vpx/vp9/common/vp9_entropy.c
Ronald S. Bultje 26b6318de8 Make get_coef_context() branchless.
This should significantly speedup cost_coeffs(). Basically what the
patch does is to make the neighbour arrays padded by one item to
prevent an eob check in get_coef_context(), then it populates each
col/row scan and left/top edge coefficient with two times the same
neighbour - this prevents a single/double context branch in
get_coef_context(). Lastly, it populates neighbour arrays in pixel
order (rather than scan order), so we don't have to dereference the
scantable to get the correct neighbours.

Total encoding time of first 50 frames of bus (speed 0) at 1500kbps
goes from 2min10.1 to 2min5.3, i.e. a 2.6% overall speed increase.

Change-Id: I42bcd2210fd7bec03767ef0e2945a665b851df56
2013-07-01 16:34:10 -07:00

684 lines
32 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_onyxc_int.h"
#include "vp9/common/vp9_entropymode.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx/vpx_integer.h"
DECLARE_ALIGNED(16, const uint8_t, vp9_norm[256]) = {
0, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
DECLARE_ALIGNED(16, const uint8_t,
vp9_coefband_trans_8x8plus[MAXBAND_INDEX + 1]) = {
0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 5
};
DECLARE_ALIGNED(16, const uint8_t,
vp9_coefband_trans_4x4[MAXBAND_INDEX + 1]) = {
0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5,
5, 5, 5, 5, 5, 5
};
DECLARE_ALIGNED(16, const uint8_t, vp9_pt_energy_class[MAX_ENTROPY_TOKENS]) = {
0, 1, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5
};
DECLARE_ALIGNED(16, const int16_t, vp9_default_scan_4x4[16]) = {
0, 4, 1, 5,
8, 2, 12, 9,
3, 6, 13, 10,
7, 14, 11, 15,
};
DECLARE_ALIGNED(16, const int16_t, vp9_col_scan_4x4[16]) = {
0, 4, 8, 1,
12, 5, 9, 2,
13, 6, 10, 3,
7, 14, 11, 15,
};
DECLARE_ALIGNED(16, const int16_t, vp9_row_scan_4x4[16]) = {
0, 1, 4, 2,
5, 3, 6, 8,
9, 7, 12, 10,
13, 11, 14, 15,
};
DECLARE_ALIGNED(64, const int16_t, vp9_default_scan_8x8[64]) = {
0, 8, 1, 16, 9, 2, 17, 24,
10, 3, 18, 25, 32, 11, 4, 26,
33, 19, 40, 12, 34, 27, 5, 41,
20, 48, 13, 35, 42, 28, 21, 6,
49, 56, 36, 43, 29, 7, 14, 50,
57, 44, 22, 37, 15, 51, 58, 30,
45, 23, 52, 59, 38, 31, 60, 53,
46, 39, 61, 54, 47, 62, 55, 63,
};
DECLARE_ALIGNED(16, const int16_t, vp9_col_scan_8x8[64]) = {
0, 8, 16, 1, 24, 9, 32, 17,
2, 40, 25, 10, 33, 18, 48, 3,
26, 41, 11, 56, 19, 34, 4, 49,
27, 42, 12, 35, 20, 57, 50, 28,
5, 43, 13, 36, 58, 51, 21, 44,
6, 29, 59, 37, 14, 52, 22, 7,
45, 60, 30, 15, 38, 53, 23, 46,
31, 61, 39, 54, 47, 62, 55, 63,
};
DECLARE_ALIGNED(16, const int16_t, vp9_row_scan_8x8[64]) = {
0, 1, 2, 8, 9, 3, 16, 10,
4, 17, 11, 24, 5, 18, 25, 12,
19, 26, 32, 6, 13, 20, 33, 27,
7, 34, 40, 21, 28, 41, 14, 35,
48, 42, 29, 36, 49, 22, 43, 15,
56, 37, 50, 44, 30, 57, 23, 51,
58, 45, 38, 52, 31, 59, 53, 46,
60, 39, 61, 47, 54, 55, 62, 63,
};
DECLARE_ALIGNED(16, const int16_t, vp9_default_scan_16x16[256]) = {
0, 16, 1, 32, 17, 2, 48, 33, 18, 3, 64, 34, 49, 19, 65, 80,
50, 4, 35, 66, 20, 81, 96, 51, 5, 36, 82, 97, 67, 112, 21, 52,
98, 37, 83, 113, 6, 68, 128, 53, 22, 99, 114, 84, 7, 129, 38, 69,
100, 115, 144, 130, 85, 54, 23, 8, 145, 39, 70, 116, 101, 131, 160, 146,
55, 86, 24, 71, 132, 117, 161, 40, 9, 102, 147, 176, 162, 87, 56, 25,
133, 118, 177, 148, 72, 103, 41, 163, 10, 192, 178, 88, 57, 134, 149, 119,
26, 164, 73, 104, 193, 42, 179, 208, 11, 135, 89, 165, 120, 150, 58, 194,
180, 27, 74, 209, 105, 151, 136, 43, 90, 224, 166, 195, 181, 121, 210, 59,
12, 152, 106, 167, 196, 75, 137, 225, 211, 240, 182, 122, 91, 28, 197, 13,
226, 168, 183, 153, 44, 212, 138, 107, 241, 60, 29, 123, 198, 184, 227, 169,
242, 76, 213, 154, 45, 92, 14, 199, 139, 61, 228, 214, 170, 185, 243, 108,
77, 155, 30, 15, 200, 229, 124, 215, 244, 93, 46, 186, 171, 201, 109, 140,
230, 62, 216, 245, 31, 125, 78, 156, 231, 47, 187, 202, 217, 94, 246, 141,
63, 232, 172, 110, 247, 157, 79, 218, 203, 126, 233, 188, 248, 95, 173, 142,
219, 111, 249, 234, 158, 127, 189, 204, 250, 235, 143, 174, 220, 205, 159, 251,
190, 221, 175, 236, 237, 191, 206, 252, 222, 253, 207, 238, 223, 254, 239, 255,
};
DECLARE_ALIGNED(16, const int16_t, vp9_col_scan_16x16[256]) = {
0, 16, 32, 48, 1, 64, 17, 80, 33, 96, 49, 2, 65, 112, 18, 81,
34, 128, 50, 97, 3, 66, 144, 19, 113, 35, 82, 160, 98, 51, 129, 4,
67, 176, 20, 114, 145, 83, 36, 99, 130, 52, 192, 5, 161, 68, 115, 21,
146, 84, 208, 177, 37, 131, 100, 53, 162, 224, 69, 6, 116, 193, 147, 85,
22, 240, 132, 38, 178, 101, 163, 54, 209, 117, 70, 7, 148, 194, 86, 179,
225, 23, 133, 39, 164, 8, 102, 210, 241, 55, 195, 118, 149, 71, 180, 24,
87, 226, 134, 165, 211, 40, 103, 56, 72, 150, 196, 242, 119, 9, 181, 227,
88, 166, 25, 135, 41, 104, 212, 57, 151, 197, 120, 73, 243, 182, 136, 167,
213, 89, 10, 228, 105, 152, 198, 26, 42, 121, 183, 244, 168, 58, 137, 229,
74, 214, 90, 153, 199, 184, 11, 106, 245, 27, 122, 230, 169, 43, 215, 59,
200, 138, 185, 246, 75, 12, 91, 154, 216, 231, 107, 28, 44, 201, 123, 170,
60, 247, 232, 76, 139, 13, 92, 217, 186, 248, 155, 108, 29, 124, 45, 202,
233, 171, 61, 14, 77, 140, 15, 249, 93, 30, 187, 156, 218, 46, 109, 125,
62, 172, 78, 203, 31, 141, 234, 94, 47, 188, 63, 157, 110, 250, 219, 79,
126, 204, 173, 142, 95, 189, 111, 235, 158, 220, 251, 127, 174, 143, 205, 236,
159, 190, 221, 252, 175, 206, 237, 191, 253, 222, 238, 207, 254, 223, 239, 255,
};
DECLARE_ALIGNED(16, const int16_t, vp9_row_scan_16x16[256]) = {
0, 1, 2, 16, 3, 17, 4, 18, 32, 5, 33, 19, 6, 34, 48, 20,
49, 7, 35, 21, 50, 64, 8, 36, 65, 22, 51, 37, 80, 9, 66, 52,
23, 38, 81, 67, 10, 53, 24, 82, 68, 96, 39, 11, 54, 83, 97, 69,
25, 98, 84, 40, 112, 55, 12, 70, 99, 113, 85, 26, 41, 56, 114, 100,
13, 71, 128, 86, 27, 115, 101, 129, 42, 57, 72, 116, 14, 87, 130, 102,
144, 73, 131, 117, 28, 58, 15, 88, 43, 145, 103, 132, 146, 118, 74, 160,
89, 133, 104, 29, 59, 147, 119, 44, 161, 148, 90, 105, 134, 162, 120, 176,
75, 135, 149, 30, 60, 163, 177, 45, 121, 91, 106, 164, 178, 150, 192, 136,
165, 179, 31, 151, 193, 76, 122, 61, 137, 194, 107, 152, 180, 208, 46, 166,
167, 195, 92, 181, 138, 209, 123, 153, 224, 196, 77, 168, 210, 182, 240, 108,
197, 62, 154, 225, 183, 169, 211, 47, 139, 93, 184, 226, 212, 241, 198, 170,
124, 155, 199, 78, 213, 185, 109, 227, 200, 63, 228, 242, 140, 214, 171, 186,
156, 229, 243, 125, 94, 201, 244, 215, 216, 230, 141, 187, 202, 79, 172, 110,
157, 245, 217, 231, 95, 246, 232, 126, 203, 247, 233, 173, 218, 142, 111, 158,
188, 248, 127, 234, 219, 249, 189, 204, 143, 174, 159, 250, 235, 205, 220, 175,
190, 251, 221, 191, 206, 236, 207, 237, 252, 222, 253, 223, 238, 239, 254, 255,
};
DECLARE_ALIGNED(16, const int16_t, vp9_default_scan_32x32[1024]) = {
0, 32, 1, 64, 33, 2, 96, 65, 34, 128, 3, 97, 66, 160, 129, 35, 98, 4, 67, 130, 161, 192, 36, 99, 224, 5, 162, 193, 68, 131, 37, 100,
225, 194, 256, 163, 69, 132, 6, 226, 257, 288, 195, 101, 164, 38, 258, 7, 227, 289, 133, 320, 70, 196, 165, 290, 259, 228, 39, 321, 102, 352, 8, 197,
71, 134, 322, 291, 260, 353, 384, 229, 166, 103, 40, 354, 323, 292, 135, 385, 198, 261, 72, 9, 416, 167, 386, 355, 230, 324, 104, 293, 41, 417, 199, 136,
262, 387, 448, 325, 356, 10, 73, 418, 231, 168, 449, 294, 388, 105, 419, 263, 42, 200, 357, 450, 137, 480, 74, 326, 232, 11, 389, 169, 295, 420, 106, 451,
481, 358, 264, 327, 201, 43, 138, 512, 482, 390, 296, 233, 170, 421, 75, 452, 359, 12, 513, 265, 483, 328, 107, 202, 514, 544, 422, 391, 453, 139, 44, 234,
484, 297, 360, 171, 76, 515, 545, 266, 329, 454, 13, 423, 203, 108, 546, 485, 576, 298, 235, 140, 361, 330, 172, 547, 45, 455, 267, 577, 486, 77, 204, 362,
608, 14, 299, 578, 109, 236, 487, 609, 331, 141, 579, 46, 15, 173, 610, 363, 78, 205, 16, 110, 237, 611, 142, 47, 174, 79, 206, 17, 111, 238, 48, 143,
80, 175, 112, 207, 49, 18, 239, 81, 113, 19, 50, 82, 114, 51, 83, 115, 640, 516, 392, 268, 144, 20, 672, 641, 548, 517, 424, 393, 300, 269, 176, 145,
52, 21, 704, 673, 642, 580, 549, 518, 456, 425, 394, 332, 301, 270, 208, 177, 146, 84, 53, 22, 736, 705, 674, 643, 612, 581, 550, 519, 488, 457, 426, 395,
364, 333, 302, 271, 240, 209, 178, 147, 116, 85, 54, 23, 737, 706, 675, 613, 582, 551, 489, 458, 427, 365, 334, 303, 241, 210, 179, 117, 86, 55, 738, 707,
614, 583, 490, 459, 366, 335, 242, 211, 118, 87, 739, 615, 491, 367, 243, 119, 768, 644, 520, 396, 272, 148, 24, 800, 769, 676, 645, 552, 521, 428, 397, 304,
273, 180, 149, 56, 25, 832, 801, 770, 708, 677, 646, 584, 553, 522, 460, 429, 398, 336, 305, 274, 212, 181, 150, 88, 57, 26, 864, 833, 802, 771, 740, 709,
678, 647, 616, 585, 554, 523, 492, 461, 430, 399, 368, 337, 306, 275, 244, 213, 182, 151, 120, 89, 58, 27, 865, 834, 803, 741, 710, 679, 617, 586, 555, 493,
462, 431, 369, 338, 307, 245, 214, 183, 121, 90, 59, 866, 835, 742, 711, 618, 587, 494, 463, 370, 339, 246, 215, 122, 91, 867, 743, 619, 495, 371, 247, 123,
896, 772, 648, 524, 400, 276, 152, 28, 928, 897, 804, 773, 680, 649, 556, 525, 432, 401, 308, 277, 184, 153, 60, 29, 960, 929, 898, 836, 805, 774, 712, 681,
650, 588, 557, 526, 464, 433, 402, 340, 309, 278, 216, 185, 154, 92, 61, 30, 992, 961, 930, 899, 868, 837, 806, 775, 744, 713, 682, 651, 620, 589, 558, 527,
496, 465, 434, 403, 372, 341, 310, 279, 248, 217, 186, 155, 124, 93, 62, 31, 993, 962, 931, 869, 838, 807, 745, 714, 683, 621, 590, 559, 497, 466, 435, 373,
342, 311, 249, 218, 187, 125, 94, 63, 994, 963, 870, 839, 746, 715, 622, 591, 498, 467, 374, 343, 250, 219, 126, 95, 995, 871, 747, 623, 499, 375, 251, 127,
900, 776, 652, 528, 404, 280, 156, 932, 901, 808, 777, 684, 653, 560, 529, 436, 405, 312, 281, 188, 157, 964, 933, 902, 840, 809, 778, 716, 685, 654, 592, 561,
530, 468, 437, 406, 344, 313, 282, 220, 189, 158, 996, 965, 934, 903, 872, 841, 810, 779, 748, 717, 686, 655, 624, 593, 562, 531, 500, 469, 438, 407, 376, 345,
314, 283, 252, 221, 190, 159, 997, 966, 935, 873, 842, 811, 749, 718, 687, 625, 594, 563, 501, 470, 439, 377, 346, 315, 253, 222, 191, 998, 967, 874, 843, 750,
719, 626, 595, 502, 471, 378, 347, 254, 223, 999, 875, 751, 627, 503, 379, 255, 904, 780, 656, 532, 408, 284, 936, 905, 812, 781, 688, 657, 564, 533, 440, 409,
316, 285, 968, 937, 906, 844, 813, 782, 720, 689, 658, 596, 565, 534, 472, 441, 410, 348, 317, 286, 1000, 969, 938, 907, 876, 845, 814, 783, 752, 721, 690, 659,
628, 597, 566, 535, 504, 473, 442, 411, 380, 349, 318, 287, 1001, 970, 939, 877, 846, 815, 753, 722, 691, 629, 598, 567, 505, 474, 443, 381, 350, 319, 1002, 971,
878, 847, 754, 723, 630, 599, 506, 475, 382, 351, 1003, 879, 755, 631, 507, 383, 908, 784, 660, 536, 412, 940, 909, 816, 785, 692, 661, 568, 537, 444, 413, 972,
941, 910, 848, 817, 786, 724, 693, 662, 600, 569, 538, 476, 445, 414, 1004, 973, 942, 911, 880, 849, 818, 787, 756, 725, 694, 663, 632, 601, 570, 539, 508, 477,
446, 415, 1005, 974, 943, 881, 850, 819, 757, 726, 695, 633, 602, 571, 509, 478, 447, 1006, 975, 882, 851, 758, 727, 634, 603, 510, 479, 1007, 883, 759, 635, 511,
912, 788, 664, 540, 944, 913, 820, 789, 696, 665, 572, 541, 976, 945, 914, 852, 821, 790, 728, 697, 666, 604, 573, 542, 1008, 977, 946, 915, 884, 853, 822, 791,
760, 729, 698, 667, 636, 605, 574, 543, 1009, 978, 947, 885, 854, 823, 761, 730, 699, 637, 606, 575, 1010, 979, 886, 855, 762, 731, 638, 607, 1011, 887, 763, 639,
916, 792, 668, 948, 917, 824, 793, 700, 669, 980, 949, 918, 856, 825, 794, 732, 701, 670, 1012, 981, 950, 919, 888, 857, 826, 795, 764, 733, 702, 671, 1013, 982,
951, 889, 858, 827, 765, 734, 703, 1014, 983, 890, 859, 766, 735, 1015, 891, 767, 920, 796, 952, 921, 828, 797, 984, 953, 922, 860, 829, 798, 1016, 985, 954, 923,
892, 861, 830, 799, 1017, 986, 955, 893, 862, 831, 1018, 987, 894, 863, 1019, 895, 924, 956, 925, 988, 957, 926, 1020, 989, 958, 927, 1021, 990, 959, 1022, 991, 1023,
};
/* Array indices are identical to previously-existing CONTEXT_NODE indices */
const vp9_tree_index vp9_coef_tree[ 22] = /* corresponding _CONTEXT_NODEs */
{
#if CONFIG_BALANCED_COEFTREE
-ZERO_TOKEN, 2, /* 0 = ZERO */
-DCT_EOB_TOKEN, 4, /* 1 = EOB */
#else
-DCT_EOB_TOKEN, 2, /* 0 = EOB */
-ZERO_TOKEN, 4, /* 1 = ZERO */
#endif
-ONE_TOKEN, 6, /* 2 = ONE */
8, 12, /* 3 = LOW_VAL */
-TWO_TOKEN, 10, /* 4 = TWO */
-THREE_TOKEN, -FOUR_TOKEN, /* 5 = THREE */
14, 16, /* 6 = HIGH_LOW */
-DCT_VAL_CATEGORY1, -DCT_VAL_CATEGORY2, /* 7 = CAT_ONE */
18, 20, /* 8 = CAT_THREEFOUR */
-DCT_VAL_CATEGORY3, -DCT_VAL_CATEGORY4, /* 9 = CAT_THREE */
-DCT_VAL_CATEGORY5, -DCT_VAL_CATEGORY6 /* 10 = CAT_FIVE */
};
struct vp9_token vp9_coef_encodings[MAX_ENTROPY_TOKENS];
/* Trees for extra bits. Probabilities are constant and
do not depend on previously encoded bits */
static const vp9_prob Pcat1[] = { 159};
static const vp9_prob Pcat2[] = { 165, 145};
static const vp9_prob Pcat3[] = { 173, 148, 140};
static const vp9_prob Pcat4[] = { 176, 155, 140, 135};
static const vp9_prob Pcat5[] = { 180, 157, 141, 134, 130};
static const vp9_prob Pcat6[] = {
254, 254, 254, 252, 249, 243, 230, 196, 177, 153, 140, 133, 130, 129
};
const vp9_tree_index vp9_coefmodel_tree[6] = {
#if CONFIG_BALANCED_COEFTREE
-ZERO_TOKEN, 2,
-DCT_EOB_MODEL_TOKEN, 4,
#else
-DCT_EOB_MODEL_TOKEN, 2, /* 0 = EOB */
-ZERO_TOKEN, 4, /* 1 = ZERO */
#endif
-ONE_TOKEN, -TWO_TOKEN,
};
// Model obtained from a 2-sided zero-centerd distribuition derived
// from a Pareto distribution. The cdf of the distribution is:
// cdf(x) = 0.5 + 0.5 * sgn(x) * [1 - {alpha/(alpha + |x|)} ^ beta]
//
// For a given beta and a given probablity of the 1-node, the alpha
// is first solved, and then the {alpha, beta} pair is used to generate
// the probabilities for the rest of the nodes.
// beta = 8
const vp9_prob vp9_modelcoefprobs_pareto8[COEFPROB_MODELS][MODEL_NODES] = {
{ 3, 86, 128, 6, 86, 23, 88, 29},
{ 9, 86, 129, 17, 88, 61, 94, 76},
{ 15, 87, 129, 28, 89, 93, 100, 110},
{ 20, 88, 130, 38, 91, 118, 106, 136},
{ 26, 89, 131, 48, 92, 139, 111, 156},
{ 31, 90, 131, 58, 94, 156, 117, 171},
{ 37, 90, 132, 66, 95, 171, 122, 184},
{ 42, 91, 132, 75, 97, 183, 127, 194},
{ 47, 92, 133, 83, 98, 193, 132, 202},
{ 52, 93, 133, 90, 100, 201, 137, 208},
{ 57, 94, 134, 98, 101, 208, 142, 214},
{ 62, 94, 135, 105, 103, 214, 146, 218},
{ 66, 95, 135, 111, 104, 219, 151, 222},
{ 71, 96, 136, 117, 106, 224, 155, 225},
{ 76, 97, 136, 123, 107, 227, 159, 228},
{ 80, 98, 137, 129, 109, 231, 162, 231},
{ 84, 98, 138, 134, 110, 234, 166, 233},
{ 89, 99, 138, 140, 112, 236, 170, 235},
{ 93, 100, 139, 145, 113, 238, 173, 236},
{ 97, 101, 140, 149, 115, 240, 176, 238},
{101, 102, 140, 154, 116, 242, 179, 239},
{105, 103, 141, 158, 118, 243, 182, 240},
{109, 104, 141, 162, 119, 244, 185, 241},
{113, 104, 142, 166, 120, 245, 187, 242},
{116, 105, 143, 170, 122, 246, 190, 243},
{120, 106, 143, 173, 123, 247, 192, 244},
{123, 107, 144, 177, 125, 248, 195, 244},
{127, 108, 145, 180, 126, 249, 197, 245},
{130, 109, 145, 183, 128, 249, 199, 245},
{134, 110, 146, 186, 129, 250, 201, 246},
{137, 111, 147, 189, 131, 251, 203, 246},
{140, 112, 147, 192, 132, 251, 205, 247},
{143, 113, 148, 194, 133, 251, 207, 247},
{146, 114, 149, 197, 135, 252, 208, 248},
{149, 115, 149, 199, 136, 252, 210, 248},
{152, 115, 150, 201, 138, 252, 211, 248},
{155, 116, 151, 204, 139, 253, 213, 249},
{158, 117, 151, 206, 140, 253, 214, 249},
{161, 118, 152, 208, 142, 253, 216, 249},
{163, 119, 153, 210, 143, 253, 217, 249},
{166, 120, 153, 212, 144, 254, 218, 250},
{168, 121, 154, 213, 146, 254, 220, 250},
{171, 122, 155, 215, 147, 254, 221, 250},
{173, 123, 155, 217, 148, 254, 222, 250},
{176, 124, 156, 218, 150, 254, 223, 250},
{178, 125, 157, 220, 151, 254, 224, 251},
{180, 126, 157, 221, 152, 254, 225, 251},
{183, 127, 158, 222, 153, 254, 226, 251},
{185, 128, 159, 224, 155, 255, 227, 251},
{187, 129, 160, 225, 156, 255, 228, 251},
{189, 131, 160, 226, 157, 255, 228, 251},
{191, 132, 161, 227, 159, 255, 229, 251},
{193, 133, 162, 228, 160, 255, 230, 252},
{195, 134, 163, 230, 161, 255, 231, 252},
{197, 135, 163, 231, 162, 255, 231, 252},
{199, 136, 164, 232, 163, 255, 232, 252},
{201, 137, 165, 233, 165, 255, 233, 252},
{202, 138, 166, 233, 166, 255, 233, 252},
{204, 139, 166, 234, 167, 255, 234, 252},
{206, 140, 167, 235, 168, 255, 235, 252},
{207, 141, 168, 236, 169, 255, 235, 252},
{209, 142, 169, 237, 171, 255, 236, 252},
{210, 144, 169, 237, 172, 255, 236, 252},
{212, 145, 170, 238, 173, 255, 237, 252},
{214, 146, 171, 239, 174, 255, 237, 253},
{215, 147, 172, 240, 175, 255, 238, 253},
{216, 148, 173, 240, 176, 255, 238, 253},
{218, 149, 173, 241, 177, 255, 239, 253},
{219, 150, 174, 241, 179, 255, 239, 253},
{220, 152, 175, 242, 180, 255, 240, 253},
{222, 153, 176, 242, 181, 255, 240, 253},
{223, 154, 177, 243, 182, 255, 240, 253},
{224, 155, 178, 244, 183, 255, 241, 253},
{225, 156, 178, 244, 184, 255, 241, 253},
{226, 158, 179, 244, 185, 255, 242, 253},
{228, 159, 180, 245, 186, 255, 242, 253},
{229, 160, 181, 245, 187, 255, 242, 253},
{230, 161, 182, 246, 188, 255, 243, 253},
{231, 163, 183, 246, 189, 255, 243, 253},
{232, 164, 184, 247, 190, 255, 243, 253},
{233, 165, 185, 247, 191, 255, 244, 253},
{234, 166, 185, 247, 192, 255, 244, 253},
{235, 168, 186, 248, 193, 255, 244, 253},
{236, 169, 187, 248, 194, 255, 244, 253},
{236, 170, 188, 248, 195, 255, 245, 253},
{237, 171, 189, 249, 196, 255, 245, 254},
{238, 173, 190, 249, 197, 255, 245, 254},
{239, 174, 191, 249, 198, 255, 245, 254},
{240, 175, 192, 249, 199, 255, 246, 254},
{240, 177, 193, 250, 200, 255, 246, 254},
{241, 178, 194, 250, 201, 255, 246, 254},
{242, 179, 195, 250, 202, 255, 246, 254},
{242, 181, 196, 250, 203, 255, 247, 254},
{243, 182, 197, 251, 204, 255, 247, 254},
{244, 184, 198, 251, 205, 255, 247, 254},
{244, 185, 199, 251, 206, 255, 247, 254},
{245, 186, 200, 251, 207, 255, 247, 254},
{246, 188, 201, 252, 207, 255, 248, 254},
{246, 189, 202, 252, 208, 255, 248, 254},
{247, 191, 203, 252, 209, 255, 248, 254},
{247, 192, 204, 252, 210, 255, 248, 254},
{248, 194, 205, 252, 211, 255, 248, 254},
{248, 195, 206, 252, 212, 255, 249, 254},
{249, 197, 207, 253, 213, 255, 249, 254},
{249, 198, 208, 253, 214, 255, 249, 254},
{250, 200, 210, 253, 215, 255, 249, 254},
{250, 201, 211, 253, 215, 255, 249, 254},
{250, 203, 212, 253, 216, 255, 249, 254},
{251, 204, 213, 253, 217, 255, 250, 254},
{251, 206, 214, 254, 218, 255, 250, 254},
{252, 207, 216, 254, 219, 255, 250, 254},
{252, 209, 217, 254, 220, 255, 250, 254},
{252, 211, 218, 254, 221, 255, 250, 254},
{253, 213, 219, 254, 222, 255, 250, 254},
{253, 214, 221, 254, 223, 255, 250, 254},
{253, 216, 222, 254, 224, 255, 251, 254},
{253, 218, 224, 254, 225, 255, 251, 254},
{254, 220, 225, 254, 225, 255, 251, 254},
{254, 222, 227, 255, 226, 255, 251, 254},
{254, 224, 228, 255, 227, 255, 251, 254},
{254, 226, 230, 255, 228, 255, 251, 254},
{255, 228, 231, 255, 230, 255, 251, 254},
{255, 230, 233, 255, 231, 255, 252, 254},
{255, 232, 235, 255, 232, 255, 252, 254},
{255, 235, 237, 255, 233, 255, 252, 254},
{255, 238, 240, 255, 235, 255, 252, 255},
{255, 241, 243, 255, 236, 255, 252, 254},
{255, 246, 247, 255, 239, 255, 253, 255}
};
static void extend_model_to_full_distribution(vp9_prob p,
vp9_prob *tree_probs) {
const int l = ((p - 1) / 2);
const vp9_prob (*model)[MODEL_NODES];
model = vp9_modelcoefprobs_pareto8;
if (p & 1) {
vpx_memcpy(tree_probs + UNCONSTRAINED_NODES,
model[l], MODEL_NODES * sizeof(vp9_prob));
} else {
// interpolate
int i;
for (i = UNCONSTRAINED_NODES; i < ENTROPY_NODES; ++i)
tree_probs[i] = (model[l][i - UNCONSTRAINED_NODES] +
model[l + 1][i - UNCONSTRAINED_NODES]) >> 1;
}
}
void vp9_model_to_full_probs(const vp9_prob *model, vp9_prob *full) {
if (full != model)
vpx_memcpy(full, model, sizeof(vp9_prob) * UNCONSTRAINED_NODES);
extend_model_to_full_distribution(model[PIVOT_NODE], full);
}
static vp9_tree_index cat1[2], cat2[4], cat3[6], cat4[8], cat5[10], cat6[28];
static void init_bit_tree(vp9_tree_index *p, int n) {
int i = 0;
while (++i < n) {
p[0] = p[1] = i << 1;
p += 2;
}
p[0] = p[1] = 0;
}
static void init_bit_trees() {
init_bit_tree(cat1, 1);
init_bit_tree(cat2, 2);
init_bit_tree(cat3, 3);
init_bit_tree(cat4, 4);
init_bit_tree(cat5, 5);
init_bit_tree(cat6, 14);
}
vp9_extra_bit vp9_extra_bits[12] = {
{ 0, 0, 0, 0},
{ 0, 0, 0, 1},
{ 0, 0, 0, 2},
{ 0, 0, 0, 3},
{ 0, 0, 0, 4},
{ cat1, Pcat1, 1, 5},
{ cat2, Pcat2, 2, 7},
{ cat3, Pcat3, 3, 11},
{ cat4, Pcat4, 4, 19},
{ cat5, Pcat5, 5, 35},
{ cat6, Pcat6, 14, 67},
{ 0, 0, 0, 0}
};
#include "vp9/common/vp9_default_coef_probs.h"
void vp9_default_coef_probs(VP9_COMMON *pc) {
vpx_memcpy(pc->fc.coef_probs[TX_4X4], default_coef_probs_4x4,
sizeof(pc->fc.coef_probs[TX_4X4]));
vpx_memcpy(pc->fc.coef_probs[TX_8X8], default_coef_probs_8x8,
sizeof(pc->fc.coef_probs[TX_8X8]));
vpx_memcpy(pc->fc.coef_probs[TX_16X16], default_coef_probs_16x16,
sizeof(pc->fc.coef_probs[TX_16X16]));
vpx_memcpy(pc->fc.coef_probs[TX_32X32], default_coef_probs_32x32,
sizeof(pc->fc.coef_probs[TX_32X32]));
}
// Neighborhood 5-tuples for various scans and blocksizes,
// in {top, left, topleft, topright, bottomleft} order
// for each position in raster scan order.
// -1 indicates the neighbor does not exist.
DECLARE_ALIGNED(16, int16_t,
vp9_default_scan_4x4_neighbors[17 * MAX_NEIGHBORS]);
DECLARE_ALIGNED(16, int16_t,
vp9_col_scan_4x4_neighbors[17 * MAX_NEIGHBORS]);
DECLARE_ALIGNED(16, int16_t,
vp9_row_scan_4x4_neighbors[17 * MAX_NEIGHBORS]);
DECLARE_ALIGNED(16, int16_t,
vp9_col_scan_8x8_neighbors[65 * MAX_NEIGHBORS]);
DECLARE_ALIGNED(16, int16_t,
vp9_row_scan_8x8_neighbors[65 * MAX_NEIGHBORS]);
DECLARE_ALIGNED(16, int16_t,
vp9_default_scan_8x8_neighbors[65 * MAX_NEIGHBORS]);
DECLARE_ALIGNED(16, int16_t,
vp9_col_scan_16x16_neighbors[257 * MAX_NEIGHBORS]);
DECLARE_ALIGNED(16, int16_t,
vp9_row_scan_16x16_neighbors[257 * MAX_NEIGHBORS]);
DECLARE_ALIGNED(16, int16_t,
vp9_default_scan_16x16_neighbors[257 * MAX_NEIGHBORS]);
DECLARE_ALIGNED(16, int16_t,
vp9_default_scan_32x32_neighbors[1025 * MAX_NEIGHBORS]);
DECLARE_ALIGNED(16, int16_t, vp9_default_iscan_4x4[16]);
DECLARE_ALIGNED(16, int16_t, vp9_col_iscan_4x4[16]);
DECLARE_ALIGNED(16, int16_t, vp9_row_iscan_4x4[16]);
DECLARE_ALIGNED(16, int16_t, vp9_col_iscan_8x8[64]);
DECLARE_ALIGNED(16, int16_t, vp9_row_iscan_8x8[64]);
DECLARE_ALIGNED(16, int16_t, vp9_default_iscan_8x8[64]);
DECLARE_ALIGNED(16, int16_t, vp9_col_iscan_16x16[256]);
DECLARE_ALIGNED(16, int16_t, vp9_row_iscan_16x16[256]);
DECLARE_ALIGNED(16, int16_t, vp9_default_iscan_16x16[256]);
DECLARE_ALIGNED(16, int16_t, vp9_default_iscan_32x32[1024]);
static int find_in_scan(const int16_t *scan, int l, int idx) {
int n, l2 = l * l;
for (n = 0; n < l2; n++) {
int rc = scan[n];
if (rc == idx)
return n;
}
assert(0);
return -1;
}
static void init_scan_neighbors(const int16_t *scan,
int16_t *iscan,
int l, int16_t *neighbors) {
int l2 = l * l;
int n, i, j;
// dc doesn't use this type of prediction
neighbors[MAX_NEIGHBORS * 0 + 0] = 0;
neighbors[MAX_NEIGHBORS * 0 + 1] = 0;
iscan[0] = find_in_scan(scan, l, 0);
for (n = 1; n < l2; n++) {
int rc = scan[n];
iscan[n] = find_in_scan(scan, l, n);
i = rc / l;
j = rc % l;
if (i > 0 && j > 0) {
// col/row scan is used for adst/dct, and generally means that
// energy decreases to zero much faster in the dimension in
// which ADST is used compared to the direction in which DCT
// is used. Likewise, we find much higher correlation between
// coefficients within the direction in which DCT is used.
// Therefore, if we use ADST/DCT, prefer the DCT neighbor coeff
// as a context. If ADST or DCT is used in both directions, we
// use the combination of the two as a context.
int a = (i - 1) * l + j;
int b = i * l + j - 1;
if (scan == vp9_col_scan_4x4 || scan == vp9_col_scan_8x8 ||
scan == vp9_col_scan_16x16) {
// in the col/row scan cases (as well as left/top edge cases), we set
// both contexts to the same value, so we can branchlessly do a+b+1>>1
// which automatically becomes a if a == b
neighbors[MAX_NEIGHBORS * n + 0] =
neighbors[MAX_NEIGHBORS * n + 1] = a;
} else if (scan == vp9_row_scan_4x4 || scan == vp9_row_scan_8x8 ||
scan == vp9_row_scan_16x16) {
neighbors[MAX_NEIGHBORS * n + 0] =
neighbors[MAX_NEIGHBORS * n + 1] = b;
} else {
neighbors[MAX_NEIGHBORS * n + 0] = a;
neighbors[MAX_NEIGHBORS * n + 1] = b;
}
} else if (i > 0) {
neighbors[MAX_NEIGHBORS * n + 0] =
neighbors[MAX_NEIGHBORS * n + 1] = (i - 1) * l + j;
} else {
assert(j > 0);
neighbors[MAX_NEIGHBORS * n + 0] =
neighbors[MAX_NEIGHBORS * n + 1] = i * l + j - 1;
}
assert(iscan[neighbors[MAX_NEIGHBORS * n + 0]] < n);
}
// one padding item so we don't have to add branches in code to handle
// calls to get_coef_context() for the token after the final dc token
neighbors[MAX_NEIGHBORS * l2 + 0] = 0;
neighbors[MAX_NEIGHBORS * l2 + 1] = 0;
}
void vp9_init_neighbors() {
init_scan_neighbors(vp9_default_scan_4x4, vp9_default_iscan_4x4, 4,
vp9_default_scan_4x4_neighbors);
init_scan_neighbors(vp9_row_scan_4x4, vp9_row_iscan_4x4, 4,
vp9_row_scan_4x4_neighbors);
init_scan_neighbors(vp9_col_scan_4x4, vp9_col_iscan_4x4, 4,
vp9_col_scan_4x4_neighbors);
init_scan_neighbors(vp9_default_scan_8x8, vp9_default_iscan_8x8, 8,
vp9_default_scan_8x8_neighbors);
init_scan_neighbors(vp9_row_scan_8x8, vp9_row_iscan_8x8, 8,
vp9_row_scan_8x8_neighbors);
init_scan_neighbors(vp9_col_scan_8x8, vp9_col_iscan_8x8, 8,
vp9_col_scan_8x8_neighbors);
init_scan_neighbors(vp9_default_scan_16x16, vp9_default_iscan_16x16, 16,
vp9_default_scan_16x16_neighbors);
init_scan_neighbors(vp9_row_scan_16x16, vp9_row_iscan_16x16, 16,
vp9_row_scan_16x16_neighbors);
init_scan_neighbors(vp9_col_scan_16x16, vp9_col_iscan_16x16, 16,
vp9_col_scan_16x16_neighbors);
init_scan_neighbors(vp9_default_scan_32x32, vp9_default_iscan_32x32, 32,
vp9_default_scan_32x32_neighbors);
}
const int16_t *vp9_get_coef_neighbors_handle(const int16_t *scan) {
if (scan == vp9_default_scan_4x4) {
return vp9_default_scan_4x4_neighbors;
} else if (scan == vp9_row_scan_4x4) {
return vp9_row_scan_4x4_neighbors;
} else if (scan == vp9_col_scan_4x4) {
return vp9_col_scan_4x4_neighbors;
} else if (scan == vp9_default_scan_8x8) {
return vp9_default_scan_8x8_neighbors;
} else if (scan == vp9_row_scan_8x8) {
return vp9_row_scan_8x8_neighbors;
} else if (scan == vp9_col_scan_8x8) {
return vp9_col_scan_8x8_neighbors;
} else if (scan == vp9_default_scan_16x16) {
return vp9_default_scan_16x16_neighbors;
} else if (scan == vp9_row_scan_16x16) {
return vp9_row_scan_16x16_neighbors;
} else if (scan == vp9_col_scan_16x16) {
return vp9_col_scan_16x16_neighbors;
} else {
assert(scan == vp9_default_scan_32x32);
return vp9_default_scan_32x32_neighbors;
}
}
void vp9_coef_tree_initialize() {
vp9_init_neighbors();
init_bit_trees();
vp9_tokens_from_tree(vp9_coef_encodings, vp9_coef_tree);
}
// #define COEF_COUNT_TESTING
#define COEF_COUNT_SAT 24
#define COEF_MAX_UPDATE_FACTOR 112
#define COEF_COUNT_SAT_KEY 24
#define COEF_MAX_UPDATE_FACTOR_KEY 112
#define COEF_COUNT_SAT_AFTER_KEY 24
#define COEF_MAX_UPDATE_FACTOR_AFTER_KEY 128
static void adapt_coef_probs(VP9_COMMON *cm, TX_SIZE txfm_size,
int count_sat, int update_factor) {
vp9_coeff_probs_model *dst_coef_probs = cm->fc.coef_probs[txfm_size];
vp9_coeff_probs_model *pre_coef_probs = cm->fc.pre_coef_probs[txfm_size];
vp9_coeff_count_model *coef_counts = cm->fc.coef_counts[txfm_size];
unsigned int (*eob_branch_count)[REF_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS] =
cm->fc.eob_branch_counts[txfm_size];
int t, i, j, k, l, count;
int factor;
unsigned int branch_ct[UNCONSTRAINED_NODES][2];
vp9_prob coef_probs[UNCONSTRAINED_NODES];
int entropy_nodes_adapt = UNCONSTRAINED_NODES;
for (i = 0; i < BLOCK_TYPES; ++i)
for (j = 0; j < REF_TYPES; ++j)
for (k = 0; k < COEF_BANDS; ++k)
for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
if (l >= 3 && k == 0)
continue;
vp9_tree_probs_from_distribution(
vp9_coefmodel_tree,
coef_probs, branch_ct,
coef_counts[i][j][k][l], 0);
#if CONFIG_BALANCED_COEFTREE
branch_ct[1][1] = eob_branch_count[i][j][k][l] - branch_ct[1][0];
coef_probs[1] = get_binary_prob(branch_ct[1][0], branch_ct[1][1]);
#else
branch_ct[0][1] = eob_branch_count[i][j][k][l] - branch_ct[0][0];
coef_probs[0] = get_binary_prob(branch_ct[0][0], branch_ct[0][1]);
#endif
for (t = 0; t < entropy_nodes_adapt; ++t) {
count = branch_ct[t][0] + branch_ct[t][1];
count = count > count_sat ? count_sat : count;
factor = (update_factor * count / count_sat);
dst_coef_probs[i][j][k][l][t] =
weighted_prob(pre_coef_probs[i][j][k][l][t],
coef_probs[t], factor);
}
}
}
void vp9_adapt_coef_probs(VP9_COMMON *cm) {
TX_SIZE t;
int count_sat;
int update_factor; /* denominator 256 */
if ((cm->frame_type == KEY_FRAME) || cm->intra_only) {
update_factor = COEF_MAX_UPDATE_FACTOR_KEY;
count_sat = COEF_COUNT_SAT_KEY;
} else if (cm->last_frame_type == KEY_FRAME) {
update_factor = COEF_MAX_UPDATE_FACTOR_AFTER_KEY; /* adapt quickly */
count_sat = COEF_COUNT_SAT_AFTER_KEY;
} else {
update_factor = COEF_MAX_UPDATE_FACTOR;
count_sat = COEF_COUNT_SAT;
}
for (t = TX_4X4; t <= TX_32X32; t++)
adapt_coef_probs(cm, t, count_sat, update_factor);
}