a14ae84749
Delete code under the CONFIG_CODE_ZEROGROUP flag. Change-Id: I5fe6c7b42a5da9b73118e33594301da4129f320a
2081 lines
72 KiB
C
2081 lines
72 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
|
|
#include "./vpx_config.h"
|
|
#include "vp9/encoder/vp9_encodeframe.h"
|
|
#include "vp9/encoder/vp9_encodemb.h"
|
|
#include "vp9/encoder/vp9_encodemv.h"
|
|
#include "vp9/common/vp9_common.h"
|
|
#include "vp9/encoder/vp9_onyx_int.h"
|
|
#include "vp9/common/vp9_extend.h"
|
|
#include "vp9/common/vp9_entropy.h"
|
|
#include "vp9/common/vp9_entropymode.h"
|
|
#include "vp9/common/vp9_quant_common.h"
|
|
#include "vp9/encoder/vp9_segmentation.h"
|
|
#include "vp9/encoder/vp9_encodeintra.h"
|
|
#include "vp9/common/vp9_reconinter.h"
|
|
#include "vp9/common/vp9_invtrans.h"
|
|
#include "vp9/encoder/vp9_rdopt.h"
|
|
#include "vp9/common/vp9_findnearmv.h"
|
|
#include "vp9/common/vp9_reconintra.h"
|
|
#include "vp9/common/vp9_seg_common.h"
|
|
#include "vp9/common/vp9_tile_common.h"
|
|
#include "vp9/encoder/vp9_tokenize.h"
|
|
#include "./vp9_rtcd.h"
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
#include <limits.h>
|
|
#include "vpx_ports/vpx_timer.h"
|
|
#include "vp9/common/vp9_pred_common.h"
|
|
#include "vp9/common/vp9_mvref_common.h"
|
|
|
|
#define DBG_PRNT_SEGMAP 0
|
|
|
|
// #define ENC_DEBUG
|
|
#ifdef ENC_DEBUG
|
|
int enc_debug = 0;
|
|
#endif
|
|
|
|
void vp9_select_interp_filter_type(VP9_COMP *cpi);
|
|
|
|
static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t,
|
|
int output_enabled, int mi_row, int mi_col,
|
|
BLOCK_SIZE_TYPE bsize);
|
|
|
|
static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x);
|
|
|
|
#ifdef MODE_STATS
|
|
unsigned int inter_y_modes[MB_MODE_COUNT];
|
|
unsigned int inter_uv_modes[VP9_UV_MODES];
|
|
unsigned int inter_b_modes[B_MODE_COUNT];
|
|
unsigned int y_modes[VP9_YMODES];
|
|
unsigned int i8x8_modes[VP9_I8X8_MODES];
|
|
unsigned int uv_modes[VP9_UV_MODES];
|
|
unsigned int uv_modes_y[VP9_YMODES][VP9_UV_MODES];
|
|
unsigned int b_modes[B_MODE_COUNT];
|
|
#endif
|
|
|
|
|
|
/* activity_avg must be positive, or flat regions could get a zero weight
|
|
* (infinite lambda), which confounds analysis.
|
|
* This also avoids the need for divide by zero checks in
|
|
* vp9_activity_masking().
|
|
*/
|
|
#define VP9_ACTIVITY_AVG_MIN (64)
|
|
|
|
/* This is used as a reference when computing the source variance for the
|
|
* purposes of activity masking.
|
|
* Eventually this should be replaced by custom no-reference routines,
|
|
* which will be faster.
|
|
*/
|
|
static const uint8_t VP9_VAR_OFFS[16] = {
|
|
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
|
|
};
|
|
|
|
|
|
// Original activity measure from Tim T's code.
|
|
static unsigned int tt_activity_measure(VP9_COMP *cpi, MACROBLOCK *x) {
|
|
unsigned int act;
|
|
unsigned int sse;
|
|
/* TODO: This could also be done over smaller areas (8x8), but that would
|
|
* require extensive changes elsewhere, as lambda is assumed to be fixed
|
|
* over an entire MB in most of the code.
|
|
* Another option is to compute four 8x8 variances, and pick a single
|
|
* lambda using a non-linear combination (e.g., the smallest, or second
|
|
* smallest, etc.).
|
|
*/
|
|
act = vp9_variance16x16(x->plane[0].src.buf, x->plane[0].src.stride,
|
|
VP9_VAR_OFFS, 0, &sse);
|
|
act <<= 4;
|
|
|
|
/* If the region is flat, lower the activity some more. */
|
|
if (act < 8 << 12)
|
|
act = act < 5 << 12 ? act : 5 << 12;
|
|
|
|
return act;
|
|
}
|
|
|
|
// Stub for alternative experimental activity measures.
|
|
static unsigned int alt_activity_measure(VP9_COMP *cpi,
|
|
MACROBLOCK *x, int use_dc_pred) {
|
|
return vp9_encode_intra(cpi, x, use_dc_pred);
|
|
}
|
|
|
|
|
|
// Measure the activity of the current macroblock
|
|
// What we measure here is TBD so abstracted to this function
|
|
#define ALT_ACT_MEASURE 1
|
|
static unsigned int mb_activity_measure(VP9_COMP *cpi, MACROBLOCK *x,
|
|
int mb_row, int mb_col) {
|
|
unsigned int mb_activity;
|
|
|
|
if (ALT_ACT_MEASURE) {
|
|
int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
|
|
|
|
// Or use and alternative.
|
|
mb_activity = alt_activity_measure(cpi, x, use_dc_pred);
|
|
} else {
|
|
// Original activity measure from Tim T's code.
|
|
mb_activity = tt_activity_measure(cpi, x);
|
|
}
|
|
|
|
if (mb_activity < VP9_ACTIVITY_AVG_MIN)
|
|
mb_activity = VP9_ACTIVITY_AVG_MIN;
|
|
|
|
return mb_activity;
|
|
}
|
|
|
|
// Calculate an "average" mb activity value for the frame
|
|
#define ACT_MEDIAN 0
|
|
static void calc_av_activity(VP9_COMP *cpi, int64_t activity_sum) {
|
|
#if ACT_MEDIAN
|
|
// Find median: Simple n^2 algorithm for experimentation
|
|
{
|
|
unsigned int median;
|
|
unsigned int i, j;
|
|
unsigned int *sortlist;
|
|
unsigned int tmp;
|
|
|
|
// Create a list to sort to
|
|
CHECK_MEM_ERROR(sortlist,
|
|
vpx_calloc(sizeof(unsigned int),
|
|
cpi->common.MBs));
|
|
|
|
// Copy map to sort list
|
|
vpx_memcpy(sortlist, cpi->mb_activity_map,
|
|
sizeof(unsigned int) * cpi->common.MBs);
|
|
|
|
|
|
// Ripple each value down to its correct position
|
|
for (i = 1; i < cpi->common.MBs; i ++) {
|
|
for (j = i; j > 0; j --) {
|
|
if (sortlist[j] < sortlist[j - 1]) {
|
|
// Swap values
|
|
tmp = sortlist[j - 1];
|
|
sortlist[j - 1] = sortlist[j];
|
|
sortlist[j] = tmp;
|
|
} else
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Even number MBs so estimate median as mean of two either side.
|
|
median = (1 + sortlist[cpi->common.MBs >> 1] +
|
|
sortlist[(cpi->common.MBs >> 1) + 1]) >> 1;
|
|
|
|
cpi->activity_avg = median;
|
|
|
|
vpx_free(sortlist);
|
|
}
|
|
#else
|
|
// Simple mean for now
|
|
cpi->activity_avg = (unsigned int)(activity_sum / cpi->common.MBs);
|
|
#endif
|
|
|
|
if (cpi->activity_avg < VP9_ACTIVITY_AVG_MIN)
|
|
cpi->activity_avg = VP9_ACTIVITY_AVG_MIN;
|
|
|
|
// Experimental code: return fixed value normalized for several clips
|
|
if (ALT_ACT_MEASURE)
|
|
cpi->activity_avg = 100000;
|
|
}
|
|
|
|
#define USE_ACT_INDEX 0
|
|
#define OUTPUT_NORM_ACT_STATS 0
|
|
|
|
#if USE_ACT_INDEX
|
|
// Calculate an activity index for each mb
|
|
static void calc_activity_index(VP9_COMP *cpi, MACROBLOCK *x) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
int mb_row, mb_col;
|
|
|
|
int64_t act;
|
|
int64_t a;
|
|
int64_t b;
|
|
|
|
#if OUTPUT_NORM_ACT_STATS
|
|
FILE *f = fopen("norm_act.stt", "a");
|
|
fprintf(f, "\n%12d\n", cpi->activity_avg);
|
|
#endif
|
|
|
|
// Reset pointers to start of activity map
|
|
x->mb_activity_ptr = cpi->mb_activity_map;
|
|
|
|
// Calculate normalized mb activity number.
|
|
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
|
|
// for each macroblock col in image
|
|
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
|
|
// Read activity from the map
|
|
act = *(x->mb_activity_ptr);
|
|
|
|
// Calculate a normalized activity number
|
|
a = act + 4 * cpi->activity_avg;
|
|
b = 4 * act + cpi->activity_avg;
|
|
|
|
if (b >= a)
|
|
*(x->activity_ptr) = (int)((b + (a >> 1)) / a) - 1;
|
|
else
|
|
*(x->activity_ptr) = 1 - (int)((a + (b >> 1)) / b);
|
|
|
|
#if OUTPUT_NORM_ACT_STATS
|
|
fprintf(f, " %6d", *(x->mb_activity_ptr));
|
|
#endif
|
|
// Increment activity map pointers
|
|
x->mb_activity_ptr++;
|
|
}
|
|
|
|
#if OUTPUT_NORM_ACT_STATS
|
|
fprintf(f, "\n");
|
|
#endif
|
|
|
|
}
|
|
|
|
#if OUTPUT_NORM_ACT_STATS
|
|
fclose(f);
|
|
#endif
|
|
|
|
}
|
|
#endif
|
|
|
|
// Loop through all MBs. Note activity of each, average activity and
|
|
// calculate a normalized activity for each
|
|
static void build_activity_map(VP9_COMP *cpi) {
|
|
MACROBLOCK *const x = &cpi->mb;
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
|
|
#if ALT_ACT_MEASURE
|
|
YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
|
|
int recon_yoffset;
|
|
int recon_y_stride = new_yv12->y_stride;
|
|
#endif
|
|
|
|
int mb_row, mb_col;
|
|
unsigned int mb_activity;
|
|
int64_t activity_sum = 0;
|
|
|
|
x->mb_activity_ptr = cpi->mb_activity_map;
|
|
|
|
// for each macroblock row in image
|
|
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
|
|
#if ALT_ACT_MEASURE
|
|
// reset above block coeffs
|
|
xd->up_available = (mb_row != 0);
|
|
recon_yoffset = (mb_row * recon_y_stride * 16);
|
|
#endif
|
|
// for each macroblock col in image
|
|
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
|
|
#if ALT_ACT_MEASURE
|
|
xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset;
|
|
xd->left_available = (mb_col != 0);
|
|
recon_yoffset += 16;
|
|
#endif
|
|
|
|
// measure activity
|
|
mb_activity = mb_activity_measure(cpi, x, mb_row, mb_col);
|
|
|
|
// Keep frame sum
|
|
activity_sum += mb_activity;
|
|
|
|
// Store MB level activity details.
|
|
*x->mb_activity_ptr = mb_activity;
|
|
|
|
// Increment activity map pointer
|
|
x->mb_activity_ptr++;
|
|
|
|
// adjust to the next column of source macroblocks
|
|
x->plane[0].src.buf += 16;
|
|
}
|
|
|
|
|
|
// adjust to the next row of mbs
|
|
x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols;
|
|
|
|
#if ALT_ACT_MEASURE
|
|
// extend the recon for intra prediction
|
|
vp9_extend_mb_row(new_yv12, xd->plane[0].dst.buf + 16,
|
|
xd->plane[1].dst.buf + 8, xd->plane[2].dst.buf + 8);
|
|
#endif
|
|
|
|
}
|
|
|
|
// Calculate an "average" MB activity
|
|
calc_av_activity(cpi, activity_sum);
|
|
|
|
#if USE_ACT_INDEX
|
|
// Calculate an activity index number of each mb
|
|
calc_activity_index(cpi, x);
|
|
#endif
|
|
|
|
}
|
|
|
|
// Macroblock activity masking
|
|
void vp9_activity_masking(VP9_COMP *cpi, MACROBLOCK *x) {
|
|
#if USE_ACT_INDEX
|
|
x->rdmult += *(x->mb_activity_ptr) * (x->rdmult >> 2);
|
|
x->errorperbit = x->rdmult * 100 / (110 * x->rddiv);
|
|
x->errorperbit += (x->errorperbit == 0);
|
|
#else
|
|
int64_t a;
|
|
int64_t b;
|
|
int64_t act = *(x->mb_activity_ptr);
|
|
|
|
// Apply the masking to the RD multiplier.
|
|
a = act + (2 * cpi->activity_avg);
|
|
b = (2 * act) + cpi->activity_avg;
|
|
|
|
x->rdmult = (unsigned int)(((int64_t)x->rdmult * b + (a >> 1)) / a);
|
|
x->errorperbit = x->rdmult * 100 / (110 * x->rddiv);
|
|
x->errorperbit += (x->errorperbit == 0);
|
|
#endif
|
|
|
|
// Activity based Zbin adjustment
|
|
adjust_act_zbin(cpi, x);
|
|
}
|
|
|
|
static void update_state(VP9_COMP *cpi,
|
|
PICK_MODE_CONTEXT *ctx,
|
|
BLOCK_SIZE_TYPE bsize,
|
|
int output_enabled) {
|
|
int i, x_idx, y;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &cpi->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *mi = &ctx->mic;
|
|
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
|
|
int mb_mode = mi->mbmi.mode;
|
|
int mb_mode_index = ctx->best_mode_index;
|
|
const int mis = cpi->common.mode_info_stride;
|
|
const int bh = 1 << mi_height_log2(bsize), bw = 1 << mi_width_log2(bsize);
|
|
|
|
#if CONFIG_DEBUG
|
|
assert(mb_mode < MB_MODE_COUNT);
|
|
assert(mb_mode_index < MAX_MODES);
|
|
assert(mi->mbmi.ref_frame < MAX_REF_FRAMES);
|
|
#endif
|
|
assert(mi->mbmi.sb_type == bsize);
|
|
|
|
// Restore the coding context of the MB to that that was in place
|
|
// when the mode was picked for it
|
|
for (y = 0; y < bh; y++) {
|
|
for (x_idx = 0; x_idx < bw; x_idx++) {
|
|
if ((xd->mb_to_right_edge >> (3 + LOG2_MI_SIZE)) + bw > x_idx &&
|
|
(xd->mb_to_bottom_edge >> (3 + LOG2_MI_SIZE)) + bh > y) {
|
|
MODE_INFO *mi_addr = xd->mode_info_context + x_idx + y * mis;
|
|
|
|
vpx_memcpy(mi_addr, mi, sizeof(MODE_INFO));
|
|
}
|
|
}
|
|
}
|
|
if (bsize < BLOCK_SIZE_SB32X32) {
|
|
if (bsize < BLOCK_SIZE_MB16X16)
|
|
ctx->txfm_rd_diff[ALLOW_16X16] = ctx->txfm_rd_diff[ALLOW_8X8];
|
|
ctx->txfm_rd_diff[ALLOW_32X32] = ctx->txfm_rd_diff[ALLOW_16X16];
|
|
}
|
|
|
|
if (mb_mode == SPLITMV) {
|
|
vpx_memcpy(x->partition_info, &ctx->partition_info,
|
|
sizeof(PARTITION_INFO));
|
|
|
|
mbmi->mv[0].as_int =
|
|
x->partition_info->bmi[3].mv.as_int;
|
|
mbmi->mv[1].as_int =
|
|
x->partition_info->bmi[3].second_mv.as_int;
|
|
}
|
|
|
|
x->skip = ctx->skip;
|
|
if (!output_enabled)
|
|
return;
|
|
|
|
{
|
|
int segment_id = mbmi->segment_id, ref_pred_flag;
|
|
if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) {
|
|
for (i = 0; i < NB_TXFM_MODES; i++) {
|
|
cpi->rd_tx_select_diff[i] += ctx->txfm_rd_diff[i];
|
|
}
|
|
}
|
|
|
|
// Did the chosen reference frame match its predicted value.
|
|
ref_pred_flag = ((xd->mode_info_context->mbmi.ref_frame ==
|
|
vp9_get_pred_ref(cm, xd)));
|
|
vp9_set_pred_flag(xd, PRED_REF, ref_pred_flag);
|
|
if (!xd->segmentation_enabled ||
|
|
!vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) ||
|
|
vp9_check_segref(xd, segment_id, INTRA_FRAME) +
|
|
vp9_check_segref(xd, segment_id, LAST_FRAME) +
|
|
vp9_check_segref(xd, segment_id, GOLDEN_FRAME) +
|
|
vp9_check_segref(xd, segment_id, ALTREF_FRAME) > 1) {
|
|
// Get the prediction context and status
|
|
int pred_context = vp9_get_pred_context(cm, xd, PRED_REF);
|
|
|
|
// Count prediction success
|
|
cpi->ref_pred_count[pred_context][ref_pred_flag]++;
|
|
}
|
|
}
|
|
|
|
if (cpi->common.frame_type == KEY_FRAME) {
|
|
// Restore the coding modes to that held in the coding context
|
|
// if (mb_mode == I4X4_PRED)
|
|
// for (i = 0; i < 16; i++)
|
|
// {
|
|
// xd->block[i].bmi.as_mode =
|
|
// xd->mode_info_context->bmi[i].as_mode;
|
|
// assert(xd->mode_info_context->bmi[i].as_mode < MB_MODE_COUNT);
|
|
// }
|
|
#if CONFIG_INTERNAL_STATS
|
|
static const int kf_mode_index[] = {
|
|
THR_DC /*DC_PRED*/,
|
|
THR_V_PRED /*V_PRED*/,
|
|
THR_H_PRED /*H_PRED*/,
|
|
THR_D45_PRED /*D45_PRED*/,
|
|
THR_D135_PRED /*D135_PRED*/,
|
|
THR_D117_PRED /*D117_PRED*/,
|
|
THR_D153_PRED /*D153_PRED*/,
|
|
THR_D27_PRED /*D27_PRED*/,
|
|
THR_D63_PRED /*D63_PRED*/,
|
|
THR_TM /*TM_PRED*/,
|
|
THR_B_PRED /*I4X4_PRED*/,
|
|
};
|
|
cpi->mode_chosen_counts[kf_mode_index[mb_mode]]++;
|
|
#endif
|
|
} else {
|
|
/*
|
|
// Reduce the activation RD thresholds for the best choice mode
|
|
if ((cpi->rd_baseline_thresh[mb_mode_index] > 0) &&
|
|
(cpi->rd_baseline_thresh[mb_mode_index] < (INT_MAX >> 2)))
|
|
{
|
|
int best_adjustment = (cpi->rd_thresh_mult[mb_mode_index] >> 2);
|
|
|
|
cpi->rd_thresh_mult[mb_mode_index] =
|
|
(cpi->rd_thresh_mult[mb_mode_index]
|
|
>= (MIN_THRESHMULT + best_adjustment)) ?
|
|
cpi->rd_thresh_mult[mb_mode_index] - best_adjustment :
|
|
MIN_THRESHMULT;
|
|
cpi->rd_threshes[mb_mode_index] =
|
|
(cpi->rd_baseline_thresh[mb_mode_index] >> 7)
|
|
* cpi->rd_thresh_mult[mb_mode_index];
|
|
|
|
}
|
|
*/
|
|
// Note how often each mode chosen as best
|
|
cpi->mode_chosen_counts[mb_mode_index]++;
|
|
if (mbmi->mode == SPLITMV || mbmi->mode == NEWMV) {
|
|
int_mv best_mv, best_second_mv;
|
|
MV_REFERENCE_FRAME rf = mbmi->ref_frame;
|
|
best_mv.as_int = ctx->best_ref_mv.as_int;
|
|
best_second_mv.as_int = ctx->second_best_ref_mv.as_int;
|
|
if (mbmi->mode == NEWMV) {
|
|
best_mv.as_int = mbmi->ref_mvs[rf][0].as_int;
|
|
best_second_mv.as_int = mbmi->ref_mvs[mbmi->second_ref_frame][0].as_int;
|
|
}
|
|
mbmi->best_mv.as_int = best_mv.as_int;
|
|
mbmi->best_second_mv.as_int = best_second_mv.as_int;
|
|
vp9_update_nmv_count(cpi, x, &best_mv, &best_second_mv);
|
|
}
|
|
|
|
if (bsize > BLOCK_SIZE_SB8X8 && mbmi->mode == NEWMV) {
|
|
int i, j;
|
|
for (j = 0; j < bh; ++j)
|
|
for (i = 0; i < bw; ++i)
|
|
xd->mode_info_context[mis * j + i].mbmi = *mbmi;
|
|
}
|
|
|
|
if (cpi->common.mcomp_filter_type == SWITCHABLE &&
|
|
is_inter_mode(mbmi->mode)) {
|
|
++cpi->switchable_interp_count
|
|
[vp9_get_pred_context(&cpi->common, xd, PRED_SWITCHABLE_INTERP)]
|
|
[vp9_switchable_interp_map[mbmi->interp_filter]];
|
|
}
|
|
|
|
cpi->rd_comp_pred_diff[SINGLE_PREDICTION_ONLY] += ctx->single_pred_diff;
|
|
cpi->rd_comp_pred_diff[COMP_PREDICTION_ONLY] += ctx->comp_pred_diff;
|
|
cpi->rd_comp_pred_diff[HYBRID_PREDICTION] += ctx->hybrid_pred_diff;
|
|
}
|
|
}
|
|
|
|
static unsigned find_seg_id(uint8_t *buf, BLOCK_SIZE_TYPE bsize,
|
|
int start_y, int height, int start_x, int width) {
|
|
const int bw = 1 << mi_width_log2(bsize), bh = 1 << mi_height_log2(bsize);
|
|
const int end_x = MIN(start_x + bw, width);
|
|
const int end_y = MIN(start_y + bh, height);
|
|
int x, y;
|
|
unsigned seg_id = -1;
|
|
|
|
buf += width * start_y;
|
|
for (y = start_y; y < end_y; y++, buf += width) {
|
|
for (x = start_x; x < end_x; x++) {
|
|
seg_id = MIN(seg_id, buf[x]);
|
|
}
|
|
}
|
|
|
|
return seg_id;
|
|
}
|
|
|
|
void vp9_setup_src_planes(MACROBLOCK *x,
|
|
const YV12_BUFFER_CONFIG *src,
|
|
int mb_row, int mb_col) {
|
|
setup_pred_plane(&x->plane[0].src,
|
|
src->y_buffer, src->y_stride,
|
|
mb_row, mb_col, NULL,
|
|
x->e_mbd.plane[0].subsampling_x,
|
|
x->e_mbd.plane[0].subsampling_y);
|
|
setup_pred_plane(&x->plane[1].src,
|
|
src->u_buffer, src->uv_stride,
|
|
mb_row, mb_col, NULL,
|
|
x->e_mbd.plane[1].subsampling_x,
|
|
x->e_mbd.plane[1].subsampling_y);
|
|
setup_pred_plane(&x->plane[2].src,
|
|
src->v_buffer, src->uv_stride,
|
|
mb_row, mb_col, NULL,
|
|
x->e_mbd.plane[2].subsampling_x,
|
|
x->e_mbd.plane[2].subsampling_y);
|
|
}
|
|
|
|
static INLINE void set_partition_seg_context(VP9_COMP *cpi,
|
|
int mi_row, int mi_col) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
|
|
|
|
xd->above_seg_context = cm->above_seg_context + (mi_col >> 1);
|
|
xd->left_seg_context = cm->left_seg_context + ((mi_row >> 1) & 3);
|
|
}
|
|
|
|
static void set_offsets(VP9_COMP *cpi,
|
|
int mi_row, int mi_col, BLOCK_SIZE_TYPE bsize) {
|
|
MACROBLOCK *const x = &cpi->mb;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *mbmi;
|
|
const int dst_fb_idx = cm->new_fb_idx;
|
|
const int idx_str = xd->mode_info_stride * mi_row + mi_col;
|
|
const int bw = 1 << mi_width_log2(bsize), bh = 1 << mi_height_log2(bsize);
|
|
const int mb_row = mi_row >> 1;
|
|
const int mb_col = mi_col >> 1;
|
|
const int idx_map = mb_row * cm->mb_cols + mb_col;
|
|
int i;
|
|
|
|
// entropy context structures
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
xd->plane[i].above_context = cm->above_context[i] +
|
|
(mi_col * 2 >> xd->plane[i].subsampling_x);
|
|
xd->plane[i].left_context = cm->left_context[i] +
|
|
(((mi_row * 2) & 15) >> xd->plane[i].subsampling_y);
|
|
}
|
|
|
|
// partition contexts
|
|
set_partition_seg_context(cpi, mi_row, mi_col);
|
|
|
|
// Activity map pointer
|
|
x->mb_activity_ptr = &cpi->mb_activity_map[idx_map];
|
|
x->active_ptr = cpi->active_map + idx_map;
|
|
|
|
/* pointers to mode info contexts */
|
|
x->partition_info = x->pi + idx_str;
|
|
xd->mode_info_context = cm->mi + idx_str;
|
|
mbmi = &xd->mode_info_context->mbmi;
|
|
xd->prev_mode_info_context = cm->prev_mi + idx_str;
|
|
|
|
// Set up destination pointers
|
|
setup_dst_planes(xd, &cm->yv12_fb[dst_fb_idx], mi_row, mi_col);
|
|
|
|
/* Set up limit values for MV components to prevent them from
|
|
* extending beyond the UMV borders assuming 16x16 block size */
|
|
x->mv_row_min = -((mi_row * MI_SIZE) + VP9BORDERINPIXELS - VP9_INTERP_EXTEND);
|
|
x->mv_col_min = -((mi_col * MI_SIZE) + VP9BORDERINPIXELS - VP9_INTERP_EXTEND);
|
|
x->mv_row_max = ((cm->mi_rows - mi_row) * MI_SIZE +
|
|
(VP9BORDERINPIXELS - MI_SIZE * bh - VP9_INTERP_EXTEND));
|
|
x->mv_col_max = ((cm->mi_cols - mi_col) * MI_SIZE +
|
|
(VP9BORDERINPIXELS - MI_SIZE * bw - VP9_INTERP_EXTEND));
|
|
|
|
// Set up distance of MB to edge of frame in 1/8th pel units
|
|
assert(!(mi_col & (bw - 1)) && !(mi_row & (bh - 1)));
|
|
set_mi_row_col(cm, xd, mi_row, bh, mi_col, bw);
|
|
|
|
/* set up source buffers */
|
|
vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
|
|
|
|
/* R/D setup */
|
|
x->rddiv = cpi->RDDIV;
|
|
x->rdmult = cpi->RDMULT;
|
|
|
|
/* segment ID */
|
|
if (xd->segmentation_enabled) {
|
|
uint8_t *map = xd->update_mb_segmentation_map ? cpi->segmentation_map
|
|
: cm->last_frame_seg_map;
|
|
mbmi->segment_id = find_seg_id(map, bsize, mi_row,
|
|
cm->mi_rows, mi_col, cm->mi_cols);
|
|
|
|
assert(mbmi->segment_id <= (MAX_MB_SEGMENTS-1));
|
|
vp9_mb_init_quantizer(cpi, x);
|
|
|
|
if (xd->segmentation_enabled && cpi->seg0_cnt > 0 &&
|
|
!vp9_segfeature_active(xd, 0, SEG_LVL_REF_FRAME) &&
|
|
vp9_segfeature_active(xd, 1, SEG_LVL_REF_FRAME) &&
|
|
vp9_check_segref(xd, 1, INTRA_FRAME) +
|
|
vp9_check_segref(xd, 1, LAST_FRAME) +
|
|
vp9_check_segref(xd, 1, GOLDEN_FRAME) +
|
|
vp9_check_segref(xd, 1, ALTREF_FRAME) == 1) {
|
|
cpi->seg0_progress = (cpi->seg0_idx << 16) / cpi->seg0_cnt;
|
|
} else {
|
|
const int y = mb_row & ~3;
|
|
const int x = mb_col & ~3;
|
|
const int p16 = ((mb_row & 1) << 1) + (mb_col & 1);
|
|
const int p32 = ((mb_row & 2) << 2) + ((mb_col & 2) << 1);
|
|
const int tile_progress =
|
|
cm->cur_tile_mi_col_start * cm->mb_rows >> 1;
|
|
const int mb_cols =
|
|
(cm->cur_tile_mi_col_end - cm->cur_tile_mi_col_start) >> 1;
|
|
|
|
cpi->seg0_progress =
|
|
((y * mb_cols + x * 4 + p32 + p16 + tile_progress) << 16) / cm->MBs;
|
|
}
|
|
} else {
|
|
mbmi->segment_id = 0;
|
|
}
|
|
}
|
|
|
|
static void pick_sb_modes(VP9_COMP *cpi, int mi_row, int mi_col,
|
|
TOKENEXTRA **tp, int *totalrate, int *totaldist,
|
|
BLOCK_SIZE_TYPE bsize, PICK_MODE_CONTEXT *ctx) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &cpi->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
|
|
set_offsets(cpi, mi_row, mi_col, bsize);
|
|
xd->mode_info_context->mbmi.sb_type = bsize;
|
|
if (cpi->oxcf.tuning == VP8_TUNE_SSIM)
|
|
vp9_activity_masking(cpi, x);
|
|
|
|
/* Find best coding mode & reconstruct the MB so it is available
|
|
* as a predictor for MBs that follow in the SB */
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
vp9_rd_pick_intra_mode_sb(cpi, x, totalrate, totaldist, bsize, ctx);
|
|
} else {
|
|
vp9_rd_pick_inter_mode_sb(cpi, x, mi_row, mi_col, totalrate, totaldist,
|
|
bsize, ctx);
|
|
}
|
|
}
|
|
|
|
static void update_stats(VP9_COMP *cpi, int mi_row, int mi_col) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &cpi->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *mi = xd->mode_info_context;
|
|
MB_MODE_INFO *const mbmi = &mi->mbmi;
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
#ifdef MODE_STATS
|
|
y_modes[mbmi->mode]++;
|
|
#endif
|
|
} else {
|
|
int segment_id, seg_ref_active;
|
|
|
|
if (mbmi->ref_frame) {
|
|
int pred_context = vp9_get_pred_context(cm, xd, PRED_COMP);
|
|
|
|
if (mbmi->second_ref_frame <= INTRA_FRAME)
|
|
cpi->single_pred_count[pred_context]++;
|
|
else
|
|
cpi->comp_pred_count[pred_context]++;
|
|
}
|
|
|
|
#ifdef MODE_STATS
|
|
inter_y_modes[mbmi->mode]++;
|
|
|
|
if (mbmi->mode == SPLITMV) {
|
|
int b;
|
|
|
|
for (b = 0; b < x->partition_info->count; b++) {
|
|
inter_b_modes[x->partition_info->bmi[b].mode]++;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// If we have just a single reference frame coded for a segment then
|
|
// exclude from the reference frame counts used to work out
|
|
// probabilities. NOTE: At the moment we dont support custom trees
|
|
// for the reference frame coding for each segment but this is a
|
|
// possible future action.
|
|
segment_id = mbmi->segment_id;
|
|
seg_ref_active = vp9_segfeature_active(xd, segment_id,
|
|
SEG_LVL_REF_FRAME);
|
|
if (!seg_ref_active ||
|
|
((vp9_check_segref(xd, segment_id, INTRA_FRAME) +
|
|
vp9_check_segref(xd, segment_id, LAST_FRAME) +
|
|
vp9_check_segref(xd, segment_id, GOLDEN_FRAME) +
|
|
vp9_check_segref(xd, segment_id, ALTREF_FRAME)) > 1)) {
|
|
cpi->count_mb_ref_frame_usage[mbmi->ref_frame]++;
|
|
}
|
|
// Count of last ref frame 0,0 usage
|
|
if ((mbmi->mode == ZEROMV) && (mbmi->ref_frame == LAST_FRAME))
|
|
cpi->inter_zz_count++;
|
|
}
|
|
}
|
|
|
|
static void set_block_index(MACROBLOCKD *xd, int idx,
|
|
BLOCK_SIZE_TYPE bsize) {
|
|
if (bsize >= BLOCK_SIZE_SB32X32) {
|
|
xd->sb_index = idx;
|
|
} else if (bsize >= BLOCK_SIZE_MB16X16) {
|
|
xd->mb_index = idx;
|
|
} else {
|
|
xd->b_index = idx;
|
|
}
|
|
}
|
|
|
|
static PICK_MODE_CONTEXT *get_block_context(MACROBLOCK *x,
|
|
BLOCK_SIZE_TYPE bsize) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
|
|
switch (bsize) {
|
|
case BLOCK_SIZE_SB64X64:
|
|
return &x->sb64_context;
|
|
case BLOCK_SIZE_SB64X32:
|
|
return &x->sb64x32_context[xd->sb_index];
|
|
case BLOCK_SIZE_SB32X64:
|
|
return &x->sb32x64_context[xd->sb_index];
|
|
case BLOCK_SIZE_SB32X32:
|
|
return &x->sb32_context[xd->sb_index];
|
|
case BLOCK_SIZE_SB32X16:
|
|
return &x->sb32x16_context[xd->sb_index][xd->mb_index];
|
|
case BLOCK_SIZE_SB16X32:
|
|
return &x->sb16x32_context[xd->sb_index][xd->mb_index];
|
|
case BLOCK_SIZE_MB16X16:
|
|
return &x->mb_context[xd->sb_index][xd->mb_index];
|
|
case BLOCK_SIZE_SB16X8:
|
|
return &x->sb16x8_context[xd->sb_index][xd->mb_index][xd->b_index];
|
|
case BLOCK_SIZE_SB8X16:
|
|
return &x->sb8x16_context[xd->sb_index][xd->mb_index][xd->b_index];
|
|
case BLOCK_SIZE_SB8X8:
|
|
return &x->sb8_context[xd->sb_index][xd->mb_index][xd->b_index];
|
|
default:
|
|
assert(0);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static void encode_b(VP9_COMP *cpi, TOKENEXTRA **tp,
|
|
int mi_row, int mi_col, int output_enabled,
|
|
BLOCK_SIZE_TYPE bsize, int sub_index) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &cpi->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
|
|
return;
|
|
|
|
if (sub_index != -1)
|
|
set_block_index(xd, sub_index, bsize);
|
|
set_offsets(cpi, mi_row, mi_col, bsize);
|
|
update_state(cpi, get_block_context(x, bsize), bsize, output_enabled);
|
|
encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize);
|
|
|
|
if (output_enabled) {
|
|
update_stats(cpi, mi_row, mi_col);
|
|
|
|
(*tp)->token = EOSB_TOKEN;
|
|
(*tp)++;
|
|
}
|
|
}
|
|
|
|
static void encode_sb(VP9_COMP *cpi, TOKENEXTRA **tp,
|
|
int mi_row, int mi_col, int output_enabled,
|
|
BLOCK_SIZE_TYPE level,
|
|
BLOCK_SIZE_TYPE c1, BLOCK_SIZE_TYPE c2[4],
|
|
BLOCK_SIZE_TYPE c3[4][4]
|
|
) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &cpi->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const int bsl = mi_width_log2(level), bs = 1 << (bsl - 1);
|
|
const int bwl = mi_width_log2(c1), bhl = mi_height_log2(c1);
|
|
int UNINITIALIZED_IS_SAFE(pl);
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
|
|
return;
|
|
|
|
if (level > BLOCK_SIZE_SB8X8) {
|
|
set_partition_seg_context(cpi, mi_row, mi_col);
|
|
pl = partition_plane_context(xd, level);
|
|
}
|
|
|
|
if (bsl == bwl && bsl == bhl) {
|
|
if (output_enabled && level > BLOCK_SIZE_SB8X8)
|
|
cpi->partition_count[pl][PARTITION_NONE]++;
|
|
encode_b(cpi, tp, mi_row, mi_col, output_enabled, c1, -1);
|
|
} else if (bsl == bhl && bsl > bwl) {
|
|
if (output_enabled)
|
|
cpi->partition_count[pl][PARTITION_VERT]++;
|
|
encode_b(cpi, tp, mi_row, mi_col, output_enabled, c1, 0);
|
|
encode_b(cpi, tp, mi_row, mi_col + bs, output_enabled, c1, 1);
|
|
} else if (bsl == bwl && bsl > bhl) {
|
|
if (output_enabled)
|
|
cpi->partition_count[pl][PARTITION_HORZ]++;
|
|
encode_b(cpi, tp, mi_row, mi_col, output_enabled, c1, 0);
|
|
encode_b(cpi, tp, mi_row + bs, mi_col, output_enabled, c1, 1);
|
|
} else {
|
|
BLOCK_SIZE_TYPE subsize;
|
|
int i;
|
|
|
|
assert(bwl < bsl && bhl < bsl);
|
|
if (level == BLOCK_SIZE_SB64X64) {
|
|
subsize = BLOCK_SIZE_SB32X32;
|
|
} else if (level == BLOCK_SIZE_SB32X32) {
|
|
subsize = BLOCK_SIZE_MB16X16;
|
|
} else {
|
|
assert(level == BLOCK_SIZE_MB16X16);
|
|
subsize = BLOCK_SIZE_SB8X8;
|
|
}
|
|
|
|
if (output_enabled)
|
|
cpi->partition_count[pl][PARTITION_SPLIT]++;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
const int x_idx = i & 1, y_idx = i >> 1;
|
|
|
|
set_block_index(xd, i, subsize);
|
|
encode_sb(cpi, tp, mi_row + y_idx * bs, mi_col + x_idx * bs,
|
|
output_enabled, subsize,
|
|
c2 ? c2[i] : c1, c3 ? c3[i] : NULL, NULL);
|
|
}
|
|
}
|
|
|
|
if (level > BLOCK_SIZE_SB8X8 &&
|
|
(level == BLOCK_SIZE_MB16X16 || bsl == bwl || bsl == bhl)) {
|
|
set_partition_seg_context(cpi, mi_row, mi_col);
|
|
update_partition_context(xd, c1, level);
|
|
}
|
|
}
|
|
|
|
static void encode_sb_row(VP9_COMP *cpi,
|
|
int mi_row,
|
|
TOKENEXTRA **tp,
|
|
int *totalrate) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &cpi->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
int mi_col, pl;
|
|
|
|
// Initialize the left context for the new SB row
|
|
vpx_memset(&cm->left_context, 0, sizeof(cm->left_context));
|
|
vpx_memset(cm->left_seg_context, 0, sizeof(cm->left_seg_context));
|
|
|
|
// Code each SB in the row
|
|
for (mi_col = cm->cur_tile_mi_col_start;
|
|
mi_col < cm->cur_tile_mi_col_end; mi_col += 8) {
|
|
int i, p;
|
|
BLOCK_SIZE_TYPE mb_partitioning[4][4];
|
|
BLOCK_SIZE_TYPE sb_partitioning[4];
|
|
BLOCK_SIZE_TYPE sb64_partitioning = BLOCK_SIZE_SB32X32;
|
|
int sb64_rate = 0, sb64_dist = 0;
|
|
int sb64_skip = 0;
|
|
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
|
|
PARTITION_CONTEXT seg_l[4], seg_a[4];
|
|
TOKENEXTRA *tp_orig = *tp;
|
|
|
|
for (p = 0; p < MAX_MB_PLANE; p++) {
|
|
memcpy(a + 16 * p, cm->above_context[p] +
|
|
(mi_col * 2 >> xd->plane[p].subsampling_x),
|
|
sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_x);
|
|
memcpy(l + 16 * p, cm->left_context[p],
|
|
sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_y);
|
|
}
|
|
memcpy(&seg_a, cm->above_seg_context + (mi_col >> 1),
|
|
sizeof(seg_a));
|
|
memcpy(&seg_l, cm->left_seg_context, sizeof(seg_l));
|
|
|
|
// FIXME(rbultje): this function should probably be rewritten to be
|
|
// recursive at some point in the future.
|
|
for (i = 0; i < 4; i++) {
|
|
const int x_idx = (i & 1) << 2;
|
|
const int y_idx = (i & 2) << 1;
|
|
int sb32_rate = 0, sb32_dist = 0;
|
|
int splitmodes_used = 0;
|
|
int sb32_skip = 0;
|
|
int j;
|
|
ENTROPY_CONTEXT l2[8 * MAX_MB_PLANE], a2[8 * MAX_MB_PLANE];
|
|
|
|
sb_partitioning[i] = BLOCK_SIZE_MB16X16;
|
|
if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
|
|
continue;
|
|
|
|
xd->sb_index = i;
|
|
|
|
/* Function should not modify L & A contexts; save and restore on exit */
|
|
for (p = 0; p < MAX_MB_PLANE; p++) {
|
|
vpx_memcpy(l2 + 8 * p,
|
|
cm->left_context[p] +
|
|
(y_idx * 2 >> xd->plane[p].subsampling_y),
|
|
sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_y);
|
|
vpx_memcpy(a2 + 8 * p,
|
|
cm->above_context[p] +
|
|
((mi_col + x_idx) * 2 >> xd->plane[p].subsampling_x),
|
|
sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_x);
|
|
}
|
|
|
|
/* Encode MBs in raster order within the SB */
|
|
for (j = 0; j < 4; j++) {
|
|
const int x_idx_m = x_idx + ((j & 1) << 1);
|
|
const int y_idx_m = y_idx + ((j >> 1) << 1);
|
|
int r, d;
|
|
int r2, d2, mb16_rate = 0, mb16_dist = 0, k;
|
|
ENTROPY_CONTEXT l3[4 * MAX_MB_PLANE], a3[4 * MAX_MB_PLANE];
|
|
|
|
mb_partitioning[i][j] = BLOCK_SIZE_SB8X8;
|
|
|
|
if (mi_row + y_idx_m >= cm->mi_rows ||
|
|
mi_col + x_idx_m >= cm->mi_cols) {
|
|
// MB lies outside frame, move on
|
|
continue;
|
|
}
|
|
|
|
// Index of the MB in the SB 0..3
|
|
xd->mb_index = j;
|
|
|
|
for (p = 0; p < MAX_MB_PLANE; p++) {
|
|
vpx_memcpy(l3 + 4 * p,
|
|
cm->left_context[p] +
|
|
(y_idx_m * 2 >> xd->plane[p].subsampling_y),
|
|
sizeof(ENTROPY_CONTEXT) * 4 >> xd->plane[p].subsampling_y);
|
|
vpx_memcpy(a3 + 4 * p,
|
|
cm->above_context[p] +
|
|
((mi_col + x_idx_m) * 2 >> xd->plane[p].subsampling_x),
|
|
sizeof(ENTROPY_CONTEXT) * 4 >> xd->plane[p].subsampling_x);
|
|
}
|
|
|
|
for (k = 0; k < 4; k++) {
|
|
xd->b_index = k;
|
|
|
|
// try 8x8 coding
|
|
pick_sb_modes(cpi, mi_row + y_idx_m + (k >> 1),
|
|
mi_col + x_idx_m + (k & 1),
|
|
tp, &r, &d, BLOCK_SIZE_SB8X8,
|
|
&x->sb8_context[xd->sb_index][xd->mb_index]
|
|
[xd->b_index]);
|
|
mb16_rate += r;
|
|
mb16_dist += d;
|
|
update_state(cpi, &x->sb8_context[xd->sb_index][xd->mb_index]
|
|
[xd->b_index],
|
|
BLOCK_SIZE_SB8X8, 0);
|
|
encode_superblock(cpi, tp,
|
|
0, mi_row + y_idx_m + (k >> 1),
|
|
mi_col + x_idx_m + (k & 1),
|
|
BLOCK_SIZE_SB8X8);
|
|
}
|
|
set_partition_seg_context(cpi, mi_row + y_idx_m, mi_col + x_idx_m);
|
|
pl = partition_plane_context(xd, BLOCK_SIZE_MB16X16);
|
|
mb16_rate += x->partition_cost[pl][PARTITION_SPLIT];
|
|
for (p = 0; p < MAX_MB_PLANE; p++) {
|
|
vpx_memcpy(cm->left_context[p] +
|
|
(y_idx_m * 2 >> xd->plane[p].subsampling_y),
|
|
l3 + 4 * p,
|
|
sizeof(ENTROPY_CONTEXT) * 4 >> xd->plane[p].subsampling_y);
|
|
vpx_memcpy(cm->above_context[p] +
|
|
((mi_col + x_idx_m) * 2 >> xd->plane[p].subsampling_x),
|
|
a3 + 4 * p,
|
|
sizeof(ENTROPY_CONTEXT) * 4 >> xd->plane[p].subsampling_x);
|
|
}
|
|
|
|
// try 8x16 coding
|
|
r2 = 0;
|
|
d2 = 0;
|
|
xd->b_index = 0;
|
|
pick_sb_modes(cpi, mi_row + y_idx_m, mi_col + x_idx_m,
|
|
tp, &r, &d, BLOCK_SIZE_SB8X16,
|
|
&x->sb8x16_context[xd->sb_index][xd->mb_index]
|
|
[xd->b_index]);
|
|
r2 += r;
|
|
d2 += d;
|
|
update_state(cpi, &x->sb8x16_context[xd->sb_index][xd->mb_index]
|
|
[xd->b_index],
|
|
BLOCK_SIZE_SB8X16, 0);
|
|
encode_superblock(cpi, tp,
|
|
0, mi_row + y_idx_m, mi_col + x_idx_m,
|
|
BLOCK_SIZE_SB8X16);
|
|
xd->b_index = 1;
|
|
pick_sb_modes(cpi, mi_row + y_idx_m, mi_col + x_idx_m + 1,
|
|
tp, &r, &d, BLOCK_SIZE_SB8X16,
|
|
&x->sb8x16_context[xd->sb_index][xd->mb_index]
|
|
[xd->b_index]);
|
|
r2 += r;
|
|
d2 += d;
|
|
set_partition_seg_context(cpi, mi_row + y_idx_m, mi_col + x_idx_m);
|
|
pl = partition_plane_context(xd, BLOCK_SIZE_MB16X16);
|
|
r2 += x->partition_cost[pl][PARTITION_VERT];
|
|
if (RDCOST(x->rdmult, x->rddiv, r2, d2) <
|
|
RDCOST(x->rdmult, x->rddiv, mb16_rate, mb16_dist)) {
|
|
mb16_rate = r2;
|
|
mb16_dist = d2;
|
|
mb_partitioning[i][j] = BLOCK_SIZE_SB8X16;
|
|
}
|
|
for (p = 0; p < MAX_MB_PLANE; p++) {
|
|
vpx_memcpy(cm->left_context[p] +
|
|
(y_idx_m * 2 >> xd->plane[p].subsampling_y),
|
|
l3 + 4 * p,
|
|
sizeof(ENTROPY_CONTEXT) * 4 >> xd->plane[p].subsampling_y);
|
|
vpx_memcpy(cm->above_context[p] +
|
|
((mi_col + x_idx_m) * 2 >> xd->plane[p].subsampling_x),
|
|
a3 + 4 * p,
|
|
sizeof(ENTROPY_CONTEXT) * 4 >> xd->plane[p].subsampling_x);
|
|
}
|
|
|
|
// try 16x8 coding
|
|
r2 = 0;
|
|
d2 = 0;
|
|
xd->b_index = 0;
|
|
pick_sb_modes(cpi, mi_row + y_idx_m, mi_col + x_idx_m,
|
|
tp, &r, &d, BLOCK_SIZE_SB16X8,
|
|
&x->sb16x8_context[xd->sb_index][xd->mb_index]
|
|
[xd->b_index]);
|
|
r2 += r;
|
|
d2 += d;
|
|
update_state(cpi, &x->sb16x8_context[xd->sb_index][xd->mb_index]
|
|
[xd->b_index],
|
|
BLOCK_SIZE_SB16X8, 0);
|
|
encode_superblock(cpi, tp,
|
|
0, mi_row + y_idx_m, mi_col + x_idx_m,
|
|
BLOCK_SIZE_SB16X8);
|
|
xd->b_index = 1;
|
|
pick_sb_modes(cpi, mi_row + y_idx_m + 1, mi_col + x_idx_m,
|
|
tp, &r, &d, BLOCK_SIZE_SB16X8,
|
|
&x->sb16x8_context[xd->sb_index][xd->mb_index]
|
|
[xd->b_index]);
|
|
r2 += r;
|
|
d2 += d;
|
|
set_partition_seg_context(cpi, mi_row + y_idx_m, mi_col + x_idx_m);
|
|
pl = partition_plane_context(xd, BLOCK_SIZE_MB16X16);
|
|
r2 += x->partition_cost[pl][PARTITION_HORZ];
|
|
if (RDCOST(x->rdmult, x->rddiv, r2, d2) <
|
|
RDCOST(x->rdmult, x->rddiv, mb16_rate, mb16_dist)) {
|
|
mb16_rate = r2;
|
|
mb16_dist = d2;
|
|
mb_partitioning[i][j] = BLOCK_SIZE_SB16X8;
|
|
}
|
|
for (p = 0; p < MAX_MB_PLANE; p++) {
|
|
vpx_memcpy(cm->left_context[p] +
|
|
(y_idx_m * 2 >> xd->plane[p].subsampling_y),
|
|
l3 + 4 * p,
|
|
sizeof(ENTROPY_CONTEXT) * 4 >> xd->plane[p].subsampling_y);
|
|
vpx_memcpy(cm->above_context[p] +
|
|
((mi_col + x_idx_m) * 2 >> xd->plane[p].subsampling_x),
|
|
a3 + 4 * p,
|
|
sizeof(ENTROPY_CONTEXT) * 4 >> xd->plane[p].subsampling_x);
|
|
}
|
|
|
|
// try as 16x16
|
|
pick_sb_modes(cpi, mi_row + y_idx_m, mi_col + x_idx_m,
|
|
tp, &r, &d, BLOCK_SIZE_MB16X16,
|
|
&x->mb_context[xd->sb_index][xd->mb_index]);
|
|
set_partition_seg_context(cpi, mi_row + y_idx_m, mi_col + x_idx_m);
|
|
pl = partition_plane_context(xd, BLOCK_SIZE_MB16X16);
|
|
r += x->partition_cost[pl][PARTITION_NONE];
|
|
if (RDCOST(x->rdmult, x->rddiv, r, d) <
|
|
RDCOST(x->rdmult, x->rddiv, mb16_rate, mb16_dist)) {
|
|
mb16_rate = r;
|
|
mb16_dist = d;
|
|
mb_partitioning[i][j] = BLOCK_SIZE_MB16X16;
|
|
}
|
|
sb32_rate += mb16_rate;
|
|
sb32_dist += mb16_dist;
|
|
|
|
// Dummy encode, do not do the tokenization
|
|
encode_sb(cpi, tp, mi_row + y_idx_m, mi_col + x_idx_m, 0,
|
|
BLOCK_SIZE_MB16X16, mb_partitioning[i][j], NULL, NULL);
|
|
}
|
|
|
|
/* Restore L & A coding context to those in place on entry */
|
|
for (p = 0; p < MAX_MB_PLANE; p++) {
|
|
vpx_memcpy(cm->left_context[p] +
|
|
(y_idx * 2 >> xd->plane[p].subsampling_y),
|
|
l2 + 8 * p,
|
|
sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_y);
|
|
vpx_memcpy(cm->above_context[p] +
|
|
((mi_col + x_idx) * 2 >> xd->plane[p].subsampling_x),
|
|
a2 + 8 * p,
|
|
sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_x);
|
|
}
|
|
|
|
set_partition_seg_context(cpi, mi_row + y_idx, mi_col + x_idx);
|
|
pl = partition_plane_context(xd, BLOCK_SIZE_SB32X32);
|
|
sb32_rate += x->partition_cost[pl][PARTITION_SPLIT];
|
|
|
|
if (cpi->sf.splitmode_breakout) {
|
|
sb32_skip = splitmodes_used;
|
|
sb64_skip += splitmodes_used;
|
|
}
|
|
|
|
// check 32x16
|
|
if (mi_col + x_idx + 4 <= cm->mi_cols) {
|
|
int r, d;
|
|
|
|
xd->mb_index = 0;
|
|
pick_sb_modes(cpi, mi_row + y_idx, mi_col + x_idx,
|
|
tp, &r, &d, BLOCK_SIZE_SB32X16,
|
|
&x->sb32x16_context[xd->sb_index][xd->mb_index]);
|
|
if (mi_row + y_idx + 2 < cm->mi_rows) {
|
|
int r2, d2;
|
|
|
|
update_state(cpi, &x->sb32x16_context[xd->sb_index][xd->mb_index],
|
|
BLOCK_SIZE_SB32X16, 0);
|
|
encode_superblock(cpi, tp,
|
|
0, mi_row + y_idx, mi_col + x_idx,
|
|
BLOCK_SIZE_SB32X16);
|
|
xd->mb_index = 1;
|
|
pick_sb_modes(cpi, mi_row + y_idx + 2,
|
|
mi_col + x_idx, tp, &r2, &d2, BLOCK_SIZE_SB32X16,
|
|
&x->sb32x16_context[xd->sb_index][xd->mb_index]);
|
|
r += r2;
|
|
d += d2;
|
|
}
|
|
|
|
set_partition_seg_context(cpi, mi_row + y_idx, mi_col + x_idx);
|
|
pl = partition_plane_context(xd, BLOCK_SIZE_SB32X32);
|
|
r += x->partition_cost[pl][PARTITION_HORZ];
|
|
|
|
/* is this better than MB coding? */
|
|
if (RDCOST(x->rdmult, x->rddiv, r, d) <
|
|
RDCOST(x->rdmult, x->rddiv, sb32_rate, sb32_dist)) {
|
|
sb32_rate = r;
|
|
sb32_dist = d;
|
|
sb_partitioning[i] = BLOCK_SIZE_SB32X16;
|
|
}
|
|
|
|
for (p = 0; p < MAX_MB_PLANE; p++) {
|
|
vpx_memcpy(cm->left_context[p] +
|
|
(y_idx * 2 >> xd->plane[p].subsampling_y),
|
|
l2 + 8 * p,
|
|
sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_y);
|
|
vpx_memcpy(cm->above_context[p] +
|
|
((mi_col + x_idx) * 2 >> xd->plane[p].subsampling_x),
|
|
a2 + 8 * p,
|
|
sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_x);
|
|
}
|
|
}
|
|
|
|
// check 16x32
|
|
if (mi_row + y_idx + 4 <= cm->mi_rows) {
|
|
int r, d;
|
|
|
|
xd->mb_index = 0;
|
|
pick_sb_modes(cpi, mi_row + y_idx, mi_col + x_idx,
|
|
tp, &r, &d, BLOCK_SIZE_SB16X32,
|
|
&x->sb16x32_context[xd->sb_index][xd->mb_index]);
|
|
if (mi_col + x_idx + 2 < cm->mi_cols) {
|
|
int r2, d2;
|
|
|
|
update_state(cpi, &x->sb16x32_context[xd->sb_index][xd->mb_index],
|
|
BLOCK_SIZE_SB16X32, 0);
|
|
encode_superblock(cpi, tp,
|
|
0, mi_row + y_idx, mi_col + x_idx,
|
|
BLOCK_SIZE_SB16X32);
|
|
xd->mb_index = 1;
|
|
pick_sb_modes(cpi, mi_row + y_idx,
|
|
mi_col + x_idx + 2,
|
|
tp, &r2, &d2, BLOCK_SIZE_SB16X32,
|
|
&x->sb16x32_context[xd->sb_index][xd->mb_index]);
|
|
r += r2;
|
|
d += d2;
|
|
}
|
|
|
|
set_partition_seg_context(cpi, mi_row + y_idx, mi_col + x_idx);
|
|
pl = partition_plane_context(xd, BLOCK_SIZE_SB32X32);
|
|
r += x->partition_cost[pl][PARTITION_VERT];
|
|
|
|
/* is this better than MB coding? */
|
|
if (RDCOST(x->rdmult, x->rddiv, r, d) <
|
|
RDCOST(x->rdmult, x->rddiv, sb32_rate, sb32_dist)) {
|
|
sb32_rate = r;
|
|
sb32_dist = d;
|
|
sb_partitioning[i] = BLOCK_SIZE_SB16X32;
|
|
}
|
|
|
|
for (p = 0; p < MAX_MB_PLANE; p++) {
|
|
vpx_memcpy(cm->left_context[p] +
|
|
(y_idx * 2 >> xd->plane[p].subsampling_y),
|
|
l2 + 8 * p,
|
|
sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_y);
|
|
vpx_memcpy(cm->above_context[p] +
|
|
((mi_col + x_idx) * 2 >> xd->plane[p].subsampling_x),
|
|
a2 + 8 * p,
|
|
sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_x);
|
|
}
|
|
}
|
|
|
|
if (!sb32_skip &&
|
|
mi_col + x_idx + 4 <= cm->mi_cols &&
|
|
mi_row + y_idx + 4 <= cm->mi_rows) {
|
|
int r, d;
|
|
|
|
/* Pick a mode assuming that it applies to all 4 of the MBs in the SB */
|
|
pick_sb_modes(cpi, mi_row + y_idx, mi_col + x_idx,
|
|
tp, &r, &d, BLOCK_SIZE_SB32X32,
|
|
&x->sb32_context[xd->sb_index]);
|
|
|
|
set_partition_seg_context(cpi, mi_row + y_idx, mi_col + x_idx);
|
|
pl = partition_plane_context(xd, BLOCK_SIZE_SB32X32);
|
|
r += x->partition_cost[pl][PARTITION_NONE];
|
|
|
|
if (RDCOST(x->rdmult, x->rddiv, r, d) <
|
|
RDCOST(x->rdmult, x->rddiv, sb32_rate, sb32_dist)) {
|
|
sb32_rate = r;
|
|
sb32_dist = d;
|
|
sb_partitioning[i] = BLOCK_SIZE_SB32X32;
|
|
}
|
|
}
|
|
|
|
// If we used 16x16 instead of 32x32 then skip 64x64 (if enabled).
|
|
if (cpi->sf.mb16_breakout && sb_partitioning[i] != BLOCK_SIZE_SB32X32) {
|
|
++sb64_skip;
|
|
}
|
|
|
|
sb64_rate += sb32_rate;
|
|
sb64_dist += sb32_dist;
|
|
|
|
/* Encode SB using best computed mode(s) */
|
|
// FIXME(rbultje): there really shouldn't be any need to encode_mb/sb
|
|
// for each level that we go up, we can just keep tokens and recon
|
|
// pixels of the lower level; also, inverting SB/MB order (big->small
|
|
// instead of small->big) means we can use as threshold for small, which
|
|
// may enable breakouts if RD is not good enough (i.e. faster)
|
|
encode_sb(cpi, tp, mi_row + y_idx, mi_col + x_idx, 0,
|
|
BLOCK_SIZE_SB32X32, sb_partitioning[i], mb_partitioning[i],
|
|
NULL);
|
|
}
|
|
|
|
for (p = 0; p < MAX_MB_PLANE; p++) {
|
|
memcpy(cm->above_context[p] +
|
|
(mi_col * 2 >> xd->plane[p].subsampling_x),
|
|
a + 16 * p,
|
|
sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_x);
|
|
memcpy(cm->left_context[p], l + 16 * p,
|
|
sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_y);
|
|
}
|
|
memcpy(cm->above_seg_context + (mi_col >> 1), &seg_a,
|
|
sizeof(seg_a));
|
|
memcpy(cm->left_seg_context, &seg_l, sizeof(seg_l));
|
|
|
|
set_partition_seg_context(cpi, mi_row, mi_col);
|
|
pl = partition_plane_context(xd, BLOCK_SIZE_SB64X64);
|
|
sb64_rate += x->partition_cost[pl][PARTITION_SPLIT];
|
|
|
|
// check 64x32
|
|
if (mi_col + 8 <= cm->mi_cols && !(cm->mb_rows & 1)) {
|
|
int r, d;
|
|
|
|
xd->sb_index = 0;
|
|
pick_sb_modes(cpi, mi_row, mi_col,
|
|
tp, &r, &d, BLOCK_SIZE_SB64X32,
|
|
&x->sb64x32_context[xd->sb_index]);
|
|
if (mi_row + 4 != cm->mi_rows) {
|
|
int r2, d2;
|
|
|
|
update_state(cpi, &x->sb64x32_context[xd->sb_index],
|
|
BLOCK_SIZE_SB64X32, 0);
|
|
encode_superblock(cpi, tp,
|
|
0, mi_row, mi_col, BLOCK_SIZE_SB64X32);
|
|
xd->sb_index = 1;
|
|
pick_sb_modes(cpi, mi_row + 4, mi_col,
|
|
tp, &r2, &d2, BLOCK_SIZE_SB64X32,
|
|
&x->sb64x32_context[xd->sb_index]);
|
|
r += r2;
|
|
d += d2;
|
|
}
|
|
|
|
set_partition_seg_context(cpi, mi_row, mi_col);
|
|
pl = partition_plane_context(xd, BLOCK_SIZE_SB64X64);
|
|
r += x->partition_cost[pl][PARTITION_HORZ];
|
|
|
|
/* is this better than MB coding? */
|
|
if (RDCOST(x->rdmult, x->rddiv, r, d) <
|
|
RDCOST(x->rdmult, x->rddiv, sb64_rate, sb64_dist)) {
|
|
sb64_rate = r;
|
|
sb64_dist = d;
|
|
sb64_partitioning = BLOCK_SIZE_SB64X32;
|
|
}
|
|
|
|
for (p = 0; p < MAX_MB_PLANE; p++) {
|
|
memcpy(cm->above_context[p] +
|
|
(mi_col * 2 >> xd->plane[p].subsampling_x),
|
|
a + 16 * p,
|
|
sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_x);
|
|
memcpy(cm->left_context[p], l + 16 * p,
|
|
sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_y);
|
|
}
|
|
}
|
|
|
|
// check 32x64
|
|
if (mi_row + 8 <= cm->mi_rows && !(cm->mb_cols & 1)) {
|
|
int r, d;
|
|
|
|
xd->sb_index = 0;
|
|
pick_sb_modes(cpi, mi_row, mi_col,
|
|
tp, &r, &d, BLOCK_SIZE_SB32X64,
|
|
&x->sb32x64_context[xd->sb_index]);
|
|
if (mi_col + 4 != cm->mi_cols) {
|
|
int r2, d2;
|
|
|
|
update_state(cpi, &x->sb32x64_context[xd->sb_index],
|
|
BLOCK_SIZE_SB32X64, 0);
|
|
encode_superblock(cpi, tp,
|
|
0, mi_row, mi_col, BLOCK_SIZE_SB32X64);
|
|
xd->sb_index = 1;
|
|
pick_sb_modes(cpi, mi_row, mi_col + 4,
|
|
tp, &r2, &d2, BLOCK_SIZE_SB32X64,
|
|
&x->sb32x64_context[xd->sb_index]);
|
|
r += r2;
|
|
d += d2;
|
|
}
|
|
|
|
set_partition_seg_context(cpi, mi_row, mi_col);
|
|
pl = partition_plane_context(xd, BLOCK_SIZE_SB64X64);
|
|
r += x->partition_cost[pl][PARTITION_VERT];
|
|
|
|
/* is this better than MB coding? */
|
|
if (RDCOST(x->rdmult, x->rddiv, r, d) <
|
|
RDCOST(x->rdmult, x->rddiv, sb64_rate, sb64_dist)) {
|
|
sb64_rate = r;
|
|
sb64_dist = d;
|
|
sb64_partitioning = BLOCK_SIZE_SB32X64;
|
|
}
|
|
|
|
for (p = 0; p < MAX_MB_PLANE; p++) {
|
|
memcpy(cm->above_context[p] +
|
|
(mi_col * 2 >> xd->plane[p].subsampling_x),
|
|
a + 16 * p,
|
|
sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_x);
|
|
memcpy(cm->left_context[p], l + 16 * p,
|
|
sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_y);
|
|
}
|
|
}
|
|
|
|
if (!sb64_skip &&
|
|
mi_col + 8 <= cm->mi_cols &&
|
|
mi_row + 8 <= cm->mi_rows) {
|
|
int r, d;
|
|
|
|
pick_sb_modes(cpi, mi_row, mi_col, tp, &r, &d,
|
|
BLOCK_SIZE_SB64X64, &x->sb64_context);
|
|
|
|
set_partition_seg_context(cpi, mi_row, mi_col);
|
|
pl = partition_plane_context(xd, BLOCK_SIZE_SB64X64);
|
|
r += x->partition_cost[pl][PARTITION_NONE];
|
|
|
|
if (RDCOST(x->rdmult, x->rddiv, r, d) <
|
|
RDCOST(x->rdmult, x->rddiv, sb64_rate, sb64_dist)) {
|
|
sb64_rate = r;
|
|
sb64_dist = d;
|
|
sb64_partitioning = BLOCK_SIZE_SB64X64;
|
|
}
|
|
}
|
|
|
|
assert(tp_orig == *tp);
|
|
encode_sb(cpi, tp, mi_row, mi_col, 1, BLOCK_SIZE_SB64X64,
|
|
sb64_partitioning, sb_partitioning, mb_partitioning);
|
|
assert(tp_orig < *tp);
|
|
}
|
|
}
|
|
|
|
static void init_encode_frame_mb_context(VP9_COMP *cpi) {
|
|
MACROBLOCK *const x = &cpi->mb;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
|
|
x->act_zbin_adj = 0;
|
|
cpi->seg0_idx = 0;
|
|
vpx_memset(cpi->ref_pred_count, 0, sizeof(cpi->ref_pred_count));
|
|
|
|
xd->mode_info_stride = cm->mode_info_stride;
|
|
xd->frame_type = cm->frame_type;
|
|
|
|
xd->frames_since_golden = cm->frames_since_golden;
|
|
xd->frames_till_alt_ref_frame = cm->frames_till_alt_ref_frame;
|
|
|
|
// reset intra mode contexts
|
|
if (cm->frame_type == KEY_FRAME)
|
|
vp9_init_mbmode_probs(cm);
|
|
|
|
// Copy data over into macro block data structures.
|
|
vp9_setup_src_planes(x, cpi->Source, 0, 0);
|
|
|
|
// TODO(jkoleszar): are these initializations required?
|
|
setup_pre_planes(xd, &cm->yv12_fb[cm->ref_frame_map[cpi->lst_fb_idx]], NULL,
|
|
0, 0, NULL, NULL);
|
|
setup_dst_planes(xd, &cm->yv12_fb[cm->new_fb_idx], 0, 0);
|
|
|
|
vp9_build_block_offsets(x);
|
|
|
|
vp9_setup_block_dptrs(&x->e_mbd);
|
|
|
|
xd->mode_info_context->mbmi.mode = DC_PRED;
|
|
xd->mode_info_context->mbmi.uv_mode = DC_PRED;
|
|
|
|
vp9_zero(cpi->count_mb_ref_frame_usage)
|
|
vp9_zero(cpi->bmode_count)
|
|
vp9_zero(cpi->ymode_count)
|
|
vp9_zero(cpi->y_uv_mode_count)
|
|
vp9_zero(cpi->sub_mv_ref_count)
|
|
vp9_zero(cpi->common.fc.mv_ref_ct)
|
|
vp9_zero(cpi->sb_ymode_count)
|
|
vp9_zero(cpi->partition_count);
|
|
|
|
// Note: this memset assumes above_context[0], [1] and [2]
|
|
// are allocated as part of the same buffer.
|
|
vpx_memset(cm->above_context[0], 0, sizeof(ENTROPY_CONTEXT) * 4 *
|
|
MAX_MB_PLANE * mb_cols_aligned_to_sb(cm));
|
|
vpx_memset(cm->above_seg_context, 0, sizeof(PARTITION_CONTEXT) *
|
|
mb_cols_aligned_to_sb(cm));
|
|
}
|
|
|
|
static void switch_lossless_mode(VP9_COMP *cpi, int lossless) {
|
|
if (lossless) {
|
|
cpi->mb.fwd_txm8x4 = vp9_short_walsh8x4;
|
|
cpi->mb.fwd_txm4x4 = vp9_short_walsh4x4;
|
|
cpi->mb.e_mbd.inv_txm4x4_1 = vp9_short_iwalsh4x4_1;
|
|
cpi->mb.e_mbd.inv_txm4x4 = vp9_short_iwalsh4x4;
|
|
cpi->mb.optimize = 0;
|
|
cpi->common.filter_level = 0;
|
|
cpi->zbin_mode_boost_enabled = 0;
|
|
cpi->common.txfm_mode = ONLY_4X4;
|
|
} else {
|
|
cpi->mb.fwd_txm8x4 = vp9_short_fdct8x4;
|
|
cpi->mb.fwd_txm4x4 = vp9_short_fdct4x4;
|
|
cpi->mb.e_mbd.inv_txm4x4_1 = vp9_short_idct4x4_1;
|
|
cpi->mb.e_mbd.inv_txm4x4 = vp9_short_idct4x4;
|
|
}
|
|
}
|
|
|
|
|
|
static void encode_frame_internal(VP9_COMP *cpi) {
|
|
int mi_row;
|
|
MACROBLOCK *const x = &cpi->mb;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
int totalrate;
|
|
|
|
// fprintf(stderr, "encode_frame_internal frame %d (%d) type %d\n",
|
|
// cpi->common.current_video_frame, cpi->common.show_frame,
|
|
// cm->frame_type);
|
|
|
|
// Compute a modified set of reference frame probabilities to use when
|
|
// prediction fails. These are based on the current general estimates for
|
|
// this frame which may be updated with each iteration of the recode loop.
|
|
vp9_compute_mod_refprobs(cm);
|
|
|
|
// debug output
|
|
#if DBG_PRNT_SEGMAP
|
|
{
|
|
FILE *statsfile;
|
|
statsfile = fopen("segmap2.stt", "a");
|
|
fprintf(statsfile, "\n");
|
|
fclose(statsfile);
|
|
}
|
|
#endif
|
|
|
|
totalrate = 0;
|
|
|
|
// Reset frame count of inter 0,0 motion vector usage.
|
|
cpi->inter_zz_count = 0;
|
|
|
|
cpi->skip_true_count[0] = cpi->skip_true_count[1] = cpi->skip_true_count[2] = 0;
|
|
cpi->skip_false_count[0] = cpi->skip_false_count[1] = cpi->skip_false_count[2] = 0;
|
|
|
|
vp9_zero(cpi->switchable_interp_count);
|
|
vp9_zero(cpi->best_switchable_interp_count);
|
|
|
|
xd->mode_info_context = cm->mi;
|
|
xd->prev_mode_info_context = cm->prev_mi;
|
|
|
|
vp9_zero(cpi->NMVcount);
|
|
vp9_zero(cpi->coef_counts_4x4);
|
|
vp9_zero(cpi->coef_counts_8x8);
|
|
vp9_zero(cpi->coef_counts_16x16);
|
|
vp9_zero(cpi->coef_counts_32x32);
|
|
vp9_zero(cm->fc.eob_branch_counts);
|
|
|
|
cpi->mb.e_mbd.lossless = (cm->base_qindex == 0 &&
|
|
cm->y_dc_delta_q == 0 &&
|
|
cm->uv_dc_delta_q == 0 &&
|
|
cm->uv_ac_delta_q == 0);
|
|
switch_lossless_mode(cpi, cpi->mb.e_mbd.lossless);
|
|
|
|
vp9_frame_init_quantizer(cpi);
|
|
|
|
vp9_initialize_rd_consts(cpi, cm->base_qindex + cm->y_dc_delta_q);
|
|
vp9_initialize_me_consts(cpi, cm->base_qindex);
|
|
|
|
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
|
|
// Initialize encode frame context.
|
|
init_encode_frame_mb_context(cpi);
|
|
|
|
// Build a frame level activity map
|
|
build_activity_map(cpi);
|
|
}
|
|
|
|
// re-initencode frame context.
|
|
init_encode_frame_mb_context(cpi);
|
|
|
|
vpx_memset(cpi->rd_comp_pred_diff, 0, sizeof(cpi->rd_comp_pred_diff));
|
|
vpx_memset(cpi->single_pred_count, 0, sizeof(cpi->single_pred_count));
|
|
vpx_memset(cpi->comp_pred_count, 0, sizeof(cpi->comp_pred_count));
|
|
vpx_memset(cpi->txfm_count_32x32p, 0, sizeof(cpi->txfm_count_32x32p));
|
|
vpx_memset(cpi->txfm_count_16x16p, 0, sizeof(cpi->txfm_count_16x16p));
|
|
vpx_memset(cpi->txfm_count_8x8p, 0, sizeof(cpi->txfm_count_8x8p));
|
|
vpx_memset(cpi->rd_tx_select_diff, 0, sizeof(cpi->rd_tx_select_diff));
|
|
{
|
|
struct vpx_usec_timer emr_timer;
|
|
vpx_usec_timer_start(&emr_timer);
|
|
|
|
{
|
|
// Take tiles into account and give start/end MB
|
|
int tile_col, tile_row;
|
|
TOKENEXTRA *tp = cpi->tok;
|
|
|
|
for (tile_row = 0; tile_row < cm->tile_rows; tile_row++) {
|
|
vp9_get_tile_row_offsets(cm, tile_row);
|
|
|
|
for (tile_col = 0; tile_col < cm->tile_columns; tile_col++) {
|
|
TOKENEXTRA *tp_old = tp;
|
|
|
|
// For each row of SBs in the frame
|
|
vp9_get_tile_col_offsets(cm, tile_col);
|
|
for (mi_row = cm->cur_tile_mi_row_start;
|
|
mi_row < cm->cur_tile_mi_row_end;
|
|
mi_row += 8) {
|
|
encode_sb_row(cpi, mi_row, &tp, &totalrate);
|
|
}
|
|
cpi->tok_count[tile_col] = (unsigned int)(tp - tp_old);
|
|
assert(tp - cpi->tok <=
|
|
get_token_alloc(cm->mb_rows, cm->mb_cols));
|
|
}
|
|
}
|
|
}
|
|
|
|
vpx_usec_timer_mark(&emr_timer);
|
|
cpi->time_encode_mb_row += vpx_usec_timer_elapsed(&emr_timer);
|
|
}
|
|
|
|
// 256 rate units to the bit,
|
|
// projected_frame_size in units of BYTES
|
|
cpi->projected_frame_size = totalrate >> 8;
|
|
|
|
#if 0
|
|
// Keep record of the total distortion this time around for future use
|
|
cpi->last_frame_distortion = cpi->frame_distortion;
|
|
#endif
|
|
|
|
}
|
|
|
|
static int check_dual_ref_flags(VP9_COMP *cpi) {
|
|
MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
int ref_flags = cpi->ref_frame_flags;
|
|
|
|
if (vp9_segfeature_active(xd, 1, SEG_LVL_REF_FRAME)) {
|
|
if ((ref_flags & (VP9_LAST_FLAG | VP9_GOLD_FLAG)) == (VP9_LAST_FLAG | VP9_GOLD_FLAG) &&
|
|
vp9_check_segref(xd, 1, LAST_FRAME))
|
|
return 1;
|
|
if ((ref_flags & (VP9_GOLD_FLAG | VP9_ALT_FLAG)) == (VP9_GOLD_FLAG | VP9_ALT_FLAG) &&
|
|
vp9_check_segref(xd, 1, GOLDEN_FRAME))
|
|
return 1;
|
|
if ((ref_flags & (VP9_ALT_FLAG | VP9_LAST_FLAG)) == (VP9_ALT_FLAG | VP9_LAST_FLAG) &&
|
|
vp9_check_segref(xd, 1, ALTREF_FRAME))
|
|
return 1;
|
|
return 0;
|
|
} else {
|
|
return (!!(ref_flags & VP9_GOLD_FLAG) +
|
|
!!(ref_flags & VP9_LAST_FLAG) +
|
|
!!(ref_flags & VP9_ALT_FLAG)) >= 2;
|
|
}
|
|
}
|
|
|
|
static int get_skip_flag(MODE_INFO *mi, int mis, int ymbs, int xmbs) {
|
|
int x, y;
|
|
|
|
for (y = 0; y < ymbs; y++) {
|
|
for (x = 0; x < xmbs; x++) {
|
|
if (!mi[y * mis + x].mbmi.mb_skip_coeff)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void set_txfm_flag(MODE_INFO *mi, int mis, int ymbs, int xmbs,
|
|
TX_SIZE txfm_size) {
|
|
int x, y;
|
|
|
|
for (y = 0; y < ymbs; y++) {
|
|
for (x = 0; x < xmbs; x++)
|
|
mi[y * mis + x].mbmi.txfm_size = txfm_size;
|
|
}
|
|
}
|
|
|
|
static void reset_skip_txfm_size_b(VP9_COMP *cpi, MODE_INFO *mi,
|
|
int mis, TX_SIZE txfm_max,
|
|
int bw, int bh, int mi_row, int mi_col,
|
|
BLOCK_SIZE_TYPE bsize) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MB_MODE_INFO *const mbmi = &mi->mbmi;
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
|
|
return;
|
|
|
|
if (mbmi->txfm_size > txfm_max) {
|
|
MACROBLOCK *const x = &cpi->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const int segment_id = mbmi->segment_id;
|
|
const int ymbs = MIN(bh, cm->mi_rows - mi_row);
|
|
const int xmbs = MIN(bw, cm->mi_cols - mi_col);
|
|
|
|
xd->mode_info_context = mi;
|
|
assert(vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP) ||
|
|
get_skip_flag(mi, mis, ymbs, xmbs));
|
|
set_txfm_flag(mi, mis, ymbs, xmbs, txfm_max);
|
|
}
|
|
}
|
|
|
|
static void reset_skip_txfm_size_sb(VP9_COMP *cpi, MODE_INFO *mi,
|
|
TX_SIZE txfm_max,
|
|
int mi_row, int mi_col,
|
|
BLOCK_SIZE_TYPE bsize) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
const int mis = cm->mode_info_stride;
|
|
int bwl, bhl;
|
|
const int bsl = mi_width_log2(bsize), bs = 1 << (bsl - 1);
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
|
|
return;
|
|
|
|
bwl = mi_width_log2(mi->mbmi.sb_type);
|
|
bhl = mi_height_log2(mi->mbmi.sb_type);
|
|
|
|
if (bwl == bsl && bhl == bsl) {
|
|
reset_skip_txfm_size_b(cpi, mi, mis, txfm_max, 1 << bsl, 1 << bsl,
|
|
mi_row, mi_col, bsize);
|
|
} else if (bwl == bsl && bhl < bsl) {
|
|
reset_skip_txfm_size_b(cpi, mi, mis, txfm_max, 1 << bsl, bs,
|
|
mi_row, mi_col, bsize);
|
|
reset_skip_txfm_size_b(cpi, mi + bs * mis, mis, txfm_max, 1 << bsl, bs,
|
|
mi_row + bs, mi_col, bsize);
|
|
} else if (bwl < bsl && bhl == bsl) {
|
|
reset_skip_txfm_size_b(cpi, mi, mis, txfm_max, bs, 1 << bsl,
|
|
mi_row, mi_col, bsize);
|
|
reset_skip_txfm_size_b(cpi, mi + bs, mis, txfm_max, bs, 1 << bsl,
|
|
mi_row, mi_col + bs, bsize);
|
|
} else {
|
|
BLOCK_SIZE_TYPE subsize;
|
|
int n;
|
|
|
|
assert(bwl < bsl && bhl < bsl);
|
|
if (bsize == BLOCK_SIZE_SB64X64) {
|
|
subsize = BLOCK_SIZE_SB32X32;
|
|
} else if (bsize == BLOCK_SIZE_SB32X32) {
|
|
subsize = BLOCK_SIZE_MB16X16;
|
|
} else {
|
|
assert(bsize == BLOCK_SIZE_MB16X16);
|
|
subsize = BLOCK_SIZE_SB8X8;
|
|
}
|
|
|
|
for (n = 0; n < 4; n++) {
|
|
const int y_idx = n >> 1, x_idx = n & 0x01;
|
|
|
|
reset_skip_txfm_size_sb(cpi, mi + y_idx * bs * mis + x_idx * bs,
|
|
txfm_max, mi_row + y_idx * bs,
|
|
mi_col + x_idx * bs, subsize);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void reset_skip_txfm_size(VP9_COMP *cpi, TX_SIZE txfm_max) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
int mi_row, mi_col;
|
|
const int mis = cm->mode_info_stride;
|
|
MODE_INFO *mi, *mi_ptr = cm->mi;
|
|
|
|
for (mi_row = 0; mi_row < cm->mi_rows;
|
|
mi_row += 8, mi_ptr += 8 * mis) {
|
|
mi = mi_ptr;
|
|
for (mi_col = 0; mi_col < cm->mi_cols;
|
|
mi_col += 8, mi += 8) {
|
|
reset_skip_txfm_size_sb(cpi, mi, txfm_max,
|
|
mi_row, mi_col, BLOCK_SIZE_SB64X64);
|
|
}
|
|
}
|
|
}
|
|
|
|
void vp9_encode_frame(VP9_COMP *cpi) {
|
|
if (cpi->sf.RD) {
|
|
int i, frame_type, pred_type;
|
|
TXFM_MODE txfm_type;
|
|
|
|
/*
|
|
* This code does a single RD pass over the whole frame assuming
|
|
* either compound, single or hybrid prediction as per whatever has
|
|
* worked best for that type of frame in the past.
|
|
* It also predicts whether another coding mode would have worked
|
|
* better that this coding mode. If that is the case, it remembers
|
|
* that for subsequent frames.
|
|
* It does the same analysis for transform size selection also.
|
|
*/
|
|
if (cpi->common.frame_type == KEY_FRAME)
|
|
frame_type = 0;
|
|
else if (cpi->is_src_frame_alt_ref && cpi->refresh_golden_frame)
|
|
frame_type = 3;
|
|
else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
|
|
frame_type = 1;
|
|
else
|
|
frame_type = 2;
|
|
|
|
/* prediction (compound, single or hybrid) mode selection */
|
|
if (frame_type == 3)
|
|
pred_type = SINGLE_PREDICTION_ONLY;
|
|
else if (cpi->rd_prediction_type_threshes[frame_type][1] >
|
|
cpi->rd_prediction_type_threshes[frame_type][0] &&
|
|
cpi->rd_prediction_type_threshes[frame_type][1] >
|
|
cpi->rd_prediction_type_threshes[frame_type][2] &&
|
|
check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100)
|
|
pred_type = COMP_PREDICTION_ONLY;
|
|
else if (cpi->rd_prediction_type_threshes[frame_type][0] >
|
|
cpi->rd_prediction_type_threshes[frame_type][2])
|
|
pred_type = SINGLE_PREDICTION_ONLY;
|
|
else
|
|
pred_type = HYBRID_PREDICTION;
|
|
|
|
/* transform size (4x4, 8x8, 16x16 or select-per-mb) selection */
|
|
|
|
cpi->mb.e_mbd.lossless = 0;
|
|
if (cpi->oxcf.lossless) {
|
|
txfm_type = ONLY_4X4;
|
|
cpi->mb.e_mbd.lossless = 1;
|
|
} else
|
|
#if 0
|
|
/* FIXME (rbultje): this code is disabled until we support cost updates
|
|
* while a frame is being encoded; the problem is that each time we
|
|
* "revert" to 4x4 only (or even 8x8 only), the coefficient probabilities
|
|
* for 16x16 (and 8x8) start lagging behind, thus leading to them lagging
|
|
* further behind and not being chosen for subsequent frames either. This
|
|
* is essentially a local minimum problem that we can probably fix by
|
|
* estimating real costs more closely within a frame, perhaps by re-
|
|
* calculating costs on-the-fly as frame encoding progresses. */
|
|
if (cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] >
|
|
cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] &&
|
|
cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] >
|
|
cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16] &&
|
|
cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] >
|
|
cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8]) {
|
|
txfm_type = TX_MODE_SELECT;
|
|
} else if (cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] >
|
|
cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8]
|
|
&& cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] >
|
|
cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16]
|
|
) {
|
|
txfm_type = ONLY_4X4;
|
|
} else if (cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16] >=
|
|
cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8]) {
|
|
txfm_type = ALLOW_16X16;
|
|
} else
|
|
txfm_type = ALLOW_8X8;
|
|
#else
|
|
txfm_type = cpi->rd_tx_select_threshes[frame_type][ALLOW_32X32] >=
|
|
cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] ?
|
|
ALLOW_32X32 : TX_MODE_SELECT;
|
|
#endif
|
|
cpi->common.txfm_mode = txfm_type;
|
|
if (txfm_type != TX_MODE_SELECT) {
|
|
cpi->common.prob_tx[0] = 128;
|
|
cpi->common.prob_tx[1] = 128;
|
|
}
|
|
cpi->common.comp_pred_mode = pred_type;
|
|
encode_frame_internal(cpi);
|
|
|
|
for (i = 0; i < NB_PREDICTION_TYPES; ++i) {
|
|
const int diff = (int)(cpi->rd_comp_pred_diff[i] / cpi->common.MBs);
|
|
cpi->rd_prediction_type_threshes[frame_type][i] += diff;
|
|
cpi->rd_prediction_type_threshes[frame_type][i] >>= 1;
|
|
}
|
|
|
|
for (i = 0; i < NB_TXFM_MODES; ++i) {
|
|
int64_t pd = cpi->rd_tx_select_diff[i];
|
|
int diff;
|
|
if (i == TX_MODE_SELECT)
|
|
pd -= RDCOST(cpi->mb.rdmult, cpi->mb.rddiv,
|
|
2048 * (TX_SIZE_MAX_SB - 1), 0);
|
|
diff = (int)(pd / cpi->common.MBs);
|
|
cpi->rd_tx_select_threshes[frame_type][i] += diff;
|
|
cpi->rd_tx_select_threshes[frame_type][i] /= 2;
|
|
}
|
|
|
|
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
|
|
int single_count_zero = 0;
|
|
int comp_count_zero = 0;
|
|
|
|
for (i = 0; i < COMP_PRED_CONTEXTS; i++) {
|
|
single_count_zero += cpi->single_pred_count[i];
|
|
comp_count_zero += cpi->comp_pred_count[i];
|
|
}
|
|
|
|
if (comp_count_zero == 0) {
|
|
cpi->common.comp_pred_mode = SINGLE_PREDICTION_ONLY;
|
|
} else if (single_count_zero == 0) {
|
|
cpi->common.comp_pred_mode = COMP_PREDICTION_ONLY;
|
|
}
|
|
}
|
|
|
|
if (cpi->common.txfm_mode == TX_MODE_SELECT) {
|
|
const int count4x4 = cpi->txfm_count_16x16p[TX_4X4] +
|
|
cpi->txfm_count_32x32p[TX_4X4] +
|
|
cpi->txfm_count_8x8p[TX_4X4];
|
|
const int count8x8_lp = cpi->txfm_count_32x32p[TX_8X8] +
|
|
cpi->txfm_count_16x16p[TX_8X8];
|
|
const int count8x8_8x8p = cpi->txfm_count_8x8p[TX_8X8];
|
|
const int count16x16_16x16p = cpi->txfm_count_16x16p[TX_16X16];
|
|
const int count16x16_lp = cpi->txfm_count_32x32p[TX_16X16];
|
|
const int count32x32 = cpi->txfm_count_32x32p[TX_32X32];
|
|
|
|
if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
|
|
count32x32 == 0) {
|
|
cpi->common.txfm_mode = ALLOW_8X8;
|
|
reset_skip_txfm_size(cpi, TX_8X8);
|
|
} else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
|
|
count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
|
|
cpi->common.txfm_mode = ONLY_4X4;
|
|
reset_skip_txfm_size(cpi, TX_4X4);
|
|
} else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
|
|
cpi->common.txfm_mode = ALLOW_32X32;
|
|
} else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
|
|
cpi->common.txfm_mode = ALLOW_16X16;
|
|
reset_skip_txfm_size(cpi, TX_16X16);
|
|
}
|
|
}
|
|
|
|
// Update interpolation filter strategy for next frame.
|
|
if ((cpi->common.frame_type != KEY_FRAME) && (cpi->sf.search_best_filter))
|
|
vp9_select_interp_filter_type(cpi);
|
|
} else {
|
|
encode_frame_internal(cpi);
|
|
}
|
|
|
|
}
|
|
|
|
void vp9_build_block_offsets(MACROBLOCK *x) {
|
|
}
|
|
|
|
static void sum_intra_stats(VP9_COMP *cpi, MACROBLOCK *x) {
|
|
const MACROBLOCKD *xd = &x->e_mbd;
|
|
const MB_PREDICTION_MODE m = xd->mode_info_context->mbmi.mode;
|
|
const MB_PREDICTION_MODE uvm = xd->mode_info_context->mbmi.uv_mode;
|
|
|
|
#ifdef MODE_STATS
|
|
const int is_key = cpi->common.frame_type == KEY_FRAME;
|
|
|
|
++ (is_key ? uv_modes : inter_uv_modes)[uvm];
|
|
++ uv_modes_y[m][uvm];
|
|
|
|
if (m == I4X4_PRED) {
|
|
unsigned int *const bct = is_key ? b_modes : inter_b_modes;
|
|
|
|
int b = 0;
|
|
|
|
do {
|
|
++ bct[xd->block[b].bmi.as_mode.first];
|
|
} while (++b < 4);
|
|
}
|
|
#endif
|
|
|
|
if (xd->mode_info_context->mbmi.sb_type > BLOCK_SIZE_SB8X8) {
|
|
++cpi->sb_ymode_count[m];
|
|
} else {
|
|
++cpi->ymode_count[m];
|
|
}
|
|
++cpi->y_uv_mode_count[m][uvm];
|
|
if (m == I4X4_PRED) {
|
|
int b = 0;
|
|
do {
|
|
int m = xd->mode_info_context->bmi[b].as_mode.first;
|
|
++cpi->bmode_count[m];
|
|
} while (++b < 4);
|
|
}
|
|
}
|
|
|
|
// Experimental stub function to create a per MB zbin adjustment based on
|
|
// some previously calculated measure of MB activity.
|
|
static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x) {
|
|
#if USE_ACT_INDEX
|
|
x->act_zbin_adj = *(x->mb_activity_ptr);
|
|
#else
|
|
int64_t a;
|
|
int64_t b;
|
|
int64_t act = *(x->mb_activity_ptr);
|
|
|
|
// Apply the masking to the RD multiplier.
|
|
a = act + 4 * cpi->activity_avg;
|
|
b = 4 * act + cpi->activity_avg;
|
|
|
|
if (act > cpi->activity_avg)
|
|
x->act_zbin_adj = (int)(((int64_t)b + (a >> 1)) / a) - 1;
|
|
else
|
|
x->act_zbin_adj = 1 - (int)(((int64_t)a + (b >> 1)) / b);
|
|
#endif
|
|
}
|
|
|
|
static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t,
|
|
int output_enabled, int mi_row, int mi_col,
|
|
BLOCK_SIZE_TYPE bsize) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &cpi->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
int n;
|
|
MODE_INFO *mi = x->e_mbd.mode_info_context;
|
|
unsigned int segment_id = mi->mbmi.segment_id;
|
|
const int mis = cm->mode_info_stride;
|
|
const int bwl = mi_width_log2(bsize);
|
|
const int bw = 1 << bwl, bh = 1 << mi_height_log2(bsize);
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
|
|
adjust_act_zbin(cpi, x);
|
|
vp9_update_zbin_extra(cpi, x);
|
|
}
|
|
} else {
|
|
vp9_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter, cm);
|
|
|
|
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
|
|
// Adjust the zbin based on this MB rate.
|
|
adjust_act_zbin(cpi, x);
|
|
}
|
|
|
|
// Experimental code. Special case for gf and arf zeromv modes.
|
|
// Increase zbin size to suppress noise
|
|
cpi->zbin_mode_boost = 0;
|
|
if (cpi->zbin_mode_boost_enabled) {
|
|
if (xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME) {
|
|
if (xd->mode_info_context->mbmi.mode == ZEROMV) {
|
|
if (xd->mode_info_context->mbmi.ref_frame != LAST_FRAME)
|
|
cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST;
|
|
else
|
|
cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST;
|
|
} else if (xd->mode_info_context->mbmi.mode == SPLITMV) {
|
|
cpi->zbin_mode_boost = SPLIT_MV_ZBIN_BOOST;
|
|
} else {
|
|
cpi->zbin_mode_boost = MV_ZBIN_BOOST;
|
|
}
|
|
} else {
|
|
cpi->zbin_mode_boost = INTRA_ZBIN_BOOST;
|
|
}
|
|
}
|
|
|
|
vp9_update_zbin_extra(cpi, x);
|
|
}
|
|
|
|
if (xd->mode_info_context->mbmi.mode == I4X4_PRED) {
|
|
assert(bsize == BLOCK_SIZE_SB8X8 &&
|
|
xd->mode_info_context->mbmi.txfm_size == TX_4X4);
|
|
|
|
vp9_encode_intra4x4mby(x, bsize);
|
|
vp9_build_intra_predictors_sbuv_s(&x->e_mbd, bsize);
|
|
vp9_encode_sbuv(cm, x, bsize);
|
|
|
|
if (output_enabled)
|
|
sum_intra_stats(cpi, x);
|
|
} else if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) {
|
|
vp9_build_intra_predictors_sby_s(&x->e_mbd, bsize);
|
|
vp9_build_intra_predictors_sbuv_s(&x->e_mbd, bsize);
|
|
if (output_enabled)
|
|
sum_intra_stats(cpi, x);
|
|
} else {
|
|
int ref_fb_idx, second_ref_fb_idx;
|
|
|
|
assert(cm->frame_type != KEY_FRAME);
|
|
|
|
if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)
|
|
ref_fb_idx = cpi->common.ref_frame_map[cpi->lst_fb_idx];
|
|
else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME)
|
|
ref_fb_idx = cpi->common.ref_frame_map[cpi->gld_fb_idx];
|
|
else
|
|
ref_fb_idx = cpi->common.ref_frame_map[cpi->alt_fb_idx];
|
|
|
|
if (xd->mode_info_context->mbmi.second_ref_frame > 0) {
|
|
if (xd->mode_info_context->mbmi.second_ref_frame == LAST_FRAME)
|
|
second_ref_fb_idx = cpi->common.ref_frame_map[cpi->lst_fb_idx];
|
|
else if (xd->mode_info_context->mbmi.second_ref_frame == GOLDEN_FRAME)
|
|
second_ref_fb_idx = cpi->common.ref_frame_map[cpi->gld_fb_idx];
|
|
else
|
|
second_ref_fb_idx = cpi->common.ref_frame_map[cpi->alt_fb_idx];
|
|
}
|
|
|
|
setup_pre_planes(xd,
|
|
&cpi->common.yv12_fb[ref_fb_idx],
|
|
xd->mode_info_context->mbmi.second_ref_frame > 0
|
|
? &cpi->common.yv12_fb[second_ref_fb_idx] : NULL,
|
|
mi_row, mi_col, xd->scale_factor, xd->scale_factor_uv);
|
|
|
|
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
|
|
}
|
|
|
|
if (xd->mode_info_context->mbmi.mode == I4X4_PRED) {
|
|
assert(bsize == BLOCK_SIZE_SB8X8);
|
|
vp9_tokenize_sb(cpi, &x->e_mbd, t, !output_enabled, bsize);
|
|
} else if (!x->skip) {
|
|
vp9_encode_sb(cm, x, bsize);
|
|
vp9_tokenize_sb(cpi, &x->e_mbd, t, !output_enabled, bsize);
|
|
} else {
|
|
// FIXME(rbultje): not tile-aware (mi - 1)
|
|
int mb_skip_context =
|
|
(mi - 1)->mbmi.mb_skip_coeff + (mi - mis)->mbmi.mb_skip_coeff;
|
|
|
|
xd->mode_info_context->mbmi.mb_skip_coeff = 1;
|
|
if (output_enabled)
|
|
cpi->skip_true_count[mb_skip_context]++;
|
|
vp9_reset_sb_tokens_context(xd, bsize);
|
|
}
|
|
|
|
// copy skip flag on all mb_mode_info contexts in this SB
|
|
// if this was a skip at this txfm size
|
|
for (n = 1; n < bw * bh; n++) {
|
|
const int x_idx = n & (bw - 1), y_idx = n >> bwl;
|
|
if (mi_col + x_idx < cm->mi_cols && mi_row + y_idx < cm->mi_rows)
|
|
mi[x_idx + y_idx * mis].mbmi.mb_skip_coeff = mi->mbmi.mb_skip_coeff;
|
|
}
|
|
|
|
if (output_enabled) {
|
|
if (cm->txfm_mode == TX_MODE_SELECT &&
|
|
!(mi->mbmi.mb_skip_coeff ||
|
|
vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP))) {
|
|
if (bsize >= BLOCK_SIZE_SB32X32) {
|
|
cpi->txfm_count_32x32p[mi->mbmi.txfm_size]++;
|
|
} else if (bsize >= BLOCK_SIZE_MB16X16) {
|
|
cpi->txfm_count_16x16p[mi->mbmi.txfm_size]++;
|
|
} else {
|
|
cpi->txfm_count_8x8p[mi->mbmi.txfm_size]++;
|
|
}
|
|
} else {
|
|
int x, y;
|
|
TX_SIZE sz = (cm->txfm_mode == TX_MODE_SELECT) ? TX_32X32 : cm->txfm_mode;
|
|
|
|
if (sz == TX_32X32 && bsize < BLOCK_SIZE_SB32X32)
|
|
sz = TX_16X16;
|
|
if (sz == TX_16X16 && bsize < BLOCK_SIZE_MB16X16)
|
|
sz = TX_8X8;
|
|
if (sz == TX_8X8 && (xd->mode_info_context->mbmi.mode == SPLITMV ||
|
|
xd->mode_info_context->mbmi.mode == I4X4_PRED))
|
|
sz = TX_4X4;
|
|
|
|
for (y = 0; y < bh; y++) {
|
|
for (x = 0; x < bw; x++) {
|
|
if (mi_col + x < cm->mi_cols && mi_row + y < cm->mi_rows) {
|
|
mi[mis * y + x].mbmi.txfm_size = sz;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|