (int)cols) {
|
|
return -1;
|
|
}
|
|
|
|
// Range check the delta Q values and convert the external Q range values
|
|
// to internal ones.
|
|
if ((abs(delta_q[0]) > range) || (abs(delta_q[1]) > range) ||
|
|
(abs(delta_q[2]) > range) || (abs(delta_q[3]) > range)) {
|
|
return -1;
|
|
}
|
|
|
|
// Range check the delta lf values
|
|
if ((abs(delta_lf[0]) > range) || (abs(delta_lf[1]) > range) ||
|
|
(abs(delta_lf[2]) > range) || (abs(delta_lf[3]) > range)) {
|
|
return -1;
|
|
}
|
|
|
|
if (!map) {
|
|
disable_segmentation(cpi);
|
|
return 0;
|
|
}
|
|
|
|
// Translate the external delta q values to internal values.
|
|
for (i = 0; i < MAX_MB_SEGMENTS; ++i) {
|
|
internal_delta_q[i] =
|
|
(delta_q[i] >= 0) ? q_trans[delta_q[i]] : -q_trans[-delta_q[i]];
|
|
}
|
|
|
|
/* Set the segmentation Map */
|
|
set_segmentation_map(cpi, map);
|
|
|
|
/* Activate segmentation. */
|
|
enable_segmentation(cpi);
|
|
|
|
/* Set up the quant segment data */
|
|
feature_data[MB_LVL_ALT_Q][0] = internal_delta_q[0];
|
|
feature_data[MB_LVL_ALT_Q][1] = internal_delta_q[1];
|
|
feature_data[MB_LVL_ALT_Q][2] = internal_delta_q[2];
|
|
feature_data[MB_LVL_ALT_Q][3] = internal_delta_q[3];
|
|
|
|
/* Set up the loop segment data s */
|
|
feature_data[MB_LVL_ALT_LF][0] = delta_lf[0];
|
|
feature_data[MB_LVL_ALT_LF][1] = delta_lf[1];
|
|
feature_data[MB_LVL_ALT_LF][2] = delta_lf[2];
|
|
feature_data[MB_LVL_ALT_LF][3] = delta_lf[3];
|
|
|
|
cpi->segment_encode_breakout[0] = threshold[0];
|
|
cpi->segment_encode_breakout[1] = threshold[1];
|
|
cpi->segment_encode_breakout[2] = threshold[2];
|
|
cpi->segment_encode_breakout[3] = threshold[3];
|
|
|
|
/* Initialise the feature data structure */
|
|
set_segment_data(cpi, &feature_data[0][0], SEGMENT_DELTADATA);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vp8_set_active_map(VP8_COMP *cpi, unsigned char *map, unsigned int rows,
|
|
unsigned int cols) {
|
|
if ((int)rows == cpi->common.mb_rows && (int)cols == cpi->common.mb_cols) {
|
|
if (map) {
|
|
memcpy(cpi->active_map, map, rows * cols);
|
|
cpi->active_map_enabled = 1;
|
|
} else {
|
|
cpi->active_map_enabled = 0;
|
|
}
|
|
|
|
return 0;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int vp8_set_internal_size(VP8_COMP *cpi, VPX_SCALING horiz_mode,
|
|
VPX_SCALING vert_mode) {
|
|
if (horiz_mode <= ONETWO) {
|
|
cpi->common.horiz_scale = horiz_mode;
|
|
} else {
|
|
return -1;
|
|
}
|
|
|
|
if (vert_mode <= ONETWO) {
|
|
cpi->common.vert_scale = vert_mode;
|
|
} else {
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest) {
|
|
int i, j;
|
|
int Total = 0;
|
|
|
|
unsigned char *src = source->y_buffer;
|
|
unsigned char *dst = dest->y_buffer;
|
|
|
|
/* Loop through the Y plane raw and reconstruction data summing
|
|
* (square differences)
|
|
*/
|
|
for (i = 0; i < source->y_height; i += 16) {
|
|
for (j = 0; j < source->y_width; j += 16) {
|
|
unsigned int sse;
|
|
Total += vpx_mse16x16(src + j, source->y_stride, dst + j, dest->y_stride,
|
|
&sse);
|
|
}
|
|
|
|
src += 16 * source->y_stride;
|
|
dst += 16 * dest->y_stride;
|
|
}
|
|
|
|
return Total;
|
|
}
|
|
|
|
int vp8_get_quantizer(VP8_COMP *cpi) { return cpi->common.base_qindex; }
|