79401542f7
Vp9 postproc is disabled for now as its not been shown to help and may be merged with vp8. Change-Id: I25620d6cd34c6e10331b18c7b5ef7482e39c6057
4173 lines
132 KiB
C
4173 lines
132 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
|
|
#include "vpx_config.h"
|
|
#include "vp9/common/vp9_filter.h"
|
|
#include "vp9/common/vp9_onyxc_int.h"
|
|
#include "vp9/common/vp9_reconinter.h"
|
|
#include "vp9/encoder/vp9_onyx_int.h"
|
|
#include "vp9/common/vp9_systemdependent.h"
|
|
#include "vp9/encoder/vp9_quantize.h"
|
|
#include "vp9/common/vp9_alloccommon.h"
|
|
#include "vp9/encoder/vp9_mcomp.h"
|
|
#include "vp9/encoder/vp9_firstpass.h"
|
|
#include "vp9/encoder/vp9_psnr.h"
|
|
#include "vpx_scale/vpx_scale.h"
|
|
#include "vp9/common/vp9_extend.h"
|
|
#include "vp9/encoder/vp9_ratectrl.h"
|
|
#include "vp9/common/vp9_quant_common.h"
|
|
#include "vp9/common/vp9_tile_common.h"
|
|
#include "vp9/encoder/vp9_segmentation.h"
|
|
#include "./vp9_rtcd.h"
|
|
#include "./vpx_scale_rtcd.h"
|
|
#if CONFIG_VP9_POSTPROC
|
|
#include "vp9/common/vp9_postproc.h"
|
|
#endif
|
|
#include "vpx_mem/vpx_mem.h"
|
|
#include "vpx_ports/vpx_timer.h"
|
|
|
|
#include "vp9/common/vp9_seg_common.h"
|
|
#include "vp9/encoder/vp9_mbgraph.h"
|
|
#include "vp9/common/vp9_pred_common.h"
|
|
#include "vp9/encoder/vp9_rdopt.h"
|
|
#include "vp9/encoder/vp9_bitstream.h"
|
|
#include "vp9/encoder/vp9_picklpf.h"
|
|
#include "vp9/common/vp9_mvref_common.h"
|
|
#include "vp9/encoder/vp9_temporal_filter.h"
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <limits.h>
|
|
|
|
extern void print_tree_update_probs();
|
|
|
|
static void set_default_lf_deltas(struct loopfilter *lf);
|
|
|
|
#define DEFAULT_INTERP_FILTER SWITCHABLE
|
|
|
|
#define SEARCH_BEST_FILTER 0 /* to search exhaustively for
|
|
best filter */
|
|
#define RESET_FOREACH_FILTER 0 /* whether to reset the encoder state
|
|
before trying each new filter */
|
|
#define SHARP_FILTER_QTHRESH 0 /* Q threshold for 8-tap sharp filter */
|
|
|
|
#define ALTREF_HIGH_PRECISION_MV 1 /* whether to use high precision mv
|
|
for altref computation */
|
|
#define HIGH_PRECISION_MV_QTHRESH 200 /* Q threshold for use of high precision
|
|
mv. Choose a very high value for
|
|
now so that HIGH_PRECISION is always
|
|
chosen */
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
#include "math.h"
|
|
|
|
extern double vp9_calc_ssim(YV12_BUFFER_CONFIG *source,
|
|
YV12_BUFFER_CONFIG *dest, int lumamask,
|
|
double *weight);
|
|
|
|
|
|
extern double vp9_calc_ssimg(YV12_BUFFER_CONFIG *source,
|
|
YV12_BUFFER_CONFIG *dest, double *ssim_y,
|
|
double *ssim_u, double *ssim_v);
|
|
|
|
|
|
#endif
|
|
|
|
// #define OUTPUT_YUV_REC
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
FILE *yuv_file;
|
|
#endif
|
|
#ifdef OUTPUT_YUV_REC
|
|
FILE *yuv_rec_file;
|
|
#endif
|
|
|
|
#if 0
|
|
FILE *framepsnr;
|
|
FILE *kf_list;
|
|
FILE *keyfile;
|
|
#endif
|
|
|
|
|
|
#ifdef ENTROPY_STATS
|
|
extern int intra_mode_stats[INTRA_MODES]
|
|
[INTRA_MODES]
|
|
[INTRA_MODES];
|
|
#endif
|
|
|
|
#ifdef MODE_STATS
|
|
extern void init_tx_count_stats();
|
|
extern void write_tx_count_stats();
|
|
extern void init_switchable_interp_stats();
|
|
extern void write_switchable_interp_stats();
|
|
#endif
|
|
|
|
#ifdef SPEEDSTATS
|
|
unsigned int frames_at_speed[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
#endif
|
|
|
|
#if defined(SECTIONBITS_OUTPUT)
|
|
extern unsigned __int64 Sectionbits[500];
|
|
#endif
|
|
|
|
extern void vp9_init_quantizer(VP9_COMP *cpi);
|
|
|
|
// Tables relating active max Q to active min Q
|
|
static int kf_low_motion_minq[QINDEX_RANGE];
|
|
static int kf_high_motion_minq[QINDEX_RANGE];
|
|
static int gf_low_motion_minq[QINDEX_RANGE];
|
|
static int gf_high_motion_minq[QINDEX_RANGE];
|
|
static int inter_minq[QINDEX_RANGE];
|
|
|
|
static INLINE void Scale2Ratio(int mode, int *hr, int *hs) {
|
|
switch (mode) {
|
|
case NORMAL:
|
|
*hr = 1;
|
|
*hs = 1;
|
|
break;
|
|
case FOURFIVE:
|
|
*hr = 4;
|
|
*hs = 5;
|
|
break;
|
|
case THREEFIVE:
|
|
*hr = 3;
|
|
*hs = 5;
|
|
break;
|
|
case ONETWO:
|
|
*hr = 1;
|
|
*hs = 2;
|
|
break;
|
|
default:
|
|
*hr = 1;
|
|
*hs = 1;
|
|
assert(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Functions to compute the active minq lookup table entries based on a
|
|
// formulaic approach to facilitate easier adjustment of the Q tables.
|
|
// The formulae were derived from computing a 3rd order polynomial best
|
|
// fit to the original data (after plotting real maxq vs minq (not q index))
|
|
static int calculate_minq_index(double maxq,
|
|
double x3, double x2, double x1, double c) {
|
|
int i;
|
|
const double minqtarget = MIN(((x3 * maxq + x2) * maxq + x1) * maxq + c,
|
|
maxq);
|
|
|
|
// Special case handling to deal with the step from q2.0
|
|
// down to lossless mode represented by q 1.0.
|
|
if (minqtarget <= 2.0)
|
|
return 0;
|
|
|
|
for (i = 0; i < QINDEX_RANGE; i++) {
|
|
if (minqtarget <= vp9_convert_qindex_to_q(i))
|
|
return i;
|
|
}
|
|
|
|
return QINDEX_RANGE - 1;
|
|
}
|
|
|
|
static void init_minq_luts(void) {
|
|
int i;
|
|
|
|
for (i = 0; i < QINDEX_RANGE; i++) {
|
|
const double maxq = vp9_convert_qindex_to_q(i);
|
|
|
|
|
|
kf_low_motion_minq[i] = calculate_minq_index(maxq,
|
|
0.000001,
|
|
-0.0004,
|
|
0.15,
|
|
0.0);
|
|
kf_high_motion_minq[i] = calculate_minq_index(maxq,
|
|
0.000002,
|
|
-0.0012,
|
|
0.5,
|
|
0.0);
|
|
|
|
gf_low_motion_minq[i] = calculate_minq_index(maxq,
|
|
0.0000015,
|
|
-0.0009,
|
|
0.33,
|
|
0.0);
|
|
gf_high_motion_minq[i] = calculate_minq_index(maxq,
|
|
0.0000021,
|
|
-0.00125,
|
|
0.45,
|
|
0.0);
|
|
inter_minq[i] = calculate_minq_index(maxq,
|
|
0.00000271,
|
|
-0.00113,
|
|
0.697,
|
|
0.0);
|
|
|
|
}
|
|
}
|
|
|
|
static void set_mvcost(MACROBLOCK *mb) {
|
|
if (mb->e_mbd.allow_high_precision_mv) {
|
|
mb->mvcost = mb->nmvcost_hp;
|
|
mb->mvsadcost = mb->nmvsadcost_hp;
|
|
} else {
|
|
mb->mvcost = mb->nmvcost;
|
|
mb->mvsadcost = mb->nmvsadcost;
|
|
}
|
|
}
|
|
|
|
void vp9_initialize_enc() {
|
|
static int init_done = 0;
|
|
|
|
if (!init_done) {
|
|
vp9_initialize_common();
|
|
vp9_tokenize_initialize();
|
|
vp9_init_quant_tables();
|
|
vp9_init_me_luts();
|
|
init_minq_luts();
|
|
// init_base_skip_probs();
|
|
init_done = 1;
|
|
}
|
|
}
|
|
|
|
static void setup_features(VP9_COMMON *cm) {
|
|
struct loopfilter *const lf = &cm->lf;
|
|
struct segmentation *const seg = &cm->seg;
|
|
|
|
// Set up default state for MB feature flags
|
|
seg->enabled = 0;
|
|
|
|
seg->update_map = 0;
|
|
seg->update_data = 0;
|
|
vpx_memset(seg->tree_probs, 255, sizeof(seg->tree_probs));
|
|
|
|
vp9_clearall_segfeatures(seg);
|
|
|
|
lf->mode_ref_delta_enabled = 0;
|
|
lf->mode_ref_delta_update = 0;
|
|
vp9_zero(lf->ref_deltas);
|
|
vp9_zero(lf->mode_deltas);
|
|
vp9_zero(lf->last_ref_deltas);
|
|
vp9_zero(lf->last_mode_deltas);
|
|
|
|
set_default_lf_deltas(lf);
|
|
}
|
|
|
|
static void dealloc_compressor_data(VP9_COMP *cpi) {
|
|
// Delete sementation map
|
|
vpx_free(cpi->segmentation_map);
|
|
cpi->segmentation_map = 0;
|
|
vpx_free(cpi->common.last_frame_seg_map);
|
|
cpi->common.last_frame_seg_map = 0;
|
|
vpx_free(cpi->coding_context.last_frame_seg_map_copy);
|
|
cpi->coding_context.last_frame_seg_map_copy = 0;
|
|
|
|
vpx_free(cpi->active_map);
|
|
cpi->active_map = 0;
|
|
|
|
vp9_free_frame_buffers(&cpi->common);
|
|
|
|
vp9_free_frame_buffer(&cpi->last_frame_uf);
|
|
vp9_free_frame_buffer(&cpi->scaled_source);
|
|
vp9_free_frame_buffer(&cpi->alt_ref_buffer);
|
|
vp9_lookahead_destroy(cpi->lookahead);
|
|
|
|
vpx_free(cpi->tok);
|
|
cpi->tok = 0;
|
|
|
|
// Activity mask based per mb zbin adjustments
|
|
vpx_free(cpi->mb_activity_map);
|
|
cpi->mb_activity_map = 0;
|
|
vpx_free(cpi->mb_norm_activity_map);
|
|
cpi->mb_norm_activity_map = 0;
|
|
|
|
vpx_free(cpi->mb.pip);
|
|
cpi->mb.pip = 0;
|
|
}
|
|
|
|
// Computes a q delta (in "q index" terms) to get from a starting q value
|
|
// to a target value
|
|
// target q value
|
|
static int compute_qdelta(VP9_COMP *cpi, double qstart, double qtarget) {
|
|
int i;
|
|
int start_index = cpi->worst_quality;
|
|
int target_index = cpi->worst_quality;
|
|
|
|
// Convert the average q value to an index.
|
|
for (i = cpi->best_quality; i < cpi->worst_quality; i++) {
|
|
start_index = i;
|
|
if (vp9_convert_qindex_to_q(i) >= qstart)
|
|
break;
|
|
}
|
|
|
|
// Convert the q target to an index
|
|
for (i = cpi->best_quality; i < cpi->worst_quality; i++) {
|
|
target_index = i;
|
|
if (vp9_convert_qindex_to_q(i) >= qtarget)
|
|
break;
|
|
}
|
|
|
|
return target_index - start_index;
|
|
}
|
|
|
|
static void configure_static_seg_features(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
struct segmentation *seg = &cm->seg;
|
|
|
|
int high_q = (int)(cpi->avg_q > 48.0);
|
|
int qi_delta;
|
|
|
|
// Disable and clear down for KF
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
// Clear down the global segmentation map
|
|
vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
|
|
seg->update_map = 0;
|
|
seg->update_data = 0;
|
|
cpi->static_mb_pct = 0;
|
|
|
|
// Disable segmentation
|
|
vp9_disable_segmentation((VP9_PTR)cpi);
|
|
|
|
// Clear down the segment features.
|
|
vp9_clearall_segfeatures(seg);
|
|
} else if (cpi->refresh_alt_ref_frame) {
|
|
// If this is an alt ref frame
|
|
// Clear down the global segmentation map
|
|
vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
|
|
seg->update_map = 0;
|
|
seg->update_data = 0;
|
|
cpi->static_mb_pct = 0;
|
|
|
|
// Disable segmentation and individual segment features by default
|
|
vp9_disable_segmentation((VP9_PTR)cpi);
|
|
vp9_clearall_segfeatures(seg);
|
|
|
|
// Scan frames from current to arf frame.
|
|
// This function re-enables segmentation if appropriate.
|
|
vp9_update_mbgraph_stats(cpi);
|
|
|
|
// If segmentation was enabled set those features needed for the
|
|
// arf itself.
|
|
if (seg->enabled) {
|
|
seg->update_map = 1;
|
|
seg->update_data = 1;
|
|
|
|
qi_delta = compute_qdelta(cpi, cpi->avg_q, (cpi->avg_q * 0.875));
|
|
vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, (qi_delta - 2));
|
|
vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
|
|
|
|
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
|
|
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
|
|
|
|
// Where relevant assume segment data is delta data
|
|
seg->abs_delta = SEGMENT_DELTADATA;
|
|
|
|
}
|
|
} else if (seg->enabled) {
|
|
// All other frames if segmentation has been enabled
|
|
|
|
// First normal frame in a valid gf or alt ref group
|
|
if (cpi->frames_since_golden == 0) {
|
|
// Set up segment features for normal frames in an arf group
|
|
if (cpi->source_alt_ref_active) {
|
|
seg->update_map = 0;
|
|
seg->update_data = 1;
|
|
seg->abs_delta = SEGMENT_DELTADATA;
|
|
|
|
qi_delta = compute_qdelta(cpi, cpi->avg_q,
|
|
(cpi->avg_q * 1.125));
|
|
vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, (qi_delta + 2));
|
|
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
|
|
|
|
vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
|
|
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
|
|
|
|
// Segment coding disabled for compred testing
|
|
if (high_q || (cpi->static_mb_pct == 100)) {
|
|
vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
|
|
vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
|
|
vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP);
|
|
}
|
|
} else {
|
|
// Disable segmentation and clear down features if alt ref
|
|
// is not active for this group
|
|
|
|
vp9_disable_segmentation((VP9_PTR)cpi);
|
|
|
|
vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
|
|
|
|
seg->update_map = 0;
|
|
seg->update_data = 0;
|
|
|
|
vp9_clearall_segfeatures(seg);
|
|
}
|
|
} else if (cpi->is_src_frame_alt_ref) {
|
|
// Special case where we are coding over the top of a previous
|
|
// alt ref frame.
|
|
// Segment coding disabled for compred testing
|
|
|
|
// Enable ref frame features for segment 0 as well
|
|
vp9_enable_segfeature(seg, 0, SEG_LVL_REF_FRAME);
|
|
vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
|
|
|
|
// All mbs should use ALTREF_FRAME
|
|
vp9_clear_segdata(seg, 0, SEG_LVL_REF_FRAME);
|
|
vp9_set_segdata(seg, 0, SEG_LVL_REF_FRAME, ALTREF_FRAME);
|
|
vp9_clear_segdata(seg, 1, SEG_LVL_REF_FRAME);
|
|
vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
|
|
|
|
// Skip all MBs if high Q (0,0 mv and skip coeffs)
|
|
if (high_q) {
|
|
vp9_enable_segfeature(seg, 0, SEG_LVL_SKIP);
|
|
vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP);
|
|
}
|
|
// Enable data update
|
|
seg->update_data = 1;
|
|
} else {
|
|
// All other frames.
|
|
|
|
// No updates.. leave things as they are.
|
|
seg->update_map = 0;
|
|
seg->update_data = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef ENTROPY_STATS
|
|
void vp9_update_mode_context_stats(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
int i, j;
|
|
unsigned int (*inter_mode_counts)[INTER_MODES - 1][2] =
|
|
cm->fc.inter_mode_counts;
|
|
int64_t (*mv_ref_stats)[INTER_MODES - 1][2] = cpi->mv_ref_stats;
|
|
FILE *f;
|
|
|
|
// Read the past stats counters
|
|
f = fopen("mode_context.bin", "rb");
|
|
if (!f) {
|
|
vpx_memset(cpi->mv_ref_stats, 0, sizeof(cpi->mv_ref_stats));
|
|
} else {
|
|
fread(cpi->mv_ref_stats, sizeof(cpi->mv_ref_stats), 1, f);
|
|
fclose(f);
|
|
}
|
|
|
|
// Add in the values for this frame
|
|
for (i = 0; i < INTER_MODE_CONTEXTS; i++) {
|
|
for (j = 0; j < INTER_MODES - 1; j++) {
|
|
mv_ref_stats[i][j][0] += (int64_t)inter_mode_counts[i][j][0];
|
|
mv_ref_stats[i][j][1] += (int64_t)inter_mode_counts[i][j][1];
|
|
}
|
|
}
|
|
|
|
// Write back the accumulated stats
|
|
f = fopen("mode_context.bin", "wb");
|
|
fwrite(cpi->mv_ref_stats, sizeof(cpi->mv_ref_stats), 1, f);
|
|
fclose(f);
|
|
}
|
|
|
|
void print_mode_context(VP9_COMP *cpi) {
|
|
FILE *f = fopen("vp9_modecont.c", "a");
|
|
int i, j;
|
|
|
|
fprintf(f, "#include \"vp9_entropy.h\"\n");
|
|
fprintf(
|
|
f,
|
|
"const int inter_mode_probs[INTER_MODE_CONTEXTS][INTER_MODES - 1] =");
|
|
fprintf(f, "{\n");
|
|
for (j = 0; j < INTER_MODE_CONTEXTS; j++) {
|
|
fprintf(f, " {/* %d */ ", j);
|
|
fprintf(f, " ");
|
|
for (i = 0; i < INTER_MODES - 1; i++) {
|
|
int this_prob;
|
|
int64_t count = cpi->mv_ref_stats[j][i][0] + cpi->mv_ref_stats[j][i][1];
|
|
if (count)
|
|
this_prob = ((cpi->mv_ref_stats[j][i][0] * 256) + (count >> 1)) / count;
|
|
else
|
|
this_prob = 128;
|
|
|
|
// context probs
|
|
fprintf(f, "%5d, ", this_prob);
|
|
}
|
|
fprintf(f, " },\n");
|
|
}
|
|
|
|
fprintf(f, "};\n");
|
|
fclose(f);
|
|
}
|
|
#endif // ENTROPY_STATS
|
|
|
|
// DEBUG: Print out the segment id of each MB in the current frame.
|
|
static void print_seg_map(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
int row, col;
|
|
int map_index = 0;
|
|
FILE *statsfile = fopen("segmap.stt", "a");
|
|
|
|
fprintf(statsfile, "%10d\n", cm->current_video_frame);
|
|
|
|
for (row = 0; row < cpi->common.mi_rows; row++) {
|
|
for (col = 0; col < cpi->common.mi_cols; col++) {
|
|
fprintf(statsfile, "%10d", cpi->segmentation_map[map_index]);
|
|
map_index++;
|
|
}
|
|
fprintf(statsfile, "\n");
|
|
}
|
|
fprintf(statsfile, "\n");
|
|
|
|
fclose(statsfile);
|
|
}
|
|
|
|
static void update_reference_segmentation_map(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
int row, col;
|
|
MODE_INFO *mi, *mi_ptr = cm->mi;
|
|
uint8_t *cache_ptr = cm->last_frame_seg_map, *cache;
|
|
|
|
for (row = 0; row < cm->mi_rows; row++) {
|
|
mi = mi_ptr;
|
|
cache = cache_ptr;
|
|
for (col = 0; col < cm->mi_cols; col++, mi++, cache++)
|
|
cache[0] = mi->mbmi.segment_id;
|
|
mi_ptr += cm->mode_info_stride;
|
|
cache_ptr += cm->mi_cols;
|
|
}
|
|
}
|
|
|
|
static void set_default_lf_deltas(struct loopfilter *lf) {
|
|
lf->mode_ref_delta_enabled = 1;
|
|
lf->mode_ref_delta_update = 1;
|
|
|
|
vp9_zero(lf->ref_deltas);
|
|
vp9_zero(lf->mode_deltas);
|
|
|
|
// Test of ref frame deltas
|
|
lf->ref_deltas[INTRA_FRAME] = 2;
|
|
lf->ref_deltas[LAST_FRAME] = 0;
|
|
lf->ref_deltas[GOLDEN_FRAME] = -2;
|
|
lf->ref_deltas[ALTREF_FRAME] = -2;
|
|
|
|
lf->mode_deltas[0] = 0; // Zero
|
|
lf->mode_deltas[1] = 0; // New mv
|
|
}
|
|
|
|
static void set_rd_speed_thresholds(VP9_COMP *cpi, int mode, int speed) {
|
|
SPEED_FEATURES *sf = &cpi->sf;
|
|
int speed_multiplier = speed + 1;
|
|
int i;
|
|
|
|
// Set baseline threshold values
|
|
for (i = 0; i < MAX_MODES; ++i)
|
|
sf->thresh_mult[i] = mode == 0 ? -500 : 0;
|
|
|
|
sf->thresh_mult[THR_NEARESTMV] = 0;
|
|
sf->thresh_mult[THR_NEARESTG] = 0;
|
|
sf->thresh_mult[THR_NEARESTA] = 0;
|
|
|
|
sf->thresh_mult[THR_NEWMV] += speed_multiplier * 1000;
|
|
sf->thresh_mult[THR_COMP_NEARESTLA] += speed_multiplier * 1000;
|
|
sf->thresh_mult[THR_NEARMV] += speed_multiplier * 1000;
|
|
sf->thresh_mult[THR_COMP_NEARESTGA] += speed_multiplier * 1000;
|
|
|
|
sf->thresh_mult[THR_DC] += speed_multiplier * 1000;
|
|
|
|
sf->thresh_mult[THR_NEWG] += speed_multiplier * 1000;
|
|
sf->thresh_mult[THR_NEWA] += speed_multiplier * 1000;
|
|
sf->thresh_mult[THR_NEARA] += speed_multiplier * 1000;
|
|
|
|
sf->thresh_mult[THR_TM] += speed_multiplier * 1000;
|
|
|
|
sf->thresh_mult[THR_COMP_NEARLA] += speed_multiplier * 1500;
|
|
sf->thresh_mult[THR_COMP_NEWLA] += speed_multiplier * 2000;
|
|
sf->thresh_mult[THR_NEARG] += speed_multiplier * 1000;
|
|
sf->thresh_mult[THR_COMP_NEARGA] += speed_multiplier * 1500;
|
|
sf->thresh_mult[THR_COMP_NEWGA] += speed_multiplier * 2000;
|
|
|
|
sf->thresh_mult[THR_SPLITMV] += speed_multiplier * 2500;
|
|
sf->thresh_mult[THR_SPLITG] += speed_multiplier * 2500;
|
|
sf->thresh_mult[THR_SPLITA] += speed_multiplier * 2500;
|
|
sf->thresh_mult[THR_COMP_SPLITLA] += speed_multiplier * 4500;
|
|
sf->thresh_mult[THR_COMP_SPLITGA] += speed_multiplier * 4500;
|
|
|
|
sf->thresh_mult[THR_ZEROMV] += speed_multiplier * 2000;
|
|
sf->thresh_mult[THR_ZEROG] += speed_multiplier * 2000;
|
|
sf->thresh_mult[THR_ZEROA] += speed_multiplier * 2000;
|
|
sf->thresh_mult[THR_COMP_ZEROLA] += speed_multiplier * 2500;
|
|
sf->thresh_mult[THR_COMP_ZEROGA] += speed_multiplier * 2500;
|
|
|
|
sf->thresh_mult[THR_B_PRED] += speed_multiplier * 2500;
|
|
sf->thresh_mult[THR_H_PRED] += speed_multiplier * 2000;
|
|
sf->thresh_mult[THR_V_PRED] += speed_multiplier * 2000;
|
|
sf->thresh_mult[THR_D45_PRED ] += speed_multiplier * 2500;
|
|
sf->thresh_mult[THR_D135_PRED] += speed_multiplier * 2500;
|
|
sf->thresh_mult[THR_D117_PRED] += speed_multiplier * 2500;
|
|
sf->thresh_mult[THR_D153_PRED] += speed_multiplier * 2500;
|
|
sf->thresh_mult[THR_D207_PRED] += speed_multiplier * 2500;
|
|
sf->thresh_mult[THR_D63_PRED] += speed_multiplier * 2500;
|
|
|
|
if (cpi->sf.skip_lots_of_modes) {
|
|
for (i = 0; i < MAX_MODES; ++i)
|
|
sf->thresh_mult[i] = INT_MAX;
|
|
|
|
sf->thresh_mult[THR_DC] = 2000;
|
|
sf->thresh_mult[THR_TM] = 2000;
|
|
sf->thresh_mult[THR_NEWMV] = 4000;
|
|
sf->thresh_mult[THR_NEWG] = 4000;
|
|
sf->thresh_mult[THR_NEWA] = 4000;
|
|
sf->thresh_mult[THR_NEARESTMV] = 0;
|
|
sf->thresh_mult[THR_NEARESTG] = 0;
|
|
sf->thresh_mult[THR_NEARESTA] = 0;
|
|
sf->thresh_mult[THR_NEARMV] = 2000;
|
|
sf->thresh_mult[THR_NEARG] = 2000;
|
|
sf->thresh_mult[THR_NEARA] = 2000;
|
|
sf->thresh_mult[THR_COMP_NEARESTLA] = 2000;
|
|
sf->thresh_mult[THR_SPLITMV] = 2500;
|
|
sf->thresh_mult[THR_SPLITG] = 2500;
|
|
sf->thresh_mult[THR_SPLITA] = 2500;
|
|
sf->recode_loop = 0;
|
|
}
|
|
|
|
/* disable frame modes if flags not set */
|
|
if (!(cpi->ref_frame_flags & VP9_LAST_FLAG)) {
|
|
sf->thresh_mult[THR_NEWMV ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARESTMV] = INT_MAX;
|
|
sf->thresh_mult[THR_ZEROMV ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARMV ] = INT_MAX;
|
|
sf->thresh_mult[THR_SPLITMV ] = INT_MAX;
|
|
}
|
|
if (!(cpi->ref_frame_flags & VP9_GOLD_FLAG)) {
|
|
sf->thresh_mult[THR_NEARESTG ] = INT_MAX;
|
|
sf->thresh_mult[THR_ZEROG ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARG ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEWG ] = INT_MAX;
|
|
sf->thresh_mult[THR_SPLITG ] = INT_MAX;
|
|
}
|
|
if (!(cpi->ref_frame_flags & VP9_ALT_FLAG)) {
|
|
sf->thresh_mult[THR_NEARESTA ] = INT_MAX;
|
|
sf->thresh_mult[THR_ZEROA ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARA ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEWA ] = INT_MAX;
|
|
sf->thresh_mult[THR_SPLITA ] = INT_MAX;
|
|
}
|
|
|
|
if ((cpi->ref_frame_flags & (VP9_LAST_FLAG | VP9_ALT_FLAG)) !=
|
|
(VP9_LAST_FLAG | VP9_ALT_FLAG)) {
|
|
sf->thresh_mult[THR_COMP_ZEROLA ] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_NEARESTLA] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_NEARLA ] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_NEWLA ] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_SPLITLA ] = INT_MAX;
|
|
}
|
|
if ((cpi->ref_frame_flags & (VP9_GOLD_FLAG | VP9_ALT_FLAG)) !=
|
|
(VP9_GOLD_FLAG | VP9_ALT_FLAG)) {
|
|
sf->thresh_mult[THR_COMP_ZEROGA ] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_NEARESTGA] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_NEARGA ] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_NEWGA ] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_SPLITGA ] = INT_MAX;
|
|
}
|
|
|
|
if (sf->disable_splitmv == 1) {
|
|
sf->thresh_mult[THR_SPLITMV ] = INT_MAX;
|
|
sf->thresh_mult[THR_SPLITG ] = INT_MAX;
|
|
sf->thresh_mult[THR_SPLITA ] = INT_MAX;
|
|
|
|
sf->thresh_mult[THR_COMP_SPLITLA ] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_SPLITGA ] = INT_MAX;
|
|
}
|
|
}
|
|
|
|
void vp9_set_speed_features(VP9_COMP *cpi) {
|
|
SPEED_FEATURES *sf = &cpi->sf;
|
|
int mode = cpi->compressor_speed;
|
|
int speed = cpi->speed;
|
|
int i;
|
|
|
|
// Only modes 0 and 1 supported for now in experimental code basae
|
|
if (mode > 1)
|
|
mode = 1;
|
|
|
|
// Initialise default mode frequency sampling variables
|
|
for (i = 0; i < MAX_MODES; i ++) {
|
|
cpi->mode_check_freq[i] = 0;
|
|
cpi->mode_test_hit_counts[i] = 0;
|
|
cpi->mode_chosen_counts[i] = 0;
|
|
}
|
|
|
|
// best quality defaults
|
|
sf->RD = 1;
|
|
sf->search_method = NSTEP;
|
|
sf->auto_filter = 1;
|
|
sf->recode_loop = 1;
|
|
sf->subpel_search_method = SUBPEL_TREE;
|
|
sf->subpel_iters_per_step = 2;
|
|
sf->optimize_coefficients = !cpi->oxcf.lossless;
|
|
sf->reduce_first_step_size = 0;
|
|
sf->auto_mv_step_size = 0;
|
|
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
|
|
sf->comp_inter_joint_search_thresh = BLOCK_4X4;
|
|
sf->adaptive_rd_thresh = 0;
|
|
sf->use_lastframe_partitioning = 0;
|
|
sf->tx_size_search_method = USE_FULL_RD;
|
|
sf->use_lp32x32fdct = 0;
|
|
sf->use_avoid_tested_higherror = 0;
|
|
sf->reference_masking = 0;
|
|
sf->skip_lots_of_modes = 0;
|
|
sf->adjust_thresholds_by_speed = 0;
|
|
sf->partition_by_variance = 0;
|
|
sf->use_one_partition_size_always = 0;
|
|
sf->less_rectangular_check = 0;
|
|
sf->use_square_partition_only = 0;
|
|
sf->auto_min_max_partition_size = 0;
|
|
sf->auto_min_max_partition_interval = 0;
|
|
sf->auto_min_max_partition_count = 0;
|
|
sf->max_partition_size = BLOCK_64X64;
|
|
sf->min_partition_size = BLOCK_4X4;
|
|
sf->adjust_partitioning_from_last_frame = 0;
|
|
sf->last_partitioning_redo_frequency = 4;
|
|
sf->disable_splitmv = 0;
|
|
sf->mode_search_skip_flags = 0;
|
|
sf->disable_split_var_thresh = 0;
|
|
sf->disable_filter_search_var_thresh = 0;
|
|
sf->intra_y_mode_mask = ALL_INTRA_MODES;
|
|
sf->intra_uv_mode_mask = ALL_INTRA_MODES;
|
|
sf->use_rd_breakout = 0;
|
|
sf->skip_encode_sb = 0;
|
|
sf->use_uv_intra_rd_estimate = 0;
|
|
sf->use_fast_lpf_pick = 0;
|
|
sf->use_fast_coef_updates = 0;
|
|
sf->using_small_partition_info = 0;
|
|
// Skip any mode not chosen at size < X for all sizes > X
|
|
// Hence BLOCK_64X64 (skip is off)
|
|
sf->unused_mode_skip_lvl = BLOCK_64X64;
|
|
|
|
#if CONFIG_MULTIPLE_ARF
|
|
// Switch segmentation off.
|
|
sf->static_segmentation = 0;
|
|
#else
|
|
sf->static_segmentation = 0;
|
|
#endif
|
|
|
|
switch (mode) {
|
|
case 0: // best quality mode
|
|
sf->search_best_filter = SEARCH_BEST_FILTER;
|
|
break;
|
|
|
|
case 1:
|
|
#if CONFIG_MULTIPLE_ARF
|
|
// Switch segmentation off.
|
|
sf->static_segmentation = 0;
|
|
#else
|
|
sf->static_segmentation = 0;
|
|
#endif
|
|
sf->use_avoid_tested_higherror = 1;
|
|
sf->adaptive_rd_thresh = MIN((speed + 1), 4);
|
|
|
|
if (speed == 1) {
|
|
sf->comp_inter_joint_search_thresh = BLOCK_SIZES;
|
|
sf->less_rectangular_check = 1;
|
|
sf->tx_size_search_method = ((cpi->common.frame_type == KEY_FRAME ||
|
|
cpi->common.intra_only ||
|
|
cpi->common.show_frame == 0) ?
|
|
USE_FULL_RD :
|
|
USE_LARGESTALL);
|
|
sf->use_square_partition_only = !(cpi->common.frame_type == KEY_FRAME ||
|
|
cpi->common.intra_only ||
|
|
cpi->common.show_frame == 0);
|
|
sf->disable_splitmv =
|
|
(MIN(cpi->common.width, cpi->common.height) >= 720)? 1 : 0;
|
|
sf->unused_mode_skip_lvl = BLOCK_32X32;
|
|
sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH |
|
|
FLAG_SKIP_INTRA_BESTINTER |
|
|
FLAG_SKIP_COMP_BESTINTRA |
|
|
FLAG_SKIP_INTRA_LOWVAR;
|
|
sf->use_uv_intra_rd_estimate = 1;
|
|
sf->use_rd_breakout = 1;
|
|
sf->skip_encode_sb = 1;
|
|
sf->use_lp32x32fdct = 1;
|
|
sf->auto_mv_step_size = 1;
|
|
|
|
sf->auto_min_max_partition_size = 1;
|
|
sf->auto_min_max_partition_interval = 1;
|
|
// FIXME(jingning): temporarily turn off disable_split_var_thresh
|
|
// during refactoring process. will get this back after finishing
|
|
// the main framework of partition search type.
|
|
sf->disable_split_var_thresh = 0;
|
|
sf->disable_filter_search_var_thresh = 16;
|
|
|
|
sf->intra_y_mode_mask = INTRA_DC_TM_H_V;
|
|
sf->intra_uv_mode_mask = INTRA_DC_TM_H_V;
|
|
sf->use_fast_coef_updates = 1;
|
|
}
|
|
if (speed == 2) {
|
|
sf->adjust_thresholds_by_speed = 1;
|
|
sf->less_rectangular_check = 1;
|
|
sf->use_square_partition_only = 1;
|
|
sf->comp_inter_joint_search_thresh = BLOCK_SIZES;
|
|
sf->use_lastframe_partitioning = 1;
|
|
sf->adjust_partitioning_from_last_frame = 1;
|
|
sf->last_partitioning_redo_frequency = 3;
|
|
sf->unused_mode_skip_lvl = BLOCK_32X32;
|
|
sf->tx_size_search_method = ((cpi->common.frame_type == KEY_FRAME ||
|
|
cpi->common.intra_only ||
|
|
cpi->common.show_frame == 0) ?
|
|
USE_FULL_RD :
|
|
USE_LARGESTALL);
|
|
sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH |
|
|
FLAG_SKIP_INTRA_BESTINTER |
|
|
FLAG_SKIP_COMP_BESTINTRA |
|
|
FLAG_SKIP_COMP_REFMISMATCH |
|
|
FLAG_SKIP_INTRA_LOWVAR |
|
|
FLAG_EARLY_TERMINATE;
|
|
sf->intra_y_mode_mask = INTRA_DC_TM;
|
|
sf->intra_uv_mode_mask = INTRA_DC_TM;
|
|
sf->use_uv_intra_rd_estimate = 1;
|
|
sf->use_rd_breakout = 1;
|
|
sf->skip_encode_sb = 1;
|
|
sf->use_lp32x32fdct = 1;
|
|
sf->using_small_partition_info = 0;
|
|
sf->disable_splitmv =
|
|
(MIN(cpi->common.width, cpi->common.height) >= 720)? 1 : 0;
|
|
sf->auto_mv_step_size = 1;
|
|
sf->search_method = SQUARE;
|
|
sf->subpel_iters_per_step = 1;
|
|
sf->use_fast_lpf_pick = 1;
|
|
sf->auto_min_max_partition_size = 1;
|
|
sf->auto_min_max_partition_interval = 2;
|
|
sf->disable_split_var_thresh = 32;
|
|
sf->disable_filter_search_var_thresh = 32;
|
|
sf->use_fast_coef_updates = 2;
|
|
}
|
|
if (speed == 3) {
|
|
sf->comp_inter_joint_search_thresh = BLOCK_SIZES;
|
|
sf->partition_by_variance = 1;
|
|
sf->tx_size_search_method = ((cpi->common.frame_type == KEY_FRAME ||
|
|
cpi->common.intra_only ||
|
|
cpi->common.show_frame == 0) ?
|
|
USE_FULL_RD :
|
|
USE_LARGESTALL);
|
|
sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH |
|
|
FLAG_SKIP_INTRA_BESTINTER |
|
|
FLAG_SKIP_COMP_BESTINTRA |
|
|
FLAG_SKIP_COMP_REFMISMATCH |
|
|
FLAG_SKIP_INTRA_LOWVAR |
|
|
FLAG_EARLY_TERMINATE;
|
|
sf->use_rd_breakout = 1;
|
|
sf->skip_encode_sb = 1;
|
|
sf->use_lp32x32fdct = 1;
|
|
sf->disable_splitmv = 1;
|
|
sf->auto_mv_step_size = 1;
|
|
sf->search_method = BIGDIA;
|
|
sf->subpel_iters_per_step = 1;
|
|
sf->disable_split_var_thresh = 64;
|
|
sf->disable_filter_search_var_thresh = 64;
|
|
sf->intra_y_mode_mask = INTRA_DC_ONLY;
|
|
sf->intra_uv_mode_mask = INTRA_DC_ONLY;
|
|
sf->use_fast_coef_updates = 2;
|
|
}
|
|
if (speed == 4) {
|
|
sf->comp_inter_joint_search_thresh = BLOCK_SIZES;
|
|
sf->use_one_partition_size_always = 1;
|
|
sf->always_this_block_size = BLOCK_16X16;
|
|
sf->tx_size_search_method = ((cpi->common.frame_type == KEY_FRAME ||
|
|
cpi->common.intra_only ||
|
|
cpi->common.show_frame == 0) ?
|
|
USE_FULL_RD :
|
|
USE_LARGESTALL);
|
|
sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH |
|
|
FLAG_SKIP_INTRA_BESTINTER |
|
|
FLAG_SKIP_COMP_BESTINTRA |
|
|
FLAG_SKIP_COMP_REFMISMATCH |
|
|
FLAG_SKIP_INTRA_LOWVAR |
|
|
FLAG_EARLY_TERMINATE;
|
|
sf->use_rd_breakout = 1;
|
|
sf->use_lp32x32fdct = 1;
|
|
sf->optimize_coefficients = 0;
|
|
sf->auto_mv_step_size = 1;
|
|
// sf->reduce_first_step_size = 1;
|
|
// sf->reference_masking = 1;
|
|
|
|
sf->disable_splitmv = 1;
|
|
sf->search_method = HEX;
|
|
sf->subpel_iters_per_step = 1;
|
|
sf->disable_split_var_thresh = 64;
|
|
sf->disable_filter_search_var_thresh = 96;
|
|
sf->use_fast_coef_updates = 2;
|
|
}
|
|
/*
|
|
if (speed == 2) {
|
|
sf->first_step = 0;
|
|
sf->comp_inter_joint_search_thresh = BLOCK_8X8;
|
|
sf->max_partition_size = BLOCK_16X16;
|
|
}
|
|
if (speed == 3) {
|
|
sf->first_step = 0;
|
|
sf->comp_inter_joint_search_thresh = BLOCK_B8X8;
|
|
sf->min_partition_size = BLOCK_8X8;
|
|
}
|
|
*/
|
|
|
|
break;
|
|
|
|
}; /* switch */
|
|
|
|
// Set rd thresholds based on mode and speed setting
|
|
if (cpi->sf.adjust_thresholds_by_speed)
|
|
set_rd_speed_thresholds(cpi, mode, speed);
|
|
else
|
|
set_rd_speed_thresholds(cpi, mode, 0);
|
|
|
|
// Slow quant, dct and trellis not worthwhile for first pass
|
|
// so make sure they are always turned off.
|
|
if (cpi->pass == 1) {
|
|
sf->optimize_coefficients = 0;
|
|
}
|
|
|
|
cpi->mb.fwd_txm16x16 = vp9_short_fdct16x16;
|
|
cpi->mb.fwd_txm8x8 = vp9_short_fdct8x8;
|
|
cpi->mb.fwd_txm8x4 = vp9_short_fdct8x4;
|
|
cpi->mb.fwd_txm4x4 = vp9_short_fdct4x4;
|
|
if (cpi->oxcf.lossless || cpi->mb.e_mbd.lossless) {
|
|
cpi->mb.fwd_txm8x4 = vp9_short_walsh8x4;
|
|
cpi->mb.fwd_txm4x4 = vp9_short_walsh4x4;
|
|
}
|
|
|
|
cpi->mb.quantize_b_4x4 = vp9_regular_quantize_b_4x4;
|
|
|
|
if (cpi->sf.subpel_search_method == SUBPEL_ITERATIVE) {
|
|
cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_iterative;
|
|
cpi->find_fractional_mv_step_comp = vp9_find_best_sub_pixel_comp_iterative;
|
|
} else if (cpi->sf.subpel_search_method == SUBPEL_TREE) {
|
|
cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_tree;
|
|
cpi->find_fractional_mv_step_comp = vp9_find_best_sub_pixel_comp_tree;
|
|
}
|
|
|
|
cpi->mb.optimize = cpi->sf.optimize_coefficients == 1 && cpi->pass != 1;
|
|
|
|
#ifdef SPEEDSTATS
|
|
frames_at_speed[cpi->speed]++;
|
|
#endif
|
|
}
|
|
|
|
static void alloc_raw_frame_buffers(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
|
|
cpi->lookahead = vp9_lookahead_init(cpi->oxcf.width, cpi->oxcf.height,
|
|
cm->subsampling_x, cm->subsampling_y,
|
|
cpi->oxcf.lag_in_frames);
|
|
if (!cpi->lookahead)
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate lag buffers");
|
|
|
|
if (vp9_realloc_frame_buffer(&cpi->alt_ref_buffer,
|
|
cpi->oxcf.width, cpi->oxcf.height,
|
|
cm->subsampling_x, cm->subsampling_y,
|
|
VP9BORDERINPIXELS))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate altref buffer");
|
|
}
|
|
|
|
static int alloc_partition_data(VP9_COMP *cpi) {
|
|
vpx_free(cpi->mb.pip);
|
|
|
|
cpi->mb.pip = vpx_calloc(cpi->common.mode_info_stride *
|
|
(cpi->common.mi_rows + MI_BLOCK_SIZE),
|
|
sizeof(PARTITION_INFO));
|
|
if (!cpi->mb.pip)
|
|
return 1;
|
|
|
|
cpi->mb.pi = cpi->mb.pip + cpi->common.mode_info_stride + 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void vp9_alloc_compressor_data(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
|
|
if (vp9_alloc_frame_buffers(cm, cm->width, cm->height))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate frame buffers");
|
|
|
|
if (alloc_partition_data(cpi))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate partition data");
|
|
|
|
if (vp9_alloc_frame_buffer(&cpi->last_frame_uf,
|
|
cm->width, cm->height,
|
|
cm->subsampling_x, cm->subsampling_y,
|
|
VP9BORDERINPIXELS))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate last frame buffer");
|
|
|
|
if (vp9_alloc_frame_buffer(&cpi->scaled_source,
|
|
cm->width, cm->height,
|
|
cm->subsampling_x, cm->subsampling_y,
|
|
VP9BORDERINPIXELS))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate scaled source buffer");
|
|
|
|
vpx_free(cpi->tok);
|
|
|
|
{
|
|
unsigned int tokens = get_token_alloc(cm->mb_rows, cm->mb_cols);
|
|
|
|
CHECK_MEM_ERROR(cm, cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok)));
|
|
}
|
|
|
|
// Data used for real time vc mode to see if gf needs refreshing
|
|
cpi->inter_zz_count = 0;
|
|
cpi->gf_bad_count = 0;
|
|
cpi->gf_update_recommended = 0;
|
|
|
|
vpx_free(cpi->mb_activity_map);
|
|
CHECK_MEM_ERROR(cm, cpi->mb_activity_map,
|
|
vpx_calloc(sizeof(unsigned int),
|
|
cm->mb_rows * cm->mb_cols));
|
|
|
|
vpx_free(cpi->mb_norm_activity_map);
|
|
CHECK_MEM_ERROR(cm, cpi->mb_norm_activity_map,
|
|
vpx_calloc(sizeof(unsigned int),
|
|
cm->mb_rows * cm->mb_cols));
|
|
}
|
|
|
|
|
|
static void update_frame_size(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
|
|
vp9_update_frame_size(cm);
|
|
|
|
// Update size of buffers local to this frame
|
|
if (vp9_realloc_frame_buffer(&cpi->last_frame_uf,
|
|
cm->width, cm->height,
|
|
cm->subsampling_x, cm->subsampling_y,
|
|
VP9BORDERINPIXELS))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to reallocate last frame buffer");
|
|
|
|
if (vp9_realloc_frame_buffer(&cpi->scaled_source,
|
|
cm->width, cm->height,
|
|
cm->subsampling_x, cm->subsampling_y,
|
|
VP9BORDERINPIXELS))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to reallocate scaled source buffer");
|
|
|
|
{
|
|
int y_stride = cpi->scaled_source.y_stride;
|
|
|
|
if (cpi->sf.search_method == NSTEP) {
|
|
vp9_init3smotion_compensation(&cpi->mb, y_stride);
|
|
} else if (cpi->sf.search_method == DIAMOND) {
|
|
vp9_init_dsmotion_compensation(&cpi->mb, y_stride);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// TODO perhaps change number of steps expose to outside world when setting
|
|
// max and min limits. Also this will likely want refining for the extended Q
|
|
// range.
|
|
//
|
|
// Table that converts 0-63 Q range values passed in outside to the Qindex
|
|
// range used internally.
|
|
static const int q_trans[] = {
|
|
0, 4, 8, 12, 16, 20, 24, 28,
|
|
32, 36, 40, 44, 48, 52, 56, 60,
|
|
64, 68, 72, 76, 80, 84, 88, 92,
|
|
96, 100, 104, 108, 112, 116, 120, 124,
|
|
128, 132, 136, 140, 144, 148, 152, 156,
|
|
160, 164, 168, 172, 176, 180, 184, 188,
|
|
192, 196, 200, 204, 208, 212, 216, 220,
|
|
224, 228, 232, 236, 240, 244, 249, 255,
|
|
};
|
|
|
|
int vp9_reverse_trans(int x) {
|
|
int i;
|
|
|
|
for (i = 0; i < 64; i++)
|
|
if (q_trans[i] >= x)
|
|
return i;
|
|
|
|
return 63;
|
|
};
|
|
void vp9_new_framerate(VP9_COMP *cpi, double framerate) {
|
|
if (framerate < 0.1)
|
|
framerate = 30;
|
|
|
|
cpi->oxcf.framerate = framerate;
|
|
cpi->output_framerate = cpi->oxcf.framerate;
|
|
cpi->per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_framerate);
|
|
cpi->av_per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_framerate);
|
|
cpi->min_frame_bandwidth = (int)(cpi->av_per_frame_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100);
|
|
|
|
|
|
cpi->min_frame_bandwidth = MAX(cpi->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
|
|
|
|
// Set Maximum gf/arf interval
|
|
cpi->max_gf_interval = 16;
|
|
|
|
// Extended interval for genuinely static scenes
|
|
cpi->twopass.static_scene_max_gf_interval = cpi->key_frame_frequency >> 1;
|
|
|
|
// Special conditions when alt ref frame enabled in lagged compress mode
|
|
if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames) {
|
|
if (cpi->max_gf_interval > cpi->oxcf.lag_in_frames - 1)
|
|
cpi->max_gf_interval = cpi->oxcf.lag_in_frames - 1;
|
|
|
|
if (cpi->twopass.static_scene_max_gf_interval > cpi->oxcf.lag_in_frames - 1)
|
|
cpi->twopass.static_scene_max_gf_interval = cpi->oxcf.lag_in_frames - 1;
|
|
}
|
|
|
|
if (cpi->max_gf_interval > cpi->twopass.static_scene_max_gf_interval)
|
|
cpi->max_gf_interval = cpi->twopass.static_scene_max_gf_interval;
|
|
}
|
|
|
|
static int64_t rescale(int val, int64_t num, int denom) {
|
|
int64_t llnum = num;
|
|
int64_t llden = denom;
|
|
int64_t llval = val;
|
|
|
|
return (llval * llnum / llden);
|
|
}
|
|
|
|
static void set_tile_limits(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
|
|
int min_log2_tile_cols, max_log2_tile_cols;
|
|
vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
|
|
|
|
cm->log2_tile_cols = clamp(cpi->oxcf.tile_columns,
|
|
min_log2_tile_cols, max_log2_tile_cols);
|
|
cm->log2_tile_rows = cpi->oxcf.tile_rows;
|
|
}
|
|
|
|
static void init_config(VP9_PTR ptr, VP9_CONFIG *oxcf) {
|
|
VP9_COMP *cpi = (VP9_COMP *)(ptr);
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
int i;
|
|
|
|
cpi->oxcf = *oxcf;
|
|
cpi->goldfreq = 7;
|
|
|
|
cm->version = oxcf->version;
|
|
|
|
cm->width = oxcf->width;
|
|
cm->height = oxcf->height;
|
|
cm->subsampling_x = 0;
|
|
cm->subsampling_y = 0;
|
|
vp9_alloc_compressor_data(cpi);
|
|
|
|
// change includes all joint functionality
|
|
vp9_change_config(ptr, oxcf);
|
|
|
|
// Initialize active best and worst q and average q values.
|
|
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
|
|
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
|
|
cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q;
|
|
|
|
// Initialise the starting buffer levels
|
|
cpi->buffer_level = cpi->oxcf.starting_buffer_level;
|
|
cpi->bits_off_target = cpi->oxcf.starting_buffer_level;
|
|
|
|
cpi->rolling_target_bits = cpi->av_per_frame_bandwidth;
|
|
cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth;
|
|
cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth;
|
|
cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth;
|
|
|
|
cpi->total_actual_bits = 0;
|
|
cpi->total_target_vs_actual = 0;
|
|
|
|
cpi->static_mb_pct = 0;
|
|
|
|
cpi->lst_fb_idx = 0;
|
|
cpi->gld_fb_idx = 1;
|
|
cpi->alt_fb_idx = 2;
|
|
|
|
set_tile_limits(cpi);
|
|
|
|
cpi->fixed_divide[0] = 0;
|
|
for (i = 1; i < 512; i++)
|
|
cpi->fixed_divide[i] = 0x80000 / i;
|
|
}
|
|
|
|
|
|
void vp9_change_config(VP9_PTR ptr, VP9_CONFIG *oxcf) {
|
|
VP9_COMP *cpi = (VP9_COMP *)(ptr);
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
|
|
if (!cpi || !oxcf)
|
|
return;
|
|
|
|
if (cm->version != oxcf->version) {
|
|
cm->version = oxcf->version;
|
|
}
|
|
|
|
cpi->oxcf = *oxcf;
|
|
|
|
switch (cpi->oxcf.Mode) {
|
|
// Real time and one pass deprecated in test code base
|
|
case MODE_FIRSTPASS:
|
|
cpi->pass = 1;
|
|
cpi->compressor_speed = 1;
|
|
break;
|
|
|
|
case MODE_SECONDPASS:
|
|
cpi->pass = 2;
|
|
cpi->compressor_speed = 1;
|
|
cpi->oxcf.cpu_used = clamp(cpi->oxcf.cpu_used, -5, 5);
|
|
break;
|
|
|
|
case MODE_SECONDPASS_BEST:
|
|
cpi->pass = 2;
|
|
cpi->compressor_speed = 0;
|
|
break;
|
|
}
|
|
|
|
cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q];
|
|
cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q];
|
|
cpi->oxcf.cq_level = q_trans[cpi->oxcf.cq_level];
|
|
|
|
cpi->oxcf.lossless = oxcf->lossless;
|
|
if (cpi->oxcf.lossless) {
|
|
cpi->mb.e_mbd.inv_txm4x4_1_add = vp9_short_iwalsh4x4_1_add;
|
|
cpi->mb.e_mbd.inv_txm4x4_add = vp9_short_iwalsh4x4_add;
|
|
} else {
|
|
cpi->mb.e_mbd.inv_txm4x4_1_add = vp9_short_idct4x4_1_add;
|
|
cpi->mb.e_mbd.inv_txm4x4_add = vp9_short_idct4x4_add;
|
|
}
|
|
|
|
cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
|
|
|
|
cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG;
|
|
|
|
// cpi->use_golden_frame_only = 0;
|
|
// cpi->use_last_frame_only = 0;
|
|
cpi->refresh_golden_frame = 0;
|
|
cpi->refresh_last_frame = 1;
|
|
cm->refresh_frame_context = 1;
|
|
cm->reset_frame_context = 0;
|
|
|
|
setup_features(cm);
|
|
cpi->mb.e_mbd.allow_high_precision_mv = 0; // Default mv precision adaptation
|
|
set_mvcost(&cpi->mb);
|
|
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_SEGMENTS; i++)
|
|
cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
|
|
}
|
|
|
|
// At the moment the first order values may not be > MAXQ
|
|
cpi->oxcf.fixed_q = MIN(cpi->oxcf.fixed_q, MAXQ);
|
|
|
|
// local file playback mode == really big buffer
|
|
if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK) {
|
|
cpi->oxcf.starting_buffer_level = 60000;
|
|
cpi->oxcf.optimal_buffer_level = 60000;
|
|
cpi->oxcf.maximum_buffer_size = 240000;
|
|
}
|
|
|
|
// Convert target bandwidth from Kbit/s to Bit/s
|
|
cpi->oxcf.target_bandwidth *= 1000;
|
|
|
|
cpi->oxcf.starting_buffer_level = rescale(cpi->oxcf.starting_buffer_level,
|
|
cpi->oxcf.target_bandwidth, 1000);
|
|
|
|
// Set or reset optimal and maximum buffer levels.
|
|
if (cpi->oxcf.optimal_buffer_level == 0)
|
|
cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8;
|
|
else
|
|
cpi->oxcf.optimal_buffer_level = rescale(cpi->oxcf.optimal_buffer_level,
|
|
cpi->oxcf.target_bandwidth, 1000);
|
|
|
|
if (cpi->oxcf.maximum_buffer_size == 0)
|
|
cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8;
|
|
else
|
|
cpi->oxcf.maximum_buffer_size = rescale(cpi->oxcf.maximum_buffer_size,
|
|
cpi->oxcf.target_bandwidth, 1000);
|
|
|
|
// Set up frame rate and related parameters rate control values.
|
|
vp9_new_framerate(cpi, cpi->oxcf.framerate);
|
|
|
|
// Set absolute upper and lower quality limits
|
|
cpi->worst_quality = cpi->oxcf.worst_allowed_q;
|
|
cpi->best_quality = cpi->oxcf.best_allowed_q;
|
|
|
|
// active values should only be modified if out of new range
|
|
cpi->active_worst_quality = clamp(cpi->active_worst_quality,
|
|
cpi->oxcf.best_allowed_q,
|
|
cpi->oxcf.worst_allowed_q);
|
|
|
|
cpi->active_best_quality = clamp(cpi->active_best_quality,
|
|
cpi->oxcf.best_allowed_q,
|
|
cpi->oxcf.worst_allowed_q);
|
|
|
|
cpi->buffered_mode = cpi->oxcf.optimal_buffer_level > 0;
|
|
|
|
cpi->cq_target_quality = cpi->oxcf.cq_level;
|
|
|
|
cm->mcomp_filter_type = DEFAULT_INTERP_FILTER;
|
|
|
|
cpi->target_bandwidth = cpi->oxcf.target_bandwidth;
|
|
|
|
cm->display_width = cpi->oxcf.width;
|
|
cm->display_height = cpi->oxcf.height;
|
|
|
|
// VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs)
|
|
cpi->oxcf.Sharpness = MIN(7, cpi->oxcf.Sharpness);
|
|
|
|
cpi->common.lf.sharpness_level = cpi->oxcf.Sharpness;
|
|
|
|
if (cpi->initial_width) {
|
|
// Increasing the size of the frame beyond the first seen frame, or some
|
|
// otherwise signalled maximum size, is not supported.
|
|
// TODO(jkoleszar): exit gracefully.
|
|
assert(cm->width <= cpi->initial_width);
|
|
assert(cm->height <= cpi->initial_height);
|
|
}
|
|
update_frame_size(cpi);
|
|
|
|
if (cpi->oxcf.fixed_q >= 0) {
|
|
cpi->last_q[0] = cpi->oxcf.fixed_q;
|
|
cpi->last_q[1] = cpi->oxcf.fixed_q;
|
|
cpi->last_boosted_qindex = cpi->oxcf.fixed_q;
|
|
}
|
|
|
|
cpi->speed = cpi->oxcf.cpu_used;
|
|
|
|
if (cpi->oxcf.lag_in_frames == 0) {
|
|
// force to allowlag to 0 if lag_in_frames is 0;
|
|
cpi->oxcf.allow_lag = 0;
|
|
} else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS) {
|
|
// Limit on lag buffers as these are not currently dynamically allocated
|
|
cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS;
|
|
}
|
|
|
|
// YX Temp
|
|
#if CONFIG_MULTIPLE_ARF
|
|
vp9_zero(cpi->alt_ref_source);
|
|
#else
|
|
cpi->alt_ref_source = NULL;
|
|
#endif
|
|
cpi->is_src_frame_alt_ref = 0;
|
|
|
|
#if 0
|
|
// Experimental RD Code
|
|
cpi->frame_distortion = 0;
|
|
cpi->last_frame_distortion = 0;
|
|
#endif
|
|
|
|
set_tile_limits(cpi);
|
|
}
|
|
|
|
#define M_LOG2_E 0.693147180559945309417
|
|
#define log2f(x) (log (x) / (float) M_LOG2_E)
|
|
|
|
static void cal_nmvjointsadcost(int *mvjointsadcost) {
|
|
mvjointsadcost[0] = 600;
|
|
mvjointsadcost[1] = 300;
|
|
mvjointsadcost[2] = 300;
|
|
mvjointsadcost[0] = 300;
|
|
}
|
|
|
|
static void cal_nmvsadcosts(int *mvsadcost[2]) {
|
|
int i = 1;
|
|
|
|
mvsadcost[0][0] = 0;
|
|
mvsadcost[1][0] = 0;
|
|
|
|
do {
|
|
double z = 256 * (2 * (log2f(8 * i) + .6));
|
|
mvsadcost[0][i] = (int)z;
|
|
mvsadcost[1][i] = (int)z;
|
|
mvsadcost[0][-i] = (int)z;
|
|
mvsadcost[1][-i] = (int)z;
|
|
} while (++i <= MV_MAX);
|
|
}
|
|
|
|
static void cal_nmvsadcosts_hp(int *mvsadcost[2]) {
|
|
int i = 1;
|
|
|
|
mvsadcost[0][0] = 0;
|
|
mvsadcost[1][0] = 0;
|
|
|
|
do {
|
|
double z = 256 * (2 * (log2f(8 * i) + .6));
|
|
mvsadcost[0][i] = (int)z;
|
|
mvsadcost[1][i] = (int)z;
|
|
mvsadcost[0][-i] = (int)z;
|
|
mvsadcost[1][-i] = (int)z;
|
|
} while (++i <= MV_MAX);
|
|
}
|
|
|
|
VP9_PTR vp9_create_compressor(VP9_CONFIG *oxcf) {
|
|
int i, j;
|
|
volatile union {
|
|
VP9_COMP *cpi;
|
|
VP9_PTR ptr;
|
|
} ctx;
|
|
|
|
VP9_COMP *cpi;
|
|
VP9_COMMON *cm;
|
|
|
|
cpi = ctx.cpi = vpx_memalign(32, sizeof(VP9_COMP));
|
|
// Check that the CPI instance is valid
|
|
if (!cpi)
|
|
return 0;
|
|
|
|
cm = &cpi->common;
|
|
|
|
vp9_zero(*cpi);
|
|
|
|
if (setjmp(cm->error.jmp)) {
|
|
VP9_PTR ptr = ctx.ptr;
|
|
|
|
ctx.cpi->common.error.setjmp = 0;
|
|
vp9_remove_compressor(&ptr);
|
|
return 0;
|
|
}
|
|
|
|
cm->error.setjmp = 1;
|
|
|
|
CHECK_MEM_ERROR(cm, cpi->mb.ss, vpx_calloc(sizeof(search_site),
|
|
(MAX_MVSEARCH_STEPS * 8) + 1));
|
|
|
|
vp9_create_common(cm);
|
|
|
|
init_config((VP9_PTR)cpi, oxcf);
|
|
|
|
cm->current_video_frame = 0;
|
|
cpi->kf_overspend_bits = 0;
|
|
cpi->kf_bitrate_adjustment = 0;
|
|
cpi->frames_till_gf_update_due = 0;
|
|
cpi->gf_overspend_bits = 0;
|
|
cpi->non_gf_bitrate_adjustment = 0;
|
|
|
|
// Set reference frame sign bias for ALTREF frame to 1 (for now)
|
|
cm->ref_frame_sign_bias[ALTREF_FRAME] = 1;
|
|
|
|
cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
|
|
|
|
cpi->gold_is_last = 0;
|
|
cpi->alt_is_last = 0;
|
|
cpi->gold_is_alt = 0;
|
|
|
|
// Create the encoder segmentation map and set all entries to 0
|
|
CHECK_MEM_ERROR(cm, cpi->segmentation_map,
|
|
vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
|
|
|
|
// And a place holder structure is the coding context
|
|
// for use if we want to save and restore it
|
|
CHECK_MEM_ERROR(cm, cpi->coding_context.last_frame_seg_map_copy,
|
|
vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
|
|
|
|
CHECK_MEM_ERROR(cm, cpi->active_map, vpx_calloc(cm->MBs, 1));
|
|
vpx_memset(cpi->active_map, 1, cm->MBs);
|
|
cpi->active_map_enabled = 0;
|
|
|
|
for (i = 0; i < (sizeof(cpi->mbgraph_stats) /
|
|
sizeof(cpi->mbgraph_stats[0])); i++) {
|
|
CHECK_MEM_ERROR(cm, cpi->mbgraph_stats[i].mb_stats,
|
|
vpx_calloc(cm->MBs *
|
|
sizeof(*cpi->mbgraph_stats[i].mb_stats), 1));
|
|
}
|
|
|
|
#ifdef ENTROPY_STATS
|
|
if (cpi->pass != 1)
|
|
init_context_counters();
|
|
#endif
|
|
|
|
#ifdef MODE_STATS
|
|
init_tx_count_stats();
|
|
init_switchable_interp_stats();
|
|
#endif
|
|
|
|
/*Initialize the feed-forward activity masking.*/
|
|
cpi->activity_avg = 90 << 12;
|
|
|
|
cpi->frames_since_key = 8; // Give a sensible default for the first frame.
|
|
cpi->key_frame_frequency = cpi->oxcf.key_freq;
|
|
cpi->this_key_frame_forced = 0;
|
|
cpi->next_key_frame_forced = 0;
|
|
|
|
cpi->source_alt_ref_pending = 0;
|
|
cpi->source_alt_ref_active = 0;
|
|
cpi->refresh_alt_ref_frame = 0;
|
|
|
|
#if CONFIG_MULTIPLE_ARF
|
|
// Turn multiple ARF usage on/off. This is a quick hack for the initial test
|
|
// version. It should eventually be set via the codec API.
|
|
cpi->multi_arf_enabled = 1;
|
|
|
|
if (cpi->multi_arf_enabled) {
|
|
cpi->sequence_number = 0;
|
|
cpi->frame_coding_order_period = 0;
|
|
vp9_zero(cpi->frame_coding_order);
|
|
vp9_zero(cpi->arf_buffer_idx);
|
|
}
|
|
#endif
|
|
|
|
cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
|
|
#if CONFIG_INTERNAL_STATS
|
|
cpi->b_calculate_ssimg = 0;
|
|
|
|
cpi->count = 0;
|
|
cpi->bytes = 0;
|
|
|
|
if (cpi->b_calculate_psnr) {
|
|
cpi->total_sq_error = 0.0;
|
|
cpi->total_sq_error2 = 0.0;
|
|
cpi->total_y = 0.0;
|
|
cpi->total_u = 0.0;
|
|
cpi->total_v = 0.0;
|
|
cpi->total = 0.0;
|
|
cpi->totalp_y = 0.0;
|
|
cpi->totalp_u = 0.0;
|
|
cpi->totalp_v = 0.0;
|
|
cpi->totalp = 0.0;
|
|
cpi->tot_recode_hits = 0;
|
|
cpi->summed_quality = 0;
|
|
cpi->summed_weights = 0;
|
|
cpi->summedp_quality = 0;
|
|
cpi->summedp_weights = 0;
|
|
}
|
|
|
|
if (cpi->b_calculate_ssimg) {
|
|
cpi->total_ssimg_y = 0;
|
|
cpi->total_ssimg_u = 0;
|
|
cpi->total_ssimg_v = 0;
|
|
cpi->total_ssimg_all = 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
cpi->first_time_stamp_ever = INT64_MAX;
|
|
|
|
cpi->frames_till_gf_update_due = 0;
|
|
cpi->key_frame_count = 1;
|
|
|
|
cpi->ni_av_qi = cpi->oxcf.worst_allowed_q;
|
|
cpi->ni_tot_qi = 0;
|
|
cpi->ni_frames = 0;
|
|
cpi->tot_q = 0.0;
|
|
cpi->avg_q = vp9_convert_qindex_to_q(cpi->oxcf.worst_allowed_q);
|
|
cpi->total_byte_count = 0;
|
|
|
|
cpi->rate_correction_factor = 1.0;
|
|
cpi->key_frame_rate_correction_factor = 1.0;
|
|
cpi->gf_rate_correction_factor = 1.0;
|
|
cpi->twopass.est_max_qcorrection_factor = 1.0;
|
|
|
|
cal_nmvjointsadcost(cpi->mb.nmvjointsadcost);
|
|
cpi->mb.nmvcost[0] = &cpi->mb.nmvcosts[0][MV_MAX];
|
|
cpi->mb.nmvcost[1] = &cpi->mb.nmvcosts[1][MV_MAX];
|
|
cpi->mb.nmvsadcost[0] = &cpi->mb.nmvsadcosts[0][MV_MAX];
|
|
cpi->mb.nmvsadcost[1] = &cpi->mb.nmvsadcosts[1][MV_MAX];
|
|
cal_nmvsadcosts(cpi->mb.nmvsadcost);
|
|
|
|
cpi->mb.nmvcost_hp[0] = &cpi->mb.nmvcosts_hp[0][MV_MAX];
|
|
cpi->mb.nmvcost_hp[1] = &cpi->mb.nmvcosts_hp[1][MV_MAX];
|
|
cpi->mb.nmvsadcost_hp[0] = &cpi->mb.nmvsadcosts_hp[0][MV_MAX];
|
|
cpi->mb.nmvsadcost_hp[1] = &cpi->mb.nmvsadcosts_hp[1][MV_MAX];
|
|
cal_nmvsadcosts_hp(cpi->mb.nmvsadcost_hp);
|
|
|
|
for (i = 0; i < KEY_FRAME_CONTEXT; i++)
|
|
cpi->prior_key_frame_distance[i] = (int)cpi->output_framerate;
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
yuv_file = fopen("bd.yuv", "ab");
|
|
#endif
|
|
#ifdef OUTPUT_YUV_REC
|
|
yuv_rec_file = fopen("rec.yuv", "wb");
|
|
#endif
|
|
|
|
#if 0
|
|
framepsnr = fopen("framepsnr.stt", "a");
|
|
kf_list = fopen("kf_list.stt", "w");
|
|
#endif
|
|
|
|
cpi->output_pkt_list = oxcf->output_pkt_list;
|
|
|
|
if (cpi->pass == 1) {
|
|
vp9_init_first_pass(cpi);
|
|
} else if (cpi->pass == 2) {
|
|
size_t packet_sz = sizeof(FIRSTPASS_STATS);
|
|
int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz);
|
|
|
|
cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
|
|
cpi->twopass.stats_in = cpi->twopass.stats_in_start;
|
|
cpi->twopass.stats_in_end = (void *)((char *)cpi->twopass.stats_in
|
|
+ (packets - 1) * packet_sz);
|
|
vp9_init_second_pass(cpi);
|
|
}
|
|
|
|
vp9_set_speed_features(cpi);
|
|
|
|
// Default rd threshold factors for mode selection
|
|
for (i = 0; i < BLOCK_SIZES; ++i)
|
|
for (j = 0; j < MAX_MODES; ++j)
|
|
cpi->rd_thresh_freq_fact[i][j] = 32;
|
|
|
|
#define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SVFHH, SVFHV, SVFHHV, \
|
|
SDX3F, SDX8F, SDX4DF)\
|
|
cpi->fn_ptr[BT].sdf = SDF; \
|
|
cpi->fn_ptr[BT].sdaf = SDAF; \
|
|
cpi->fn_ptr[BT].vf = VF; \
|
|
cpi->fn_ptr[BT].svf = SVF; \
|
|
cpi->fn_ptr[BT].svaf = SVAF; \
|
|
cpi->fn_ptr[BT].svf_halfpix_h = SVFHH; \
|
|
cpi->fn_ptr[BT].svf_halfpix_v = SVFHV; \
|
|
cpi->fn_ptr[BT].svf_halfpix_hv = SVFHHV; \
|
|
cpi->fn_ptr[BT].sdx3f = SDX3F; \
|
|
cpi->fn_ptr[BT].sdx8f = SDX8F; \
|
|
cpi->fn_ptr[BT].sdx4df = SDX4DF;
|
|
|
|
BFP(BLOCK_32X16, vp9_sad32x16, vp9_sad32x16_avg,
|
|
vp9_variance32x16, vp9_sub_pixel_variance32x16,
|
|
vp9_sub_pixel_avg_variance32x16, NULL, NULL,
|
|
NULL, NULL, NULL,
|
|
vp9_sad32x16x4d)
|
|
|
|
BFP(BLOCK_16X32, vp9_sad16x32, vp9_sad16x32_avg,
|
|
vp9_variance16x32, vp9_sub_pixel_variance16x32,
|
|
vp9_sub_pixel_avg_variance16x32, NULL, NULL,
|
|
NULL, NULL, NULL,
|
|
vp9_sad16x32x4d)
|
|
|
|
BFP(BLOCK_64X32, vp9_sad64x32, vp9_sad64x32_avg,
|
|
vp9_variance64x32, vp9_sub_pixel_variance64x32,
|
|
vp9_sub_pixel_avg_variance64x32, NULL, NULL,
|
|
NULL, NULL, NULL,
|
|
vp9_sad64x32x4d)
|
|
|
|
BFP(BLOCK_32X64, vp9_sad32x64, vp9_sad32x64_avg,
|
|
vp9_variance32x64, vp9_sub_pixel_variance32x64,
|
|
vp9_sub_pixel_avg_variance32x64, NULL, NULL,
|
|
NULL, NULL, NULL,
|
|
vp9_sad32x64x4d)
|
|
|
|
BFP(BLOCK_32X32, vp9_sad32x32, vp9_sad32x32_avg,
|
|
vp9_variance32x32, vp9_sub_pixel_variance32x32,
|
|
vp9_sub_pixel_avg_variance32x32, vp9_variance_halfpixvar32x32_h,
|
|
vp9_variance_halfpixvar32x32_v,
|
|
vp9_variance_halfpixvar32x32_hv, vp9_sad32x32x3, vp9_sad32x32x8,
|
|
vp9_sad32x32x4d)
|
|
|
|
BFP(BLOCK_64X64, vp9_sad64x64, vp9_sad64x64_avg,
|
|
vp9_variance64x64, vp9_sub_pixel_variance64x64,
|
|
vp9_sub_pixel_avg_variance64x64, vp9_variance_halfpixvar64x64_h,
|
|
vp9_variance_halfpixvar64x64_v,
|
|
vp9_variance_halfpixvar64x64_hv, vp9_sad64x64x3, vp9_sad64x64x8,
|
|
vp9_sad64x64x4d)
|
|
|
|
BFP(BLOCK_16X16, vp9_sad16x16, vp9_sad16x16_avg,
|
|
vp9_variance16x16, vp9_sub_pixel_variance16x16,
|
|
vp9_sub_pixel_avg_variance16x16, vp9_variance_halfpixvar16x16_h,
|
|
vp9_variance_halfpixvar16x16_v,
|
|
vp9_variance_halfpixvar16x16_hv, vp9_sad16x16x3, vp9_sad16x16x8,
|
|
vp9_sad16x16x4d)
|
|
|
|
BFP(BLOCK_16X8, vp9_sad16x8, vp9_sad16x8_avg,
|
|
vp9_variance16x8, vp9_sub_pixel_variance16x8,
|
|
vp9_sub_pixel_avg_variance16x8, NULL, NULL, NULL,
|
|
vp9_sad16x8x3, vp9_sad16x8x8, vp9_sad16x8x4d)
|
|
|
|
BFP(BLOCK_8X16, vp9_sad8x16, vp9_sad8x16_avg,
|
|
vp9_variance8x16, vp9_sub_pixel_variance8x16,
|
|
vp9_sub_pixel_avg_variance8x16, NULL, NULL, NULL,
|
|
vp9_sad8x16x3, vp9_sad8x16x8, vp9_sad8x16x4d)
|
|
|
|
BFP(BLOCK_8X8, vp9_sad8x8, vp9_sad8x8_avg,
|
|
vp9_variance8x8, vp9_sub_pixel_variance8x8,
|
|
vp9_sub_pixel_avg_variance8x8, NULL, NULL, NULL,
|
|
vp9_sad8x8x3, vp9_sad8x8x8, vp9_sad8x8x4d)
|
|
|
|
BFP(BLOCK_8X4, vp9_sad8x4, vp9_sad8x4_avg,
|
|
vp9_variance8x4, vp9_sub_pixel_variance8x4,
|
|
vp9_sub_pixel_avg_variance8x4, NULL, NULL,
|
|
NULL, NULL, vp9_sad8x4x8,
|
|
vp9_sad8x4x4d)
|
|
|
|
BFP(BLOCK_4X8, vp9_sad4x8, vp9_sad4x8_avg,
|
|
vp9_variance4x8, vp9_sub_pixel_variance4x8,
|
|
vp9_sub_pixel_avg_variance4x8, NULL, NULL,
|
|
NULL, NULL, vp9_sad4x8x8,
|
|
vp9_sad4x8x4d)
|
|
|
|
BFP(BLOCK_4X4, vp9_sad4x4, vp9_sad4x4_avg,
|
|
vp9_variance4x4, vp9_sub_pixel_variance4x4,
|
|
vp9_sub_pixel_avg_variance4x4, NULL, NULL, NULL,
|
|
vp9_sad4x4x3, vp9_sad4x4x8, vp9_sad4x4x4d)
|
|
|
|
cpi->full_search_sad = vp9_full_search_sad;
|
|
cpi->diamond_search_sad = vp9_diamond_search_sad;
|
|
cpi->refining_search_sad = vp9_refining_search_sad;
|
|
|
|
// make sure frame 1 is okay
|
|
cpi->error_bins[0] = cpi->common.MBs;
|
|
|
|
/* vp9_init_quantizer() is first called here. Add check in
|
|
* vp9_frame_init_quantizer() so that vp9_init_quantizer is only
|
|
* called later when needed. This will avoid unnecessary calls of
|
|
* vp9_init_quantizer() for every frame.
|
|
*/
|
|
vp9_init_quantizer(cpi);
|
|
|
|
vp9_loop_filter_init(cm);
|
|
|
|
cpi->common.error.setjmp = 0;
|
|
|
|
vp9_zero(cpi->y_uv_mode_count)
|
|
|
|
#ifdef MODE_TEST_HIT_STATS
|
|
vp9_zero(cpi->mode_test_hits)
|
|
#endif
|
|
|
|
return (VP9_PTR) cpi;
|
|
}
|
|
|
|
void vp9_remove_compressor(VP9_PTR *ptr) {
|
|
VP9_COMP *cpi = (VP9_COMP *)(*ptr);
|
|
int i;
|
|
|
|
if (!cpi)
|
|
return;
|
|
|
|
if (cpi && (cpi->common.current_video_frame > 0)) {
|
|
if (cpi->pass == 2) {
|
|
vp9_end_second_pass(cpi);
|
|
}
|
|
|
|
#ifdef ENTROPY_STATS
|
|
if (cpi->pass != 1) {
|
|
print_context_counters();
|
|
print_tree_update_probs();
|
|
print_mode_context(cpi);
|
|
}
|
|
#endif
|
|
|
|
#ifdef MODE_STATS
|
|
if (cpi->pass != 1) {
|
|
write_tx_count_stats();
|
|
write_switchable_interp_stats();
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
|
|
vp9_clear_system_state();
|
|
|
|
// printf("\n8x8-4x4:%d-%d\n", cpi->t8x8_count, cpi->t4x4_count);
|
|
if (cpi->pass != 1) {
|
|
FILE *f = fopen("opsnr.stt", "a");
|
|
double time_encoded = (cpi->last_end_time_stamp_seen
|
|
- cpi->first_time_stamp_ever) / 10000000.000;
|
|
double total_encode_time = (cpi->time_receive_data + cpi->time_compress_data) / 1000.000;
|
|
double dr = (double)cpi->bytes * (double) 8 / (double)1000 / time_encoded;
|
|
|
|
if (cpi->b_calculate_psnr) {
|
|
YV12_BUFFER_CONFIG *lst_yv12 =
|
|
&cpi->common.yv12_fb[cpi->common.ref_frame_map[cpi->lst_fb_idx]];
|
|
double samples = 3.0 / 2 * cpi->count *
|
|
lst_yv12->y_width * lst_yv12->y_height;
|
|
double total_psnr = vp9_mse2psnr(samples, 255.0, cpi->total_sq_error);
|
|
double total_psnr2 = vp9_mse2psnr(samples, 255.0, cpi->total_sq_error2);
|
|
double total_ssim = 100 * pow(cpi->summed_quality /
|
|
cpi->summed_weights, 8.0);
|
|
double total_ssimp = 100 * pow(cpi->summedp_quality /
|
|
cpi->summedp_weights, 8.0);
|
|
|
|
fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t"
|
|
"VPXSSIM\tVPSSIMP\t Time(ms)\n");
|
|
fprintf(f, "%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f\n",
|
|
dr, cpi->total / cpi->count, total_psnr,
|
|
cpi->totalp / cpi->count, total_psnr2, total_ssim, total_ssimp,
|
|
total_encode_time);
|
|
// fprintf(f, "%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f %10ld\n",
|
|
// dr, cpi->total / cpi->count, total_psnr,
|
|
// cpi->totalp / cpi->count, total_psnr2, total_ssim,
|
|
// total_encode_time, cpi->tot_recode_hits);
|
|
}
|
|
|
|
if (cpi->b_calculate_ssimg) {
|
|
fprintf(f, "BitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t Time(ms)\n");
|
|
fprintf(f, "%7.2f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f\n", dr,
|
|
cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count,
|
|
cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time);
|
|
// fprintf(f, "%7.3f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f %10ld\n", dr,
|
|
// cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count,
|
|
// cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time, cpi->tot_recode_hits);
|
|
}
|
|
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef MODE_TEST_HIT_STATS
|
|
if (cpi->pass != 1) {
|
|
double norm_per_pixel_mode_tests = 0;
|
|
double norm_counts[BLOCK_SIZES];
|
|
int i;
|
|
int sb64_per_frame;
|
|
int norm_factors[BLOCK_SIZES] =
|
|
{256, 128, 128, 64, 32, 32, 16, 8, 8, 4, 2, 2, 1};
|
|
FILE *f = fopen("mode_hit_stats.stt", "a");
|
|
|
|
// On average, how many mode tests do we do
|
|
for (i = 0; i < BLOCK_SIZES; ++i) {
|
|
norm_counts[i] = (double)cpi->mode_test_hits[i] /
|
|
(double)norm_factors[i];
|
|
norm_per_pixel_mode_tests += norm_counts[i];
|
|
}
|
|
// Convert to a number per 64x64 and per frame
|
|
sb64_per_frame = ((cpi->common.height + 63) / 64) *
|
|
((cpi->common.width + 63) / 64);
|
|
norm_per_pixel_mode_tests =
|
|
norm_per_pixel_mode_tests /
|
|
(double)(cpi->common.current_video_frame * sb64_per_frame);
|
|
|
|
fprintf(f, "%6.4f\n", norm_per_pixel_mode_tests);
|
|
fclose(f);
|
|
}
|
|
#endif
|
|
|
|
#ifdef ENTROPY_STATS
|
|
{
|
|
int i, j, k;
|
|
FILE *fmode = fopen("vp9_modecontext.c", "w");
|
|
|
|
fprintf(fmode, "\n#include \"vp9_entropymode.h\"\n\n");
|
|
fprintf(fmode, "const unsigned int vp9_kf_default_bmode_counts ");
|
|
fprintf(fmode, "[INTRA_MODES][INTRA_MODES]"
|
|
"[INTRA_MODES] =\n{\n");
|
|
|
|
for (i = 0; i < INTRA_MODES; i++) {
|
|
|
|
fprintf(fmode, " { // Above Mode : %d\n", i);
|
|
|
|
for (j = 0; j < INTRA_MODES; j++) {
|
|
|
|
fprintf(fmode, " {");
|
|
|
|
for (k = 0; k < INTRA_MODES; k++) {
|
|
if (!intra_mode_stats[i][j][k])
|
|
fprintf(fmode, " %5d, ", 1);
|
|
else
|
|
fprintf(fmode, " %5d, ", intra_mode_stats[i][j][k]);
|
|
}
|
|
|
|
fprintf(fmode, "}, // left_mode %d\n", j);
|
|
|
|
}
|
|
|
|
fprintf(fmode, " },\n");
|
|
|
|
}
|
|
|
|
fprintf(fmode, "};\n");
|
|
fclose(fmode);
|
|
}
|
|
#endif
|
|
|
|
|
|
#if defined(SECTIONBITS_OUTPUT)
|
|
|
|
if (0) {
|
|
int i;
|
|
FILE *f = fopen("tokenbits.stt", "a");
|
|
|
|
for (i = 0; i < 28; i++)
|
|
fprintf(f, "%8d", (int)(Sectionbits[i] / 256));
|
|
|
|
fprintf(f, "\n");
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
|
|
#if 0
|
|
{
|
|
printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
|
|
printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
|
|
printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame,
|
|
cpi->time_receive_data / 1000, cpi->time_encode_sb_row / 1000,
|
|
cpi->time_compress_data / 1000,
|
|
(cpi->time_receive_data + cpi->time_compress_data) / 1000);
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
dealloc_compressor_data(cpi);
|
|
vpx_free(cpi->mb.ss);
|
|
vpx_free(cpi->tok);
|
|
|
|
for (i = 0; i < sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]); i++) {
|
|
vpx_free(cpi->mbgraph_stats[i].mb_stats);
|
|
}
|
|
|
|
vp9_remove_common(&cpi->common);
|
|
vpx_free(cpi);
|
|
*ptr = 0;
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
fclose(yuv_file);
|
|
#endif
|
|
#ifdef OUTPUT_YUV_REC
|
|
fclose(yuv_rec_file);
|
|
#endif
|
|
|
|
#if 0
|
|
|
|
if (keyfile)
|
|
fclose(keyfile);
|
|
|
|
if (framepsnr)
|
|
fclose(framepsnr);
|
|
|
|
if (kf_list)
|
|
fclose(kf_list);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
static uint64_t calc_plane_error(uint8_t *orig, int orig_stride,
|
|
uint8_t *recon, int recon_stride,
|
|
unsigned int cols, unsigned int rows) {
|
|
unsigned int row, col;
|
|
uint64_t total_sse = 0;
|
|
int diff;
|
|
|
|
for (row = 0; row + 16 <= rows; row += 16) {
|
|
for (col = 0; col + 16 <= cols; col += 16) {
|
|
unsigned int sse;
|
|
|
|
vp9_mse16x16(orig + col, orig_stride, recon + col, recon_stride, &sse);
|
|
total_sse += sse;
|
|
}
|
|
|
|
/* Handle odd-sized width */
|
|
if (col < cols) {
|
|
unsigned int border_row, border_col;
|
|
uint8_t *border_orig = orig;
|
|
uint8_t *border_recon = recon;
|
|
|
|
for (border_row = 0; border_row < 16; border_row++) {
|
|
for (border_col = col; border_col < cols; border_col++) {
|
|
diff = border_orig[border_col] - border_recon[border_col];
|
|
total_sse += diff * diff;
|
|
}
|
|
|
|
border_orig += orig_stride;
|
|
border_recon += recon_stride;
|
|
}
|
|
}
|
|
|
|
orig += orig_stride * 16;
|
|
recon += recon_stride * 16;
|
|
}
|
|
|
|
/* Handle odd-sized height */
|
|
for (; row < rows; row++) {
|
|
for (col = 0; col < cols; col++) {
|
|
diff = orig[col] - recon[col];
|
|
total_sse += diff * diff;
|
|
}
|
|
|
|
orig += orig_stride;
|
|
recon += recon_stride;
|
|
}
|
|
|
|
return total_sse;
|
|
}
|
|
|
|
|
|
static void generate_psnr_packet(VP9_COMP *cpi) {
|
|
YV12_BUFFER_CONFIG *orig = cpi->Source;
|
|
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
|
|
struct vpx_codec_cx_pkt pkt;
|
|
uint64_t sse;
|
|
int i;
|
|
unsigned int width = orig->y_crop_width;
|
|
unsigned int height = orig->y_crop_height;
|
|
|
|
pkt.kind = VPX_CODEC_PSNR_PKT;
|
|
sse = calc_plane_error(orig->y_buffer, orig->y_stride,
|
|
recon->y_buffer, recon->y_stride,
|
|
width, height);
|
|
pkt.data.psnr.sse[0] = sse;
|
|
pkt.data.psnr.sse[1] = sse;
|
|
pkt.data.psnr.samples[0] = width * height;
|
|
pkt.data.psnr.samples[1] = width * height;
|
|
|
|
width = orig->uv_crop_width;
|
|
height = orig->uv_crop_height;
|
|
|
|
sse = calc_plane_error(orig->u_buffer, orig->uv_stride,
|
|
recon->u_buffer, recon->uv_stride,
|
|
width, height);
|
|
pkt.data.psnr.sse[0] += sse;
|
|
pkt.data.psnr.sse[2] = sse;
|
|
pkt.data.psnr.samples[0] += width * height;
|
|
pkt.data.psnr.samples[2] = width * height;
|
|
|
|
sse = calc_plane_error(orig->v_buffer, orig->uv_stride,
|
|
recon->v_buffer, recon->uv_stride,
|
|
width, height);
|
|
pkt.data.psnr.sse[0] += sse;
|
|
pkt.data.psnr.sse[3] = sse;
|
|
pkt.data.psnr.samples[0] += width * height;
|
|
pkt.data.psnr.samples[3] = width * height;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
pkt.data.psnr.psnr[i] = vp9_mse2psnr(pkt.data.psnr.samples[i], 255.0,
|
|
(double)pkt.data.psnr.sse[i]);
|
|
|
|
vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
|
|
}
|
|
|
|
|
|
int vp9_use_as_reference(VP9_PTR ptr, int ref_frame_flags) {
|
|
VP9_COMP *cpi = (VP9_COMP *)(ptr);
|
|
|
|
if (ref_frame_flags > 7)
|
|
return -1;
|
|
|
|
cpi->ref_frame_flags = ref_frame_flags;
|
|
return 0;
|
|
}
|
|
int vp9_update_reference(VP9_PTR ptr, int ref_frame_flags) {
|
|
VP9_COMP *cpi = (VP9_COMP *)(ptr);
|
|
|
|
if (ref_frame_flags > 7)
|
|
return -1;
|
|
|
|
cpi->refresh_golden_frame = 0;
|
|
cpi->refresh_alt_ref_frame = 0;
|
|
cpi->refresh_last_frame = 0;
|
|
|
|
if (ref_frame_flags & VP9_LAST_FLAG)
|
|
cpi->refresh_last_frame = 1;
|
|
|
|
if (ref_frame_flags & VP9_GOLD_FLAG)
|
|
cpi->refresh_golden_frame = 1;
|
|
|
|
if (ref_frame_flags & VP9_ALT_FLAG)
|
|
cpi->refresh_alt_ref_frame = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vp9_copy_reference_enc(VP9_PTR ptr, VP9_REFFRAME ref_frame_flag,
|
|
YV12_BUFFER_CONFIG *sd) {
|
|
VP9_COMP *cpi = (VP9_COMP *)(ptr);
|
|
VP9_COMMON *cm = &cpi->common;
|
|
int ref_fb_idx;
|
|
|
|
if (ref_frame_flag == VP9_LAST_FLAG)
|
|
ref_fb_idx = cm->ref_frame_map[cpi->lst_fb_idx];
|
|
else if (ref_frame_flag == VP9_GOLD_FLAG)
|
|
ref_fb_idx = cm->ref_frame_map[cpi->gld_fb_idx];
|
|
else if (ref_frame_flag == VP9_ALT_FLAG)
|
|
ref_fb_idx = cm->ref_frame_map[cpi->alt_fb_idx];
|
|
else
|
|
return -1;
|
|
|
|
vp8_yv12_copy_frame(&cm->yv12_fb[ref_fb_idx], sd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vp9_get_reference_enc(VP9_PTR ptr, int index, YV12_BUFFER_CONFIG **fb) {
|
|
VP9_COMP *cpi = (VP9_COMP *)(ptr);
|
|
VP9_COMMON *cm = &cpi->common;
|
|
|
|
if (index < 0 || index >= NUM_REF_FRAMES)
|
|
return -1;
|
|
|
|
*fb = &cm->yv12_fb[cm->ref_frame_map[index]];
|
|
return 0;
|
|
}
|
|
|
|
int vp9_set_reference_enc(VP9_PTR ptr, VP9_REFFRAME ref_frame_flag,
|
|
YV12_BUFFER_CONFIG *sd) {
|
|
VP9_COMP *cpi = (VP9_COMP *)(ptr);
|
|
VP9_COMMON *cm = &cpi->common;
|
|
|
|
int ref_fb_idx;
|
|
|
|
if (ref_frame_flag == VP9_LAST_FLAG)
|
|
ref_fb_idx = cm->ref_frame_map[cpi->lst_fb_idx];
|
|
else if (ref_frame_flag == VP9_GOLD_FLAG)
|
|
ref_fb_idx = cm->ref_frame_map[cpi->gld_fb_idx];
|
|
else if (ref_frame_flag == VP9_ALT_FLAG)
|
|
ref_fb_idx = cm->ref_frame_map[cpi->alt_fb_idx];
|
|
else
|
|
return -1;
|
|
|
|
vp8_yv12_copy_frame(sd, &cm->yv12_fb[ref_fb_idx]);
|
|
|
|
return 0;
|
|
}
|
|
int vp9_update_entropy(VP9_PTR comp, int update) {
|
|
((VP9_COMP *)comp)->common.refresh_frame_context = update;
|
|
return 0;
|
|
}
|
|
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
void vp9_write_yuv_frame(YV12_BUFFER_CONFIG *s) {
|
|
uint8_t *src = s->y_buffer;
|
|
int h = s->y_height;
|
|
|
|
do {
|
|
fwrite(src, s->y_width, 1, yuv_file);
|
|
src += s->y_stride;
|
|
} while (--h);
|
|
|
|
src = s->u_buffer;
|
|
h = s->uv_height;
|
|
|
|
do {
|
|
fwrite(src, s->uv_width, 1, yuv_file);
|
|
src += s->uv_stride;
|
|
} while (--h);
|
|
|
|
src = s->v_buffer;
|
|
h = s->uv_height;
|
|
|
|
do {
|
|
fwrite(src, s->uv_width, 1, yuv_file);
|
|
src += s->uv_stride;
|
|
} while (--h);
|
|
}
|
|
#endif
|
|
|
|
#ifdef OUTPUT_YUV_REC
|
|
void vp9_write_yuv_rec_frame(VP9_COMMON *cm) {
|
|
YV12_BUFFER_CONFIG *s = cm->frame_to_show;
|
|
uint8_t *src = s->y_buffer;
|
|
int h = cm->height;
|
|
|
|
do {
|
|
fwrite(src, s->y_width, 1, yuv_rec_file);
|
|
src += s->y_stride;
|
|
} while (--h);
|
|
|
|
src = s->u_buffer;
|
|
h = s->uv_height;
|
|
|
|
do {
|
|
fwrite(src, s->uv_width, 1, yuv_rec_file);
|
|
src += s->uv_stride;
|
|
} while (--h);
|
|
|
|
src = s->v_buffer;
|
|
h = s->uv_height;
|
|
|
|
do {
|
|
fwrite(src, s->uv_width, 1, yuv_rec_file);
|
|
src += s->uv_stride;
|
|
} while (--h);
|
|
|
|
#if CONFIG_ALPHA
|
|
if (s->alpha_buffer) {
|
|
src = s->alpha_buffer;
|
|
h = s->alpha_height;
|
|
do {
|
|
fwrite(src, s->alpha_width, 1, yuv_rec_file);
|
|
src += s->alpha_stride;
|
|
} while (--h);
|
|
}
|
|
#endif
|
|
|
|
fflush(yuv_rec_file);
|
|
}
|
|
#endif
|
|
|
|
static void scale_and_extend_frame(YV12_BUFFER_CONFIG *src_fb,
|
|
YV12_BUFFER_CONFIG *dst_fb) {
|
|
const int in_w = src_fb->y_crop_width;
|
|
const int in_h = src_fb->y_crop_height;
|
|
const int out_w = dst_fb->y_crop_width;
|
|
const int out_h = dst_fb->y_crop_height;
|
|
int x, y, i;
|
|
|
|
uint8_t *srcs[4] = {src_fb->y_buffer, src_fb->u_buffer, src_fb->v_buffer,
|
|
src_fb->alpha_buffer};
|
|
int src_strides[4] = {src_fb->y_stride, src_fb->uv_stride, src_fb->uv_stride,
|
|
src_fb->alpha_stride};
|
|
|
|
uint8_t *dsts[4] = {dst_fb->y_buffer, dst_fb->u_buffer, dst_fb->v_buffer,
|
|
dst_fb->alpha_buffer};
|
|
int dst_strides[4] = {dst_fb->y_stride, dst_fb->uv_stride, dst_fb->uv_stride,
|
|
dst_fb->alpha_stride};
|
|
|
|
for (y = 0; y < out_h; y += 16) {
|
|
for (x = 0; x < out_w; x += 16) {
|
|
for (i = 0; i < MAX_MB_PLANE; ++i) {
|
|
const int factor = i == 0 ? 1 : 2;
|
|
const int x_q4 = x * (16 / factor) * in_w / out_w;
|
|
const int y_q4 = y * (16 / factor) * in_h / out_h;
|
|
const int src_stride = src_strides[i];
|
|
const int dst_stride = dst_strides[i];
|
|
uint8_t *src = srcs[i] + y / factor * in_h / out_h * src_stride +
|
|
x / factor * in_w / out_w;
|
|
uint8_t *dst = dsts[i] + y / factor * dst_stride + x / factor;
|
|
|
|
vp9_convolve8(src, src_stride, dst, dst_stride,
|
|
vp9_sub_pel_filters_8[x_q4 & 0xf], 16 * in_w / out_w,
|
|
vp9_sub_pel_filters_8[y_q4 & 0xf], 16 * in_h / out_h,
|
|
16 / factor, 16 / factor);
|
|
}
|
|
}
|
|
}
|
|
|
|
vp8_yv12_extend_frame_borders(dst_fb);
|
|
}
|
|
|
|
|
|
static void update_alt_ref_frame_stats(VP9_COMP *cpi) {
|
|
// this frame refreshes means next frames don't unless specified by user
|
|
cpi->frames_since_golden = 0;
|
|
|
|
#if CONFIG_MULTIPLE_ARF
|
|
if (!cpi->multi_arf_enabled)
|
|
#endif
|
|
// Clear the alternate reference update pending flag.
|
|
cpi->source_alt_ref_pending = 0;
|
|
|
|
// Set the alternate reference frame active flag
|
|
cpi->source_alt_ref_active = 1;
|
|
}
|
|
static void update_golden_frame_stats(VP9_COMP *cpi) {
|
|
// Update the Golden frame usage counts.
|
|
if (cpi->refresh_golden_frame) {
|
|
// this frame refreshes means next frames don't unless specified by user
|
|
cpi->refresh_golden_frame = 0;
|
|
cpi->frames_since_golden = 0;
|
|
|
|
// ******** Fixed Q test code only ************
|
|
// If we are going to use the ALT reference for the next group of frames set a flag to say so.
|
|
if (cpi->oxcf.fixed_q >= 0 &&
|
|
cpi->oxcf.play_alternate && !cpi->refresh_alt_ref_frame) {
|
|
cpi->source_alt_ref_pending = 1;
|
|
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
|
|
}
|
|
|
|
if (!cpi->source_alt_ref_pending)
|
|
cpi->source_alt_ref_active = 0;
|
|
|
|
// Decrement count down till next gf
|
|
if (cpi->frames_till_gf_update_due > 0)
|
|
cpi->frames_till_gf_update_due--;
|
|
|
|
} else if (!cpi->refresh_alt_ref_frame) {
|
|
// Decrement count down till next gf
|
|
if (cpi->frames_till_gf_update_due > 0)
|
|
cpi->frames_till_gf_update_due--;
|
|
|
|
if (cpi->frames_till_alt_ref_frame)
|
|
cpi->frames_till_alt_ref_frame--;
|
|
|
|
cpi->frames_since_golden++;
|
|
}
|
|
}
|
|
|
|
static int find_fp_qindex() {
|
|
int i;
|
|
|
|
for (i = 0; i < QINDEX_RANGE; i++) {
|
|
if (vp9_convert_qindex_to_q(i) >= 30.0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == QINDEX_RANGE)
|
|
i--;
|
|
|
|
return i;
|
|
}
|
|
|
|
static void Pass1Encode(VP9_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags) {
|
|
(void) size;
|
|
(void) dest;
|
|
(void) frame_flags;
|
|
|
|
|
|
vp9_set_quantizer(cpi, find_fp_qindex());
|
|
vp9_first_pass(cpi);
|
|
}
|
|
|
|
#define WRITE_RECON_BUFFER 0
|
|
#if WRITE_RECON_BUFFER
|
|
void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame) {
|
|
|
|
// write the frame
|
|
FILE *yframe;
|
|
int i;
|
|
char filename[255];
|
|
|
|
sprintf(filename, "cx\\y%04d.raw", this_frame);
|
|
yframe = fopen(filename, "wb");
|
|
|
|
for (i = 0; i < frame->y_height; i++)
|
|
fwrite(frame->y_buffer + i * frame->y_stride,
|
|
frame->y_width, 1, yframe);
|
|
|
|
fclose(yframe);
|
|
sprintf(filename, "cx\\u%04d.raw", this_frame);
|
|
yframe = fopen(filename, "wb");
|
|
|
|
for (i = 0; i < frame->uv_height; i++)
|
|
fwrite(frame->u_buffer + i * frame->uv_stride,
|
|
frame->uv_width, 1, yframe);
|
|
|
|
fclose(yframe);
|
|
sprintf(filename, "cx\\v%04d.raw", this_frame);
|
|
yframe = fopen(filename, "wb");
|
|
|
|
for (i = 0; i < frame->uv_height; i++)
|
|
fwrite(frame->v_buffer + i * frame->uv_stride,
|
|
frame->uv_width, 1, yframe);
|
|
|
|
fclose(yframe);
|
|
}
|
|
#endif
|
|
|
|
static double compute_edge_pixel_proportion(YV12_BUFFER_CONFIG *frame) {
|
|
#define EDGE_THRESH 128
|
|
int i, j;
|
|
int num_edge_pels = 0;
|
|
int num_pels = (frame->y_height - 2) * (frame->y_width - 2);
|
|
uint8_t *prev = frame->y_buffer + 1;
|
|
uint8_t *curr = frame->y_buffer + 1 + frame->y_stride;
|
|
uint8_t *next = frame->y_buffer + 1 + 2 * frame->y_stride;
|
|
for (i = 1; i < frame->y_height - 1; i++) {
|
|
for (j = 1; j < frame->y_width - 1; j++) {
|
|
/* Sobel hor and ver gradients */
|
|
int v = 2 * (curr[1] - curr[-1]) + (prev[1] - prev[-1]) + (next[1] - next[-1]);
|
|
int h = 2 * (prev[0] - next[0]) + (prev[1] - next[1]) + (prev[-1] - next[-1]);
|
|
h = (h < 0 ? -h : h);
|
|
v = (v < 0 ? -v : v);
|
|
if (h > EDGE_THRESH || v > EDGE_THRESH)
|
|
num_edge_pels++;
|
|
curr++;
|
|
prev++;
|
|
next++;
|
|
}
|
|
curr += frame->y_stride - frame->y_width + 2;
|
|
prev += frame->y_stride - frame->y_width + 2;
|
|
next += frame->y_stride - frame->y_width + 2;
|
|
}
|
|
return (double)num_edge_pels / num_pels;
|
|
}
|
|
|
|
// Function to test for conditions that indicate we should loop
|
|
// back and recode a frame.
|
|
static int recode_loop_test(VP9_COMP *cpi,
|
|
int high_limit, int low_limit,
|
|
int q, int maxq, int minq) {
|
|
int force_recode = 0;
|
|
VP9_COMMON *cm = &cpi->common;
|
|
|
|
// Is frame recode allowed at all
|
|
// Yes if either recode mode 1 is selected or mode two is selected
|
|
// and the frame is a key frame. golden frame or alt_ref_frame
|
|
if ((cpi->sf.recode_loop == 1) ||
|
|
((cpi->sf.recode_loop == 2) &&
|
|
((cm->frame_type == KEY_FRAME) ||
|
|
cpi->refresh_golden_frame ||
|
|
cpi->refresh_alt_ref_frame))) {
|
|
// General over and under shoot tests
|
|
if (((cpi->projected_frame_size > high_limit) && (q < maxq)) ||
|
|
((cpi->projected_frame_size < low_limit) && (q > minq))) {
|
|
force_recode = 1;
|
|
}
|
|
// Special Constrained quality tests
|
|
else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
|
|
// Undershoot and below auto cq level
|
|
if (q > cpi->cq_target_quality &&
|
|
cpi->projected_frame_size < ((cpi->this_frame_target * 7) >> 3)) {
|
|
force_recode = 1;
|
|
} else if (q > cpi->oxcf.cq_level &&
|
|
cpi->projected_frame_size < cpi->min_frame_bandwidth &&
|
|
cpi->active_best_quality > cpi->oxcf.cq_level) {
|
|
// Severe undershoot and between auto and user cq level
|
|
force_recode = 1;
|
|
cpi->active_best_quality = cpi->oxcf.cq_level;
|
|
}
|
|
}
|
|
}
|
|
|
|
return force_recode;
|
|
}
|
|
|
|
static void update_reference_frames(VP9_COMP * const cpi) {
|
|
VP9_COMMON * const cm = &cpi->common;
|
|
|
|
// At this point the new frame has been encoded.
|
|
// If any buffer copy / swapping is signaled it should be done here.
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
ref_cnt_fb(cm->fb_idx_ref_cnt,
|
|
&cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx);
|
|
ref_cnt_fb(cm->fb_idx_ref_cnt,
|
|
&cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx);
|
|
}
|
|
#if CONFIG_MULTIPLE_ARF
|
|
else if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame &&
|
|
!cpi->refresh_alt_ref_frame) {
|
|
#else
|
|
else if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) {
|
|
#endif
|
|
/* Preserve the previously existing golden frame and update the frame in
|
|
* the alt ref slot instead. This is highly specific to the current use of
|
|
* alt-ref as a forward reference, and this needs to be generalized as
|
|
* other uses are implemented (like RTC/temporal scaling)
|
|
*
|
|
* The update to the buffer in the alt ref slot was signaled in
|
|
* vp9_pack_bitstream(), now swap the buffer pointers so that it's treated
|
|
* as the golden frame next time.
|
|
*/
|
|
int tmp;
|
|
|
|
ref_cnt_fb(cm->fb_idx_ref_cnt,
|
|
&cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx);
|
|
|
|
tmp = cpi->alt_fb_idx;
|
|
cpi->alt_fb_idx = cpi->gld_fb_idx;
|
|
cpi->gld_fb_idx = tmp;
|
|
} else { /* For non key/golden frames */
|
|
if (cpi->refresh_alt_ref_frame) {
|
|
int arf_idx = cpi->alt_fb_idx;
|
|
#if CONFIG_MULTIPLE_ARF
|
|
if (cpi->multi_arf_enabled) {
|
|
arf_idx = cpi->arf_buffer_idx[cpi->sequence_number + 1];
|
|
}
|
|
#endif
|
|
ref_cnt_fb(cm->fb_idx_ref_cnt,
|
|
&cm->ref_frame_map[arf_idx], cm->new_fb_idx);
|
|
}
|
|
|
|
if (cpi->refresh_golden_frame) {
|
|
ref_cnt_fb(cm->fb_idx_ref_cnt,
|
|
&cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx);
|
|
}
|
|
}
|
|
|
|
if (cpi->refresh_last_frame) {
|
|
ref_cnt_fb(cm->fb_idx_ref_cnt,
|
|
&cm->ref_frame_map[cpi->lst_fb_idx], cm->new_fb_idx);
|
|
}
|
|
}
|
|
|
|
static void loopfilter_frame(VP9_COMP *cpi, VP9_COMMON *cm) {
|
|
MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
struct loopfilter *lf = &cm->lf;
|
|
if (xd->lossless) {
|
|
lf->filter_level = 0;
|
|
} else {
|
|
struct vpx_usec_timer timer;
|
|
|
|
vp9_clear_system_state();
|
|
|
|
vpx_usec_timer_start(&timer);
|
|
|
|
vp9_pick_filter_level(cpi->Source, cpi, cpi->sf.use_fast_lpf_pick);
|
|
|
|
vpx_usec_timer_mark(&timer);
|
|
cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
|
|
}
|
|
|
|
if (lf->filter_level > 0) {
|
|
vp9_set_alt_lf_level(cpi, lf->filter_level);
|
|
vp9_loop_filter_frame(cm, xd, lf->filter_level, 0, 0);
|
|
}
|
|
|
|
vp9_extend_frame_inner_borders(cm->frame_to_show,
|
|
cm->subsampling_x, cm->subsampling_y);
|
|
}
|
|
|
|
static void scale_references(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
int i;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
YV12_BUFFER_CONFIG *ref = &cm->yv12_fb[cm->ref_frame_map[i]];
|
|
|
|
if (ref->y_crop_width != cm->width ||
|
|
ref->y_crop_height != cm->height) {
|
|
int new_fb = get_free_fb(cm);
|
|
|
|
vp9_realloc_frame_buffer(&cm->yv12_fb[new_fb],
|
|
cm->width, cm->height,
|
|
cm->subsampling_x, cm->subsampling_y,
|
|
VP9BORDERINPIXELS);
|
|
scale_and_extend_frame(ref, &cm->yv12_fb[new_fb]);
|
|
cpi->scaled_ref_idx[i] = new_fb;
|
|
} else {
|
|
cpi->scaled_ref_idx[i] = cm->ref_frame_map[i];
|
|
cm->fb_idx_ref_cnt[cm->ref_frame_map[i]]++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void release_scaled_references(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
int i;
|
|
|
|
for (i = 0; i < 3; i++)
|
|
cm->fb_idx_ref_cnt[cpi->scaled_ref_idx[i]]--;
|
|
}
|
|
|
|
static void full_to_model_count(unsigned int *model_count,
|
|
unsigned int *full_count) {
|
|
int n;
|
|
model_count[ZERO_TOKEN] = full_count[ZERO_TOKEN];
|
|
model_count[ONE_TOKEN] = full_count[ONE_TOKEN];
|
|
model_count[TWO_TOKEN] = full_count[TWO_TOKEN];
|
|
for (n = THREE_TOKEN; n < DCT_EOB_TOKEN; ++n)
|
|
model_count[TWO_TOKEN] += full_count[n];
|
|
model_count[DCT_EOB_MODEL_TOKEN] = full_count[DCT_EOB_TOKEN];
|
|
}
|
|
|
|
static void full_to_model_counts(
|
|
vp9_coeff_count_model *model_count, vp9_coeff_count *full_count) {
|
|
int i, j, k, l;
|
|
for (i = 0; i < BLOCK_TYPES; ++i)
|
|
for (j = 0; j < REF_TYPES; ++j)
|
|
for (k = 0; k < COEF_BANDS; ++k)
|
|
for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
|
|
if (l >= 3 && k == 0)
|
|
continue;
|
|
full_to_model_count(model_count[i][j][k][l], full_count[i][j][k][l]);
|
|
}
|
|
}
|
|
|
|
|
|
static void encode_frame_to_data_rate(VP9_COMP *cpi,
|
|
unsigned long *size,
|
|
unsigned char *dest,
|
|
unsigned int *frame_flags) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
TX_SIZE t;
|
|
int q;
|
|
int frame_over_shoot_limit;
|
|
int frame_under_shoot_limit;
|
|
|
|
int loop = 0;
|
|
int loop_count;
|
|
|
|
int q_low;
|
|
int q_high;
|
|
|
|
int top_index;
|
|
int bottom_index;
|
|
int active_worst_qchanged = 0;
|
|
|
|
int overshoot_seen = 0;
|
|
int undershoot_seen = 0;
|
|
|
|
SPEED_FEATURES *sf = &cpi->sf;
|
|
unsigned int max_mv_def = MIN(cpi->common.width, cpi->common.height);
|
|
struct segmentation *seg = &cm->seg;
|
|
#if RESET_FOREACH_FILTER
|
|
int q_low0;
|
|
int q_high0;
|
|
int Q0;
|
|
int active_best_quality0;
|
|
int active_worst_quality0;
|
|
double rate_correction_factor0;
|
|
double gf_rate_correction_factor0;
|
|
#endif
|
|
|
|
/* list of filters to search over */
|
|
int mcomp_filters_to_search[] = {
|
|
EIGHTTAP, EIGHTTAP_SHARP, EIGHTTAP_SMOOTH, SWITCHABLE
|
|
};
|
|
int mcomp_filters = sizeof(mcomp_filters_to_search) /
|
|
sizeof(*mcomp_filters_to_search);
|
|
int mcomp_filter_index = 0;
|
|
int64_t mcomp_filter_cost[4];
|
|
|
|
/* Scale the source buffer, if required */
|
|
if (cm->mi_cols * 8 != cpi->un_scaled_source->y_width ||
|
|
cm->mi_rows * 8 != cpi->un_scaled_source->y_height) {
|
|
scale_and_extend_frame(cpi->un_scaled_source, &cpi->scaled_source);
|
|
cpi->Source = &cpi->scaled_source;
|
|
} else {
|
|
cpi->Source = cpi->un_scaled_source;
|
|
}
|
|
|
|
scale_references(cpi);
|
|
|
|
// Clear down mmx registers to allow floating point in what follows
|
|
vp9_clear_system_state();
|
|
|
|
|
|
// For an alt ref frame in 2 pass we skip the call to the second
|
|
// pass function that sets the target bandwidth so must set it here
|
|
if (cpi->refresh_alt_ref_frame) {
|
|
// Per frame bit target for the alt ref frame
|
|
cpi->per_frame_bandwidth = cpi->twopass.gf_bits;
|
|
// per second target bitrate
|
|
cpi->target_bandwidth = (int)(cpi->twopass.gf_bits *
|
|
cpi->output_framerate);
|
|
}
|
|
|
|
// Clear zbin over-quant value and mode boost values.
|
|
cpi->zbin_mode_boost = 0;
|
|
|
|
// Enable or disable mode based tweaking of the zbin
|
|
// For 2 Pass Only used where GF/ARF prediction quality
|
|
// is above a threshold
|
|
cpi->zbin_mode_boost = 0;
|
|
|
|
// if (cpi->oxcf.lossless)
|
|
cpi->zbin_mode_boost_enabled = 0;
|
|
// else
|
|
// cpi->zbin_mode_boost_enabled = 1;
|
|
|
|
// Current default encoder behaviour for the altref sign bias
|
|
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = cpi->source_alt_ref_active;
|
|
|
|
// Check to see if a key frame is signaled
|
|
// For two pass with auto key frame enabled cm->frame_type may already be set, but not for one pass.
|
|
if ((cm->current_video_frame == 0) ||
|
|
(cm->frame_flags & FRAMEFLAGS_KEY) ||
|
|
(cpi->oxcf.auto_key && (cpi->frames_since_key % cpi->key_frame_frequency == 0))) {
|
|
// Key frame from VFW/auto-keyframe/first frame
|
|
cm->frame_type = KEY_FRAME;
|
|
}
|
|
|
|
// Set default state for segment based loop filter update flags
|
|
cm->lf.mode_ref_delta_update = 0;
|
|
|
|
// Initialize cpi->mv_step_param to default based on max resolution
|
|
cpi->mv_step_param = vp9_init_search_range(cpi, max_mv_def);
|
|
// Initialize cpi->max_mv_magnitude and cpi->mv_step_param if appropriate.
|
|
if (sf->auto_mv_step_size) {
|
|
if ((cpi->common.frame_type == KEY_FRAME) || cpi->common.intra_only) {
|
|
// initialize max_mv_magnitude for use in the first INTER frame
|
|
// after a key/intra-only frame
|
|
cpi->max_mv_magnitude = max_mv_def;
|
|
} else {
|
|
if (cm->show_frame)
|
|
// allow mv_steps to correspond to twice the max mv magnitude found
|
|
// in the previous frame, capped by the default max_mv_magnitude based
|
|
// on resolution
|
|
cpi->mv_step_param = vp9_init_search_range(
|
|
cpi, MIN(max_mv_def, 2 * cpi->max_mv_magnitude));
|
|
cpi->max_mv_magnitude = 0;
|
|
}
|
|
}
|
|
|
|
// Set various flags etc to special state if it is a key frame
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
// Reset the loop filter deltas and segmentation map
|
|
setup_features(cm);
|
|
|
|
// If segmentation is enabled force a map update for key frames
|
|
if (seg->enabled) {
|
|
seg->update_map = 1;
|
|
seg->update_data = 1;
|
|
}
|
|
|
|
// The alternate reference frame cannot be active for a key frame
|
|
cpi->source_alt_ref_active = 0;
|
|
|
|
cm->error_resilient_mode = (cpi->oxcf.error_resilient_mode != 0);
|
|
cm->frame_parallel_decoding_mode =
|
|
(cpi->oxcf.frame_parallel_decoding_mode != 0);
|
|
if (cm->error_resilient_mode) {
|
|
cm->frame_parallel_decoding_mode = 1;
|
|
cm->reset_frame_context = 0;
|
|
cm->refresh_frame_context = 0;
|
|
}
|
|
}
|
|
|
|
// Configure experimental use of segmentation for enhanced coding of
|
|
// static regions if indicated.
|
|
// Only allowed for now in second pass of two pass (as requires lagged coding)
|
|
// and if the relevant speed feature flag is set.
|
|
if ((cpi->pass == 2) && (cpi->sf.static_segmentation)) {
|
|
configure_static_seg_features(cpi);
|
|
}
|
|
|
|
// Decide how big to make the frame
|
|
vp9_pick_frame_size(cpi);
|
|
|
|
vp9_clear_system_state();
|
|
|
|
// Set an active best quality and if necessary active worst quality
|
|
q = cpi->active_worst_quality;
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
#if !CONFIG_MULTIPLE_ARF
|
|
// Special case for key frames forced because we have reached
|
|
// the maximum key frame interval. Here force the Q to a range
|
|
// based on the ambient Q to reduce the risk of popping
|
|
if (cpi->this_key_frame_forced) {
|
|
int delta_qindex;
|
|
int qindex = cpi->last_boosted_qindex;
|
|
double last_boosted_q = vp9_convert_qindex_to_q(qindex);
|
|
|
|
delta_qindex = compute_qdelta(cpi, last_boosted_q,
|
|
(last_boosted_q * 0.75));
|
|
|
|
cpi->active_best_quality = MAX(qindex + delta_qindex, cpi->best_quality);
|
|
} else {
|
|
int high = 5000;
|
|
int low = 400;
|
|
double q_adj_factor = 1.0;
|
|
double q_val;
|
|
|
|
// Baseline value derived from cpi->active_worst_quality and kf boost
|
|
if (cpi->kf_boost > high) {
|
|
cpi->active_best_quality = kf_low_motion_minq[q];
|
|
} else if (cpi->kf_boost < low) {
|
|
cpi->active_best_quality = kf_high_motion_minq[q];
|
|
} else {
|
|
const int gap = high - low;
|
|
const int offset = high - cpi->kf_boost;
|
|
const int qdiff = kf_high_motion_minq[q] - kf_low_motion_minq[q];
|
|
const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
|
|
|
|
cpi->active_best_quality = kf_low_motion_minq[q] + adjustment;
|
|
}
|
|
|
|
|
|
// Allow somewhat lower kf minq with small image formats.
|
|
if ((cm->width * cm->height) <= (352 * 288)) {
|
|
q_adj_factor -= 0.25;
|
|
}
|
|
|
|
// Make a further adjustment based on the kf zero motion measure.
|
|
q_adj_factor += 0.05 - (0.001 * (double)cpi->kf_zeromotion_pct);
|
|
|
|
// Convert the adjustment factor to a qindex delta on active_best_quality.
|
|
q_val = vp9_convert_qindex_to_q(cpi->active_best_quality);
|
|
cpi->active_best_quality +=
|
|
compute_qdelta(cpi, q_val, (q_val * q_adj_factor));
|
|
}
|
|
#else
|
|
double current_q;
|
|
|
|
// Force the KF quantizer to be 30% of the active_worst_quality.
|
|
current_q = vp9_convert_qindex_to_q(cpi->active_worst_quality);
|
|
cpi->active_best_quality = cpi->active_worst_quality
|
|
+ compute_qdelta(cpi, current_q, current_q * 0.3);
|
|
#endif
|
|
} else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) {
|
|
int high = 2000;
|
|
int low = 400;
|
|
|
|
// Use the lower of cpi->active_worst_quality and recent
|
|
// average Q as basis for GF/ARF Q limit unless last frame was
|
|
// a key frame.
|
|
if (cpi->frames_since_key > 1 &&
|
|
cpi->avg_frame_qindex < cpi->active_worst_quality) {
|
|
q = cpi->avg_frame_qindex;
|
|
}
|
|
|
|
// For constrained quality dont allow Q less than the cq level
|
|
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY &&
|
|
q < cpi->cq_target_quality) {
|
|
q = cpi->cq_target_quality;
|
|
}
|
|
|
|
if (cpi->gfu_boost > high) {
|
|
cpi->active_best_quality = gf_low_motion_minq[q];
|
|
} else if (cpi->gfu_boost < low) {
|
|
cpi->active_best_quality = gf_high_motion_minq[q];
|
|
} else {
|
|
const int gap = high - low;
|
|
const int offset = high - cpi->gfu_boost;
|
|
const int qdiff = gf_high_motion_minq[q] - gf_low_motion_minq[q];
|
|
const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
|
|
|
|
cpi->active_best_quality = gf_low_motion_minq[q] + adjustment;
|
|
}
|
|
|
|
// Constrained quality use slightly lower active best.
|
|
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY)
|
|
cpi->active_best_quality = cpi->active_best_quality * 15 / 16;
|
|
} else {
|
|
#ifdef ONE_SHOT_Q_ESTIMATE
|
|
#ifdef STRICT_ONE_SHOT_Q
|
|
cpi->active_best_quality = q;
|
|
#else
|
|
cpi->active_best_quality = inter_minq[q];
|
|
#endif
|
|
#else
|
|
cpi->active_best_quality = inter_minq[q];
|
|
#endif
|
|
|
|
// For the constant/constrained quality mode we don't want
|
|
// q to fall below the cq level.
|
|
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
|
|
(cpi->active_best_quality < cpi->cq_target_quality)) {
|
|
// If we are strongly undershooting the target rate in the last
|
|
// frames then use the user passed in cq value not the auto
|
|
// cq value.
|
|
if (cpi->rolling_actual_bits < cpi->min_frame_bandwidth)
|
|
cpi->active_best_quality = cpi->oxcf.cq_level;
|
|
else
|
|
cpi->active_best_quality = cpi->cq_target_quality;
|
|
}
|
|
}
|
|
|
|
// Clip the active best and worst quality values to limits
|
|
if (cpi->active_worst_quality > cpi->worst_quality)
|
|
cpi->active_worst_quality = cpi->worst_quality;
|
|
|
|
if (cpi->active_best_quality < cpi->best_quality)
|
|
cpi->active_best_quality = cpi->best_quality;
|
|
|
|
if (cpi->active_best_quality > cpi->worst_quality)
|
|
cpi->active_best_quality = cpi->worst_quality;
|
|
|
|
if (cpi->active_worst_quality < cpi->active_best_quality)
|
|
cpi->active_worst_quality = cpi->active_best_quality;
|
|
|
|
// Special case code to try and match quality with forced key frames
|
|
if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) {
|
|
q = cpi->last_boosted_qindex;
|
|
} else {
|
|
// Determine initial Q to try
|
|
q = vp9_regulate_q(cpi, cpi->this_frame_target);
|
|
}
|
|
|
|
vp9_compute_frame_size_bounds(cpi, &frame_under_shoot_limit,
|
|
&frame_over_shoot_limit);
|
|
|
|
#if CONFIG_MULTIPLE_ARF
|
|
// Force the quantizer determined by the coding order pattern.
|
|
if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME)) {
|
|
double new_q;
|
|
double current_q = vp9_convert_qindex_to_q(cpi->active_worst_quality);
|
|
int level = cpi->this_frame_weight;
|
|
assert(level >= 0);
|
|
|
|
// Set quantizer steps at 10% increments.
|
|
new_q = current_q * (1.0 - (0.2 * (cpi->max_arf_level - level)));
|
|
q = cpi->active_worst_quality + compute_qdelta(cpi, current_q, new_q);
|
|
|
|
bottom_index = q;
|
|
top_index = q;
|
|
q_low = q;
|
|
q_high = q;
|
|
|
|
printf("frame:%d q:%d\n", cm->current_video_frame, q);
|
|
} else {
|
|
#endif
|
|
// Limit Q range for the adaptive loop.
|
|
bottom_index = cpi->active_best_quality;
|
|
top_index = cpi->active_worst_quality;
|
|
q_low = cpi->active_best_quality;
|
|
q_high = cpi->active_worst_quality;
|
|
#if CONFIG_MULTIPLE_ARF
|
|
}
|
|
#endif
|
|
loop_count = 0;
|
|
vp9_zero(cpi->rd_tx_select_threshes);
|
|
|
|
if (cm->frame_type != KEY_FRAME) {
|
|
/* TODO: Decide this more intelligently */
|
|
if (sf->search_best_filter) {
|
|
cm->mcomp_filter_type = mcomp_filters_to_search[0];
|
|
mcomp_filter_index = 0;
|
|
} else {
|
|
cm->mcomp_filter_type = DEFAULT_INTERP_FILTER;
|
|
}
|
|
/* TODO: Decide this more intelligently */
|
|
xd->allow_high_precision_mv = q < HIGH_PRECISION_MV_QTHRESH;
|
|
set_mvcost(&cpi->mb);
|
|
}
|
|
|
|
#if CONFIG_VP9_POSTPROC
|
|
|
|
if (cpi->oxcf.noise_sensitivity > 0) {
|
|
int l = 0;
|
|
|
|
switch (cpi->oxcf.noise_sensitivity) {
|
|
case 1:
|
|
l = 20;
|
|
break;
|
|
case 2:
|
|
l = 40;
|
|
break;
|
|
case 3:
|
|
l = 60;
|
|
break;
|
|
case 4:
|
|
case 5:
|
|
l = 100;
|
|
break;
|
|
case 6:
|
|
l = 150;
|
|
break;
|
|
}
|
|
|
|
vp9_denoise(cpi->Source, cpi->Source, l);
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
vp9_write_yuv_frame(cpi->Source);
|
|
#endif
|
|
|
|
#if RESET_FOREACH_FILTER
|
|
if (sf->search_best_filter) {
|
|
q_low0 = q_low;
|
|
q_high0 = q_high;
|
|
Q0 = Q;
|
|
rate_correction_factor0 = cpi->rate_correction_factor;
|
|
gf_rate_correction_factor0 = cpi->gf_rate_correction_factor;
|
|
active_best_quality0 = cpi->active_best_quality;
|
|
active_worst_quality0 = cpi->active_worst_quality;
|
|
}
|
|
#endif
|
|
do {
|
|
vp9_clear_system_state(); // __asm emms;
|
|
|
|
vp9_set_quantizer(cpi, q);
|
|
|
|
if (loop_count == 0) {
|
|
|
|
// Set up entropy depending on frame type.
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
/* Choose which entropy context to use. When using a forward reference
|
|
* frame, it immediately follows the keyframe, and thus benefits from
|
|
* using the same entropy context established by the keyframe.
|
|
* Otherwise, use the default context 0.
|
|
*/
|
|
cm->frame_context_idx = cpi->oxcf.play_alternate;
|
|
vp9_setup_key_frame(cpi);
|
|
} else {
|
|
/* Choose which entropy context to use. Currently there are only two
|
|
* contexts used, one for normal frames and one for alt ref frames.
|
|
*/
|
|
cpi->common.frame_context_idx = cpi->refresh_alt_ref_frame;
|
|
vp9_setup_inter_frame(cpi);
|
|
}
|
|
}
|
|
|
|
// transform / motion compensation build reconstruction frame
|
|
|
|
vp9_encode_frame(cpi);
|
|
|
|
// Update the skip mb flag probabilities based on the distribution
|
|
// seen in the last encoder iteration.
|
|
// update_base_skip_probs(cpi);
|
|
|
|
vp9_clear_system_state(); // __asm emms;
|
|
|
|
// Dummy pack of the bitstream using up to date stats to get an
|
|
// accurate estimate of output frame size to determine if we need
|
|
// to recode.
|
|
vp9_save_coding_context(cpi);
|
|
cpi->dummy_packing = 1;
|
|
vp9_pack_bitstream(cpi, dest, size);
|
|
cpi->projected_frame_size = (*size) << 3;
|
|
vp9_restore_coding_context(cpi);
|
|
|
|
if (frame_over_shoot_limit == 0)
|
|
frame_over_shoot_limit = 1;
|
|
active_worst_qchanged = 0;
|
|
|
|
// Special case handling for forced key frames
|
|
if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) {
|
|
int last_q = q;
|
|
int kf_err = vp9_calc_ss_err(cpi->Source,
|
|
&cm->yv12_fb[cm->new_fb_idx]);
|
|
|
|
int high_err_target = cpi->ambient_err;
|
|
int low_err_target = cpi->ambient_err >> 1;
|
|
|
|
// Prevent possible divide by zero error below for perfect KF
|
|
kf_err += !kf_err;
|
|
|
|
// The key frame is not good enough or we can afford
|
|
// to make it better without undue risk of popping.
|
|
if ((kf_err > high_err_target &&
|
|
cpi->projected_frame_size <= frame_over_shoot_limit) ||
|
|
(kf_err > low_err_target &&
|
|
cpi->projected_frame_size <= frame_under_shoot_limit)) {
|
|
// Lower q_high
|
|
q_high = q > q_low ? q - 1 : q_low;
|
|
|
|
// Adjust Q
|
|
q = (q * high_err_target) / kf_err;
|
|
q = MIN(q, (q_high + q_low) >> 1);
|
|
} else if (kf_err < low_err_target &&
|
|
cpi->projected_frame_size >= frame_under_shoot_limit) {
|
|
// The key frame is much better than the previous frame
|
|
// Raise q_low
|
|
q_low = q < q_high ? q + 1 : q_high;
|
|
|
|
// Adjust Q
|
|
q = (q * low_err_target) / kf_err;
|
|
q = MIN(q, (q_high + q_low + 1) >> 1);
|
|
}
|
|
|
|
// Clamp Q to upper and lower limits:
|
|
q = clamp(q, q_low, q_high);
|
|
|
|
loop = q != last_q;
|
|
}
|
|
|
|
// Is the projected frame size out of range and are we allowed to attempt to recode.
|
|
else if (recode_loop_test(cpi,
|
|
frame_over_shoot_limit, frame_under_shoot_limit,
|
|
q, top_index, bottom_index)) {
|
|
int last_q = q;
|
|
int retries = 0;
|
|
|
|
// Frame size out of permitted range:
|
|
// Update correction factor & compute new Q to try...
|
|
|
|
// Frame is too large
|
|
if (cpi->projected_frame_size > cpi->this_frame_target) {
|
|
// Raise Qlow as to at least the current value
|
|
q_low = q < q_high ? q + 1 : q_high;
|
|
|
|
if (undershoot_seen || loop_count > 1) {
|
|
// Update rate_correction_factor unless cpi->active_worst_quality
|
|
// has changed.
|
|
if (!active_worst_qchanged)
|
|
vp9_update_rate_correction_factors(cpi, 1);
|
|
|
|
q = (q_high + q_low + 1) / 2;
|
|
} else {
|
|
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
|
|
if (!active_worst_qchanged)
|
|
vp9_update_rate_correction_factors(cpi, 0);
|
|
|
|
q = vp9_regulate_q(cpi, cpi->this_frame_target);
|
|
|
|
while (q < q_low && retries < 10) {
|
|
vp9_update_rate_correction_factors(cpi, 0);
|
|
q = vp9_regulate_q(cpi, cpi->this_frame_target);
|
|
retries++;
|
|
}
|
|
}
|
|
|
|
overshoot_seen = 1;
|
|
} else {
|
|
// Frame is too small
|
|
q_high = q > q_low ? q - 1 : q_low;
|
|
|
|
if (overshoot_seen || loop_count > 1) {
|
|
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
|
|
if (!active_worst_qchanged)
|
|
vp9_update_rate_correction_factors(cpi, 1);
|
|
|
|
q = (q_high + q_low) / 2;
|
|
} else {
|
|
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
|
|
if (!active_worst_qchanged)
|
|
vp9_update_rate_correction_factors(cpi, 0);
|
|
|
|
q = vp9_regulate_q(cpi, cpi->this_frame_target);
|
|
|
|
// Special case reset for qlow for constrained quality.
|
|
// This should only trigger where there is very substantial
|
|
// undershoot on a frame and the auto cq level is above
|
|
// the user passsed in value.
|
|
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY && q < q_low) {
|
|
q_low = q;
|
|
}
|
|
|
|
while (q > q_high && retries < 10) {
|
|
vp9_update_rate_correction_factors(cpi, 0);
|
|
q = vp9_regulate_q(cpi, cpi->this_frame_target);
|
|
retries++;
|
|
}
|
|
}
|
|
|
|
undershoot_seen = 1;
|
|
}
|
|
|
|
// Clamp Q to upper and lower limits:
|
|
q = clamp(q, q_low, q_high);
|
|
|
|
loop = q != last_q;
|
|
} else {
|
|
loop = 0;
|
|
}
|
|
|
|
if (cpi->is_src_frame_alt_ref)
|
|
loop = 0;
|
|
|
|
if (!loop && cm->frame_type != KEY_FRAME && sf->search_best_filter) {
|
|
if (mcomp_filter_index < mcomp_filters) {
|
|
int64_t err = vp9_calc_ss_err(cpi->Source,
|
|
&cm->yv12_fb[cm->new_fb_idx]);
|
|
int64_t rate = cpi->projected_frame_size << 8;
|
|
mcomp_filter_cost[mcomp_filter_index] =
|
|
(RDCOST(cpi->RDMULT, cpi->RDDIV, rate, err));
|
|
mcomp_filter_index++;
|
|
if (mcomp_filter_index < mcomp_filters) {
|
|
cm->mcomp_filter_type = mcomp_filters_to_search[mcomp_filter_index];
|
|
loop_count = -1;
|
|
loop = 1;
|
|
} else {
|
|
int f;
|
|
int64_t best_cost = mcomp_filter_cost[0];
|
|
int mcomp_best_filter = mcomp_filters_to_search[0];
|
|
for (f = 1; f < mcomp_filters; f++) {
|
|
if (mcomp_filter_cost[f] < best_cost) {
|
|
mcomp_best_filter = mcomp_filters_to_search[f];
|
|
best_cost = mcomp_filter_cost[f];
|
|
}
|
|
}
|
|
if (mcomp_best_filter != mcomp_filters_to_search[mcomp_filters - 1]) {
|
|
loop_count = -1;
|
|
loop = 1;
|
|
cm->mcomp_filter_type = mcomp_best_filter;
|
|
}
|
|
/*
|
|
printf(" best filter = %d, ( ", mcomp_best_filter);
|
|
for (f=0;f<mcomp_filters; f++) printf("%d ", mcomp_filter_cost[f]);
|
|
printf(")\n");
|
|
*/
|
|
}
|
|
#if RESET_FOREACH_FILTER
|
|
if (loop) {
|
|
overshoot_seen = 0;
|
|
undershoot_seen = 0;
|
|
q_low = q_low0;
|
|
q_high = q_high0;
|
|
q = Q0;
|
|
cpi->rate_correction_factor = rate_correction_factor0;
|
|
cpi->gf_rate_correction_factor = gf_rate_correction_factor0;
|
|
cpi->active_best_quality = active_best_quality0;
|
|
cpi->active_worst_quality = active_worst_quality0;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (loop) {
|
|
loop_count++;
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
cpi->tot_recode_hits++;
|
|
#endif
|
|
}
|
|
} while (loop);
|
|
|
|
// Special case code to reduce pulsing when key frames are forced at a
|
|
// fixed interval. Note the reconstruction error if it is the frame before
|
|
// the force key frame
|
|
if (cpi->next_key_frame_forced && (cpi->twopass.frames_to_key == 0)) {
|
|
cpi->ambient_err = vp9_calc_ss_err(cpi->Source,
|
|
&cm->yv12_fb[cm->new_fb_idx]);
|
|
}
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
cpi->refresh_last_frame = 1;
|
|
|
|
cm->frame_to_show = &cm->yv12_fb[cm->new_fb_idx];
|
|
|
|
#if WRITE_RECON_BUFFER
|
|
if (cm->show_frame)
|
|
write_cx_frame_to_file(cm->frame_to_show,
|
|
cm->current_video_frame);
|
|
else
|
|
write_cx_frame_to_file(cm->frame_to_show,
|
|
cm->current_video_frame + 1000);
|
|
#endif
|
|
|
|
// Pick the loop filter level for the frame.
|
|
loopfilter_frame(cpi, cm);
|
|
|
|
#if WRITE_RECON_BUFFER
|
|
if (cm->show_frame)
|
|
write_cx_frame_to_file(cm->frame_to_show,
|
|
cm->current_video_frame + 2000);
|
|
else
|
|
write_cx_frame_to_file(cm->frame_to_show,
|
|
cm->current_video_frame + 3000);
|
|
#endif
|
|
|
|
// build the bitstream
|
|
cpi->dummy_packing = 0;
|
|
vp9_pack_bitstream(cpi, dest, size);
|
|
|
|
if (cm->seg.update_map)
|
|
update_reference_segmentation_map(cpi);
|
|
|
|
release_scaled_references(cpi);
|
|
update_reference_frames(cpi);
|
|
|
|
for (t = TX_4X4; t <= TX_32X32; t++)
|
|
full_to_model_counts(cpi->common.counts.coef[t],
|
|
cpi->coef_counts[t]);
|
|
if (!cpi->common.error_resilient_mode &&
|
|
!cpi->common.frame_parallel_decoding_mode) {
|
|
vp9_adapt_coef_probs(&cpi->common);
|
|
}
|
|
|
|
if (cpi->common.frame_type != KEY_FRAME) {
|
|
FRAME_COUNTS *counts = &cpi->common.counts;
|
|
|
|
vp9_copy(counts->y_mode, cpi->y_mode_count);
|
|
vp9_copy(counts->uv_mode, cpi->y_uv_mode_count);
|
|
vp9_copy(counts->partition, cpi->partition_count);
|
|
vp9_copy(counts->intra_inter, cpi->intra_inter_count);
|
|
vp9_copy(counts->comp_inter, cpi->comp_inter_count);
|
|
vp9_copy(counts->single_ref, cpi->single_ref_count);
|
|
vp9_copy(counts->comp_ref, cpi->comp_ref_count);
|
|
counts->mv = cpi->NMVcount;
|
|
if (!cpi->common.error_resilient_mode &&
|
|
!cpi->common.frame_parallel_decoding_mode) {
|
|
vp9_adapt_mode_probs(&cpi->common);
|
|
vp9_adapt_mv_probs(&cpi->common, cpi->mb.e_mbd.allow_high_precision_mv);
|
|
}
|
|
}
|
|
|
|
#ifdef ENTROPY_STATS
|
|
vp9_update_mode_context_stats(cpi);
|
|
#endif
|
|
|
|
/* Move storing frame_type out of the above loop since it is also
|
|
* needed in motion search besides loopfilter */
|
|
cm->last_frame_type = cm->frame_type;
|
|
|
|
// Update rate control heuristics
|
|
cpi->total_byte_count += (*size);
|
|
cpi->projected_frame_size = (*size) << 3;
|
|
|
|
if (!active_worst_qchanged)
|
|
vp9_update_rate_correction_factors(cpi, 2);
|
|
|
|
cpi->last_q[cm->frame_type] = cm->base_qindex;
|
|
|
|
// Keep record of last boosted (KF/KF/ARF) Q value.
|
|
// If the current frame is coded at a lower Q then we also update it.
|
|
// If all mbs in this group are skipped only update if the Q value is
|
|
// better than that already stored.
|
|
// This is used to help set quality in forced key frames to reduce popping
|
|
if ((cm->base_qindex < cpi->last_boosted_qindex) ||
|
|
((cpi->static_mb_pct < 100) &&
|
|
((cm->frame_type == KEY_FRAME) ||
|
|
cpi->refresh_alt_ref_frame ||
|
|
(cpi->refresh_golden_frame && !cpi->is_src_frame_alt_ref)))) {
|
|
cpi->last_boosted_qindex = cm->base_qindex;
|
|
}
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
vp9_adjust_key_frame_context(cpi);
|
|
}
|
|
|
|
// Keep a record of ambient average Q.
|
|
if (cm->frame_type != KEY_FRAME)
|
|
cpi->avg_frame_qindex = (2 + 3 * cpi->avg_frame_qindex + cm->base_qindex) >> 2;
|
|
|
|
// Keep a record from which we can calculate the average Q excluding GF updates and key frames
|
|
if (cm->frame_type != KEY_FRAME &&
|
|
!cpi->refresh_golden_frame &&
|
|
!cpi->refresh_alt_ref_frame) {
|
|
cpi->ni_frames++;
|
|
cpi->tot_q += vp9_convert_qindex_to_q(q);
|
|
cpi->avg_q = cpi->tot_q / (double)cpi->ni_frames;
|
|
|
|
// Calculate the average Q for normal inter frames (not key or GFU frames).
|
|
cpi->ni_tot_qi += q;
|
|
cpi->ni_av_qi = cpi->ni_tot_qi / cpi->ni_frames;
|
|
}
|
|
|
|
// Update the buffer level variable.
|
|
// Non-viewable frames are a special case and are treated as pure overhead.
|
|
if (!cm->show_frame)
|
|
cpi->bits_off_target -= cpi->projected_frame_size;
|
|
else
|
|
cpi->bits_off_target += cpi->av_per_frame_bandwidth - cpi->projected_frame_size;
|
|
|
|
// Clip the buffer level at the maximum buffer size
|
|
if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size)
|
|
cpi->bits_off_target = cpi->oxcf.maximum_buffer_size;
|
|
|
|
// Rolling monitors of whether we are over or underspending used to help
|
|
// regulate min and Max Q in two pass.
|
|
if (cm->frame_type != KEY_FRAME) {
|
|
cpi->rolling_target_bits =
|
|
((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4;
|
|
cpi->rolling_actual_bits =
|
|
((cpi->rolling_actual_bits * 3) + cpi->projected_frame_size + 2) / 4;
|
|
cpi->long_rolling_target_bits =
|
|
((cpi->long_rolling_target_bits * 31) + cpi->this_frame_target + 16) / 32;
|
|
cpi->long_rolling_actual_bits =
|
|
((cpi->long_rolling_actual_bits * 31) +
|
|
cpi->projected_frame_size + 16) / 32;
|
|
}
|
|
|
|
// Actual bits spent
|
|
cpi->total_actual_bits += cpi->projected_frame_size;
|
|
|
|
// Debug stats
|
|
cpi->total_target_vs_actual += (cpi->this_frame_target - cpi->projected_frame_size);
|
|
|
|
cpi->buffer_level = cpi->bits_off_target;
|
|
|
|
// Update bits left to the kf and gf groups to account for overshoot or undershoot on these frames
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
cpi->twopass.kf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
|
|
|
|
cpi->twopass.kf_group_bits = MAX(cpi->twopass.kf_group_bits, 0);
|
|
} else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) {
|
|
cpi->twopass.gf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
|
|
|
|
cpi->twopass.gf_group_bits = MAX(cpi->twopass.gf_group_bits, 0);
|
|
}
|
|
|
|
// Update the skip mb flag probabilities based on the distribution seen
|
|
// in this frame.
|
|
// update_base_skip_probs(cpi);
|
|
|
|
#if 0 && CONFIG_INTERNAL_STATS
|
|
{
|
|
FILE *f = fopen("tmp.stt", "a");
|
|
int recon_err;
|
|
|
|
vp9_clear_system_state(); // __asm emms;
|
|
|
|
recon_err = vp9_calc_ss_err(cpi->Source,
|
|
&cm->yv12_fb[cm->new_fb_idx]);
|
|
|
|
if (cpi->twopass.total_left_stats.coded_error != 0.0)
|
|
fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d"
|
|
"%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f"
|
|
"%6d %6d %5d %5d %5d %8.2f %10d %10.3f"
|
|
"%10.3f %8d %10d %10d %10d\n",
|
|
cpi->common.current_video_frame, cpi->this_frame_target,
|
|
cpi->projected_frame_size, 0, //loop_size_estimate,
|
|
(cpi->projected_frame_size - cpi->this_frame_target),
|
|
(int)cpi->total_target_vs_actual,
|
|
(int)(cpi->oxcf.starting_buffer_level - cpi->bits_off_target),
|
|
(int)cpi->total_actual_bits,
|
|
vp9_convert_qindex_to_q(cm->base_qindex),
|
|
(double)vp9_dc_quant(cm->base_qindex, 0) / 4.0,
|
|
vp9_convert_qindex_to_q(cpi->active_best_quality),
|
|
vp9_convert_qindex_to_q(cpi->active_worst_quality),
|
|
cpi->avg_q,
|
|
vp9_convert_qindex_to_q(cpi->ni_av_qi),
|
|
vp9_convert_qindex_to_q(cpi->cq_target_quality),
|
|
cpi->refresh_last_frame,
|
|
cpi->refresh_golden_frame, cpi->refresh_alt_ref_frame,
|
|
cm->frame_type, cpi->gfu_boost,
|
|
cpi->twopass.est_max_qcorrection_factor,
|
|
(int)cpi->twopass.bits_left,
|
|
cpi->twopass.total_left_stats.coded_error,
|
|
(double)cpi->twopass.bits_left /
|
|
cpi->twopass.total_left_stats.coded_error,
|
|
cpi->tot_recode_hits, recon_err, cpi->kf_boost,
|
|
cpi->kf_zeromotion_pct);
|
|
else
|
|
fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d"
|
|
"%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f"
|
|
"%5d %5d %5d %8d %8d %8.2f %10d %10.3f"
|
|
"%8d %10d %10d %10d\n",
|
|
cpi->common.current_video_frame,
|
|
cpi->this_frame_target, cpi->projected_frame_size,
|
|
0, //loop_size_estimate,
|
|
(cpi->projected_frame_size - cpi->this_frame_target),
|
|
(int)cpi->total_target_vs_actual,
|
|
(int)(cpi->oxcf.starting_buffer_level - cpi->bits_off_target),
|
|
(int)cpi->total_actual_bits,
|
|
vp9_convert_qindex_to_q(cm->base_qindex),
|
|
(double)vp9_dc_quant(cm->base_qindex, 0) / 4.0,
|
|
vp9_convert_qindex_to_q(cpi->active_best_quality),
|
|
vp9_convert_qindex_to_q(cpi->active_worst_quality),
|
|
cpi->avg_q,
|
|
vp9_convert_qindex_to_q(cpi->ni_av_qi),
|
|
vp9_convert_qindex_to_q(cpi->cq_target_quality),
|
|
cpi->refresh_last_frame,
|
|
cpi->refresh_golden_frame, cpi->refresh_alt_ref_frame,
|
|
cm->frame_type, cpi->gfu_boost,
|
|
cpi->twopass.est_max_qcorrection_factor,
|
|
(int)cpi->twopass.bits_left,
|
|
cpi->twopass.total_left_stats.coded_error,
|
|
cpi->tot_recode_hits, recon_err, cpi->kf_boost,
|
|
cpi->kf_zeromotion_pct);
|
|
|
|
fclose(f);
|
|
|
|
if (0) {
|
|
FILE *fmodes = fopen("Modes.stt", "a");
|
|
int i;
|
|
|
|
fprintf(fmodes, "%6d:%1d:%1d:%1d ",
|
|
cpi->common.current_video_frame,
|
|
cm->frame_type, cpi->refresh_golden_frame,
|
|
cpi->refresh_alt_ref_frame);
|
|
|
|
for (i = 0; i < MAX_MODES; i++)
|
|
fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]);
|
|
|
|
fprintf(fmodes, "\n");
|
|
|
|
fclose(fmodes);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#if 0
|
|
// Debug stats for segment feature experiments.
|
|
print_seg_map(cpi);
|
|
#endif
|
|
|
|
// If this was a kf or Gf note the Q
|
|
if ((cm->frame_type == KEY_FRAME)
|
|
|| cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
|
|
cm->last_kf_gf_q = cm->base_qindex;
|
|
|
|
if (cpi->refresh_golden_frame == 1)
|
|
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_GOLDEN;
|
|
else
|
|
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_GOLDEN;
|
|
|
|
if (cpi->refresh_alt_ref_frame == 1)
|
|
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_ALTREF;
|
|
else
|
|
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_ALTREF;
|
|
|
|
|
|
if (cpi->refresh_last_frame & cpi->refresh_golden_frame)
|
|
cpi->gold_is_last = 1;
|
|
else if (cpi->refresh_last_frame ^ cpi->refresh_golden_frame)
|
|
cpi->gold_is_last = 0;
|
|
|
|
if (cpi->refresh_last_frame & cpi->refresh_alt_ref_frame)
|
|
cpi->alt_is_last = 1;
|
|
else if (cpi->refresh_last_frame ^ cpi->refresh_alt_ref_frame)
|
|
cpi->alt_is_last = 0;
|
|
|
|
if (cpi->refresh_alt_ref_frame & cpi->refresh_golden_frame)
|
|
cpi->gold_is_alt = 1;
|
|
else if (cpi->refresh_alt_ref_frame ^ cpi->refresh_golden_frame)
|
|
cpi->gold_is_alt = 0;
|
|
|
|
cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG;
|
|
|
|
if (cpi->gold_is_last)
|
|
cpi->ref_frame_flags &= ~VP9_GOLD_FLAG;
|
|
|
|
if (cpi->alt_is_last)
|
|
cpi->ref_frame_flags &= ~VP9_ALT_FLAG;
|
|
|
|
if (cpi->gold_is_alt)
|
|
cpi->ref_frame_flags &= ~VP9_ALT_FLAG;
|
|
|
|
if (cpi->oxcf.play_alternate && cpi->refresh_alt_ref_frame
|
|
&& (cm->frame_type != KEY_FRAME))
|
|
// Update the alternate reference frame stats as appropriate.
|
|
update_alt_ref_frame_stats(cpi);
|
|
else
|
|
// Update the Golden frame stats as appropriate.
|
|
update_golden_frame_stats(cpi);
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
// Tell the caller that the frame was coded as a key frame
|
|
*frame_flags = cm->frame_flags | FRAMEFLAGS_KEY;
|
|
|
|
#if CONFIG_MULTIPLE_ARF
|
|
// Reset the sequence number.
|
|
if (cpi->multi_arf_enabled) {
|
|
cpi->sequence_number = 0;
|
|
cpi->frame_coding_order_period = cpi->new_frame_coding_order_period;
|
|
cpi->new_frame_coding_order_period = -1;
|
|
}
|
|
#endif
|
|
|
|
// As this frame is a key frame the next defaults to an inter frame.
|
|
cm->frame_type = INTER_FRAME;
|
|
} else {
|
|
*frame_flags = cm->frame_flags&~FRAMEFLAGS_KEY;
|
|
|
|
#if CONFIG_MULTIPLE_ARF
|
|
/* Increment position in the coded frame sequence. */
|
|
if (cpi->multi_arf_enabled) {
|
|
++cpi->sequence_number;
|
|
if (cpi->sequence_number >= cpi->frame_coding_order_period) {
|
|
cpi->sequence_number = 0;
|
|
cpi->frame_coding_order_period = cpi->new_frame_coding_order_period;
|
|
cpi->new_frame_coding_order_period = -1;
|
|
}
|
|
cpi->this_frame_weight = cpi->arf_weight[cpi->sequence_number];
|
|
assert(cpi->this_frame_weight >= 0);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Clear the one shot update flags for segmentation map and mode/ref loop filter deltas.
|
|
cm->seg.update_map = 0;
|
|
cm->seg.update_data = 0;
|
|
cm->lf.mode_ref_delta_update = 0;
|
|
|
|
// keep track of the last coded dimensions
|
|
cm->last_width = cm->width;
|
|
cm->last_height = cm->height;
|
|
|
|
// reset to normal state now that we are done.
|
|
cm->last_show_frame = cm->show_frame;
|
|
if (cm->show_frame) {
|
|
// current mip will be the prev_mip for the next frame
|
|
MODE_INFO *temp = cm->prev_mip;
|
|
cm->prev_mip = cm->mip;
|
|
cm->mip = temp;
|
|
|
|
// update the upper left visible macroblock ptrs
|
|
cm->mi = cm->mip + cm->mode_info_stride + 1;
|
|
|
|
// Don't increment frame counters if this was an altref buffer
|
|
// update not a real frame
|
|
++cm->current_video_frame;
|
|
++cpi->frames_since_key;
|
|
}
|
|
// restore prev_mi
|
|
cm->prev_mi = cm->prev_mip + cm->mode_info_stride + 1;
|
|
|
|
#if 0
|
|
{
|
|
char filename[512];
|
|
FILE *recon_file;
|
|
sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame);
|
|
recon_file = fopen(filename, "wb");
|
|
fwrite(cm->yv12_fb[cm->ref_frame_map[cpi->lst_fb_idx]].buffer_alloc,
|
|
cm->yv12_fb[cm->ref_frame_map[cpi->lst_fb_idx]].frame_size,
|
|
1, recon_file);
|
|
fclose(recon_file);
|
|
}
|
|
#endif
|
|
#ifdef OUTPUT_YUV_REC
|
|
vp9_write_yuv_rec_frame(cm);
|
|
#endif
|
|
|
|
}
|
|
|
|
static void Pass2Encode(VP9_COMP *cpi, unsigned long *size,
|
|
unsigned char *dest, unsigned int *frame_flags) {
|
|
|
|
if (!cpi->refresh_alt_ref_frame)
|
|
vp9_second_pass(cpi);
|
|
|
|
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
|
|
// vp9_print_modes_and_motion_vectors(&cpi->common, "encode.stt");
|
|
#ifdef DISABLE_RC_LONG_TERM_MEM
|
|
cpi->twopass.bits_left -= cpi->this_frame_target;
|
|
#else
|
|
cpi->twopass.bits_left -= 8 * *size;
|
|
#endif
|
|
|
|
if (!cpi->refresh_alt_ref_frame) {
|
|
double lower_bounds_min_rate = FRAME_OVERHEAD_BITS * cpi->oxcf.framerate;
|
|
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth
|
|
* cpi->oxcf.two_pass_vbrmin_section / 100);
|
|
|
|
if (two_pass_min_rate < lower_bounds_min_rate)
|
|
two_pass_min_rate = lower_bounds_min_rate;
|
|
|
|
cpi->twopass.bits_left += (int64_t)(two_pass_min_rate / cpi->oxcf.framerate);
|
|
}
|
|
}
|
|
|
|
|
|
int vp9_receive_raw_frame(VP9_PTR ptr, unsigned int frame_flags,
|
|
YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
|
|
int64_t end_time) {
|
|
VP9_COMP *cpi = (VP9_COMP *) ptr;
|
|
VP9_COMMON *cm = &cpi->common;
|
|
struct vpx_usec_timer timer;
|
|
int res = 0;
|
|
|
|
if (!cpi->initial_width) {
|
|
// TODO(jkoleszar): Support 1/4 subsampling?
|
|
cm->subsampling_x = sd->uv_width < sd->y_width;
|
|
cm->subsampling_y = sd->uv_height < sd->y_height;
|
|
alloc_raw_frame_buffers(cpi);
|
|
|
|
cpi->initial_width = cm->width;
|
|
cpi->initial_height = cm->height;
|
|
}
|
|
vpx_usec_timer_start(&timer);
|
|
if (vp9_lookahead_push(cpi->lookahead, sd, time_stamp, end_time, frame_flags,
|
|
cpi->active_map_enabled ? cpi->active_map : NULL))
|
|
res = -1;
|
|
vpx_usec_timer_mark(&timer);
|
|
cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
static int frame_is_reference(const VP9_COMP *cpi) {
|
|
const VP9_COMMON *cm = &cpi->common;
|
|
|
|
return cm->frame_type == KEY_FRAME ||
|
|
cpi->refresh_last_frame ||
|
|
cpi->refresh_golden_frame ||
|
|
cpi->refresh_alt_ref_frame ||
|
|
cm->refresh_frame_context ||
|
|
cm->lf.mode_ref_delta_update ||
|
|
cm->seg.update_map ||
|
|
cm->seg.update_data;
|
|
}
|
|
|
|
#if CONFIG_MULTIPLE_ARF
|
|
int is_next_frame_arf(VP9_COMP *cpi) {
|
|
// Negative entry in frame_coding_order indicates an ARF at this position.
|
|
return cpi->frame_coding_order[cpi->sequence_number + 1] < 0 ? 1 : 0;
|
|
}
|
|
#endif
|
|
|
|
int vp9_get_compressed_data(VP9_PTR ptr, unsigned int *frame_flags,
|
|
unsigned long *size, unsigned char *dest,
|
|
int64_t *time_stamp, int64_t *time_end, int flush) {
|
|
VP9_COMP *cpi = (VP9_COMP *) ptr;
|
|
VP9_COMMON *cm = &cpi->common;
|
|
struct vpx_usec_timer cmptimer;
|
|
YV12_BUFFER_CONFIG *force_src_buffer = NULL;
|
|
int i;
|
|
// FILE *fp_out = fopen("enc_frame_type.txt", "a");
|
|
|
|
if (!cpi)
|
|
return -1;
|
|
|
|
vpx_usec_timer_start(&cmptimer);
|
|
|
|
cpi->source = NULL;
|
|
|
|
cpi->mb.e_mbd.allow_high_precision_mv = ALTREF_HIGH_PRECISION_MV;
|
|
set_mvcost(&cpi->mb);
|
|
|
|
// Should we code an alternate reference frame.
|
|
if (cpi->oxcf.play_alternate && cpi->source_alt_ref_pending) {
|
|
int frames_to_arf;
|
|
|
|
#if CONFIG_MULTIPLE_ARF
|
|
assert(!cpi->multi_arf_enabled ||
|
|
cpi->frame_coding_order[cpi->sequence_number] < 0);
|
|
|
|
if (cpi->multi_arf_enabled && (cpi->pass == 2))
|
|
frames_to_arf = (-cpi->frame_coding_order[cpi->sequence_number])
|
|
- cpi->next_frame_in_order;
|
|
else
|
|
#endif
|
|
frames_to_arf = cpi->frames_till_gf_update_due;
|
|
|
|
assert(frames_to_arf < cpi->twopass.frames_to_key);
|
|
|
|
if ((cpi->source = vp9_lookahead_peek(cpi->lookahead, frames_to_arf))) {
|
|
#if CONFIG_MULTIPLE_ARF
|
|
cpi->alt_ref_source[cpi->arf_buffered] = cpi->source;
|
|
#else
|
|
cpi->alt_ref_source = cpi->source;
|
|
#endif
|
|
|
|
if (cpi->oxcf.arnr_max_frames > 0) {
|
|
// Produce the filtered ARF frame.
|
|
// TODO(agrange) merge these two functions.
|
|
configure_arnr_filter(cpi, cm->current_video_frame + frames_to_arf,
|
|
cpi->gfu_boost);
|
|
vp9_temporal_filter_prepare(cpi, frames_to_arf);
|
|
vp9_extend_frame_borders(&cpi->alt_ref_buffer,
|
|
cm->subsampling_x, cm->subsampling_y);
|
|
force_src_buffer = &cpi->alt_ref_buffer;
|
|
}
|
|
|
|
cm->show_frame = 0;
|
|
cm->intra_only = 0;
|
|
cpi->refresh_alt_ref_frame = 1;
|
|
cpi->refresh_golden_frame = 0;
|
|
cpi->refresh_last_frame = 0;
|
|
cpi->is_src_frame_alt_ref = 0;
|
|
|
|
// TODO(agrange) This needs to vary depending on where the next ARF is.
|
|
cpi->frames_till_alt_ref_frame = frames_to_arf;
|
|
|
|
#if CONFIG_MULTIPLE_ARF
|
|
if (!cpi->multi_arf_enabled)
|
|
#endif
|
|
cpi->source_alt_ref_pending = 0; // Clear Pending altf Ref flag.
|
|
}
|
|
}
|
|
|
|
if (!cpi->source) {
|
|
#if CONFIG_MULTIPLE_ARF
|
|
int i;
|
|
#endif
|
|
if ((cpi->source = vp9_lookahead_pop(cpi->lookahead, flush))) {
|
|
cm->show_frame = 1;
|
|
|
|
#if CONFIG_MULTIPLE_ARF
|
|
// Is this frame the ARF overlay.
|
|
cpi->is_src_frame_alt_ref = 0;
|
|
for (i = 0; i < cpi->arf_buffered; ++i) {
|
|
if (cpi->source == cpi->alt_ref_source[i]) {
|
|
cpi->is_src_frame_alt_ref = 1;
|
|
cpi->refresh_golden_frame = 1;
|
|
break;
|
|
}
|
|
}
|
|
#else
|
|
cpi->is_src_frame_alt_ref = cpi->alt_ref_source
|
|
&& (cpi->source == cpi->alt_ref_source);
|
|
#endif
|
|
if (cpi->is_src_frame_alt_ref) {
|
|
// Current frame is an ARF overlay frame.
|
|
#if CONFIG_MULTIPLE_ARF
|
|
cpi->alt_ref_source[i] = NULL;
|
|
#else
|
|
cpi->alt_ref_source = NULL;
|
|
#endif
|
|
// Don't refresh the last buffer for an ARF overlay frame. It will
|
|
// become the GF so preserve last as an alternative prediction option.
|
|
cpi->refresh_last_frame = 0;
|
|
}
|
|
#if CONFIG_MULTIPLE_ARF
|
|
++cpi->next_frame_in_order;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (cpi->source) {
|
|
cpi->un_scaled_source = cpi->Source = force_src_buffer ? force_src_buffer
|
|
: &cpi->source->img;
|
|
*time_stamp = cpi->source->ts_start;
|
|
*time_end = cpi->source->ts_end;
|
|
*frame_flags = cpi->source->flags;
|
|
|
|
// fprintf(fp_out, " Frame:%d", cm->current_video_frame);
|
|
#if CONFIG_MULTIPLE_ARF
|
|
if (cpi->multi_arf_enabled) {
|
|
// fprintf(fp_out, " seq_no:%d this_frame_weight:%d",
|
|
// cpi->sequence_number, cpi->this_frame_weight);
|
|
} else {
|
|
// fprintf(fp_out, "\n");
|
|
}
|
|
#else
|
|
// fprintf(fp_out, "\n");
|
|
#endif
|
|
|
|
#if CONFIG_MULTIPLE_ARF
|
|
if ((cm->frame_type != KEY_FRAME) && (cpi->pass == 2))
|
|
cpi->source_alt_ref_pending = is_next_frame_arf(cpi);
|
|
#endif
|
|
} else {
|
|
*size = 0;
|
|
if (flush && cpi->pass == 1 && !cpi->twopass.first_pass_done) {
|
|
vp9_end_first_pass(cpi); /* get last stats packet */
|
|
cpi->twopass.first_pass_done = 1;
|
|
}
|
|
|
|
// fclose(fp_out);
|
|
return -1;
|
|
}
|
|
|
|
if (cpi->source->ts_start < cpi->first_time_stamp_ever) {
|
|
cpi->first_time_stamp_ever = cpi->source->ts_start;
|
|
cpi->last_end_time_stamp_seen = cpi->source->ts_start;
|
|
}
|
|
|
|
// adjust frame rates based on timestamps given
|
|
if (!cpi->refresh_alt_ref_frame) {
|
|
int64_t this_duration;
|
|
int step = 0;
|
|
|
|
if (cpi->source->ts_start == cpi->first_time_stamp_ever) {
|
|
this_duration = cpi->source->ts_end - cpi->source->ts_start;
|
|
step = 1;
|
|
} else {
|
|
int64_t last_duration = cpi->last_end_time_stamp_seen
|
|
- cpi->last_time_stamp_seen;
|
|
|
|
this_duration = cpi->source->ts_end - cpi->last_end_time_stamp_seen;
|
|
|
|
// do a step update if the duration changes by 10%
|
|
if (last_duration)
|
|
step = (int)((this_duration - last_duration) * 10 / last_duration);
|
|
}
|
|
|
|
if (this_duration) {
|
|
if (step) {
|
|
vp9_new_framerate(cpi, 10000000.0 / this_duration);
|
|
} else {
|
|
// Average this frame's rate into the last second's average
|
|
// frame rate. If we haven't seen 1 second yet, then average
|
|
// over the whole interval seen.
|
|
const double interval = MIN((double)(cpi->source->ts_end
|
|
- cpi->first_time_stamp_ever), 10000000.0);
|
|
double avg_duration = 10000000.0 / cpi->oxcf.framerate;
|
|
avg_duration *= (interval - avg_duration + this_duration);
|
|
avg_duration /= interval;
|
|
|
|
vp9_new_framerate(cpi, 10000000.0 / avg_duration);
|
|
}
|
|
}
|
|
|
|
cpi->last_time_stamp_seen = cpi->source->ts_start;
|
|
cpi->last_end_time_stamp_seen = cpi->source->ts_end;
|
|
}
|
|
|
|
// start with a 0 size frame
|
|
*size = 0;
|
|
|
|
// Clear down mmx registers
|
|
vp9_clear_system_state(); // __asm emms;
|
|
|
|
/* find a free buffer for the new frame, releasing the reference previously
|
|
* held.
|
|
*/
|
|
cm->fb_idx_ref_cnt[cm->new_fb_idx]--;
|
|
cm->new_fb_idx = get_free_fb(cm);
|
|
|
|
#if CONFIG_MULTIPLE_ARF
|
|
/* Set up the correct ARF frame. */
|
|
if (cpi->refresh_alt_ref_frame) {
|
|
++cpi->arf_buffered;
|
|
}
|
|
if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME) &&
|
|
(cpi->pass == 2)) {
|
|
cpi->alt_fb_idx = cpi->arf_buffer_idx[cpi->sequence_number];
|
|
}
|
|
#endif
|
|
|
|
/* Get the mapping of L/G/A to the reference buffer pool */
|
|
cm->active_ref_idx[0] = cm->ref_frame_map[cpi->lst_fb_idx];
|
|
cm->active_ref_idx[1] = cm->ref_frame_map[cpi->gld_fb_idx];
|
|
cm->active_ref_idx[2] = cm->ref_frame_map[cpi->alt_fb_idx];
|
|
|
|
#if 0 // CONFIG_MULTIPLE_ARF
|
|
if (cpi->multi_arf_enabled) {
|
|
fprintf(fp_out, " idx(%d, %d, %d, %d) active(%d, %d, %d)",
|
|
cpi->lst_fb_idx, cpi->gld_fb_idx, cpi->alt_fb_idx, cm->new_fb_idx,
|
|
cm->active_ref_idx[0], cm->active_ref_idx[1], cm->active_ref_idx[2]);
|
|
if (cpi->refresh_alt_ref_frame)
|
|
fprintf(fp_out, " type:ARF");
|
|
if (cpi->is_src_frame_alt_ref)
|
|
fprintf(fp_out, " type:OVERLAY[%d]", cpi->alt_fb_idx);
|
|
fprintf(fp_out, "\n");
|
|
}
|
|
#endif
|
|
|
|
cm->frame_type = INTER_FRAME;
|
|
cm->frame_flags = *frame_flags;
|
|
|
|
// Reset the frame pointers to the current frame size
|
|
vp9_realloc_frame_buffer(&cm->yv12_fb[cm->new_fb_idx],
|
|
cm->width, cm->height,
|
|
cm->subsampling_x, cm->subsampling_y,
|
|
VP9BORDERINPIXELS);
|
|
|
|
// Calculate scaling factors for each of the 3 available references
|
|
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i)
|
|
vp9_setup_scale_factors(cm, i);
|
|
|
|
vp9_setup_interp_filters(&cpi->mb.e_mbd, DEFAULT_INTERP_FILTER, cm);
|
|
|
|
if (cpi->pass == 1) {
|
|
Pass1Encode(cpi, size, dest, frame_flags);
|
|
} else if (cpi->pass == 2) {
|
|
Pass2Encode(cpi, size, dest, frame_flags);
|
|
} else {
|
|
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
|
|
}
|
|
|
|
if (cm->refresh_frame_context)
|
|
cm->frame_contexts[cm->frame_context_idx] = cm->fc;
|
|
|
|
if (*size > 0) {
|
|
// if its a dropped frame honor the requests on subsequent frames
|
|
cpi->droppable = !frame_is_reference(cpi);
|
|
|
|
// return to normal state
|
|
cm->reset_frame_context = 0;
|
|
cm->refresh_frame_context = 1;
|
|
cpi->refresh_alt_ref_frame = 0;
|
|
cpi->refresh_golden_frame = 0;
|
|
cpi->refresh_last_frame = 1;
|
|
cm->frame_type = INTER_FRAME;
|
|
}
|
|
|
|
vpx_usec_timer_mark(&cmptimer);
|
|
cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
|
|
|
|
if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame)
|
|
generate_psnr_packet(cpi);
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
|
|
if (cpi->pass != 1) {
|
|
cpi->bytes += *size;
|
|
|
|
if (cm->show_frame) {
|
|
|
|
cpi->count++;
|
|
|
|
if (cpi->b_calculate_psnr) {
|
|
double ye, ue, ve;
|
|
double frame_psnr;
|
|
YV12_BUFFER_CONFIG *orig = cpi->Source;
|
|
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
|
|
YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer;
|
|
int y_samples = orig->y_height * orig->y_width;
|
|
int uv_samples = orig->uv_height * orig->uv_width;
|
|
int t_samples = y_samples + 2 * uv_samples;
|
|
double sq_error;
|
|
|
|
ye = (double)calc_plane_error(orig->y_buffer, orig->y_stride,
|
|
recon->y_buffer, recon->y_stride,
|
|
orig->y_crop_width, orig->y_crop_height);
|
|
|
|
ue = (double)calc_plane_error(orig->u_buffer, orig->uv_stride,
|
|
recon->u_buffer, recon->uv_stride,
|
|
orig->uv_crop_width, orig->uv_crop_height);
|
|
|
|
ve = (double)calc_plane_error(orig->v_buffer, orig->uv_stride,
|
|
recon->v_buffer, recon->uv_stride,
|
|
orig->uv_crop_width, orig->uv_crop_height);
|
|
|
|
sq_error = ye + ue + ve;
|
|
|
|
frame_psnr = vp9_mse2psnr(t_samples, 255.0, sq_error);
|
|
|
|
cpi->total_y += vp9_mse2psnr(y_samples, 255.0, ye);
|
|
cpi->total_u += vp9_mse2psnr(uv_samples, 255.0, ue);
|
|
cpi->total_v += vp9_mse2psnr(uv_samples, 255.0, ve);
|
|
cpi->total_sq_error += sq_error;
|
|
cpi->total += frame_psnr;
|
|
{
|
|
double frame_psnr2, frame_ssim2 = 0;
|
|
double weight = 0;
|
|
#if CONFIG_VP9_POSTPROC
|
|
vp9_deblock(cm->frame_to_show, &cm->post_proc_buffer,
|
|
cm->lf.filter_level * 10 / 6);
|
|
#endif
|
|
vp9_clear_system_state();
|
|
|
|
ye = (double)calc_plane_error(orig->y_buffer, orig->y_stride,
|
|
pp->y_buffer, pp->y_stride,
|
|
orig->y_crop_width, orig->y_crop_height);
|
|
|
|
ue = (double)calc_plane_error(orig->u_buffer, orig->uv_stride,
|
|
pp->u_buffer, pp->uv_stride,
|
|
orig->uv_crop_width, orig->uv_crop_height);
|
|
|
|
ve = (double)calc_plane_error(orig->v_buffer, orig->uv_stride,
|
|
pp->v_buffer, pp->uv_stride,
|
|
orig->uv_crop_width, orig->uv_crop_height);
|
|
|
|
sq_error = ye + ue + ve;
|
|
|
|
frame_psnr2 = vp9_mse2psnr(t_samples, 255.0, sq_error);
|
|
|
|
cpi->totalp_y += vp9_mse2psnr(y_samples, 255.0, ye);
|
|
cpi->totalp_u += vp9_mse2psnr(uv_samples, 255.0, ue);
|
|
cpi->totalp_v += vp9_mse2psnr(uv_samples, 255.0, ve);
|
|
cpi->total_sq_error2 += sq_error;
|
|
cpi->totalp += frame_psnr2;
|
|
|
|
frame_ssim2 = vp9_calc_ssim(cpi->Source,
|
|
recon, 1, &weight);
|
|
|
|
cpi->summed_quality += frame_ssim2 * weight;
|
|
cpi->summed_weights += weight;
|
|
|
|
frame_ssim2 = vp9_calc_ssim(cpi->Source,
|
|
&cm->post_proc_buffer, 1, &weight);
|
|
|
|
cpi->summedp_quality += frame_ssim2 * weight;
|
|
cpi->summedp_weights += weight;
|
|
#if 0
|
|
{
|
|
FILE *f = fopen("q_used.stt", "a");
|
|
fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n",
|
|
cpi->common.current_video_frame, y2, u2, v2,
|
|
frame_psnr2, frame_ssim2);
|
|
fclose(f);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (cpi->b_calculate_ssimg) {
|
|
double y, u, v, frame_all;
|
|
frame_all = vp9_calc_ssimg(cpi->Source, cm->frame_to_show,
|
|
&y, &u, &v);
|
|
cpi->total_ssimg_y += y;
|
|
cpi->total_ssimg_u += u;
|
|
cpi->total_ssimg_v += v;
|
|
cpi->total_ssimg_all += frame_all;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
// fclose(fp_out);
|
|
return 0;
|
|
}
|
|
|
|
int vp9_get_preview_raw_frame(VP9_PTR comp, YV12_BUFFER_CONFIG *dest,
|
|
vp9_ppflags_t *flags) {
|
|
VP9_COMP *cpi = (VP9_COMP *) comp;
|
|
|
|
if (!cpi->common.show_frame)
|
|
return -1;
|
|
else {
|
|
int ret;
|
|
#if CONFIG_VP9_POSTPROC
|
|
ret = vp9_post_proc_frame(&cpi->common, dest, flags);
|
|
#else
|
|
|
|
if (cpi->common.frame_to_show) {
|
|
*dest = *cpi->common.frame_to_show;
|
|
dest->y_width = cpi->common.width;
|
|
dest->y_height = cpi->common.height;
|
|
dest->uv_height = cpi->common.height / 2;
|
|
ret = 0;
|
|
} else {
|
|
ret = -1;
|
|
}
|
|
|
|
#endif // !CONFIG_VP9_POSTPROC
|
|
vp9_clear_system_state();
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
int vp9_set_roimap(VP9_PTR comp, unsigned char *map, unsigned int rows,
|
|
unsigned int cols, int delta_q[MAX_SEGMENTS],
|
|
int delta_lf[MAX_SEGMENTS],
|
|
unsigned int threshold[MAX_SEGMENTS]) {
|
|
VP9_COMP *cpi = (VP9_COMP *) comp;
|
|
signed char feature_data[SEG_LVL_MAX][MAX_SEGMENTS];
|
|
struct segmentation *seg = &cpi->common.seg;
|
|
int i;
|
|
|
|
if (cpi->common.mb_rows != rows || cpi->common.mb_cols != cols)
|
|
return -1;
|
|
|
|
if (!map) {
|
|
vp9_disable_segmentation((VP9_PTR)cpi);
|
|
return 0;
|
|
}
|
|
|
|
// Set the segmentation Map
|
|
vp9_set_segmentation_map((VP9_PTR)cpi, map);
|
|
|
|
// Activate segmentation.
|
|
vp9_enable_segmentation((VP9_PTR)cpi);
|
|
|
|
// Set up the quant, LF and breakout threshold segment data
|
|
for (i = 0; i < MAX_SEGMENTS; i++) {
|
|
feature_data[SEG_LVL_ALT_Q][i] = delta_q[i];
|
|
feature_data[SEG_LVL_ALT_LF][i] = delta_lf[i];
|
|
cpi->segment_encode_breakout[i] = threshold[i];
|
|
}
|
|
|
|
// Enable the loop and quant changes in the feature mask
|
|
for (i = 0; i < MAX_SEGMENTS; i++) {
|
|
if (delta_q[i])
|
|
vp9_enable_segfeature(seg, i, SEG_LVL_ALT_Q);
|
|
else
|
|
vp9_disable_segfeature(seg, i, SEG_LVL_ALT_Q);
|
|
|
|
if (delta_lf[i])
|
|
vp9_enable_segfeature(seg, i, SEG_LVL_ALT_LF);
|
|
else
|
|
vp9_disable_segfeature(seg, i, SEG_LVL_ALT_LF);
|
|
}
|
|
|
|
// Initialize the feature data structure
|
|
// SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1
|
|
vp9_set_segment_data((VP9_PTR)cpi, &feature_data[0][0], SEGMENT_DELTADATA);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vp9_set_active_map(VP9_PTR comp, unsigned char *map,
|
|
unsigned int rows, unsigned int cols) {
|
|
VP9_COMP *cpi = (VP9_COMP *) comp;
|
|
|
|
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) {
|
|
if (map) {
|
|
vpx_memcpy(cpi->active_map, map, rows * cols);
|
|
cpi->active_map_enabled = 1;
|
|
} else {
|
|
cpi->active_map_enabled = 0;
|
|
}
|
|
|
|
return 0;
|
|
} else {
|
|
// cpi->active_map_enabled = 0;
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int vp9_set_internal_size(VP9_PTR comp,
|
|
VPX_SCALING horiz_mode, VPX_SCALING vert_mode) {
|
|
VP9_COMP *cpi = (VP9_COMP *) comp;
|
|
VP9_COMMON *cm = &cpi->common;
|
|
int hr = 0, hs = 0, vr = 0, vs = 0;
|
|
|
|
if (horiz_mode > ONETWO || vert_mode > ONETWO)
|
|
return -1;
|
|
|
|
Scale2Ratio(horiz_mode, &hr, &hs);
|
|
Scale2Ratio(vert_mode, &vr, &vs);
|
|
|
|
// always go to the next whole number
|
|
cm->width = (hs - 1 + cpi->oxcf.width * hr) / hs;
|
|
cm->height = (vs - 1 + cpi->oxcf.height * vr) / vs;
|
|
|
|
assert(cm->width <= cpi->initial_width);
|
|
assert(cm->height <= cpi->initial_height);
|
|
update_frame_size(cpi);
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
int vp9_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest) {
|
|
int i, j;
|
|
int total = 0;
|
|
|
|
uint8_t *src = source->y_buffer;
|
|
uint8_t *dst = dest->y_buffer;
|
|
|
|
// Loop through the Y plane raw and reconstruction data summing
|
|
// (square differences)
|
|
for (i = 0; i < source->y_height; i += 16) {
|
|
for (j = 0; j < source->y_width; j += 16) {
|
|
unsigned int sse;
|
|
total += vp9_mse16x16(src + j, source->y_stride, dst + j, dest->y_stride,
|
|
&sse);
|
|
}
|
|
|
|
src += 16 * source->y_stride;
|
|
dst += 16 * dest->y_stride;
|
|
}
|
|
|
|
return total;
|
|
}
|
|
|
|
|
|
int vp9_get_quantizer(VP9_PTR c) {
|
|
return ((VP9_COMP *)c)->common.base_qindex;
|
|
}
|