49317cddad
Speed 4 fixed partition size. Use fixed size unless it does not fit inside image, in which case use the largest size that does. Change-Id: I250f7a80506750dd82ab355721624a1344247223
2738 lines
93 KiB
C
2738 lines
93 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
|
|
#include "./vp9_rtcd.h"
|
|
#include "./vpx_config.h"
|
|
|
|
#include "vpx_ports/vpx_timer.h"
|
|
|
|
#include "vp9/common/vp9_common.h"
|
|
#include "vp9/common/vp9_entropy.h"
|
|
#include "vp9/common/vp9_entropymode.h"
|
|
#include "vp9/common/vp9_extend.h"
|
|
#include "vp9/common/vp9_findnearmv.h"
|
|
#include "vp9/common/vp9_mvref_common.h"
|
|
#include "vp9/common/vp9_pred_common.h"
|
|
#include "vp9/common/vp9_quant_common.h"
|
|
#include "vp9/common/vp9_reconintra.h"
|
|
#include "vp9/common/vp9_reconinter.h"
|
|
#include "vp9/common/vp9_seg_common.h"
|
|
#include "vp9/common/vp9_tile_common.h"
|
|
|
|
#include "vp9/encoder/vp9_encodeframe.h"
|
|
#include "vp9/encoder/vp9_encodeintra.h"
|
|
#include "vp9/encoder/vp9_encodemb.h"
|
|
#include "vp9/encoder/vp9_encodemv.h"
|
|
#include "vp9/encoder/vp9_onyx_int.h"
|
|
#include "vp9/encoder/vp9_rdopt.h"
|
|
#include "vp9/encoder/vp9_segmentation.h"
|
|
#include "vp9/encoder/vp9_tokenize.h"
|
|
|
|
#define DBG_PRNT_SEGMAP 0
|
|
|
|
// #define ENC_DEBUG
|
|
#ifdef ENC_DEBUG
|
|
int enc_debug = 0;
|
|
#endif
|
|
|
|
static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled,
|
|
int mi_row, int mi_col, BLOCK_SIZE bsize);
|
|
|
|
static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x);
|
|
|
|
/* activity_avg must be positive, or flat regions could get a zero weight
|
|
* (infinite lambda), which confounds analysis.
|
|
* This also avoids the need for divide by zero checks in
|
|
* vp9_activity_masking().
|
|
*/
|
|
#define ACTIVITY_AVG_MIN (64)
|
|
|
|
/* Motion vector component magnitude threshold for defining fast motion. */
|
|
#define FAST_MOTION_MV_THRESH (24)
|
|
|
|
/* This is used as a reference when computing the source variance for the
|
|
* purposes of activity masking.
|
|
* Eventually this should be replaced by custom no-reference routines,
|
|
* which will be faster.
|
|
*/
|
|
static const uint8_t VP9_VAR_OFFS[64] = {
|
|
128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128,
|
|
128, 128, 128, 128, 128, 128, 128, 128
|
|
};
|
|
|
|
static unsigned int get_sby_perpixel_variance(VP9_COMP *cpi, MACROBLOCK *x,
|
|
BLOCK_SIZE bs) {
|
|
unsigned int var, sse;
|
|
var = cpi->fn_ptr[bs].vf(x->plane[0].src.buf,
|
|
x->plane[0].src.stride,
|
|
VP9_VAR_OFFS, 0, &sse);
|
|
return (var + (1 << (num_pels_log2_lookup[bs] - 1))) >>
|
|
num_pels_log2_lookup[bs];
|
|
}
|
|
|
|
// Original activity measure from Tim T's code.
|
|
static unsigned int tt_activity_measure(MACROBLOCK *x) {
|
|
unsigned int act;
|
|
unsigned int sse;
|
|
/* TODO: This could also be done over smaller areas (8x8), but that would
|
|
* require extensive changes elsewhere, as lambda is assumed to be fixed
|
|
* over an entire MB in most of the code.
|
|
* Another option is to compute four 8x8 variances, and pick a single
|
|
* lambda using a non-linear combination (e.g., the smallest, or second
|
|
* smallest, etc.).
|
|
*/
|
|
act = vp9_variance16x16(x->plane[0].src.buf, x->plane[0].src.stride,
|
|
VP9_VAR_OFFS, 0, &sse);
|
|
act <<= 4;
|
|
|
|
/* If the region is flat, lower the activity some more. */
|
|
if (act < 8 << 12)
|
|
act = act < 5 << 12 ? act : 5 << 12;
|
|
|
|
return act;
|
|
}
|
|
|
|
// Stub for alternative experimental activity measures.
|
|
static unsigned int alt_activity_measure(MACROBLOCK *x, int use_dc_pred) {
|
|
return vp9_encode_intra(x, use_dc_pred);
|
|
}
|
|
DECLARE_ALIGNED(16, static const uint8_t, vp9_64x64_zeros[64*64]) = {0};
|
|
|
|
// Measure the activity of the current macroblock
|
|
// What we measure here is TBD so abstracted to this function
|
|
#define ALT_ACT_MEASURE 1
|
|
static unsigned int mb_activity_measure(MACROBLOCK *x, int mb_row, int mb_col) {
|
|
unsigned int mb_activity;
|
|
|
|
if (ALT_ACT_MEASURE) {
|
|
int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
|
|
|
|
// Or use and alternative.
|
|
mb_activity = alt_activity_measure(x, use_dc_pred);
|
|
} else {
|
|
// Original activity measure from Tim T's code.
|
|
mb_activity = tt_activity_measure(x);
|
|
}
|
|
|
|
if (mb_activity < ACTIVITY_AVG_MIN)
|
|
mb_activity = ACTIVITY_AVG_MIN;
|
|
|
|
return mb_activity;
|
|
}
|
|
|
|
// Calculate an "average" mb activity value for the frame
|
|
#define ACT_MEDIAN 0
|
|
static void calc_av_activity(VP9_COMP *cpi, int64_t activity_sum) {
|
|
#if ACT_MEDIAN
|
|
// Find median: Simple n^2 algorithm for experimentation
|
|
{
|
|
unsigned int median;
|
|
unsigned int i, j;
|
|
unsigned int *sortlist;
|
|
unsigned int tmp;
|
|
|
|
// Create a list to sort to
|
|
CHECK_MEM_ERROR(&cpi->common, sortlist, vpx_calloc(sizeof(unsigned int),
|
|
cpi->common.MBs));
|
|
|
|
// Copy map to sort list
|
|
vpx_memcpy(sortlist, cpi->mb_activity_map,
|
|
sizeof(unsigned int) * cpi->common.MBs);
|
|
|
|
// Ripple each value down to its correct position
|
|
for (i = 1; i < cpi->common.MBs; i ++) {
|
|
for (j = i; j > 0; j --) {
|
|
if (sortlist[j] < sortlist[j - 1]) {
|
|
// Swap values
|
|
tmp = sortlist[j - 1];
|
|
sortlist[j - 1] = sortlist[j];
|
|
sortlist[j] = tmp;
|
|
} else
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Even number MBs so estimate median as mean of two either side.
|
|
median = (1 + sortlist[cpi->common.MBs >> 1] +
|
|
sortlist[(cpi->common.MBs >> 1) + 1]) >> 1;
|
|
|
|
cpi->activity_avg = median;
|
|
|
|
vpx_free(sortlist);
|
|
}
|
|
#else
|
|
// Simple mean for now
|
|
cpi->activity_avg = (unsigned int) (activity_sum / cpi->common.MBs);
|
|
#endif // ACT_MEDIAN
|
|
|
|
if (cpi->activity_avg < ACTIVITY_AVG_MIN)
|
|
cpi->activity_avg = ACTIVITY_AVG_MIN;
|
|
|
|
// Experimental code: return fixed value normalized for several clips
|
|
if (ALT_ACT_MEASURE)
|
|
cpi->activity_avg = 100000;
|
|
}
|
|
|
|
#define USE_ACT_INDEX 0
|
|
#define OUTPUT_NORM_ACT_STATS 0
|
|
|
|
#if USE_ACT_INDEX
|
|
// Calculate an activity index for each mb
|
|
static void calc_activity_index(VP9_COMP *cpi, MACROBLOCK *x) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
int mb_row, mb_col;
|
|
|
|
int64_t act;
|
|
int64_t a;
|
|
int64_t b;
|
|
|
|
#if OUTPUT_NORM_ACT_STATS
|
|
FILE *f = fopen("norm_act.stt", "a");
|
|
fprintf(f, "\n%12d\n", cpi->activity_avg);
|
|
#endif
|
|
|
|
// Reset pointers to start of activity map
|
|
x->mb_activity_ptr = cpi->mb_activity_map;
|
|
|
|
// Calculate normalized mb activity number.
|
|
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
|
|
// for each macroblock col in image
|
|
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
|
|
// Read activity from the map
|
|
act = *(x->mb_activity_ptr);
|
|
|
|
// Calculate a normalized activity number
|
|
a = act + 4 * cpi->activity_avg;
|
|
b = 4 * act + cpi->activity_avg;
|
|
|
|
if (b >= a)
|
|
*(x->activity_ptr) = (int)((b + (a >> 1)) / a) - 1;
|
|
else
|
|
*(x->activity_ptr) = 1 - (int)((a + (b >> 1)) / b);
|
|
|
|
#if OUTPUT_NORM_ACT_STATS
|
|
fprintf(f, " %6d", *(x->mb_activity_ptr));
|
|
#endif
|
|
// Increment activity map pointers
|
|
x->mb_activity_ptr++;
|
|
}
|
|
|
|
#if OUTPUT_NORM_ACT_STATS
|
|
fprintf(f, "\n");
|
|
#endif
|
|
|
|
}
|
|
|
|
#if OUTPUT_NORM_ACT_STATS
|
|
fclose(f);
|
|
#endif
|
|
|
|
}
|
|
#endif // USE_ACT_INDEX
|
|
|
|
// Loop through all MBs. Note activity of each, average activity and
|
|
// calculate a normalized activity for each
|
|
static void build_activity_map(VP9_COMP *cpi) {
|
|
MACROBLOCK * const x = &cpi->mb;
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
VP9_COMMON * const cm = &cpi->common;
|
|
|
|
#if ALT_ACT_MEASURE
|
|
YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
|
|
int recon_yoffset;
|
|
int recon_y_stride = new_yv12->y_stride;
|
|
#endif
|
|
|
|
int mb_row, mb_col;
|
|
unsigned int mb_activity;
|
|
int64_t activity_sum = 0;
|
|
|
|
x->mb_activity_ptr = cpi->mb_activity_map;
|
|
|
|
// for each macroblock row in image
|
|
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
|
|
#if ALT_ACT_MEASURE
|
|
// reset above block coeffs
|
|
xd->up_available = (mb_row != 0);
|
|
recon_yoffset = (mb_row * recon_y_stride * 16);
|
|
#endif
|
|
// for each macroblock col in image
|
|
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
|
|
#if ALT_ACT_MEASURE
|
|
xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset;
|
|
xd->left_available = (mb_col != 0);
|
|
recon_yoffset += 16;
|
|
#endif
|
|
|
|
// measure activity
|
|
mb_activity = mb_activity_measure(x, mb_row, mb_col);
|
|
|
|
// Keep frame sum
|
|
activity_sum += mb_activity;
|
|
|
|
// Store MB level activity details.
|
|
*x->mb_activity_ptr = mb_activity;
|
|
|
|
// Increment activity map pointer
|
|
x->mb_activity_ptr++;
|
|
|
|
// adjust to the next column of source macroblocks
|
|
x->plane[0].src.buf += 16;
|
|
}
|
|
|
|
// adjust to the next row of mbs
|
|
x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols;
|
|
}
|
|
|
|
// Calculate an "average" MB activity
|
|
calc_av_activity(cpi, activity_sum);
|
|
|
|
#if USE_ACT_INDEX
|
|
// Calculate an activity index number of each mb
|
|
calc_activity_index(cpi, x);
|
|
#endif
|
|
|
|
}
|
|
|
|
// Macroblock activity masking
|
|
void vp9_activity_masking(VP9_COMP *cpi, MACROBLOCK *x) {
|
|
#if USE_ACT_INDEX
|
|
x->rdmult += *(x->mb_activity_ptr) * (x->rdmult >> 2);
|
|
x->errorperbit = x->rdmult * 100 / (110 * x->rddiv);
|
|
x->errorperbit += (x->errorperbit == 0);
|
|
#else
|
|
int64_t a;
|
|
int64_t b;
|
|
int64_t act = *(x->mb_activity_ptr);
|
|
|
|
// Apply the masking to the RD multiplier.
|
|
a = act + (2 * cpi->activity_avg);
|
|
b = (2 * act) + cpi->activity_avg;
|
|
|
|
x->rdmult = (unsigned int) (((int64_t) x->rdmult * b + (a >> 1)) / a);
|
|
x->errorperbit = x->rdmult * 100 / (110 * x->rddiv);
|
|
x->errorperbit += (x->errorperbit == 0);
|
|
#endif
|
|
|
|
// Activity based Zbin adjustment
|
|
adjust_act_zbin(cpi, x);
|
|
}
|
|
|
|
static void update_state(VP9_COMP *cpi, PICK_MODE_CONTEXT *ctx,
|
|
BLOCK_SIZE bsize, int output_enabled) {
|
|
int i, x_idx, y;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &cpi->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *mi = &ctx->mic;
|
|
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
|
|
|
|
int mb_mode_index = ctx->best_mode_index;
|
|
const int mis = cm->mode_info_stride;
|
|
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
|
|
const int mi_height = num_8x8_blocks_high_lookup[bsize];
|
|
|
|
assert(mi->mbmi.mode < MB_MODE_COUNT);
|
|
assert(mb_mode_index < MAX_MODES);
|
|
assert(mi->mbmi.ref_frame[0] < MAX_REF_FRAMES);
|
|
assert(mi->mbmi.ref_frame[1] < MAX_REF_FRAMES);
|
|
assert(mi->mbmi.sb_type == bsize);
|
|
|
|
// Restore the coding context of the MB to that that was in place
|
|
// when the mode was picked for it
|
|
for (y = 0; y < mi_height; y++)
|
|
for (x_idx = 0; x_idx < mi_width; x_idx++)
|
|
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx
|
|
&& (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y)
|
|
xd->mode_info_context[x_idx + y * mis] = *mi;
|
|
|
|
// FIXME(rbultje) I'm pretty sure this should go to the end of this block
|
|
// (i.e. after the output_enabled)
|
|
if (bsize < BLOCK_32X32) {
|
|
if (bsize < BLOCK_16X16)
|
|
ctx->tx_rd_diff[ALLOW_16X16] = ctx->tx_rd_diff[ALLOW_8X8];
|
|
ctx->tx_rd_diff[ALLOW_32X32] = ctx->tx_rd_diff[ALLOW_16X16];
|
|
}
|
|
|
|
if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8) {
|
|
*x->partition_info = ctx->partition_info;
|
|
mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
|
|
mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
|
|
}
|
|
|
|
x->skip = ctx->skip;
|
|
if (!output_enabled)
|
|
return;
|
|
|
|
if (!vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
|
|
for (i = 0; i < TX_MODES; i++)
|
|
cpi->rd_tx_select_diff[i] += ctx->tx_rd_diff[i];
|
|
}
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
// Restore the coding modes to that held in the coding context
|
|
// if (mb_mode == I4X4_PRED)
|
|
// for (i = 0; i < 16; i++)
|
|
// {
|
|
// xd->block[i].bmi.as_mode =
|
|
// xd->mode_info_context->bmi[i].as_mode;
|
|
// assert(xd->mode_info_context->bmi[i].as_mode < MB_MODE_COUNT);
|
|
// }
|
|
#if CONFIG_INTERNAL_STATS
|
|
static const int kf_mode_index[] = {
|
|
THR_DC /*DC_PRED*/,
|
|
THR_V_PRED /*V_PRED*/,
|
|
THR_H_PRED /*H_PRED*/,
|
|
THR_D45_PRED /*D45_PRED*/,
|
|
THR_D135_PRED /*D135_PRED*/,
|
|
THR_D117_PRED /*D117_PRED*/,
|
|
THR_D153_PRED /*D153_PRED*/,
|
|
THR_D207_PRED /*D207_PRED*/,
|
|
THR_D63_PRED /*D63_PRED*/,
|
|
THR_TM /*TM_PRED*/,
|
|
THR_B_PRED /*I4X4_PRED*/,
|
|
};
|
|
cpi->mode_chosen_counts[kf_mode_index[mi->mbmi.mode]]++;
|
|
#endif
|
|
} else {
|
|
// Note how often each mode chosen as best
|
|
cpi->mode_chosen_counts[mb_mode_index]++;
|
|
if (is_inter_block(mbmi)
|
|
&& (mbmi->sb_type < BLOCK_8X8 || mbmi->mode == NEWMV)) {
|
|
int_mv best_mv, best_second_mv;
|
|
const MV_REFERENCE_FRAME rf1 = mbmi->ref_frame[0];
|
|
const MV_REFERENCE_FRAME rf2 = mbmi->ref_frame[1];
|
|
best_mv.as_int = ctx->best_ref_mv.as_int;
|
|
best_second_mv.as_int = ctx->second_best_ref_mv.as_int;
|
|
if (mbmi->mode == NEWMV) {
|
|
best_mv.as_int = mbmi->ref_mvs[rf1][0].as_int;
|
|
best_second_mv.as_int = mbmi->ref_mvs[rf2][0].as_int;
|
|
}
|
|
mbmi->best_mv.as_int = best_mv.as_int;
|
|
mbmi->best_second_mv.as_int = best_second_mv.as_int;
|
|
vp9_update_nmv_count(cpi, x, &best_mv, &best_second_mv);
|
|
}
|
|
|
|
if (bsize > BLOCK_8X8 && mbmi->mode == NEWMV) {
|
|
int i, j;
|
|
for (j = 0; j < mi_height; ++j)
|
|
for (i = 0; i < mi_width; ++i)
|
|
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > i
|
|
&& (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > j)
|
|
xd->mode_info_context[mis * j + i].mbmi = *mbmi;
|
|
}
|
|
|
|
if (cm->mcomp_filter_type == SWITCHABLE && is_inter_mode(mbmi->mode)) {
|
|
const int ctx = vp9_get_pred_context_switchable_interp(xd);
|
|
++cm->counts.switchable_interp[ctx][mbmi->interp_filter];
|
|
}
|
|
|
|
cpi->rd_comp_pred_diff[SINGLE_PREDICTION_ONLY] += ctx->single_pred_diff;
|
|
cpi->rd_comp_pred_diff[COMP_PREDICTION_ONLY] += ctx->comp_pred_diff;
|
|
cpi->rd_comp_pred_diff[HYBRID_PREDICTION] += ctx->hybrid_pred_diff;
|
|
|
|
for (i = 0; i <= SWITCHABLE_FILTERS; i++)
|
|
cpi->rd_filter_diff[i] += ctx->best_filter_diff[i];
|
|
}
|
|
}
|
|
|
|
void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
|
|
int mb_row, int mb_col) {
|
|
uint8_t *buffers[4] = {src->y_buffer, src->u_buffer, src->v_buffer, src
|
|
->alpha_buffer};
|
|
int strides[4] = {src->y_stride, src->uv_stride, src->uv_stride, src
|
|
->alpha_stride};
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mb_row, mb_col,
|
|
NULL, x->e_mbd.plane[i].subsampling_x,
|
|
x->e_mbd.plane[i].subsampling_y);
|
|
}
|
|
}
|
|
|
|
static void set_offsets(VP9_COMP *cpi, int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize) {
|
|
MACROBLOCK *const x = &cpi->mb;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *mbmi;
|
|
const int dst_fb_idx = cm->new_fb_idx;
|
|
const int idx_str = xd->mode_info_stride * mi_row + mi_col;
|
|
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
|
|
const int mi_height = num_8x8_blocks_high_lookup[bsize];
|
|
const int mb_row = mi_row >> 1;
|
|
const int mb_col = mi_col >> 1;
|
|
const int idx_map = mb_row * cm->mb_cols + mb_col;
|
|
const struct segmentation *const seg = &cm->seg;
|
|
|
|
set_skip_context(cm, xd, mi_row, mi_col);
|
|
set_partition_seg_context(cm, xd, mi_row, mi_col);
|
|
|
|
// Activity map pointer
|
|
x->mb_activity_ptr = &cpi->mb_activity_map[idx_map];
|
|
x->active_ptr = cpi->active_map + idx_map;
|
|
|
|
/* pointers to mode info contexts */
|
|
x->partition_info = x->pi + idx_str;
|
|
xd->mode_info_context = cm->mi + idx_str;
|
|
mbmi = &xd->mode_info_context->mbmi;
|
|
// Special case: if prev_mi is NULL, the previous mode info context
|
|
// cannot be used.
|
|
xd->prev_mode_info_context = cm->prev_mi ? cm->prev_mi + idx_str : NULL;
|
|
|
|
// Set up destination pointers
|
|
setup_dst_planes(xd, &cm->yv12_fb[dst_fb_idx], mi_row, mi_col);
|
|
|
|
// Set up limit values for MV components
|
|
// mv beyond the range do not produce new/different prediction block
|
|
x->mv_row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND);
|
|
x->mv_col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND);
|
|
x->mv_row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND;
|
|
x->mv_col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND;
|
|
|
|
// Set up distance of MB to edge of frame in 1/8th pel units
|
|
assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
|
|
set_mi_row_col(cm, xd, mi_row, mi_height, mi_col, mi_width);
|
|
|
|
/* set up source buffers */
|
|
vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
|
|
|
|
/* R/D setup */
|
|
x->rddiv = cpi->RDDIV;
|
|
x->rdmult = cpi->RDMULT;
|
|
|
|
/* segment ID */
|
|
if (seg->enabled) {
|
|
uint8_t *map = seg->update_map ? cpi->segmentation_map
|
|
: cm->last_frame_seg_map;
|
|
mbmi->segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col);
|
|
|
|
vp9_mb_init_quantizer(cpi, x);
|
|
|
|
if (seg->enabled && cpi->seg0_cnt > 0
|
|
&& !vp9_segfeature_active(seg, 0, SEG_LVL_REF_FRAME)
|
|
&& vp9_segfeature_active(seg, 1, SEG_LVL_REF_FRAME)) {
|
|
cpi->seg0_progress = (cpi->seg0_idx << 16) / cpi->seg0_cnt;
|
|
} else {
|
|
const int y = mb_row & ~3;
|
|
const int x = mb_col & ~3;
|
|
const int p16 = ((mb_row & 1) << 1) + (mb_col & 1);
|
|
const int p32 = ((mb_row & 2) << 2) + ((mb_col & 2) << 1);
|
|
const int tile_progress = cm->cur_tile_mi_col_start * cm->mb_rows >> 1;
|
|
const int mb_cols = (cm->cur_tile_mi_col_end - cm->cur_tile_mi_col_start)
|
|
>> 1;
|
|
|
|
cpi->seg0_progress = ((y * mb_cols + x * 4 + p32 + p16 + tile_progress)
|
|
<< 16) / cm->MBs;
|
|
}
|
|
|
|
x->encode_breakout = cpi->segment_encode_breakout[mbmi->segment_id];
|
|
} else {
|
|
mbmi->segment_id = 0;
|
|
x->encode_breakout = cpi->oxcf.encode_breakout;
|
|
}
|
|
}
|
|
|
|
static void pick_sb_modes(VP9_COMP *cpi, int mi_row, int mi_col,
|
|
int *totalrate, int64_t *totaldist,
|
|
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
|
|
int64_t best_rd) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &cpi->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
|
|
// Use the lower precision, but faster, 32x32 fdct for mode selection.
|
|
x->use_lp32x32fdct = 1;
|
|
|
|
if (bsize < BLOCK_8X8) {
|
|
// When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
|
|
// there is nothing to be done.
|
|
if (xd->ab_index != 0) {
|
|
*totalrate = 0;
|
|
*totaldist = 0;
|
|
return;
|
|
}
|
|
}
|
|
|
|
set_offsets(cpi, mi_row, mi_col, bsize);
|
|
xd->mode_info_context->mbmi.sb_type = bsize;
|
|
|
|
// Set to zero to make sure we do not use the previous encoded frame stats
|
|
xd->mode_info_context->mbmi.skip_coeff = 0;
|
|
|
|
x->source_variance = get_sby_perpixel_variance(cpi, x, bsize);
|
|
|
|
if (cpi->oxcf.tuning == VP8_TUNE_SSIM)
|
|
vp9_activity_masking(cpi, x);
|
|
|
|
// Find best coding mode & reconstruct the MB so it is available
|
|
// as a predictor for MBs that follow in the SB
|
|
if (cm->frame_type == KEY_FRAME)
|
|
vp9_rd_pick_intra_mode_sb(cpi, x, totalrate, totaldist, bsize, ctx,
|
|
best_rd);
|
|
else
|
|
vp9_rd_pick_inter_mode_sb(cpi, x, mi_row, mi_col, totalrate, totaldist,
|
|
bsize, ctx, best_rd);
|
|
}
|
|
|
|
static void update_stats(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &cpi->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *mi = xd->mode_info_context;
|
|
MB_MODE_INFO *const mbmi = &mi->mbmi;
|
|
|
|
if (cm->frame_type != KEY_FRAME) {
|
|
const int seg_ref_active = vp9_segfeature_active(&cm->seg, mbmi->segment_id,
|
|
SEG_LVL_REF_FRAME);
|
|
|
|
if (!seg_ref_active)
|
|
cpi->intra_inter_count[vp9_get_pred_context_intra_inter(xd)]
|
|
[is_inter_block(mbmi)]++;
|
|
|
|
// If the segment reference feature is enabled we have only a single
|
|
// reference frame allowed for the segment so exclude it from
|
|
// the reference frame counts used to work out probabilities.
|
|
if (is_inter_block(mbmi) && !seg_ref_active) {
|
|
if (cm->comp_pred_mode == HYBRID_PREDICTION)
|
|
cpi->comp_inter_count[vp9_get_pred_context_comp_inter_inter(cm, xd)]
|
|
[has_second_ref(mbmi)]++;
|
|
|
|
if (has_second_ref(mbmi)) {
|
|
cpi->comp_ref_count[vp9_get_pred_context_comp_ref_p(cm, xd)]
|
|
[mbmi->ref_frame[0] == GOLDEN_FRAME]++;
|
|
} else {
|
|
cpi->single_ref_count[vp9_get_pred_context_single_ref_p1(xd)][0]
|
|
[mbmi->ref_frame[0] != LAST_FRAME]++;
|
|
if (mbmi->ref_frame[0] != LAST_FRAME)
|
|
cpi->single_ref_count[vp9_get_pred_context_single_ref_p2(xd)][1]
|
|
[mbmi->ref_frame[0] != GOLDEN_FRAME]++;
|
|
}
|
|
}
|
|
|
|
// Count of last ref frame 0,0 usage
|
|
if (mbmi->mode == ZEROMV && mbmi->ref_frame[0] == LAST_FRAME)
|
|
cpi->inter_zz_count++;
|
|
}
|
|
}
|
|
|
|
// TODO(jingning): the variables used here are little complicated. need further
|
|
// refactoring on organizing the temporary buffers, when recursive
|
|
// partition down to 4x4 block size is enabled.
|
|
static PICK_MODE_CONTEXT *get_block_context(MACROBLOCK *x, BLOCK_SIZE bsize) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
|
|
switch (bsize) {
|
|
case BLOCK_64X64:
|
|
return &x->sb64_context;
|
|
case BLOCK_64X32:
|
|
return &x->sb64x32_context[xd->sb_index];
|
|
case BLOCK_32X64:
|
|
return &x->sb32x64_context[xd->sb_index];
|
|
case BLOCK_32X32:
|
|
return &x->sb32_context[xd->sb_index];
|
|
case BLOCK_32X16:
|
|
return &x->sb32x16_context[xd->sb_index][xd->mb_index];
|
|
case BLOCK_16X32:
|
|
return &x->sb16x32_context[xd->sb_index][xd->mb_index];
|
|
case BLOCK_16X16:
|
|
return &x->mb_context[xd->sb_index][xd->mb_index];
|
|
case BLOCK_16X8:
|
|
return &x->sb16x8_context[xd->sb_index][xd->mb_index][xd->b_index];
|
|
case BLOCK_8X16:
|
|
return &x->sb8x16_context[xd->sb_index][xd->mb_index][xd->b_index];
|
|
case BLOCK_8X8:
|
|
return &x->sb8x8_context[xd->sb_index][xd->mb_index][xd->b_index];
|
|
case BLOCK_8X4:
|
|
return &x->sb8x4_context[xd->sb_index][xd->mb_index][xd->b_index];
|
|
case BLOCK_4X8:
|
|
return &x->sb4x8_context[xd->sb_index][xd->mb_index][xd->b_index];
|
|
case BLOCK_4X4:
|
|
return &x->ab4x4_context[xd->sb_index][xd->mb_index][xd->b_index];
|
|
default:
|
|
assert(0);
|
|
return NULL ;
|
|
}
|
|
}
|
|
|
|
static BLOCK_SIZE *get_sb_partitioning(MACROBLOCK *x, BLOCK_SIZE bsize) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
switch (bsize) {
|
|
case BLOCK_64X64:
|
|
return &x->sb64_partitioning;
|
|
case BLOCK_32X32:
|
|
return &x->sb_partitioning[xd->sb_index];
|
|
case BLOCK_16X16:
|
|
return &x->mb_partitioning[xd->sb_index][xd->mb_index];
|
|
case BLOCK_8X8:
|
|
return &x->b_partitioning[xd->sb_index][xd->mb_index][xd->b_index];
|
|
default:
|
|
assert(0);
|
|
return NULL ;
|
|
}
|
|
}
|
|
|
|
static void restore_context(VP9_COMP *cpi, int mi_row, int mi_col,
|
|
ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
|
|
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
|
|
PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
|
|
BLOCK_SIZE bsize) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &cpi->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
int p;
|
|
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
|
|
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
|
|
int mi_width = num_8x8_blocks_wide_lookup[bsize];
|
|
int mi_height = num_8x8_blocks_high_lookup[bsize];
|
|
for (p = 0; p < MAX_MB_PLANE; p++) {
|
|
vpx_memcpy(
|
|
cm->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x),
|
|
a + num_4x4_blocks_wide * p,
|
|
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
|
|
xd->plane[p].subsampling_x);
|
|
vpx_memcpy(
|
|
cm->left_context[p]
|
|
+ ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
|
|
l + num_4x4_blocks_high * p,
|
|
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
|
|
xd->plane[p].subsampling_y);
|
|
}
|
|
vpx_memcpy(cm->above_seg_context + mi_col, sa,
|
|
sizeof(PARTITION_CONTEXT) * mi_width);
|
|
vpx_memcpy(cm->left_seg_context + (mi_row & MI_MASK), sl,
|
|
sizeof(PARTITION_CONTEXT) * mi_height);
|
|
}
|
|
static void save_context(VP9_COMP *cpi, int mi_row, int mi_col,
|
|
ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
|
|
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
|
|
PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
|
|
BLOCK_SIZE bsize) {
|
|
const VP9_COMMON *const cm = &cpi->common;
|
|
const MACROBLOCK *const x = &cpi->mb;
|
|
const MACROBLOCKD *const xd = &x->e_mbd;
|
|
int p;
|
|
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
|
|
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
|
|
int mi_width = num_8x8_blocks_wide_lookup[bsize];
|
|
int mi_height = num_8x8_blocks_high_lookup[bsize];
|
|
|
|
// buffer the above/left context information of the block in search.
|
|
for (p = 0; p < MAX_MB_PLANE; ++p) {
|
|
vpx_memcpy(
|
|
a + num_4x4_blocks_wide * p,
|
|
cm->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x),
|
|
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
|
|
xd->plane[p].subsampling_x);
|
|
vpx_memcpy(
|
|
l + num_4x4_blocks_high * p,
|
|
cm->left_context[p]
|
|
+ ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
|
|
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
|
|
xd->plane[p].subsampling_y);
|
|
}
|
|
vpx_memcpy(sa, cm->above_seg_context + mi_col,
|
|
sizeof(PARTITION_CONTEXT) * mi_width);
|
|
vpx_memcpy(sl, cm->left_seg_context + (mi_row & MI_MASK),
|
|
sizeof(PARTITION_CONTEXT) * mi_height);
|
|
}
|
|
|
|
static void encode_b(VP9_COMP *cpi, TOKENEXTRA **tp, int mi_row, int mi_col,
|
|
int output_enabled, BLOCK_SIZE bsize, int sub_index) {
|
|
VP9_COMMON * const cm = &cpi->common;
|
|
MACROBLOCK * const x = &cpi->mb;
|
|
MACROBLOCKD * const xd = &x->e_mbd;
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
|
|
return;
|
|
|
|
if (sub_index != -1)
|
|
*get_sb_index(xd, bsize) = sub_index;
|
|
|
|
if (bsize < BLOCK_8X8) {
|
|
// When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
|
|
// there is nothing to be done.
|
|
if (xd->ab_index > 0)
|
|
return;
|
|
}
|
|
set_offsets(cpi, mi_row, mi_col, bsize);
|
|
update_state(cpi, get_block_context(x, bsize), bsize, output_enabled);
|
|
encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize);
|
|
|
|
if (output_enabled) {
|
|
update_stats(cpi);
|
|
|
|
(*tp)->token = EOSB_TOKEN;
|
|
(*tp)++;
|
|
}
|
|
}
|
|
|
|
static void encode_sb(VP9_COMP *cpi, TOKENEXTRA **tp, int mi_row, int mi_col,
|
|
int output_enabled, BLOCK_SIZE bsize) {
|
|
VP9_COMMON * const cm = &cpi->common;
|
|
MACROBLOCK * const x = &cpi->mb;
|
|
MACROBLOCKD * const xd = &x->e_mbd;
|
|
BLOCK_SIZE c1 = BLOCK_8X8;
|
|
const int bsl = b_width_log2(bsize), bs = (1 << bsl) / 4;
|
|
int UNINITIALIZED_IS_SAFE(pl);
|
|
PARTITION_TYPE partition;
|
|
BLOCK_SIZE subsize;
|
|
int i;
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
|
|
return;
|
|
|
|
c1 = BLOCK_4X4;
|
|
if (bsize >= BLOCK_8X8) {
|
|
set_partition_seg_context(cm, xd, mi_row, mi_col);
|
|
pl = partition_plane_context(xd, bsize);
|
|
c1 = *(get_sb_partitioning(x, bsize));
|
|
}
|
|
partition = partition_lookup[bsl][c1];
|
|
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
if (output_enabled && bsize >= BLOCK_8X8)
|
|
cpi->partition_count[pl][PARTITION_NONE]++;
|
|
encode_b(cpi, tp, mi_row, mi_col, output_enabled, c1, -1);
|
|
break;
|
|
case PARTITION_VERT:
|
|
if (output_enabled)
|
|
cpi->partition_count[pl][PARTITION_VERT]++;
|
|
encode_b(cpi, tp, mi_row, mi_col, output_enabled, c1, 0);
|
|
encode_b(cpi, tp, mi_row, mi_col + bs, output_enabled, c1, 1);
|
|
break;
|
|
case PARTITION_HORZ:
|
|
if (output_enabled)
|
|
cpi->partition_count[pl][PARTITION_HORZ]++;
|
|
encode_b(cpi, tp, mi_row, mi_col, output_enabled, c1, 0);
|
|
encode_b(cpi, tp, mi_row + bs, mi_col, output_enabled, c1, 1);
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
subsize = get_subsize(bsize, PARTITION_SPLIT);
|
|
|
|
if (output_enabled)
|
|
cpi->partition_count[pl][PARTITION_SPLIT]++;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
const int x_idx = i & 1, y_idx = i >> 1;
|
|
|
|
*get_sb_index(xd, subsize) = i;
|
|
encode_sb(cpi, tp, mi_row + y_idx * bs, mi_col + x_idx * bs,
|
|
output_enabled, subsize);
|
|
}
|
|
break;
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
|
|
if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8) {
|
|
set_partition_seg_context(cm, xd, mi_row, mi_col);
|
|
update_partition_context(xd, c1, bsize);
|
|
}
|
|
}
|
|
|
|
// Check to see if the given partition size is allowed for a specified number
|
|
// of 8x8 block rows and columns remaining in the image.
|
|
// If not then return the largest allowed partition size
|
|
static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize,
|
|
int rows_left, int cols_left,
|
|
int *bh, int *bw) {
|
|
if ((rows_left <= 0) || (cols_left <= 0)) {
|
|
return MIN(bsize, BLOCK_8X8);
|
|
} else {
|
|
for (; bsize > 0; --bsize) {
|
|
*bh = num_8x8_blocks_high_lookup[bsize];
|
|
*bw = num_8x8_blocks_wide_lookup[bsize];
|
|
if ((*bh <= rows_left) && (*bw <= cols_left)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return bsize;
|
|
}
|
|
|
|
// This function attempts to set all mode info entries in a given SB64
|
|
// to the same block partition size.
|
|
// However, at the bottom and right borders of the image the requested size
|
|
// may not be allowed in which case this code attempts to choose the largest
|
|
// allowable partition.
|
|
static void set_partitioning(VP9_COMP *cpi, MODE_INFO *m,
|
|
int mi_row, int mi_col) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
BLOCK_SIZE bsize = cpi->sf.always_this_block_size;
|
|
const int mis = cm->mode_info_stride;
|
|
int row8x8_remaining = cm->cur_tile_mi_row_end - mi_row;
|
|
int col8x8_remaining = cm->cur_tile_mi_col_end - mi_col;
|
|
int block_row, block_col;
|
|
|
|
assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
|
|
|
|
// Apply the requested partition size to the SB64 if it is all "in image"
|
|
if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
|
|
(row8x8_remaining >= MI_BLOCK_SIZE)) {
|
|
for (block_row = 0; block_row < MI_BLOCK_SIZE; ++block_row) {
|
|
for (block_col = 0; block_col < MI_BLOCK_SIZE; ++block_col) {
|
|
m[block_row * mis + block_col].mbmi.sb_type = bsize;
|
|
}
|
|
}
|
|
} else {
|
|
// Else this is a partial SB64.
|
|
int bh = num_8x8_blocks_high_lookup[bsize];
|
|
int bw = num_8x8_blocks_wide_lookup[bsize];
|
|
int sub_block_row;
|
|
int sub_block_col;
|
|
int row_index;
|
|
int col_index;
|
|
|
|
for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
|
|
for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
|
|
// Find a partition size that fits
|
|
bsize = find_partition_size(cpi->sf.always_this_block_size,
|
|
(row8x8_remaining - block_row),
|
|
(col8x8_remaining - block_col), &bh, &bw);
|
|
|
|
// Set the mi entries for all 8x8 blocks within the selected size
|
|
for (sub_block_row = 0; sub_block_row < bh; ++sub_block_row) {
|
|
for (sub_block_col = 0; sub_block_col < bw; ++sub_block_col) {
|
|
row_index = block_row + sub_block_row;
|
|
col_index = block_col + sub_block_col;
|
|
m[row_index * mis + col_index].mbmi.sb_type = bsize;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
static void copy_partitioning(VP9_COMP *cpi, MODE_INFO *m, MODE_INFO *p) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
const int mis = cm->mode_info_stride;
|
|
int block_row, block_col;
|
|
for (block_row = 0; block_row < 8; ++block_row) {
|
|
for (block_col = 0; block_col < 8; ++block_col) {
|
|
m[block_row * mis + block_col].mbmi.sb_type =
|
|
p[block_row * mis + block_col].mbmi.sb_type;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void set_block_size(VP9_COMMON * const cm, MODE_INFO *mi,
|
|
BLOCK_SIZE bsize, int mis, int mi_row,
|
|
int mi_col) {
|
|
int r, c;
|
|
const int bs = MAX(num_8x8_blocks_wide_lookup[bsize],
|
|
num_8x8_blocks_high_lookup[bsize]);
|
|
MODE_INFO *const mi2 = &mi[mi_row * mis + mi_col];
|
|
for (r = 0; r < bs; r++)
|
|
for (c = 0; c < bs; c++)
|
|
if (mi_row + r < cm->mi_rows && mi_col + c < cm->mi_cols)
|
|
mi2[r * mis + c].mbmi.sb_type = bsize;
|
|
}
|
|
|
|
typedef struct {
|
|
int64_t sum_square_error;
|
|
int64_t sum_error;
|
|
int count;
|
|
int variance;
|
|
} var;
|
|
|
|
typedef struct {
|
|
var none;
|
|
var horz[2];
|
|
var vert[2];
|
|
} partition_variance;
|
|
|
|
#define VT(TYPE, BLOCKSIZE) \
|
|
typedef struct { \
|
|
partition_variance vt; \
|
|
BLOCKSIZE split[4]; } TYPE;
|
|
|
|
VT(v8x8, var)
|
|
VT(v16x16, v8x8)
|
|
VT(v32x32, v16x16)
|
|
VT(v64x64, v32x32)
|
|
|
|
typedef struct {
|
|
partition_variance *vt;
|
|
var *split[4];
|
|
} vt_node;
|
|
|
|
typedef enum {
|
|
V16X16,
|
|
V32X32,
|
|
V64X64,
|
|
} TREE_LEVEL;
|
|
|
|
static void tree_to_node(void *data, BLOCK_SIZE bsize, vt_node *node) {
|
|
int i;
|
|
switch (bsize) {
|
|
case BLOCK_64X64: {
|
|
v64x64 *vt = (v64x64 *) data;
|
|
node->vt = &vt->vt;
|
|
for (i = 0; i < 4; i++)
|
|
node->split[i] = &vt->split[i].vt.none;
|
|
break;
|
|
}
|
|
case BLOCK_32X32: {
|
|
v32x32 *vt = (v32x32 *) data;
|
|
node->vt = &vt->vt;
|
|
for (i = 0; i < 4; i++)
|
|
node->split[i] = &vt->split[i].vt.none;
|
|
break;
|
|
}
|
|
case BLOCK_16X16: {
|
|
v16x16 *vt = (v16x16 *) data;
|
|
node->vt = &vt->vt;
|
|
for (i = 0; i < 4; i++)
|
|
node->split[i] = &vt->split[i].vt.none;
|
|
break;
|
|
}
|
|
case BLOCK_8X8: {
|
|
v8x8 *vt = (v8x8 *) data;
|
|
node->vt = &vt->vt;
|
|
for (i = 0; i < 4; i++)
|
|
node->split[i] = &vt->split[i];
|
|
break;
|
|
}
|
|
default:
|
|
node->vt = 0;
|
|
for (i = 0; i < 4; i++)
|
|
node->split[i] = 0;
|
|
assert(-1);
|
|
}
|
|
}
|
|
|
|
// Set variance values given sum square error, sum error, count.
|
|
static void fill_variance(var *v, int64_t s2, int64_t s, int c) {
|
|
v->sum_square_error = s2;
|
|
v->sum_error = s;
|
|
v->count = c;
|
|
if (c > 0)
|
|
v->variance = 256
|
|
* (v->sum_square_error - v->sum_error * v->sum_error / v->count)
|
|
/ v->count;
|
|
else
|
|
v->variance = 0;
|
|
}
|
|
|
|
// Combine 2 variance structures by summing the sum_error, sum_square_error,
|
|
// and counts and then calculating the new variance.
|
|
void sum_2_variances(var *r, var *a, var*b) {
|
|
fill_variance(r, a->sum_square_error + b->sum_square_error,
|
|
a->sum_error + b->sum_error, a->count + b->count);
|
|
}
|
|
|
|
static void fill_variance_tree(void *data, BLOCK_SIZE bsize) {
|
|
vt_node node;
|
|
tree_to_node(data, bsize, &node);
|
|
sum_2_variances(&node.vt->horz[0], node.split[0], node.split[1]);
|
|
sum_2_variances(&node.vt->horz[1], node.split[2], node.split[3]);
|
|
sum_2_variances(&node.vt->vert[0], node.split[0], node.split[2]);
|
|
sum_2_variances(&node.vt->vert[1], node.split[1], node.split[3]);
|
|
sum_2_variances(&node.vt->none, &node.vt->vert[0], &node.vt->vert[1]);
|
|
}
|
|
|
|
#if PERFORM_RANDOM_PARTITIONING
|
|
static int set_vt_partitioning(VP9_COMP *cpi, void *data, MODE_INFO *m,
|
|
BLOCK_SIZE block_size, int mi_row,
|
|
int mi_col, int mi_size) {
|
|
VP9_COMMON * const cm = &cpi->common;
|
|
vt_node vt;
|
|
const int mis = cm->mode_info_stride;
|
|
int64_t threshold = 4 * cpi->common.base_qindex * cpi->common.base_qindex;
|
|
|
|
tree_to_node(data, block_size, &vt);
|
|
|
|
// split none is available only if we have more than half a block size
|
|
// in width and height inside the visible image
|
|
if (mi_col + mi_size < cm->mi_cols && mi_row + mi_size < cm->mi_rows &&
|
|
(rand() & 3) < 1) {
|
|
set_block_size(cm, m, block_size, mis, mi_row, mi_col);
|
|
return 1;
|
|
}
|
|
|
|
// vertical split is available on all but the bottom border
|
|
if (mi_row + mi_size < cm->mi_rows && vt.vt->vert[0].variance < threshold
|
|
&& (rand() & 3) < 1) {
|
|
set_block_size(cm, m, get_subsize(block_size, PARTITION_VERT), mis, mi_row,
|
|
mi_col);
|
|
return 1;
|
|
}
|
|
|
|
// horizontal split is available on all but the right border
|
|
if (mi_col + mi_size < cm->mi_cols && vt.vt->horz[0].variance < threshold
|
|
&& (rand() & 3) < 1) {
|
|
set_block_size(cm, m, get_subsize(block_size, PARTITION_HORZ), mis, mi_row,
|
|
mi_col);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#else // !PERFORM_RANDOM_PARTITIONING
|
|
|
|
static int set_vt_partitioning(VP9_COMP *cpi, void *data, MODE_INFO *m,
|
|
BLOCK_SIZE bsize, int mi_row,
|
|
int mi_col, int mi_size) {
|
|
VP9_COMMON * const cm = &cpi->common;
|
|
vt_node vt;
|
|
const int mis = cm->mode_info_stride;
|
|
int64_t threshold = 50 * cpi->common.base_qindex;
|
|
|
|
tree_to_node(data, bsize, &vt);
|
|
|
|
// split none is available only if we have more than half a block size
|
|
// in width and height inside the visible image
|
|
if (mi_col + mi_size < cm->mi_cols && mi_row + mi_size < cm->mi_rows
|
|
&& vt.vt->none.variance < threshold) {
|
|
set_block_size(cm, m, bsize, mis, mi_row, mi_col);
|
|
return 1;
|
|
}
|
|
|
|
// vertical split is available on all but the bottom border
|
|
if (mi_row + mi_size < cm->mi_rows && vt.vt->vert[0].variance < threshold
|
|
&& vt.vt->vert[1].variance < threshold) {
|
|
set_block_size(cm, m, get_subsize(bsize, PARTITION_VERT), mis, mi_row,
|
|
mi_col);
|
|
return 1;
|
|
}
|
|
|
|
// horizontal split is available on all but the right border
|
|
if (mi_col + mi_size < cm->mi_cols && vt.vt->horz[0].variance < threshold
|
|
&& vt.vt->horz[1].variance < threshold) {
|
|
set_block_size(cm, m, get_subsize(bsize, PARTITION_HORZ), mis, mi_row,
|
|
mi_col);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif // PERFORM_RANDOM_PARTITIONING
|
|
|
|
static void choose_partitioning(VP9_COMP *cpi, MODE_INFO *m, int mi_row,
|
|
int mi_col) {
|
|
VP9_COMMON * const cm = &cpi->common;
|
|
MACROBLOCK *x = &cpi->mb;
|
|
MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
const int mis = cm->mode_info_stride;
|
|
// TODO(JBB): More experimentation or testing of this threshold;
|
|
int64_t threshold = 4;
|
|
int i, j, k;
|
|
v64x64 vt;
|
|
unsigned char * s;
|
|
int sp;
|
|
const unsigned char * d;
|
|
int dp;
|
|
int pixels_wide = 64, pixels_high = 64;
|
|
|
|
vp9_zero(vt);
|
|
set_offsets(cpi, mi_row, mi_col, BLOCK_64X64);
|
|
|
|
if (xd->mb_to_right_edge < 0)
|
|
pixels_wide += (xd->mb_to_right_edge >> 3);
|
|
|
|
if (xd->mb_to_bottom_edge < 0)
|
|
pixels_high += (xd->mb_to_bottom_edge >> 3);
|
|
|
|
s = x->plane[0].src.buf;
|
|
sp = x->plane[0].src.stride;
|
|
|
|
// TODO(JBB): Clearly the higher the quantizer the fewer partitions we want
|
|
// but this needs more experimentation.
|
|
threshold = threshold * cpi->common.base_qindex * cpi->common.base_qindex;
|
|
|
|
d = vp9_64x64_zeros;
|
|
dp = 64;
|
|
if (cm->frame_type != KEY_FRAME) {
|
|
int_mv nearest_mv, near_mv;
|
|
const int idx = cm->ref_frame_map[get_ref_frame_idx(cpi, LAST_FRAME)];
|
|
YV12_BUFFER_CONFIG *ref_fb = &cm->yv12_fb[idx];
|
|
YV12_BUFFER_CONFIG *second_ref_fb = NULL;
|
|
|
|
setup_pre_planes(xd, 0, ref_fb, mi_row, mi_col,
|
|
&xd->scale_factor[0]);
|
|
setup_pre_planes(xd, 1, second_ref_fb, mi_row, mi_col,
|
|
&xd->scale_factor[1]);
|
|
xd->mode_info_context->mbmi.ref_frame[0] = LAST_FRAME;
|
|
xd->mode_info_context->mbmi.sb_type = BLOCK_64X64;
|
|
vp9_find_best_ref_mvs(xd, m->mbmi.ref_mvs[m->mbmi.ref_frame[0]],
|
|
&nearest_mv, &near_mv);
|
|
|
|
xd->mode_info_context->mbmi.mv[0] = nearest_mv;
|
|
vp9_build_inter_predictors_sby(xd, mi_row, mi_col, BLOCK_64X64);
|
|
d = xd->plane[0].dst.buf;
|
|
dp = xd->plane[0].dst.stride;
|
|
}
|
|
|
|
// Fill in the entire tree of 8x8 variances for splits.
|
|
for (i = 0; i < 4; i++) {
|
|
const int x32_idx = ((i & 1) << 5);
|
|
const int y32_idx = ((i >> 1) << 5);
|
|
for (j = 0; j < 4; j++) {
|
|
const int x16_idx = x32_idx + ((j & 1) << 4);
|
|
const int y16_idx = y32_idx + ((j >> 1) << 4);
|
|
v16x16 *vst = &vt.split[i].split[j];
|
|
for (k = 0; k < 4; k++) {
|
|
int x_idx = x16_idx + ((k & 1) << 3);
|
|
int y_idx = y16_idx + ((k >> 1) << 3);
|
|
unsigned int sse = 0;
|
|
int sum = 0;
|
|
if (x_idx < pixels_wide && y_idx < pixels_high)
|
|
vp9_get_sse_sum_8x8(s + y_idx * sp + x_idx, sp,
|
|
d + y_idx * dp + x_idx, dp, &sse, &sum);
|
|
fill_variance(&vst->split[k].vt.none, sse, sum, 64);
|
|
}
|
|
}
|
|
}
|
|
// Fill the rest of the variance tree by summing the split partition
|
|
// values.
|
|
for (i = 0; i < 4; i++) {
|
|
for (j = 0; j < 4; j++) {
|
|
fill_variance_tree(&vt.split[i].split[j], BLOCK_16X16);
|
|
}
|
|
fill_variance_tree(&vt.split[i], BLOCK_32X32);
|
|
}
|
|
fill_variance_tree(&vt, BLOCK_64X64);
|
|
// Now go through the entire structure, splitting every block size until
|
|
// we get to one that's got a variance lower than our threshold, or we
|
|
// hit 8x8.
|
|
if (!set_vt_partitioning(cpi, &vt, m, BLOCK_64X64, mi_row, mi_col,
|
|
4)) {
|
|
for (i = 0; i < 4; ++i) {
|
|
const int x32_idx = ((i & 1) << 2);
|
|
const int y32_idx = ((i >> 1) << 2);
|
|
if (!set_vt_partitioning(cpi, &vt.split[i], m, BLOCK_32X32,
|
|
(mi_row + y32_idx), (mi_col + x32_idx), 2)) {
|
|
for (j = 0; j < 4; ++j) {
|
|
const int x16_idx = ((j & 1) << 1);
|
|
const int y16_idx = ((j >> 1) << 1);
|
|
if (!set_vt_partitioning(cpi, &vt.split[i].split[j], m,
|
|
BLOCK_16X16,
|
|
(mi_row + y32_idx + y16_idx),
|
|
(mi_col + x32_idx + x16_idx), 1)) {
|
|
for (k = 0; k < 4; ++k) {
|
|
const int x8_idx = (k & 1);
|
|
const int y8_idx = (k >> 1);
|
|
set_block_size(cm, m, BLOCK_8X8, mis,
|
|
(mi_row + y32_idx + y16_idx + y8_idx),
|
|
(mi_col + x32_idx + x16_idx + x8_idx));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void rd_use_partition(VP9_COMP *cpi, MODE_INFO *m, TOKENEXTRA **tp,
|
|
int mi_row, int mi_col, BLOCK_SIZE bsize,
|
|
int *rate, int64_t *dist, int do_recon) {
|
|
VP9_COMMON * const cm = &cpi->common;
|
|
MACROBLOCK * const x = &cpi->mb;
|
|
MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
const int mis = cm->mode_info_stride;
|
|
int bsl = b_width_log2(bsize);
|
|
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
|
|
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
|
|
int ms = num_4x4_blocks_wide / 2;
|
|
int mh = num_4x4_blocks_high / 2;
|
|
int bss = (1 << bsl) / 4;
|
|
int i, pl;
|
|
PARTITION_TYPE partition = PARTITION_NONE;
|
|
BLOCK_SIZE subsize;
|
|
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
|
|
PARTITION_CONTEXT sl[8], sa[8];
|
|
int last_part_rate = INT_MAX;
|
|
int64_t last_part_dist = INT_MAX;
|
|
int split_rate = INT_MAX;
|
|
int64_t split_dist = INT_MAX;
|
|
int none_rate = INT_MAX;
|
|
int64_t none_dist = INT_MAX;
|
|
int chosen_rate = INT_MAX;
|
|
int64_t chosen_dist = INT_MAX;
|
|
BLOCK_SIZE sub_subsize = BLOCK_4X4;
|
|
int splits_below = 0;
|
|
BLOCK_SIZE bs_type = m->mbmi.sb_type;
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
|
|
return;
|
|
|
|
partition = partition_lookup[bsl][bs_type];
|
|
|
|
subsize = get_subsize(bsize, partition);
|
|
|
|
if (bsize < BLOCK_8X8) {
|
|
// When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
|
|
// there is nothing to be done.
|
|
if (xd->ab_index != 0) {
|
|
*rate = 0;
|
|
*dist = 0;
|
|
return;
|
|
}
|
|
} else {
|
|
*(get_sb_partitioning(x, bsize)) = subsize;
|
|
}
|
|
save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
|
|
x->fast_ms = 0;
|
|
x->pred_mv.as_int = 0;
|
|
x->subblock_ref = 0;
|
|
|
|
if (cpi->sf.adjust_partitioning_from_last_frame) {
|
|
// Check if any of the sub blocks are further split.
|
|
if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
|
|
sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
|
|
splits_below = 1;
|
|
for (i = 0; i < 4; i++) {
|
|
int jj = i >> 1, ii = i & 0x01;
|
|
if (m[jj * bss * mis + ii * bss].mbmi.sb_type >= sub_subsize) {
|
|
splits_below = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If partition is not none try none unless each of the 4 splits are split
|
|
// even further..
|
|
if (partition != PARTITION_NONE && !splits_below &&
|
|
mi_row + (ms >> 1) < cm->mi_rows &&
|
|
mi_col + (ms >> 1) < cm->mi_cols) {
|
|
*(get_sb_partitioning(x, bsize)) = bsize;
|
|
pick_sb_modes(cpi, mi_row, mi_col, &none_rate, &none_dist, bsize,
|
|
get_block_context(x, bsize), INT64_MAX);
|
|
|
|
set_partition_seg_context(cm, xd, mi_row, mi_col);
|
|
pl = partition_plane_context(xd, bsize);
|
|
none_rate += x->partition_cost[pl][PARTITION_NONE];
|
|
|
|
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
m->mbmi.sb_type = bs_type;
|
|
*(get_sb_partitioning(x, bsize)) = subsize;
|
|
}
|
|
}
|
|
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
pick_sb_modes(cpi, mi_row, mi_col, &last_part_rate, &last_part_dist,
|
|
bsize, get_block_context(x, bsize), INT64_MAX);
|
|
break;
|
|
case PARTITION_HORZ:
|
|
*get_sb_index(xd, subsize) = 0;
|
|
pick_sb_modes(cpi, mi_row, mi_col, &last_part_rate, &last_part_dist,
|
|
subsize, get_block_context(x, subsize), INT64_MAX);
|
|
if (last_part_rate != INT_MAX &&
|
|
bsize >= BLOCK_8X8 && mi_row + (mh >> 1) < cm->mi_rows) {
|
|
int rt = 0;
|
|
int64_t dt = 0;
|
|
update_state(cpi, get_block_context(x, subsize), subsize, 0);
|
|
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
|
|
*get_sb_index(xd, subsize) = 1;
|
|
pick_sb_modes(cpi, mi_row + (ms >> 1), mi_col, &rt, &dt, subsize,
|
|
get_block_context(x, subsize), INT64_MAX);
|
|
if (rt == INT_MAX || dt == INT_MAX) {
|
|
last_part_rate = INT_MAX;
|
|
last_part_dist = INT_MAX;
|
|
break;
|
|
}
|
|
|
|
last_part_rate += rt;
|
|
last_part_dist += dt;
|
|
}
|
|
break;
|
|
case PARTITION_VERT:
|
|
*get_sb_index(xd, subsize) = 0;
|
|
pick_sb_modes(cpi, mi_row, mi_col, &last_part_rate, &last_part_dist,
|
|
subsize, get_block_context(x, subsize), INT64_MAX);
|
|
if (last_part_rate != INT_MAX &&
|
|
bsize >= BLOCK_8X8 && mi_col + (ms >> 1) < cm->mi_cols) {
|
|
int rt = 0;
|
|
int64_t dt = 0;
|
|
update_state(cpi, get_block_context(x, subsize), subsize, 0);
|
|
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
|
|
*get_sb_index(xd, subsize) = 1;
|
|
pick_sb_modes(cpi, mi_row, mi_col + (ms >> 1), &rt, &dt, subsize,
|
|
get_block_context(x, subsize), INT64_MAX);
|
|
if (rt == INT_MAX || dt == INT_MAX) {
|
|
last_part_rate = INT_MAX;
|
|
last_part_dist = INT_MAX;
|
|
break;
|
|
}
|
|
last_part_rate += rt;
|
|
last_part_dist += dt;
|
|
}
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
// Split partition.
|
|
last_part_rate = 0;
|
|
last_part_dist = 0;
|
|
for (i = 0; i < 4; i++) {
|
|
int x_idx = (i & 1) * (ms >> 1);
|
|
int y_idx = (i >> 1) * (ms >> 1);
|
|
int jj = i >> 1, ii = i & 0x01;
|
|
int rt;
|
|
int64_t dt;
|
|
|
|
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
|
|
continue;
|
|
|
|
*get_sb_index(xd, subsize) = i;
|
|
|
|
rd_use_partition(cpi, m + jj * bss * mis + ii * bss, tp, mi_row + y_idx,
|
|
mi_col + x_idx, subsize, &rt, &dt, i != 3);
|
|
if (rt == INT_MAX || dt == INT_MAX) {
|
|
last_part_rate = INT_MAX;
|
|
last_part_dist = INT_MAX;
|
|
break;
|
|
}
|
|
last_part_rate += rt;
|
|
last_part_dist += dt;
|
|
}
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
set_partition_seg_context(cm, xd, mi_row, mi_col);
|
|
pl = partition_plane_context(xd, bsize);
|
|
if (last_part_rate < INT_MAX)
|
|
last_part_rate += x->partition_cost[pl][partition];
|
|
|
|
if (cpi->sf.adjust_partitioning_from_last_frame
|
|
&& partition != PARTITION_SPLIT && bsize > BLOCK_8X8
|
|
&& (mi_row + ms < cm->mi_rows || mi_row + (ms >> 1) == cm->mi_rows)
|
|
&& (mi_col + ms < cm->mi_cols || mi_col + (ms >> 1) == cm->mi_cols)) {
|
|
BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
|
|
split_rate = 0;
|
|
split_dist = 0;
|
|
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
|
|
// Split partition.
|
|
for (i = 0; i < 4; i++) {
|
|
int x_idx = (i & 1) * (num_4x4_blocks_wide >> 2);
|
|
int y_idx = (i >> 1) * (num_4x4_blocks_wide >> 2);
|
|
int rt = 0;
|
|
int64_t dt = 0;
|
|
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
|
|
PARTITION_CONTEXT sl[8], sa[8];
|
|
|
|
if ((mi_row + y_idx >= cm->mi_rows)
|
|
|| (mi_col + x_idx >= cm->mi_cols))
|
|
continue;
|
|
|
|
*get_sb_index(xd, split_subsize) = i;
|
|
*get_sb_partitioning(x, bsize) = split_subsize;
|
|
*get_sb_partitioning(x, split_subsize) = split_subsize;
|
|
|
|
save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
|
|
pick_sb_modes(cpi, mi_row + y_idx, mi_col + x_idx, &rt, &dt,
|
|
split_subsize, get_block_context(x, split_subsize),
|
|
INT64_MAX);
|
|
|
|
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
|
|
if (rt == INT_MAX || dt == INT_MAX) {
|
|
split_rate = INT_MAX;
|
|
split_dist = INT_MAX;
|
|
break;
|
|
}
|
|
|
|
if (i != 3)
|
|
encode_sb(cpi, tp, mi_row + y_idx, mi_col + x_idx, 0,
|
|
split_subsize);
|
|
|
|
split_rate += rt;
|
|
split_dist += dt;
|
|
set_partition_seg_context(cm, xd, mi_row + y_idx, mi_col + x_idx);
|
|
pl = partition_plane_context(xd, bsize);
|
|
split_rate += x->partition_cost[pl][PARTITION_NONE];
|
|
}
|
|
set_partition_seg_context(cm, xd, mi_row, mi_col);
|
|
pl = partition_plane_context(xd, bsize);
|
|
if (split_rate < INT_MAX) {
|
|
split_rate += x->partition_cost[pl][PARTITION_SPLIT];
|
|
|
|
chosen_rate = split_rate;
|
|
chosen_dist = split_dist;
|
|
}
|
|
}
|
|
|
|
// If last_part is better set the partitioning to that...
|
|
if (RDCOST(x->rdmult, x->rddiv, last_part_rate, last_part_dist)
|
|
< RDCOST(x->rdmult, x->rddiv, chosen_rate, chosen_dist)) {
|
|
m->mbmi.sb_type = bsize;
|
|
if (bsize >= BLOCK_8X8)
|
|
*(get_sb_partitioning(x, bsize)) = subsize;
|
|
chosen_rate = last_part_rate;
|
|
chosen_dist = last_part_dist;
|
|
}
|
|
// If none was better set the partitioning to that...
|
|
if (RDCOST(x->rdmult, x->rddiv, chosen_rate, chosen_dist)
|
|
> RDCOST(x->rdmult, x->rddiv, none_rate, none_dist)) {
|
|
if (bsize >= BLOCK_8X8)
|
|
*(get_sb_partitioning(x, bsize)) = bsize;
|
|
chosen_rate = none_rate;
|
|
chosen_dist = none_dist;
|
|
}
|
|
|
|
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
|
|
// We must have chosen a partitioning and encoding or we'll fail later on.
|
|
// No other opportunities for success.
|
|
if ( bsize == BLOCK_64X64)
|
|
assert(chosen_rate < INT_MAX && chosen_dist < INT_MAX);
|
|
|
|
if (do_recon)
|
|
encode_sb(cpi, tp, mi_row, mi_col, bsize == BLOCK_64X64, bsize);
|
|
|
|
*rate = chosen_rate;
|
|
*dist = chosen_dist;
|
|
}
|
|
|
|
static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = {
|
|
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
|
|
BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, BLOCK_8X8,
|
|
BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16
|
|
};
|
|
|
|
static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = {
|
|
BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
|
|
BLOCK_32X32, BLOCK_32X32, BLOCK_32X32, BLOCK_64X64,
|
|
BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64
|
|
};
|
|
|
|
// Look at all the mode_info entries for blocks that are part of this
|
|
// partition and find the min and max values for sb_type.
|
|
// At the moment this is designed to work on a 64x64 SB but could be
|
|
// adjusted to use a size parameter.
|
|
//
|
|
// The min and max are assumed to have been initialized prior to calling this
|
|
// function so repeat calls can accumulate a min and max of more than one sb64.
|
|
static void get_sb_partition_size_range(VP9_COMP *cpi, MODE_INFO * mi,
|
|
BLOCK_SIZE *min_block_size,
|
|
BLOCK_SIZE *max_block_size ) {
|
|
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
|
|
int sb_width_in_blocks = MI_BLOCK_SIZE;
|
|
int sb_height_in_blocks = MI_BLOCK_SIZE;
|
|
int i, j;
|
|
int index = 0;
|
|
|
|
// Check the sb_type for each block that belongs to this region.
|
|
for (i = 0; i < sb_height_in_blocks; ++i) {
|
|
for (j = 0; j < sb_width_in_blocks; ++j) {
|
|
*min_block_size = MIN(*min_block_size, mi[index + j].mbmi.sb_type);
|
|
*max_block_size = MAX(*max_block_size, mi[index + j].mbmi.sb_type);
|
|
}
|
|
index += xd->mode_info_stride;
|
|
}
|
|
}
|
|
|
|
// Look at neighboring blocks and set a min and max partition size based on
|
|
// what they chose.
|
|
static void rd_auto_partition_range(VP9_COMP *cpi,
|
|
BLOCK_SIZE *min_block_size,
|
|
BLOCK_SIZE *max_block_size) {
|
|
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
|
|
MODE_INFO *mi = xd->mode_info_context;
|
|
MODE_INFO *above_sb64_mi;
|
|
MODE_INFO *left_sb64_mi;
|
|
const MB_MODE_INFO *const above_mbmi = &mi[-xd->mode_info_stride].mbmi;
|
|
const MB_MODE_INFO *const left_mbmi = &mi[-1].mbmi;
|
|
const int left_in_image = xd->left_available && left_mbmi->in_image;
|
|
const int above_in_image = xd->up_available && above_mbmi->in_image;
|
|
|
|
// Frequency check
|
|
if (cpi->sf.auto_min_max_partition_count <= 0) {
|
|
cpi->sf.auto_min_max_partition_count =
|
|
cpi->sf.auto_min_max_partition_interval;
|
|
*min_block_size = BLOCK_4X4;
|
|
*max_block_size = BLOCK_64X64;
|
|
return;
|
|
} else {
|
|
--cpi->sf.auto_min_max_partition_count;
|
|
}
|
|
|
|
// Set default values if not left or above neighbour
|
|
if (!left_in_image && !above_in_image) {
|
|
*min_block_size = BLOCK_4X4;
|
|
*max_block_size = BLOCK_64X64;
|
|
} else {
|
|
// Default "min to max" and "max to min"
|
|
*min_block_size = BLOCK_64X64;
|
|
*max_block_size = BLOCK_4X4;
|
|
|
|
// Find the min and max partition sizes used in the left SB64
|
|
if (left_in_image) {
|
|
left_sb64_mi = &mi[-MI_BLOCK_SIZE];
|
|
get_sb_partition_size_range(cpi, left_sb64_mi,
|
|
min_block_size, max_block_size);
|
|
}
|
|
|
|
// Find the min and max partition sizes used in the above SB64 taking
|
|
// the values found for left as a starting point.
|
|
if (above_in_image) {
|
|
above_sb64_mi = &mi[-xd->mode_info_stride * MI_BLOCK_SIZE];
|
|
get_sb_partition_size_range(cpi, above_sb64_mi,
|
|
min_block_size, max_block_size);
|
|
}
|
|
|
|
// give a bit of leaway either side of the observed min and max
|
|
*min_block_size = min_partition_size[*min_block_size];
|
|
*max_block_size = max_partition_size[*max_block_size];
|
|
}
|
|
}
|
|
|
|
static void compute_fast_motion_search_level(VP9_COMP *cpi, BLOCK_SIZE bsize) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCK *const x = &cpi->mb;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
|
|
// Only use 8x8 result for non HD videos.
|
|
// int use_8x8 = (MIN(cpi->common.width, cpi->common.height) < 720) ? 1 : 0;
|
|
int use_8x8 = 1;
|
|
|
|
if (cm->frame_type && !cpi->is_src_frame_alt_ref &&
|
|
((use_8x8 && bsize == BLOCK_16X16) ||
|
|
bsize == BLOCK_32X32 || bsize == BLOCK_64X64)) {
|
|
int ref0 = 0, ref1 = 0, ref2 = 0, ref3 = 0;
|
|
PICK_MODE_CONTEXT *block_context = NULL;
|
|
|
|
if (bsize == BLOCK_16X16) {
|
|
block_context = x->sb8x8_context[xd->sb_index][xd->mb_index];
|
|
} else if (bsize == BLOCK_32X32) {
|
|
block_context = x->mb_context[xd->sb_index];
|
|
} else if (bsize == BLOCK_64X64) {
|
|
block_context = x->sb32_context;
|
|
}
|
|
|
|
if (block_context) {
|
|
ref0 = block_context[0].mic.mbmi.ref_frame[0];
|
|
ref1 = block_context[1].mic.mbmi.ref_frame[0];
|
|
ref2 = block_context[2].mic.mbmi.ref_frame[0];
|
|
ref3 = block_context[3].mic.mbmi.ref_frame[0];
|
|
}
|
|
|
|
// Currently, only consider 4 inter reference frames.
|
|
if (ref0 && ref1 && ref2 && ref3) {
|
|
int d01, d23, d02, d13;
|
|
|
|
// Motion vectors for the four subblocks.
|
|
int16_t mvr0 = block_context[0].mic.mbmi.mv[0].as_mv.row;
|
|
int16_t mvc0 = block_context[0].mic.mbmi.mv[0].as_mv.col;
|
|
int16_t mvr1 = block_context[1].mic.mbmi.mv[0].as_mv.row;
|
|
int16_t mvc1 = block_context[1].mic.mbmi.mv[0].as_mv.col;
|
|
int16_t mvr2 = block_context[2].mic.mbmi.mv[0].as_mv.row;
|
|
int16_t mvc2 = block_context[2].mic.mbmi.mv[0].as_mv.col;
|
|
int16_t mvr3 = block_context[3].mic.mbmi.mv[0].as_mv.row;
|
|
int16_t mvc3 = block_context[3].mic.mbmi.mv[0].as_mv.col;
|
|
|
|
// Adjust sign if ref is alt_ref.
|
|
if (cm->ref_frame_sign_bias[ref0]) {
|
|
mvr0 *= -1;
|
|
mvc0 *= -1;
|
|
}
|
|
|
|
if (cm->ref_frame_sign_bias[ref1]) {
|
|
mvr1 *= -1;
|
|
mvc1 *= -1;
|
|
}
|
|
|
|
if (cm->ref_frame_sign_bias[ref2]) {
|
|
mvr2 *= -1;
|
|
mvc2 *= -1;
|
|
}
|
|
|
|
if (cm->ref_frame_sign_bias[ref3]) {
|
|
mvr3 *= -1;
|
|
mvc3 *= -1;
|
|
}
|
|
|
|
// Calculate mv distances.
|
|
d01 = MAX(abs(mvr0 - mvr1), abs(mvc0 - mvc1));
|
|
d23 = MAX(abs(mvr2 - mvr3), abs(mvc2 - mvc3));
|
|
d02 = MAX(abs(mvr0 - mvr2), abs(mvc0 - mvc2));
|
|
d13 = MAX(abs(mvr1 - mvr3), abs(mvc1 - mvc3));
|
|
|
|
if (d01 < FAST_MOTION_MV_THRESH && d23 < FAST_MOTION_MV_THRESH &&
|
|
d02 < FAST_MOTION_MV_THRESH && d13 < FAST_MOTION_MV_THRESH) {
|
|
// Set fast motion search level.
|
|
x->fast_ms = 1;
|
|
|
|
// Calculate prediction MV.
|
|
x->pred_mv.as_mv.row = (mvr0 + mvr1 + mvr2 + mvr3) >> 2;
|
|
x->pred_mv.as_mv.col = (mvc0 + mvc1 + mvc2 + mvc3) >> 2;
|
|
|
|
if (ref0 == ref1 && ref1 == ref2 && ref2 == ref3 &&
|
|
d01 < 2 && d23 < 2 && d02 < 2 && d13 < 2) {
|
|
// Set fast motion search level.
|
|
x->fast_ms = 2;
|
|
|
|
if (!d01 && !d23 && !d02 && !d13) {
|
|
x->fast_ms = 3;
|
|
x->subblock_ref = ref0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
|
|
// unlikely to be selected depending on previous rate-distortion optimization
|
|
// results, for encoding speed-up.
|
|
static void rd_pick_partition(VP9_COMP *cpi, TOKENEXTRA **tp, int mi_row,
|
|
int mi_col, BLOCK_SIZE bsize, int *rate,
|
|
int64_t *dist, int do_recon, int64_t best_rd) {
|
|
VP9_COMMON * const cm = &cpi->common;
|
|
MACROBLOCK * const x = &cpi->mb;
|
|
MACROBLOCKD * const xd = &x->e_mbd;
|
|
const int ms = num_8x8_blocks_wide_lookup[bsize] / 2;
|
|
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
|
|
PARTITION_CONTEXT sl[8], sa[8];
|
|
TOKENEXTRA *tp_orig = *tp;
|
|
int i, pl;
|
|
BLOCK_SIZE subsize;
|
|
int this_rate, sum_rate = 0, best_rate = INT_MAX;
|
|
int64_t this_dist, sum_dist = 0, best_dist = INT64_MAX;
|
|
int64_t sum_rd = 0;
|
|
int do_split = bsize >= BLOCK_8X8;
|
|
int do_rect = 1;
|
|
// Override skipping rectangular partition operations for edge blocks
|
|
const int force_horz_split = (mi_row + ms >= cm->mi_rows);
|
|
const int force_vert_split = (mi_col + ms >= cm->mi_cols);
|
|
|
|
int partition_none_allowed = !force_horz_split && !force_vert_split;
|
|
int partition_horz_allowed = !force_vert_split && bsize >= BLOCK_8X8;
|
|
int partition_vert_allowed = !force_horz_split && bsize >= BLOCK_8X8;
|
|
|
|
int partition_split_done = 0;
|
|
(void) *tp_orig;
|
|
|
|
if (bsize < BLOCK_8X8) {
|
|
// When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
|
|
// there is nothing to be done.
|
|
if (xd->ab_index != 0) {
|
|
*rate = 0;
|
|
*dist = 0;
|
|
return;
|
|
}
|
|
}
|
|
assert(mi_height_log2(bsize) == mi_width_log2(bsize));
|
|
|
|
// Determine partition types in search according to the speed features.
|
|
// The threshold set here has to be of square block size.
|
|
if (cpi->sf.auto_min_max_partition_size) {
|
|
partition_none_allowed &= (bsize <= cpi->sf.max_partition_size &&
|
|
bsize >= cpi->sf.min_partition_size);
|
|
partition_horz_allowed &= ((bsize <= cpi->sf.max_partition_size &&
|
|
bsize > cpi->sf.min_partition_size) ||
|
|
force_horz_split);
|
|
partition_vert_allowed &= ((bsize <= cpi->sf.max_partition_size &&
|
|
bsize > cpi->sf.min_partition_size) ||
|
|
force_vert_split);
|
|
do_split &= bsize > cpi->sf.min_partition_size;
|
|
}
|
|
if (cpi->sf.use_square_partition_only) {
|
|
partition_horz_allowed &= force_horz_split;
|
|
partition_vert_allowed &= force_vert_split;
|
|
}
|
|
|
|
save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
|
|
if (cpi->sf.disable_split_var_thresh && partition_none_allowed) {
|
|
unsigned int source_variancey;
|
|
vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
|
|
source_variancey = get_sby_perpixel_variance(cpi, x, bsize);
|
|
if (source_variancey < cpi->sf.disable_split_var_thresh) {
|
|
do_split = 0;
|
|
if (source_variancey < cpi->sf.disable_split_var_thresh / 2)
|
|
do_rect = 0;
|
|
}
|
|
}
|
|
|
|
// PARTITION_NONE
|
|
if (partition_none_allowed) {
|
|
pick_sb_modes(cpi, mi_row, mi_col, &this_rate, &this_dist, bsize,
|
|
get_block_context(x, bsize), best_rd);
|
|
if (this_rate != INT_MAX) {
|
|
if (bsize >= BLOCK_8X8) {
|
|
set_partition_seg_context(cm, xd, mi_row, mi_col);
|
|
pl = partition_plane_context(xd, bsize);
|
|
this_rate += x->partition_cost[pl][PARTITION_NONE];
|
|
}
|
|
sum_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_dist);
|
|
if (sum_rd < best_rd) {
|
|
best_rate = this_rate;
|
|
best_dist = this_dist;
|
|
best_rd = sum_rd;
|
|
if (bsize >= BLOCK_8X8)
|
|
*(get_sb_partitioning(x, bsize)) = bsize;
|
|
}
|
|
}
|
|
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
}
|
|
|
|
// PARTITION_SPLIT
|
|
sum_rd = 0;
|
|
// TODO(jingning): use the motion vectors given by the above search as
|
|
// the starting point of motion search in the following partition type check.
|
|
if (do_split) {
|
|
subsize = get_subsize(bsize, PARTITION_SPLIT);
|
|
for (i = 0; i < 4 && sum_rd < best_rd; ++i) {
|
|
const int x_idx = (i & 1) * ms;
|
|
const int y_idx = (i >> 1) * ms;
|
|
|
|
if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
|
|
continue;
|
|
|
|
*get_sb_index(xd, subsize) = i;
|
|
|
|
rd_pick_partition(cpi, tp, mi_row + y_idx, mi_col + x_idx, subsize,
|
|
&this_rate, &this_dist, i != 3, best_rd - sum_rd);
|
|
|
|
if (this_rate == INT_MAX) {
|
|
sum_rd = INT64_MAX;
|
|
} else {
|
|
sum_rate += this_rate;
|
|
sum_dist += this_dist;
|
|
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
|
|
}
|
|
}
|
|
if (sum_rd < best_rd && i == 4) {
|
|
set_partition_seg_context(cm, xd, mi_row, mi_col);
|
|
pl = partition_plane_context(xd, bsize);
|
|
sum_rate += x->partition_cost[pl][PARTITION_SPLIT];
|
|
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
|
|
if (sum_rd < best_rd) {
|
|
best_rate = sum_rate;
|
|
best_dist = sum_dist;
|
|
best_rd = sum_rd;
|
|
*(get_sb_partitioning(x, bsize)) = subsize;
|
|
} else {
|
|
// skip rectangular partition test when larger block size
|
|
// gives better rd cost
|
|
if (cpi->sf.less_rectangular_check)
|
|
do_rect &= !partition_none_allowed;
|
|
}
|
|
}
|
|
partition_split_done = 1;
|
|
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
}
|
|
|
|
x->fast_ms = 0;
|
|
x->pred_mv.as_int = 0;
|
|
x->subblock_ref = 0;
|
|
|
|
if (partition_split_done &&
|
|
cpi->sf.using_small_partition_info) {
|
|
compute_fast_motion_search_level(cpi, bsize);
|
|
}
|
|
|
|
// PARTITION_HORZ
|
|
if (partition_horz_allowed && do_rect) {
|
|
subsize = get_subsize(bsize, PARTITION_HORZ);
|
|
*get_sb_index(xd, subsize) = 0;
|
|
pick_sb_modes(cpi, mi_row, mi_col, &sum_rate, &sum_dist, subsize,
|
|
get_block_context(x, subsize), best_rd);
|
|
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
|
|
|
|
if (sum_rd < best_rd && mi_row + ms < cm->mi_rows) {
|
|
update_state(cpi, get_block_context(x, subsize), subsize, 0);
|
|
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
|
|
|
|
*get_sb_index(xd, subsize) = 1;
|
|
pick_sb_modes(cpi, mi_row + ms, mi_col, &this_rate,
|
|
&this_dist, subsize, get_block_context(x, subsize),
|
|
best_rd - sum_rd);
|
|
if (this_rate == INT_MAX) {
|
|
sum_rd = INT64_MAX;
|
|
} else {
|
|
sum_rate += this_rate;
|
|
sum_dist += this_dist;
|
|
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
|
|
}
|
|
}
|
|
if (sum_rd < best_rd) {
|
|
set_partition_seg_context(cm, xd, mi_row, mi_col);
|
|
pl = partition_plane_context(xd, bsize);
|
|
sum_rate += x->partition_cost[pl][PARTITION_HORZ];
|
|
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
|
|
if (sum_rd < best_rd) {
|
|
best_rd = sum_rd;
|
|
best_rate = sum_rate;
|
|
best_dist = sum_dist;
|
|
*(get_sb_partitioning(x, bsize)) = subsize;
|
|
}
|
|
}
|
|
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
}
|
|
|
|
// PARTITION_VERT
|
|
if (partition_vert_allowed && do_rect) {
|
|
subsize = get_subsize(bsize, PARTITION_VERT);
|
|
|
|
*get_sb_index(xd, subsize) = 0;
|
|
pick_sb_modes(cpi, mi_row, mi_col, &sum_rate, &sum_dist, subsize,
|
|
get_block_context(x, subsize), best_rd);
|
|
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
|
|
if (sum_rd < best_rd && mi_col + ms < cm->mi_cols) {
|
|
update_state(cpi, get_block_context(x, subsize), subsize, 0);
|
|
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
|
|
|
|
*get_sb_index(xd, subsize) = 1;
|
|
pick_sb_modes(cpi, mi_row, mi_col + ms, &this_rate,
|
|
&this_dist, subsize, get_block_context(x, subsize),
|
|
best_rd - sum_rd);
|
|
if (this_rate == INT_MAX) {
|
|
sum_rd = INT64_MAX;
|
|
} else {
|
|
sum_rate += this_rate;
|
|
sum_dist += this_dist;
|
|
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
|
|
}
|
|
}
|
|
if (sum_rd < best_rd) {
|
|
set_partition_seg_context(cm, xd, mi_row, mi_col);
|
|
pl = partition_plane_context(xd, bsize);
|
|
sum_rate += x->partition_cost[pl][PARTITION_VERT];
|
|
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
|
|
if (sum_rd < best_rd) {
|
|
best_rate = sum_rate;
|
|
best_dist = sum_dist;
|
|
best_rd = sum_rd;
|
|
*(get_sb_partitioning(x, bsize)) = subsize;
|
|
}
|
|
}
|
|
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
|
|
}
|
|
|
|
|
|
*rate = best_rate;
|
|
*dist = best_dist;
|
|
|
|
if (best_rate < INT_MAX && best_dist < INT64_MAX && do_recon)
|
|
encode_sb(cpi, tp, mi_row, mi_col, bsize == BLOCK_64X64, bsize);
|
|
if (bsize == BLOCK_64X64) {
|
|
assert(tp_orig < *tp);
|
|
assert(best_rate < INT_MAX);
|
|
assert(best_dist < INT_MAX);
|
|
} else {
|
|
assert(tp_orig == *tp);
|
|
}
|
|
}
|
|
|
|
// Examines 64x64 block and chooses a best reference frame
|
|
static void rd_pick_reference_frame(VP9_COMP *cpi, int mi_row, int mi_col) {
|
|
VP9_COMMON * const cm = &cpi->common;
|
|
MACROBLOCK * const x = &cpi->mb;
|
|
MACROBLOCKD * const xd = &x->e_mbd;
|
|
int bsl = b_width_log2(BLOCK_64X64), bs = 1 << bsl;
|
|
int ms = bs / 2;
|
|
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
|
|
PARTITION_CONTEXT sl[8], sa[8];
|
|
int pl;
|
|
int r;
|
|
int64_t d;
|
|
|
|
save_context(cpi, mi_row, mi_col, a, l, sa, sl, BLOCK_64X64);
|
|
|
|
// Default is non mask (all reference frames allowed.
|
|
cpi->ref_frame_mask = 0;
|
|
|
|
// Do RD search for 64x64.
|
|
if ((mi_row + (ms >> 1) < cm->mi_rows) &&
|
|
(mi_col + (ms >> 1) < cm->mi_cols)) {
|
|
cpi->set_ref_frame_mask = 1;
|
|
pick_sb_modes(cpi, mi_row, mi_col, &r, &d, BLOCK_64X64,
|
|
get_block_context(x, BLOCK_64X64), INT64_MAX);
|
|
set_partition_seg_context(cm, xd, mi_row, mi_col);
|
|
pl = partition_plane_context(xd, BLOCK_64X64);
|
|
r += x->partition_cost[pl][PARTITION_NONE];
|
|
|
|
*(get_sb_partitioning(x, BLOCK_64X64)) = BLOCK_64X64;
|
|
cpi->set_ref_frame_mask = 0;
|
|
}
|
|
|
|
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, BLOCK_64X64);
|
|
}
|
|
|
|
static void encode_sb_row(VP9_COMP *cpi, int mi_row, TOKENEXTRA **tp,
|
|
int *totalrate) {
|
|
VP9_COMMON * const cm = &cpi->common;
|
|
int mi_col;
|
|
|
|
// Initialize the left context for the new SB row
|
|
vpx_memset(&cm->left_context, 0, sizeof(cm->left_context));
|
|
vpx_memset(cm->left_seg_context, 0, sizeof(cm->left_seg_context));
|
|
|
|
// Code each SB in the row
|
|
for (mi_col = cm->cur_tile_mi_col_start; mi_col < cm->cur_tile_mi_col_end;
|
|
mi_col += MI_BLOCK_SIZE) {
|
|
int dummy_rate;
|
|
int64_t dummy_dist;
|
|
|
|
// Initialize a mask of modes that we will not consider;
|
|
// cpi->unused_mode_skip_mask = 0x0000000AAE17F800 (test no golden)
|
|
if (cpi->common.frame_type == KEY_FRAME)
|
|
cpi->unused_mode_skip_mask = 0;
|
|
else
|
|
cpi->unused_mode_skip_mask = 0xFFFFFFFFFFFFFE00;
|
|
|
|
if (cpi->sf.reference_masking)
|
|
rd_pick_reference_frame(cpi, mi_row, mi_col);
|
|
|
|
if (cpi->sf.partition_by_variance || cpi->sf.use_lastframe_partitioning ||
|
|
cpi->sf.use_one_partition_size_always ) {
|
|
const int idx_str = cm->mode_info_stride * mi_row + mi_col;
|
|
MODE_INFO *m = cm->mi + idx_str;
|
|
MODE_INFO *p = cm->prev_mi + idx_str;
|
|
|
|
cpi->mb.source_variance = UINT_MAX;
|
|
if (cpi->sf.use_one_partition_size_always) {
|
|
set_offsets(cpi, mi_row, mi_col, BLOCK_64X64);
|
|
set_partitioning(cpi, m, mi_row, mi_col);
|
|
rd_use_partition(cpi, m, tp, mi_row, mi_col, BLOCK_64X64,
|
|
&dummy_rate, &dummy_dist, 1);
|
|
} else if (cpi->sf.partition_by_variance) {
|
|
choose_partitioning(cpi, cm->mi, mi_row, mi_col);
|
|
rd_use_partition(cpi, m, tp, mi_row, mi_col, BLOCK_64X64,
|
|
&dummy_rate, &dummy_dist, 1);
|
|
} else {
|
|
if ((cpi->common.current_video_frame
|
|
% cpi->sf.last_partitioning_redo_frequency) == 0
|
|
|| cm->prev_mi == 0
|
|
|| cpi->common.show_frame == 0
|
|
|| cpi->common.frame_type == KEY_FRAME
|
|
|| cpi->is_src_frame_alt_ref) {
|
|
// If required set upper and lower partition size limits
|
|
if (cpi->sf.auto_min_max_partition_size) {
|
|
set_offsets(cpi, mi_row, mi_col, BLOCK_64X64);
|
|
rd_auto_partition_range(cpi,
|
|
&cpi->sf.min_partition_size,
|
|
&cpi->sf.max_partition_size);
|
|
}
|
|
rd_pick_partition(cpi, tp, mi_row, mi_col, BLOCK_64X64,
|
|
&dummy_rate, &dummy_dist, 1, INT64_MAX);
|
|
} else {
|
|
copy_partitioning(cpi, m, p);
|
|
rd_use_partition(cpi, m, tp, mi_row, mi_col, BLOCK_64X64,
|
|
&dummy_rate, &dummy_dist, 1);
|
|
}
|
|
}
|
|
} else {
|
|
// If required set upper and lower partition size limits
|
|
if (cpi->sf.auto_min_max_partition_size) {
|
|
set_offsets(cpi, mi_row, mi_col, BLOCK_64X64);
|
|
rd_auto_partition_range(cpi, &cpi->sf.min_partition_size,
|
|
&cpi->sf.max_partition_size);
|
|
}
|
|
|
|
rd_pick_partition(cpi, tp, mi_row, mi_col, BLOCK_64X64,
|
|
&dummy_rate, &dummy_dist, 1, INT64_MAX);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void init_encode_frame_mb_context(VP9_COMP *cpi) {
|
|
MACROBLOCK *const x = &cpi->mb;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
|
|
|
|
x->act_zbin_adj = 0;
|
|
cpi->seg0_idx = 0;
|
|
|
|
xd->mode_info_stride = cm->mode_info_stride;
|
|
|
|
// reset intra mode contexts
|
|
if (cm->frame_type == KEY_FRAME)
|
|
vp9_init_mbmode_probs(cm);
|
|
|
|
// Copy data over into macro block data structures.
|
|
vp9_setup_src_planes(x, cpi->Source, 0, 0);
|
|
|
|
// TODO(jkoleszar): are these initializations required?
|
|
setup_pre_planes(xd, 0, &cm->yv12_fb[cm->ref_frame_map[cpi->lst_fb_idx]],
|
|
0, 0, NULL);
|
|
setup_dst_planes(xd, &cm->yv12_fb[cm->new_fb_idx], 0, 0);
|
|
|
|
setup_block_dptrs(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
|
|
|
|
xd->mode_info_context->mbmi.mode = DC_PRED;
|
|
xd->mode_info_context->mbmi.uv_mode = DC_PRED;
|
|
|
|
vp9_zero(cpi->y_mode_count)
|
|
vp9_zero(cpi->y_uv_mode_count)
|
|
vp9_zero(cm->counts.inter_mode)
|
|
vp9_zero(cpi->partition_count);
|
|
vp9_zero(cpi->intra_inter_count);
|
|
vp9_zero(cpi->comp_inter_count);
|
|
vp9_zero(cpi->single_ref_count);
|
|
vp9_zero(cpi->comp_ref_count);
|
|
vp9_zero(cm->counts.tx);
|
|
vp9_zero(cm->counts.mbskip);
|
|
|
|
// Note: this memset assumes above_context[0], [1] and [2]
|
|
// are allocated as part of the same buffer.
|
|
vpx_memset(cm->above_context[0], 0,
|
|
sizeof(ENTROPY_CONTEXT) * 2 * MAX_MB_PLANE * aligned_mi_cols);
|
|
vpx_memset(cm->above_seg_context, 0,
|
|
sizeof(PARTITION_CONTEXT) * aligned_mi_cols);
|
|
}
|
|
|
|
static void switch_lossless_mode(VP9_COMP *cpi, int lossless) {
|
|
if (lossless) {
|
|
// printf("Switching to lossless\n");
|
|
cpi->mb.fwd_txm8x4 = vp9_short_walsh8x4;
|
|
cpi->mb.fwd_txm4x4 = vp9_short_walsh4x4;
|
|
cpi->mb.e_mbd.inv_txm4x4_1_add = vp9_short_iwalsh4x4_1_add;
|
|
cpi->mb.e_mbd.inv_txm4x4_add = vp9_short_iwalsh4x4_add;
|
|
cpi->mb.optimize = 0;
|
|
cpi->common.lf.filter_level = 0;
|
|
cpi->zbin_mode_boost_enabled = 0;
|
|
cpi->common.tx_mode = ONLY_4X4;
|
|
} else {
|
|
// printf("Not lossless\n");
|
|
cpi->mb.fwd_txm8x4 = vp9_short_fdct8x4;
|
|
cpi->mb.fwd_txm4x4 = vp9_short_fdct4x4;
|
|
cpi->mb.e_mbd.inv_txm4x4_1_add = vp9_short_idct4x4_1_add;
|
|
cpi->mb.e_mbd.inv_txm4x4_add = vp9_short_idct4x4_add;
|
|
}
|
|
}
|
|
|
|
static void switch_tx_mode(VP9_COMP *cpi) {
|
|
if (cpi->sf.tx_size_search_method == USE_LARGESTALL &&
|
|
cpi->common.tx_mode >= ALLOW_32X32)
|
|
cpi->common.tx_mode = ALLOW_32X32;
|
|
}
|
|
|
|
static void encode_frame_internal(VP9_COMP *cpi) {
|
|
int mi_row;
|
|
MACROBLOCK * const x = &cpi->mb;
|
|
VP9_COMMON * const cm = &cpi->common;
|
|
MACROBLOCKD * const xd = &x->e_mbd;
|
|
int totalrate;
|
|
|
|
// fprintf(stderr, "encode_frame_internal frame %d (%d) type %d\n",
|
|
// cpi->common.current_video_frame, cpi->common.show_frame,
|
|
// cm->frame_type);
|
|
|
|
// debug output
|
|
#if DBG_PRNT_SEGMAP
|
|
{
|
|
FILE *statsfile;
|
|
statsfile = fopen("segmap2.stt", "a");
|
|
fprintf(statsfile, "\n");
|
|
fclose(statsfile);
|
|
}
|
|
#endif
|
|
|
|
totalrate = 0;
|
|
|
|
// Reset frame count of inter 0,0 motion vector usage.
|
|
cpi->inter_zz_count = 0;
|
|
|
|
vp9_zero(cm->counts.switchable_interp);
|
|
vp9_zero(cpi->txfm_stepdown_count);
|
|
|
|
xd->mode_info_context = cm->mi;
|
|
xd->prev_mode_info_context = cm->prev_mi;
|
|
|
|
vp9_zero(cpi->NMVcount);
|
|
vp9_zero(cpi->coef_counts);
|
|
vp9_zero(cm->counts.eob_branch);
|
|
|
|
cpi->mb.e_mbd.lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0
|
|
&& cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
|
|
switch_lossless_mode(cpi, cpi->mb.e_mbd.lossless);
|
|
|
|
vp9_frame_init_quantizer(cpi);
|
|
|
|
vp9_initialize_rd_consts(cpi, cm->base_qindex + cm->y_dc_delta_q);
|
|
vp9_initialize_me_consts(cpi, cm->base_qindex);
|
|
switch_tx_mode(cpi);
|
|
|
|
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
|
|
// Initialize encode frame context.
|
|
init_encode_frame_mb_context(cpi);
|
|
|
|
// Build a frame level activity map
|
|
build_activity_map(cpi);
|
|
}
|
|
|
|
// Re-initialize encode frame context.
|
|
init_encode_frame_mb_context(cpi);
|
|
|
|
vp9_zero(cpi->rd_comp_pred_diff);
|
|
vp9_zero(cpi->rd_filter_diff);
|
|
vp9_zero(cpi->rd_tx_select_diff);
|
|
vp9_zero(cpi->rd_tx_select_threshes);
|
|
|
|
set_prev_mi(cm);
|
|
|
|
{
|
|
struct vpx_usec_timer emr_timer;
|
|
vpx_usec_timer_start(&emr_timer);
|
|
|
|
{
|
|
// Take tiles into account and give start/end MB
|
|
int tile_col, tile_row;
|
|
TOKENEXTRA *tp = cpi->tok;
|
|
const int tile_cols = 1 << cm->log2_tile_cols;
|
|
const int tile_rows = 1 << cm->log2_tile_rows;
|
|
|
|
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
|
|
vp9_get_tile_row_offsets(cm, tile_row);
|
|
|
|
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
|
|
TOKENEXTRA *tp_old = tp;
|
|
|
|
// For each row of SBs in the frame
|
|
vp9_get_tile_col_offsets(cm, tile_col);
|
|
for (mi_row = cm->cur_tile_mi_row_start;
|
|
mi_row < cm->cur_tile_mi_row_end; mi_row += 8)
|
|
encode_sb_row(cpi, mi_row, &tp, &totalrate);
|
|
|
|
cpi->tok_count[tile_row][tile_col] = (unsigned int)(tp - tp_old);
|
|
assert(tp - cpi->tok <= get_token_alloc(cm->mb_rows, cm->mb_cols));
|
|
}
|
|
}
|
|
}
|
|
|
|
vpx_usec_timer_mark(&emr_timer);
|
|
cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer);
|
|
}
|
|
|
|
if (cpi->sf.skip_encode_sb) {
|
|
int j;
|
|
unsigned int intra_count = 0, inter_count = 0;
|
|
for (j = 0; j < INTRA_INTER_CONTEXTS; ++j) {
|
|
intra_count += cpi->intra_inter_count[j][0];
|
|
inter_count += cpi->intra_inter_count[j][1];
|
|
}
|
|
cpi->sf.skip_encode_frame = ((intra_count << 2) < inter_count);
|
|
cpi->sf.skip_encode_frame &= (cm->frame_type != KEY_FRAME);
|
|
cpi->sf.skip_encode_frame &= cm->show_frame;
|
|
} else {
|
|
cpi->sf.skip_encode_frame = 0;
|
|
}
|
|
|
|
// 256 rate units to the bit,
|
|
// projected_frame_size in units of BYTES
|
|
cpi->projected_frame_size = totalrate >> 8;
|
|
|
|
#if 0
|
|
// Keep record of the total distortion this time around for future use
|
|
cpi->last_frame_distortion = cpi->frame_distortion;
|
|
#endif
|
|
|
|
}
|
|
|
|
static int check_dual_ref_flags(VP9_COMP *cpi) {
|
|
const int ref_flags = cpi->ref_frame_flags;
|
|
|
|
if (vp9_segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) {
|
|
return 0;
|
|
} else {
|
|
return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG)
|
|
+ !!(ref_flags & VP9_ALT_FLAG)) >= 2;
|
|
}
|
|
}
|
|
|
|
static int get_skip_flag(MODE_INFO *mi, int mis, int ymbs, int xmbs) {
|
|
int x, y;
|
|
|
|
for (y = 0; y < ymbs; y++) {
|
|
for (x = 0; x < xmbs; x++) {
|
|
if (!mi[y * mis + x].mbmi.skip_coeff)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void set_txfm_flag(MODE_INFO *mi, int mis, int ymbs, int xmbs,
|
|
TX_SIZE tx_size) {
|
|
int x, y;
|
|
|
|
for (y = 0; y < ymbs; y++) {
|
|
for (x = 0; x < xmbs; x++)
|
|
mi[y * mis + x].mbmi.tx_size = tx_size;
|
|
}
|
|
}
|
|
|
|
static void reset_skip_txfm_size_b(VP9_COMP *cpi, MODE_INFO *mi, int mis,
|
|
TX_SIZE max_tx_size, int bw, int bh,
|
|
int mi_row, int mi_col, BLOCK_SIZE bsize) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MB_MODE_INFO *const mbmi = &mi->mbmi;
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
|
|
return;
|
|
|
|
if (mbmi->tx_size > max_tx_size) {
|
|
MACROBLOCK * const x = &cpi->mb;
|
|
MACROBLOCKD * const xd = &x->e_mbd;
|
|
const int ymbs = MIN(bh, cm->mi_rows - mi_row);
|
|
const int xmbs = MIN(bw, cm->mi_cols - mi_col);
|
|
|
|
xd->mode_info_context = mi;
|
|
assert(vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP) ||
|
|
get_skip_flag(mi, mis, ymbs, xmbs));
|
|
set_txfm_flag(mi, mis, ymbs, xmbs, max_tx_size);
|
|
}
|
|
}
|
|
|
|
static void reset_skip_txfm_size_sb(VP9_COMP *cpi, MODE_INFO *mi,
|
|
TX_SIZE max_tx_size, int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize) {
|
|
const VP9_COMMON *const cm = &cpi->common;
|
|
const int mis = cm->mode_info_stride;
|
|
int bw, bh;
|
|
const int bs = num_8x8_blocks_wide_lookup[bsize], hbs = bs / 2;
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
|
|
return;
|
|
|
|
bw = num_8x8_blocks_wide_lookup[mi->mbmi.sb_type];
|
|
bh = num_8x8_blocks_high_lookup[mi->mbmi.sb_type];
|
|
|
|
if (bw == bs && bh == bs) {
|
|
reset_skip_txfm_size_b(cpi, mi, mis, max_tx_size, bs, bs, mi_row,
|
|
mi_col, bsize);
|
|
} else if (bw == bs && bh < bs) {
|
|
reset_skip_txfm_size_b(cpi, mi, mis, max_tx_size, bs, hbs, mi_row, mi_col,
|
|
bsize);
|
|
reset_skip_txfm_size_b(cpi, mi + hbs * mis, mis, max_tx_size, bs, hbs,
|
|
mi_row + hbs, mi_col, bsize);
|
|
} else if (bw < bs && bh == bs) {
|
|
reset_skip_txfm_size_b(cpi, mi, mis, max_tx_size, hbs, bs, mi_row, mi_col,
|
|
bsize);
|
|
reset_skip_txfm_size_b(cpi, mi + hbs, mis, max_tx_size, hbs, bs, mi_row,
|
|
mi_col + hbs, bsize);
|
|
} else {
|
|
const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize];
|
|
int n;
|
|
|
|
assert(bw < bs && bh < bs);
|
|
|
|
for (n = 0; n < 4; n++) {
|
|
const int mi_dc = hbs * (n & 1);
|
|
const int mi_dr = hbs * (n >> 1);
|
|
|
|
reset_skip_txfm_size_sb(cpi, &mi[mi_dr * mis + mi_dc], max_tx_size,
|
|
mi_row + mi_dr, mi_col + mi_dc, subsize);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void reset_skip_txfm_size(VP9_COMP *cpi, TX_SIZE txfm_max) {
|
|
VP9_COMMON * const cm = &cpi->common;
|
|
int mi_row, mi_col;
|
|
const int mis = cm->mode_info_stride;
|
|
MODE_INFO *mi, *mi_ptr = cm->mi;
|
|
|
|
for (mi_row = 0; mi_row < cm->mi_rows; mi_row += 8, mi_ptr += 8 * mis) {
|
|
mi = mi_ptr;
|
|
for (mi_col = 0; mi_col < cm->mi_cols; mi_col += 8, mi += 8)
|
|
reset_skip_txfm_size_sb(cpi, mi, txfm_max, mi_row, mi_col, BLOCK_64X64);
|
|
}
|
|
}
|
|
|
|
static int get_frame_type(VP9_COMP *cpi) {
|
|
int frame_type;
|
|
if (cpi->common.frame_type == KEY_FRAME)
|
|
frame_type = 0;
|
|
else if (cpi->is_src_frame_alt_ref && cpi->refresh_golden_frame)
|
|
frame_type = 3;
|
|
else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
|
|
frame_type = 1;
|
|
else
|
|
frame_type = 2;
|
|
return frame_type;
|
|
}
|
|
|
|
static void select_tx_mode(VP9_COMP *cpi) {
|
|
if (cpi->oxcf.lossless) {
|
|
cpi->common.tx_mode = ONLY_4X4;
|
|
} else if (cpi->common.current_video_frame == 0) {
|
|
cpi->common.tx_mode = TX_MODE_SELECT;
|
|
} else {
|
|
if (cpi->sf.tx_size_search_method == USE_LARGESTALL) {
|
|
cpi->common.tx_mode = ALLOW_32X32;
|
|
} else if (cpi->sf.tx_size_search_method == USE_FULL_RD) {
|
|
int frame_type = get_frame_type(cpi);
|
|
cpi->common.tx_mode =
|
|
cpi->rd_tx_select_threshes[frame_type][ALLOW_32X32]
|
|
> cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] ?
|
|
ALLOW_32X32 : TX_MODE_SELECT;
|
|
} else {
|
|
unsigned int total = 0;
|
|
int i;
|
|
for (i = 0; i < TX_SIZES; ++i)
|
|
total += cpi->txfm_stepdown_count[i];
|
|
if (total) {
|
|
double fraction = (double)cpi->txfm_stepdown_count[0] / total;
|
|
cpi->common.tx_mode = fraction > 0.90 ? ALLOW_32X32 : TX_MODE_SELECT;
|
|
// printf("fraction = %f\n", fraction);
|
|
} // else keep unchanged
|
|
}
|
|
}
|
|
}
|
|
|
|
void vp9_encode_frame(VP9_COMP *cpi) {
|
|
VP9_COMMON * const cm = &cpi->common;
|
|
|
|
// In the longer term the encoder should be generalized to match the
|
|
// decoder such that we allow compound where one of the 3 buffers has a
|
|
// different sign bias and that buffer is then the fixed ref. However, this
|
|
// requires further work in the rd loop. For now the only supported encoder
|
|
// side behavior is where the ALT ref buffer has opposite sign bias to
|
|
// the other two.
|
|
if ((cm->ref_frame_sign_bias[ALTREF_FRAME]
|
|
== cm->ref_frame_sign_bias[GOLDEN_FRAME])
|
|
|| (cm->ref_frame_sign_bias[ALTREF_FRAME]
|
|
== cm->ref_frame_sign_bias[LAST_FRAME])) {
|
|
cm->allow_comp_inter_inter = 0;
|
|
} else {
|
|
cm->allow_comp_inter_inter = 1;
|
|
cm->comp_fixed_ref = ALTREF_FRAME;
|
|
cm->comp_var_ref[0] = LAST_FRAME;
|
|
cm->comp_var_ref[1] = GOLDEN_FRAME;
|
|
}
|
|
|
|
if (cpi->sf.RD) {
|
|
int i, pred_type;
|
|
INTERPOLATIONFILTERTYPE filter_type;
|
|
/*
|
|
* This code does a single RD pass over the whole frame assuming
|
|
* either compound, single or hybrid prediction as per whatever has
|
|
* worked best for that type of frame in the past.
|
|
* It also predicts whether another coding mode would have worked
|
|
* better that this coding mode. If that is the case, it remembers
|
|
* that for subsequent frames.
|
|
* It does the same analysis for transform size selection also.
|
|
*/
|
|
int frame_type = get_frame_type(cpi);
|
|
|
|
/* prediction (compound, single or hybrid) mode selection */
|
|
if (frame_type == 3 || !cm->allow_comp_inter_inter)
|
|
pred_type = SINGLE_PREDICTION_ONLY;
|
|
else if (cpi->rd_prediction_type_threshes[frame_type][1]
|
|
> cpi->rd_prediction_type_threshes[frame_type][0]
|
|
&& cpi->rd_prediction_type_threshes[frame_type][1]
|
|
> cpi->rd_prediction_type_threshes[frame_type][2]
|
|
&& check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100)
|
|
pred_type = COMP_PREDICTION_ONLY;
|
|
else if (cpi->rd_prediction_type_threshes[frame_type][0]
|
|
> cpi->rd_prediction_type_threshes[frame_type][2])
|
|
pred_type = SINGLE_PREDICTION_ONLY;
|
|
else
|
|
pred_type = HYBRID_PREDICTION;
|
|
|
|
/* filter type selection */
|
|
// FIXME(rbultje) for some odd reason, we often select smooth_filter
|
|
// as default filter for ARF overlay frames. This is a REALLY BAD
|
|
// IDEA so we explicitly disable it here.
|
|
if (frame_type != 3 &&
|
|
cpi->rd_filter_threshes[frame_type][1] >
|
|
cpi->rd_filter_threshes[frame_type][0] &&
|
|
cpi->rd_filter_threshes[frame_type][1] >
|
|
cpi->rd_filter_threshes[frame_type][2] &&
|
|
cpi->rd_filter_threshes[frame_type][1] >
|
|
cpi->rd_filter_threshes[frame_type][SWITCHABLE_FILTERS]) {
|
|
filter_type = EIGHTTAP_SMOOTH;
|
|
} else if (cpi->rd_filter_threshes[frame_type][2] >
|
|
cpi->rd_filter_threshes[frame_type][0] &&
|
|
cpi->rd_filter_threshes[frame_type][2] >
|
|
cpi->rd_filter_threshes[frame_type][SWITCHABLE_FILTERS]) {
|
|
filter_type = EIGHTTAP_SHARP;
|
|
} else if (cpi->rd_filter_threshes[frame_type][0] >
|
|
cpi->rd_filter_threshes[frame_type][SWITCHABLE_FILTERS]) {
|
|
filter_type = EIGHTTAP;
|
|
} else {
|
|
filter_type = SWITCHABLE;
|
|
}
|
|
|
|
cpi->mb.e_mbd.lossless = 0;
|
|
if (cpi->oxcf.lossless) {
|
|
cpi->mb.e_mbd.lossless = 1;
|
|
}
|
|
|
|
/* transform size selection (4x4, 8x8, 16x16 or select-per-mb) */
|
|
select_tx_mode(cpi);
|
|
cpi->common.comp_pred_mode = pred_type;
|
|
cpi->common.mcomp_filter_type = filter_type;
|
|
encode_frame_internal(cpi);
|
|
|
|
for (i = 0; i < NB_PREDICTION_TYPES; ++i) {
|
|
const int diff = (int) (cpi->rd_comp_pred_diff[i] / cpi->common.MBs);
|
|
cpi->rd_prediction_type_threshes[frame_type][i] += diff;
|
|
cpi->rd_prediction_type_threshes[frame_type][i] >>= 1;
|
|
}
|
|
|
|
for (i = 0; i <= SWITCHABLE_FILTERS; i++) {
|
|
const int64_t diff = cpi->rd_filter_diff[i] / cpi->common.MBs;
|
|
cpi->rd_filter_threshes[frame_type][i] =
|
|
(cpi->rd_filter_threshes[frame_type][i] + diff) / 2;
|
|
}
|
|
|
|
for (i = 0; i < TX_MODES; ++i) {
|
|
int64_t pd = cpi->rd_tx_select_diff[i];
|
|
int diff;
|
|
if (i == TX_MODE_SELECT)
|
|
pd -= RDCOST(cpi->mb.rdmult, cpi->mb.rddiv,
|
|
2048 * (TX_SIZES - 1), 0);
|
|
diff = (int) (pd / cpi->common.MBs);
|
|
cpi->rd_tx_select_threshes[frame_type][i] += diff;
|
|
cpi->rd_tx_select_threshes[frame_type][i] /= 2;
|
|
}
|
|
|
|
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
|
|
int single_count_zero = 0;
|
|
int comp_count_zero = 0;
|
|
|
|
for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
|
|
single_count_zero += cpi->comp_inter_count[i][0];
|
|
comp_count_zero += cpi->comp_inter_count[i][1];
|
|
}
|
|
|
|
if (comp_count_zero == 0) {
|
|
cpi->common.comp_pred_mode = SINGLE_PREDICTION_ONLY;
|
|
vp9_zero(cpi->comp_inter_count);
|
|
} else if (single_count_zero == 0) {
|
|
cpi->common.comp_pred_mode = COMP_PREDICTION_ONLY;
|
|
vp9_zero(cpi->comp_inter_count);
|
|
}
|
|
}
|
|
|
|
if (cpi->common.tx_mode == TX_MODE_SELECT) {
|
|
int count4x4 = 0;
|
|
int count8x8_lp = 0, count8x8_8x8p = 0;
|
|
int count16x16_16x16p = 0, count16x16_lp = 0;
|
|
int count32x32 = 0;
|
|
|
|
for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
|
|
count4x4 += cm->counts.tx.p32x32[i][TX_4X4];
|
|
count4x4 += cm->counts.tx.p16x16[i][TX_4X4];
|
|
count4x4 += cm->counts.tx.p8x8[i][TX_4X4];
|
|
|
|
count8x8_lp += cm->counts.tx.p32x32[i][TX_8X8];
|
|
count8x8_lp += cm->counts.tx.p16x16[i][TX_8X8];
|
|
count8x8_8x8p += cm->counts.tx.p8x8[i][TX_8X8];
|
|
|
|
count16x16_16x16p += cm->counts.tx.p16x16[i][TX_16X16];
|
|
count16x16_lp += cm->counts.tx.p32x32[i][TX_16X16];
|
|
count32x32 += cm->counts.tx.p32x32[i][TX_32X32];
|
|
}
|
|
|
|
if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0
|
|
&& count32x32 == 0) {
|
|
cpi->common.tx_mode = ALLOW_8X8;
|
|
reset_skip_txfm_size(cpi, TX_8X8);
|
|
} else if (count8x8_8x8p == 0 && count16x16_16x16p == 0
|
|
&& count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
|
|
cpi->common.tx_mode = ONLY_4X4;
|
|
reset_skip_txfm_size(cpi, TX_4X4);
|
|
} else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
|
|
cpi->common.tx_mode = ALLOW_32X32;
|
|
} else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
|
|
cpi->common.tx_mode = ALLOW_16X16;
|
|
reset_skip_txfm_size(cpi, TX_16X16);
|
|
}
|
|
}
|
|
} else {
|
|
encode_frame_internal(cpi);
|
|
}
|
|
|
|
}
|
|
|
|
static void sum_intra_stats(VP9_COMP *cpi, const MODE_INFO *mi) {
|
|
const MB_PREDICTION_MODE y_mode = mi->mbmi.mode;
|
|
const MB_PREDICTION_MODE uv_mode = mi->mbmi.uv_mode;
|
|
const BLOCK_SIZE bsize = mi->mbmi.sb_type;
|
|
|
|
++cpi->y_uv_mode_count[y_mode][uv_mode];
|
|
|
|
if (bsize < BLOCK_8X8) {
|
|
int idx, idy;
|
|
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
|
|
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
|
|
for (idy = 0; idy < 2; idy += num_4x4_blocks_high)
|
|
for (idx = 0; idx < 2; idx += num_4x4_blocks_wide)
|
|
++cpi->y_mode_count[0][mi->bmi[idy * 2 + idx].as_mode];
|
|
} else {
|
|
++cpi->y_mode_count[size_group_lookup[bsize]][y_mode];
|
|
}
|
|
}
|
|
|
|
// Experimental stub function to create a per MB zbin adjustment based on
|
|
// some previously calculated measure of MB activity.
|
|
static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x) {
|
|
#if USE_ACT_INDEX
|
|
x->act_zbin_adj = *(x->mb_activity_ptr);
|
|
#else
|
|
int64_t a;
|
|
int64_t b;
|
|
int64_t act = *(x->mb_activity_ptr);
|
|
|
|
// Apply the masking to the RD multiplier.
|
|
a = act + 4 * cpi->activity_avg;
|
|
b = 4 * act + cpi->activity_avg;
|
|
|
|
if (act > cpi->activity_avg)
|
|
x->act_zbin_adj = (int) (((int64_t) b + (a >> 1)) / a) - 1;
|
|
else
|
|
x->act_zbin_adj = 1 - (int) (((int64_t) a + (b >> 1)) / b);
|
|
#endif
|
|
}
|
|
|
|
static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled,
|
|
int mi_row, int mi_col, BLOCK_SIZE bsize) {
|
|
VP9_COMMON * const cm = &cpi->common;
|
|
MACROBLOCK * const x = &cpi->mb;
|
|
MACROBLOCKD * const xd = &x->e_mbd;
|
|
MODE_INFO *mi = xd->mode_info_context;
|
|
MB_MODE_INFO *mbmi = &mi->mbmi;
|
|
unsigned int segment_id = mbmi->segment_id;
|
|
const int mis = cm->mode_info_stride;
|
|
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
|
|
const int mi_height = num_8x8_blocks_high_lookup[bsize];
|
|
x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct;
|
|
x->skip_encode = (!output_enabled && cpi->sf.skip_encode_frame &&
|
|
xd->q_index < QIDX_SKIP_THRESH);
|
|
if (x->skip_encode)
|
|
return;
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
|
|
adjust_act_zbin(cpi, x);
|
|
vp9_update_zbin_extra(cpi, x);
|
|
}
|
|
} else {
|
|
vp9_setup_interp_filters(xd, mbmi->interp_filter, cm);
|
|
|
|
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
|
|
// Adjust the zbin based on this MB rate.
|
|
adjust_act_zbin(cpi, x);
|
|
}
|
|
|
|
// Experimental code. Special case for gf and arf zeromv modes.
|
|
// Increase zbin size to suppress noise
|
|
cpi->zbin_mode_boost = 0;
|
|
if (cpi->zbin_mode_boost_enabled) {
|
|
if (is_inter_block(mbmi)) {
|
|
if (mbmi->mode == ZEROMV) {
|
|
if (mbmi->ref_frame[0] != LAST_FRAME)
|
|
cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST;
|
|
else
|
|
cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST;
|
|
} else if (mbmi->sb_type < BLOCK_8X8) {
|
|
cpi->zbin_mode_boost = SPLIT_MV_ZBIN_BOOST;
|
|
} else {
|
|
cpi->zbin_mode_boost = MV_ZBIN_BOOST;
|
|
}
|
|
} else {
|
|
cpi->zbin_mode_boost = INTRA_ZBIN_BOOST;
|
|
}
|
|
}
|
|
|
|
vp9_update_zbin_extra(cpi, x);
|
|
}
|
|
|
|
if (!is_inter_block(mbmi)) {
|
|
vp9_encode_intra_block_y(x, MAX(bsize, BLOCK_8X8));
|
|
vp9_encode_intra_block_uv(x, MAX(bsize, BLOCK_8X8));
|
|
if (output_enabled)
|
|
sum_intra_stats(cpi, mi);
|
|
} else {
|
|
int idx = cm->ref_frame_map[get_ref_frame_idx(cpi, mbmi->ref_frame[0])];
|
|
YV12_BUFFER_CONFIG *ref_fb = &cm->yv12_fb[idx];
|
|
YV12_BUFFER_CONFIG *second_ref_fb = NULL;
|
|
if (mbmi->ref_frame[1] > 0) {
|
|
idx = cm->ref_frame_map[get_ref_frame_idx(cpi, mbmi->ref_frame[1])];
|
|
second_ref_fb = &cm->yv12_fb[idx];
|
|
}
|
|
|
|
assert(cm->frame_type != KEY_FRAME);
|
|
|
|
setup_pre_planes(xd, 0, ref_fb, mi_row, mi_col,
|
|
&xd->scale_factor[0]);
|
|
setup_pre_planes(xd, 1, second_ref_fb, mi_row, mi_col,
|
|
&xd->scale_factor[1]);
|
|
|
|
|
|
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, MAX(bsize, BLOCK_8X8));
|
|
}
|
|
|
|
if (!is_inter_block(mbmi)) {
|
|
vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8));
|
|
} else if (!x->skip) {
|
|
vp9_encode_sb(x, MAX(bsize, BLOCK_8X8));
|
|
vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8));
|
|
} else {
|
|
int mb_skip_context = xd->left_available ? (mi - 1)->mbmi.skip_coeff : 0;
|
|
mb_skip_context += (mi - mis)->mbmi.skip_coeff;
|
|
|
|
mbmi->skip_coeff = 1;
|
|
if (output_enabled)
|
|
cm->counts.mbskip[mb_skip_context][1]++;
|
|
reset_skip_context(xd, MAX(bsize, BLOCK_8X8));
|
|
}
|
|
|
|
// copy skip flag on all mb_mode_info contexts in this SB
|
|
// if this was a skip at this txfm size
|
|
vp9_set_pred_flag_mbskip(cm, bsize, mi_row, mi_col, mi->mbmi.skip_coeff);
|
|
|
|
if (output_enabled) {
|
|
if (cm->tx_mode == TX_MODE_SELECT &&
|
|
mbmi->sb_type >= BLOCK_8X8 &&
|
|
!(is_inter_block(mbmi) &&
|
|
(mbmi->skip_coeff ||
|
|
vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)))) {
|
|
const uint8_t context = vp9_get_pred_context_tx_size(xd);
|
|
update_tx_counts(bsize, context, mbmi->tx_size, &cm->counts.tx);
|
|
} else {
|
|
int x, y;
|
|
TX_SIZE sz = (cm->tx_mode == TX_MODE_SELECT) ? TX_32X32 : cm->tx_mode;
|
|
// The new intra coding scheme requires no change of transform size
|
|
if (is_inter_block(&mi->mbmi)) {
|
|
if (sz == TX_32X32 && bsize < BLOCK_32X32)
|
|
sz = TX_16X16;
|
|
if (sz == TX_16X16 && bsize < BLOCK_16X16)
|
|
sz = TX_8X8;
|
|
if (sz == TX_8X8 && bsize < BLOCK_8X8)
|
|
sz = TX_4X4;
|
|
} else if (bsize >= BLOCK_8X8) {
|
|
sz = mbmi->tx_size;
|
|
} else {
|
|
sz = TX_4X4;
|
|
}
|
|
|
|
for (y = 0; y < mi_height; y++)
|
|
for (x = 0; x < mi_width; x++)
|
|
if (mi_col + x < cm->mi_cols && mi_row + y < cm->mi_rows)
|
|
mi[mis * y + x].mbmi.tx_size = sz;
|
|
}
|
|
}
|
|
}
|