vpx/test/dct_test.cc
James Zern db49a22cfa test: use testing::*tuple instead of std::tr1
googletest imports tuple into testing to allow for compatibility across
c++ versions where tuple may be in std::tr1 or std. fixes deprecation
warnings under visual studio 2017

Change-Id: Id78b372d5478b12d8c8f63fd3f2166fec25aa8be
2018-03-28 12:45:35 -07:00

729 lines
26 KiB
C++

/*
* Copyright (c) 2017 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "./vp9_rtcd.h"
#include "./vpx_dsp_rtcd.h"
#include "test/acm_random.h"
#include "test/buffer.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "vp9/common/vp9_entropy.h"
#include "vpx/vpx_codec.h"
#include "vpx/vpx_integer.h"
#include "vpx_ports/mem.h"
using ::testing::make_tuple;
using ::testing::tuple;
using libvpx_test::ACMRandom;
using libvpx_test::Buffer;
namespace {
typedef void (*FdctFunc)(const int16_t *in, tran_low_t *out, int stride);
typedef void (*IdctFunc)(const tran_low_t *in, uint8_t *out, int stride);
typedef void (*FhtFunc)(const int16_t *in, tran_low_t *out, int stride,
int tx_type);
typedef void (*FhtFuncRef)(const Buffer<int16_t> &in, Buffer<tran_low_t> *out,
int size, int tx_type);
typedef void (*IhtFunc)(const tran_low_t *in, uint8_t *out, int stride,
int tx_type);
typedef void (*IhtWithBdFunc)(const tran_low_t *in, uint8_t *out, int stride,
int tx_type, int bd);
template <FdctFunc fn>
void fdct_wrapper(const int16_t *in, tran_low_t *out, int stride, int tx_type) {
(void)tx_type;
fn(in, out, stride);
}
template <IdctFunc fn>
void idct_wrapper(const tran_low_t *in, uint8_t *out, int stride, int tx_type,
int bd) {
(void)tx_type;
(void)bd;
fn(in, out, stride);
}
template <IhtFunc fn>
void iht_wrapper(const tran_low_t *in, uint8_t *out, int stride, int tx_type,
int bd) {
(void)bd;
fn(in, out, stride, tx_type);
}
#if CONFIG_VP9_HIGHBITDEPTH
typedef void (*HighbdIdctFunc)(const tran_low_t *in, uint16_t *out, int stride,
int bd);
typedef void (*HighbdIhtFunc)(const tran_low_t *in, uint16_t *out, int stride,
int tx_type, int bd);
template <HighbdIdctFunc fn>
void highbd_idct_wrapper(const tran_low_t *in, uint8_t *out, int stride,
int tx_type, int bd) {
(void)tx_type;
fn(in, CAST_TO_SHORTPTR(out), stride, bd);
}
template <HighbdIhtFunc fn>
void highbd_iht_wrapper(const tran_low_t *in, uint8_t *out, int stride,
int tx_type, int bd) {
fn(in, CAST_TO_SHORTPTR(out), stride, tx_type, bd);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
struct FuncInfo {
FhtFunc ft_func;
IhtWithBdFunc it_func;
int size;
int pixel_size;
};
/* forward transform, inverse transform, size, transform type, bit depth */
typedef tuple<int, const FuncInfo *, int, vpx_bit_depth_t> DctParam;
void fdct_ref(const Buffer<int16_t> &in, Buffer<tran_low_t> *out, int size,
int /*tx_type*/) {
const int16_t *i = in.TopLeftPixel();
const int i_stride = in.stride();
tran_low_t *o = out->TopLeftPixel();
if (size == 4) {
vpx_fdct4x4_c(i, o, i_stride);
} else if (size == 8) {
vpx_fdct8x8_c(i, o, i_stride);
} else if (size == 16) {
vpx_fdct16x16_c(i, o, i_stride);
} else if (size == 32) {
vpx_fdct32x32_c(i, o, i_stride);
}
}
void fht_ref(const Buffer<int16_t> &in, Buffer<tran_low_t> *out, int size,
int tx_type) {
const int16_t *i = in.TopLeftPixel();
const int i_stride = in.stride();
tran_low_t *o = out->TopLeftPixel();
if (size == 4) {
vp9_fht4x4_c(i, o, i_stride, tx_type);
} else if (size == 8) {
vp9_fht8x8_c(i, o, i_stride, tx_type);
} else if (size == 16) {
vp9_fht16x16_c(i, o, i_stride, tx_type);
}
}
void fwht_ref(const Buffer<int16_t> &in, Buffer<tran_low_t> *out, int size,
int /*tx_type*/) {
ASSERT_EQ(size, 4);
vp9_fwht4x4_c(in.TopLeftPixel(), out->TopLeftPixel(), in.stride());
}
class TransTestBase : public ::testing::TestWithParam<DctParam> {
public:
virtual void SetUp() {
rnd_.Reset(ACMRandom::DeterministicSeed());
const int idx = GET_PARAM(0);
const FuncInfo *func_info = &(GET_PARAM(1)[idx]);
tx_type_ = GET_PARAM(2);
bit_depth_ = GET_PARAM(3);
fwd_txfm_ = func_info->ft_func;
inv_txfm_ = func_info->it_func;
size_ = func_info->size;
pixel_size_ = func_info->pixel_size;
max_pixel_value_ = (1 << bit_depth_) - 1;
// Randomize stride_ to a value less than or equal to 1024
stride_ = rnd_(1024) + 1;
if (stride_ < size_) {
stride_ = size_;
}
// Align stride_ to 16 if it's bigger than 16.
if (stride_ > 16) {
stride_ &= ~15;
}
block_size_ = size_ * stride_;
src_ = reinterpret_cast<uint8_t *>(
vpx_memalign(16, pixel_size_ * block_size_));
ASSERT_TRUE(src_ != NULL);
dst_ = reinterpret_cast<uint8_t *>(
vpx_memalign(16, pixel_size_ * block_size_));
ASSERT_TRUE(dst_ != NULL);
}
virtual void TearDown() {
vpx_free(src_);
src_ = NULL;
vpx_free(dst_);
dst_ = NULL;
libvpx_test::ClearSystemState();
}
void InitMem() {
if (pixel_size_ == 1 && bit_depth_ > VPX_BITS_8) return;
if (pixel_size_ == 1) {
for (int j = 0; j < block_size_; ++j) {
src_[j] = rnd_.Rand16() & max_pixel_value_;
}
for (int j = 0; j < block_size_; ++j) {
dst_[j] = rnd_.Rand16() & max_pixel_value_;
}
} else {
ASSERT_EQ(pixel_size_, 2);
uint16_t *const src = reinterpret_cast<uint16_t *>(src_);
uint16_t *const dst = reinterpret_cast<uint16_t *>(dst_);
for (int j = 0; j < block_size_; ++j) {
src[j] = rnd_.Rand16() & max_pixel_value_;
}
for (int j = 0; j < block_size_; ++j) {
dst[j] = rnd_.Rand16() & max_pixel_value_;
}
}
}
void RunFwdTxfm(const Buffer<int16_t> &in, Buffer<tran_low_t> *out) {
fwd_txfm_(in.TopLeftPixel(), out->TopLeftPixel(), in.stride(), tx_type_);
}
void RunInvTxfm(const Buffer<tran_low_t> &in, uint8_t *out) {
inv_txfm_(in.TopLeftPixel(), out, stride_, tx_type_, bit_depth_);
}
protected:
void RunAccuracyCheck(int limit) {
if (pixel_size_ == 1 && bit_depth_ > VPX_BITS_8) return;
ACMRandom rnd(ACMRandom::DeterministicSeed());
Buffer<int16_t> test_input_block =
Buffer<int16_t>(size_, size_, 8, size_ == 4 ? 0 : 16);
ASSERT_TRUE(test_input_block.Init());
Buffer<tran_low_t> test_temp_block =
Buffer<tran_low_t>(size_, size_, 0, 16);
ASSERT_TRUE(test_temp_block.Init());
uint32_t max_error = 0;
int64_t total_error = 0;
const int count_test_block = 10000;
for (int i = 0; i < count_test_block; ++i) {
InitMem();
for (int h = 0; h < size_; ++h) {
for (int w = 0; w < size_; ++w) {
if (pixel_size_ == 1) {
test_input_block.TopLeftPixel()[h * test_input_block.stride() + w] =
src_[h * stride_ + w] - dst_[h * stride_ + w];
} else {
ASSERT_EQ(pixel_size_, 2);
const uint16_t *const src = reinterpret_cast<uint16_t *>(src_);
const uint16_t *const dst = reinterpret_cast<uint16_t *>(dst_);
test_input_block.TopLeftPixel()[h * test_input_block.stride() + w] =
src[h * stride_ + w] - dst[h * stride_ + w];
}
}
}
ASM_REGISTER_STATE_CHECK(RunFwdTxfm(test_input_block, &test_temp_block));
ASM_REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst_));
for (int h = 0; h < size_; ++h) {
for (int w = 0; w < size_; ++w) {
int diff;
if (pixel_size_ == 1) {
diff = dst_[h * stride_ + w] - src_[h * stride_ + w];
} else {
ASSERT_EQ(pixel_size_, 2);
const uint16_t *const src = reinterpret_cast<uint16_t *>(src_);
const uint16_t *const dst = reinterpret_cast<uint16_t *>(dst_);
diff = dst[h * stride_ + w] - src[h * stride_ + w];
}
const uint32_t error = diff * diff;
if (max_error < error) max_error = error;
total_error += error;
}
}
}
EXPECT_GE(static_cast<uint32_t>(limit), max_error)
<< "Error: " << size_ << "x" << size_
<< " transform/inverse transform has an individual round trip error > "
<< limit;
EXPECT_GE(count_test_block * limit, total_error)
<< "Error: " << size_ << "x" << size_
<< " transform/inverse transform has average round trip error > "
<< limit << " per block";
}
void RunCoeffCheck() {
if (pixel_size_ == 1 && bit_depth_ > VPX_BITS_8) return;
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 5000;
Buffer<int16_t> input_block =
Buffer<int16_t>(size_, size_, 8, size_ == 4 ? 0 : 16);
ASSERT_TRUE(input_block.Init());
Buffer<tran_low_t> output_ref_block = Buffer<tran_low_t>(size_, size_, 0);
ASSERT_TRUE(output_ref_block.Init());
Buffer<tran_low_t> output_block = Buffer<tran_low_t>(size_, size_, 0, 16);
ASSERT_TRUE(output_block.Init());
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-max_pixel_value_,
// max_pixel_value_].
input_block.Set(&rnd, -max_pixel_value_, max_pixel_value_);
fwd_txfm_ref(input_block, &output_ref_block, size_, tx_type_);
ASM_REGISTER_STATE_CHECK(RunFwdTxfm(input_block, &output_block));
// The minimum quant value is 4.
EXPECT_TRUE(output_block.CheckValues(output_ref_block));
if (::testing::Test::HasFailure()) {
printf("Size: %d Transform type: %d\n", size_, tx_type_);
output_block.PrintDifference(output_ref_block);
return;
}
}
}
void RunMemCheck() {
if (pixel_size_ == 1 && bit_depth_ > VPX_BITS_8) return;
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 5000;
Buffer<int16_t> input_extreme_block =
Buffer<int16_t>(size_, size_, 8, size_ == 4 ? 0 : 16);
ASSERT_TRUE(input_extreme_block.Init());
Buffer<tran_low_t> output_ref_block = Buffer<tran_low_t>(size_, size_, 0);
ASSERT_TRUE(output_ref_block.Init());
Buffer<tran_low_t> output_block = Buffer<tran_low_t>(size_, size_, 0, 16);
ASSERT_TRUE(output_block.Init());
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with -max_pixel_value_ or max_pixel_value_.
if (i == 0) {
input_extreme_block.Set(max_pixel_value_);
} else if (i == 1) {
input_extreme_block.Set(-max_pixel_value_);
} else {
for (int h = 0; h < size_; ++h) {
for (int w = 0; w < size_; ++w) {
input_extreme_block
.TopLeftPixel()[h * input_extreme_block.stride() + w] =
rnd.Rand8() % 2 ? max_pixel_value_ : -max_pixel_value_;
}
}
}
fwd_txfm_ref(input_extreme_block, &output_ref_block, size_, tx_type_);
ASM_REGISTER_STATE_CHECK(RunFwdTxfm(input_extreme_block, &output_block));
// The minimum quant value is 4.
EXPECT_TRUE(output_block.CheckValues(output_ref_block));
for (int h = 0; h < size_; ++h) {
for (int w = 0; w < size_; ++w) {
EXPECT_GE(
4 * DCT_MAX_VALUE << (bit_depth_ - 8),
abs(output_block.TopLeftPixel()[h * output_block.stride() + w]))
<< "Error: " << size_ << "x" << size_
<< " transform has coefficient larger than 4*DCT_MAX_VALUE"
<< " at " << w << "," << h;
if (::testing::Test::HasFailure()) {
printf("Size: %d Transform type: %d\n", size_, tx_type_);
output_block.DumpBuffer();
return;
}
}
}
}
}
void RunInvAccuracyCheck(int limit) {
if (pixel_size_ == 1 && bit_depth_ > VPX_BITS_8) return;
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
Buffer<int16_t> in = Buffer<int16_t>(size_, size_, 4);
ASSERT_TRUE(in.Init());
Buffer<tran_low_t> coeff = Buffer<tran_low_t>(size_, size_, 0, 16);
ASSERT_TRUE(coeff.Init());
Buffer<uint8_t> dst = Buffer<uint8_t>(size_, size_, 0, 16);
ASSERT_TRUE(dst.Init());
Buffer<uint8_t> src = Buffer<uint8_t>(size_, size_, 0);
ASSERT_TRUE(src.Init());
Buffer<uint16_t> dst16 = Buffer<uint16_t>(size_, size_, 0, 16);
ASSERT_TRUE(dst16.Init());
Buffer<uint16_t> src16 = Buffer<uint16_t>(size_, size_, 0);
ASSERT_TRUE(src16.Init());
for (int i = 0; i < count_test_block; ++i) {
InitMem();
// Initialize a test block with input range [-max_pixel_value_,
// max_pixel_value_].
for (int h = 0; h < size_; ++h) {
for (int w = 0; w < size_; ++w) {
if (pixel_size_ == 1) {
in.TopLeftPixel()[h * in.stride() + w] =
src_[h * stride_ + w] - dst_[h * stride_ + w];
} else {
ASSERT_EQ(pixel_size_, 2);
const uint16_t *const src = reinterpret_cast<uint16_t *>(src_);
const uint16_t *const dst = reinterpret_cast<uint16_t *>(dst_);
in.TopLeftPixel()[h * in.stride() + w] =
src[h * stride_ + w] - dst[h * stride_ + w];
}
}
}
fwd_txfm_ref(in, &coeff, size_, tx_type_);
ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst_));
for (int h = 0; h < size_; ++h) {
for (int w = 0; w < size_; ++w) {
int diff;
if (pixel_size_ == 1) {
diff = dst_[h * stride_ + w] - src_[h * stride_ + w];
} else {
ASSERT_EQ(pixel_size_, 2);
const uint16_t *const src = reinterpret_cast<uint16_t *>(src_);
const uint16_t *const dst = reinterpret_cast<uint16_t *>(dst_);
diff = dst[h * stride_ + w] - src[h * stride_ + w];
}
const uint32_t error = diff * diff;
EXPECT_GE(static_cast<uint32_t>(limit), error)
<< "Error: " << size_ << "x" << size_
<< " inverse transform has error " << error << " at " << w << ","
<< h;
if (::testing::Test::HasFailure()) {
printf("Size: %d Transform type: %d\n", size_, tx_type_);
return;
}
}
}
}
}
FhtFunc fwd_txfm_;
FhtFuncRef fwd_txfm_ref;
IhtWithBdFunc inv_txfm_;
ACMRandom rnd_;
uint8_t *src_;
uint8_t *dst_;
vpx_bit_depth_t bit_depth_;
int tx_type_;
int max_pixel_value_;
int size_;
int stride_;
int pixel_size_;
int block_size_;
};
/* -------------------------------------------------------------------------- */
class TransDCT : public TransTestBase {
public:
TransDCT() { fwd_txfm_ref = fdct_ref; }
};
TEST_P(TransDCT, AccuracyCheck) {
int t = 1;
if (size_ == 16 && bit_depth_ > 10 && pixel_size_ == 2) {
t = 2;
} else if (size_ == 32 && bit_depth_ > 10 && pixel_size_ == 2) {
t = 7;
}
RunAccuracyCheck(t);
}
TEST_P(TransDCT, CoeffCheck) { RunCoeffCheck(); }
TEST_P(TransDCT, MemCheck) { RunMemCheck(); }
TEST_P(TransDCT, InvAccuracyCheck) { RunInvAccuracyCheck(1); }
static const FuncInfo dct_c_func_info[] = {
#if CONFIG_VP9_HIGHBITDEPTH
{ &fdct_wrapper<vpx_highbd_fdct4x4_c>,
&highbd_idct_wrapper<vpx_highbd_idct4x4_16_add_c>, 4, 2 },
{ &fdct_wrapper<vpx_highbd_fdct8x8_c>,
&highbd_idct_wrapper<vpx_highbd_idct8x8_64_add_c>, 8, 2 },
{ &fdct_wrapper<vpx_highbd_fdct16x16_c>,
&highbd_idct_wrapper<vpx_highbd_idct16x16_256_add_c>, 16, 2 },
{ &fdct_wrapper<vpx_highbd_fdct32x32_c>,
&highbd_idct_wrapper<vpx_highbd_idct32x32_1024_add_c>, 32, 2 },
#endif
{ &fdct_wrapper<vpx_fdct4x4_c>, &idct_wrapper<vpx_idct4x4_16_add_c>, 4, 1 },
{ &fdct_wrapper<vpx_fdct8x8_c>, &idct_wrapper<vpx_idct8x8_64_add_c>, 8, 1 },
{ &fdct_wrapper<vpx_fdct16x16_c>, &idct_wrapper<vpx_idct16x16_256_add_c>, 16,
1 },
{ &fdct_wrapper<vpx_fdct32x32_c>, &idct_wrapper<vpx_idct32x32_1024_add_c>, 32,
1 }
};
INSTANTIATE_TEST_CASE_P(
C, TransDCT,
::testing::Combine(
::testing::Range(0, static_cast<int>(sizeof(dct_c_func_info) /
sizeof(dct_c_func_info[0]))),
::testing::Values(dct_c_func_info), ::testing::Values(0),
::testing::Values(VPX_BITS_8, VPX_BITS_10, VPX_BITS_12)));
#if !CONFIG_EMULATE_HARDWARE
#if HAVE_SSE2
static const FuncInfo dct_sse2_func_info[] = {
#if CONFIG_VP9_HIGHBITDEPTH
{ &fdct_wrapper<vpx_highbd_fdct4x4_sse2>,
&highbd_idct_wrapper<vpx_highbd_idct4x4_16_add_sse2>, 4, 2 },
{ &fdct_wrapper<vpx_highbd_fdct8x8_sse2>,
&highbd_idct_wrapper<vpx_highbd_idct8x8_64_add_sse2>, 8, 2 },
{ &fdct_wrapper<vpx_highbd_fdct16x16_sse2>,
&highbd_idct_wrapper<vpx_highbd_idct16x16_256_add_sse2>, 16, 2 },
{ &fdct_wrapper<vpx_highbd_fdct32x32_sse2>,
&highbd_idct_wrapper<vpx_highbd_idct32x32_1024_add_sse2>, 32, 2 },
#endif
{ &fdct_wrapper<vpx_fdct4x4_sse2>, &idct_wrapper<vpx_idct4x4_16_add_sse2>, 4,
1 },
{ &fdct_wrapper<vpx_fdct8x8_sse2>, &idct_wrapper<vpx_idct8x8_64_add_sse2>, 8,
1 },
{ &fdct_wrapper<vpx_fdct16x16_sse2>,
&idct_wrapper<vpx_idct16x16_256_add_sse2>, 16, 1 },
{ &fdct_wrapper<vpx_fdct32x32_sse2>,
&idct_wrapper<vpx_idct32x32_1024_add_sse2>, 32, 1 }
};
INSTANTIATE_TEST_CASE_P(
SSE2, TransDCT,
::testing::Combine(
::testing::Range(0, static_cast<int>(sizeof(dct_sse2_func_info) /
sizeof(dct_sse2_func_info[0]))),
::testing::Values(dct_sse2_func_info), ::testing::Values(0),
::testing::Values(VPX_BITS_8, VPX_BITS_10, VPX_BITS_12)));
#endif // HAVE_SSE2
#if HAVE_SSSE3 && !CONFIG_VP9_HIGHBITDEPTH && ARCH_X86_64
// vpx_fdct8x8_ssse3 is only available in 64 bit builds.
static const FuncInfo dct_ssse3_func_info = {
&fdct_wrapper<vpx_fdct8x8_ssse3>, &idct_wrapper<vpx_idct8x8_64_add_sse2>, 8, 1
};
// TODO(johannkoenig): high bit depth fdct8x8.
INSTANTIATE_TEST_CASE_P(SSSE3, TransDCT,
::testing::Values(make_tuple(0, &dct_ssse3_func_info, 0,
VPX_BITS_8)));
#endif // HAVE_SSSE3 && !CONFIG_VP9_HIGHBITDEPTH && ARCH_X86_64
#if HAVE_AVX2 && !CONFIG_VP9_HIGHBITDEPTH
static const FuncInfo dct_avx2_func_info = {
&fdct_wrapper<vpx_fdct32x32_avx2>, &idct_wrapper<vpx_idct32x32_1024_add_sse2>,
32, 1
};
// TODO(johannkoenig): high bit depth fdct32x32.
INSTANTIATE_TEST_CASE_P(AVX2, TransDCT,
::testing::Values(make_tuple(0, &dct_avx2_func_info, 0,
VPX_BITS_8)));
#endif // HAVE_AVX2 && !CONFIG_VP9_HIGHBITDEPTH
#if HAVE_NEON
static const FuncInfo dct_neon_func_info[4] = {
{ &fdct_wrapper<vpx_fdct4x4_neon>, &idct_wrapper<vpx_idct4x4_16_add_neon>, 4,
1 },
{ &fdct_wrapper<vpx_fdct8x8_neon>, &idct_wrapper<vpx_idct8x8_64_add_neon>, 8,
1 },
{ &fdct_wrapper<vpx_fdct16x16_neon>,
&idct_wrapper<vpx_idct16x16_256_add_neon>, 16, 1 },
{ &fdct_wrapper<vpx_fdct32x32_neon>,
&idct_wrapper<vpx_idct32x32_1024_add_neon>, 32, 1 }
};
INSTANTIATE_TEST_CASE_P(
NEON, TransDCT,
::testing::Combine(::testing::Range(0, 4),
::testing::Values(dct_neon_func_info),
::testing::Values(0), ::testing::Values(VPX_BITS_8)));
#endif // HAVE_NEON
#if HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH
static const FuncInfo dct_msa_func_info[4] = {
{ &fdct_wrapper<vpx_fdct4x4_msa>, &idct_wrapper<vpx_idct4x4_16_add_msa>, 4,
1 },
{ &fdct_wrapper<vpx_fdct8x8_msa>, &idct_wrapper<vpx_idct8x8_64_add_msa>, 8,
1 },
{ &fdct_wrapper<vpx_fdct16x16_msa>, &idct_wrapper<vpx_idct16x16_256_add_msa>,
16, 1 },
{ &fdct_wrapper<vpx_fdct32x32_msa>, &idct_wrapper<vpx_idct32x32_1024_add_msa>,
32, 1 }
};
INSTANTIATE_TEST_CASE_P(MSA, TransDCT,
::testing::Combine(::testing::Range(0, 4),
::testing::Values(dct_msa_func_info),
::testing::Values(0),
::testing::Values(VPX_BITS_8)));
#endif // HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH
#if HAVE_VSX && !CONFIG_VP9_HIGHBITDEPTH
static const FuncInfo dct_vsx_func_info = {
&fdct_wrapper<vpx_fdct4x4_c>, &idct_wrapper<vpx_idct4x4_16_add_vsx>, 4, 1
};
INSTANTIATE_TEST_CASE_P(VSX, TransDCT,
::testing::Values(make_tuple(0, &dct_vsx_func_info, 0,
VPX_BITS_8)));
#endif // HAVE_VSX && !CONFIG_VP9_HIGHBITDEPTH &&
#endif // !CONFIG_EMULATE_HARDWARE
/* -------------------------------------------------------------------------- */
class TransHT : public TransTestBase {
public:
TransHT() { fwd_txfm_ref = fht_ref; }
};
TEST_P(TransHT, AccuracyCheck) {
RunAccuracyCheck(size_ == 16 && bit_depth_ > 10 && pixel_size_ == 2 ? 2 : 1);
}
TEST_P(TransHT, CoeffCheck) { RunCoeffCheck(); }
TEST_P(TransHT, MemCheck) { RunMemCheck(); }
TEST_P(TransHT, InvAccuracyCheck) { RunInvAccuracyCheck(1); }
static const FuncInfo ht_c_func_info[] = {
#if CONFIG_VP9_HIGHBITDEPTH
{ &vp9_highbd_fht4x4_c, &highbd_iht_wrapper<vp9_highbd_iht4x4_16_add_c>, 4,
2 },
{ &vp9_highbd_fht8x8_c, &highbd_iht_wrapper<vp9_highbd_iht8x8_64_add_c>, 8,
2 },
{ &vp9_highbd_fht16x16_c, &highbd_iht_wrapper<vp9_highbd_iht16x16_256_add_c>,
16, 2 },
#endif
{ &vp9_fht4x4_c, &iht_wrapper<vp9_iht4x4_16_add_c>, 4, 1 },
{ &vp9_fht8x8_c, &iht_wrapper<vp9_iht8x8_64_add_c>, 8, 1 },
{ &vp9_fht16x16_c, &iht_wrapper<vp9_iht16x16_256_add_c>, 16, 1 }
};
INSTANTIATE_TEST_CASE_P(
C, TransHT,
::testing::Combine(
::testing::Range(0, static_cast<int>(sizeof(ht_c_func_info) /
sizeof(ht_c_func_info[0]))),
::testing::Values(ht_c_func_info), ::testing::Range(0, 4),
::testing::Values(VPX_BITS_8, VPX_BITS_10, VPX_BITS_12)));
#if !CONFIG_EMULATE_HARDWARE
#if HAVE_NEON
static const FuncInfo ht_neon_func_info[] = {
#if CONFIG_VP9_HIGHBITDEPTH
{ &vp9_highbd_fht4x4_c, &highbd_iht_wrapper<vp9_highbd_iht4x4_16_add_neon>, 4,
2 },
{ &vp9_highbd_fht8x8_c, &highbd_iht_wrapper<vp9_highbd_iht8x8_64_add_neon>, 8,
2 },
{ &vp9_highbd_fht16x16_c,
&highbd_iht_wrapper<vp9_highbd_iht16x16_256_add_neon>, 16, 2 },
#endif
{ &vp9_fht4x4_c, &iht_wrapper<vp9_iht4x4_16_add_neon>, 4, 1 },
{ &vp9_fht8x8_c, &iht_wrapper<vp9_iht8x8_64_add_neon>, 8, 1 },
{ &vp9_fht16x16_c, &iht_wrapper<vp9_iht16x16_256_add_neon>, 16, 1 }
};
INSTANTIATE_TEST_CASE_P(
NEON, TransHT,
::testing::Combine(
::testing::Range(0, static_cast<int>(sizeof(ht_neon_func_info) /
sizeof(ht_neon_func_info[0]))),
::testing::Values(ht_neon_func_info), ::testing::Range(0, 4),
::testing::Values(VPX_BITS_8, VPX_BITS_10, VPX_BITS_12)));
#endif // HAVE_NEON
#if HAVE_SSE2
static const FuncInfo ht_sse2_func_info[3] = {
{ &vp9_fht4x4_sse2, &iht_wrapper<vp9_iht4x4_16_add_sse2>, 4, 1 },
{ &vp9_fht8x8_sse2, &iht_wrapper<vp9_iht8x8_64_add_sse2>, 8, 1 },
{ &vp9_fht16x16_sse2, &iht_wrapper<vp9_iht16x16_256_add_sse2>, 16, 1 }
};
INSTANTIATE_TEST_CASE_P(SSE2, TransHT,
::testing::Combine(::testing::Range(0, 3),
::testing::Values(ht_sse2_func_info),
::testing::Range(0, 4),
::testing::Values(VPX_BITS_8)));
#endif // HAVE_SSE2
#if HAVE_SSE4_1 && CONFIG_VP9_HIGHBITDEPTH
static const FuncInfo ht_sse4_1_func_info[3] = {
{ &vp9_highbd_fht4x4_c, &highbd_iht_wrapper<vp9_highbd_iht4x4_16_add_sse4_1>,
4, 2 },
{ vp9_highbd_fht8x8_c, &highbd_iht_wrapper<vp9_highbd_iht8x8_64_add_sse4_1>,
8, 2 },
{ &vp9_highbd_fht16x16_c,
&highbd_iht_wrapper<vp9_highbd_iht16x16_256_add_sse4_1>, 16, 2 }
};
INSTANTIATE_TEST_CASE_P(
SSE4_1, TransHT,
::testing::Combine(::testing::Range(0, 3),
::testing::Values(ht_sse4_1_func_info),
::testing::Range(0, 4),
::testing::Values(VPX_BITS_8, VPX_BITS_10,
VPX_BITS_12)));
#endif // HAVE_SSE4_1 && CONFIG_VP9_HIGHBITDEPTH
#endif // !CONFIG_EMULATE_HARDWARE
/* -------------------------------------------------------------------------- */
class TransWHT : public TransTestBase {
public:
TransWHT() { fwd_txfm_ref = fwht_ref; }
};
TEST_P(TransWHT, AccuracyCheck) { RunAccuracyCheck(0); }
TEST_P(TransWHT, CoeffCheck) { RunCoeffCheck(); }
TEST_P(TransWHT, MemCheck) { RunMemCheck(); }
TEST_P(TransWHT, InvAccuracyCheck) { RunInvAccuracyCheck(0); }
static const FuncInfo wht_c_func_info[] = {
#if CONFIG_VP9_HIGHBITDEPTH
{ &fdct_wrapper<vp9_highbd_fwht4x4_c>,
&highbd_idct_wrapper<vpx_highbd_iwht4x4_16_add_c>, 4, 2 },
#endif
{ &fdct_wrapper<vp9_fwht4x4_c>, &idct_wrapper<vpx_iwht4x4_16_add_c>, 4, 1 }
};
INSTANTIATE_TEST_CASE_P(
C, TransWHT,
::testing::Combine(
::testing::Range(0, static_cast<int>(sizeof(wht_c_func_info) /
sizeof(wht_c_func_info[0]))),
::testing::Values(wht_c_func_info), ::testing::Values(0),
::testing::Values(VPX_BITS_8, VPX_BITS_10, VPX_BITS_12)));
#if HAVE_SSE2 && !CONFIG_EMULATE_HARDWARE
static const FuncInfo wht_sse2_func_info = {
&fdct_wrapper<vp9_fwht4x4_sse2>, &idct_wrapper<vpx_iwht4x4_16_add_sse2>, 4, 1
};
INSTANTIATE_TEST_CASE_P(SSE2, TransWHT,
::testing::Values(make_tuple(0, &wht_sse2_func_info, 0,
VPX_BITS_8)));
#endif // HAVE_SSE2 && !CONFIG_EMULATE_HARDWARE
} // namespace