fdb054a05d
For SVC with 3 spatial layers: Add feature to copy/upscale partition from middle spatial layer to the upper/highest resolution, when superblock sad is not high. Enabled for speed >= 7 and only for non-reference frames. Speedup ~3-4%, small loss in avgPNSR/SSIM of ~1%. Change-Id: I7f0a2716c0fde28bade0f86159d11b7e31d6ab8d
5655 lines
199 KiB
C
5655 lines
199 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <limits.h>
|
|
|
|
#include "./vp9_rtcd.h"
|
|
#include "./vpx_config.h"
|
|
#include "./vpx_dsp_rtcd.h"
|
|
#include "./vpx_scale_rtcd.h"
|
|
#include "vpx_dsp/psnr.h"
|
|
#include "vpx_dsp/vpx_dsp_common.h"
|
|
#include "vpx_dsp/vpx_filter.h"
|
|
#if CONFIG_INTERNAL_STATS
|
|
#include "vpx_dsp/ssim.h"
|
|
#endif
|
|
#include "vpx_ports/mem.h"
|
|
#include "vpx_ports/system_state.h"
|
|
#include "vpx_ports/vpx_timer.h"
|
|
|
|
#include "vp9/common/vp9_alloccommon.h"
|
|
#include "vp9/common/vp9_filter.h"
|
|
#include "vp9/common/vp9_idct.h"
|
|
#if CONFIG_VP9_POSTPROC
|
|
#include "vp9/common/vp9_postproc.h"
|
|
#endif
|
|
#include "vp9/common/vp9_reconinter.h"
|
|
#include "vp9/common/vp9_reconintra.h"
|
|
#include "vp9/common/vp9_tile_common.h"
|
|
|
|
#include "vp9/encoder/vp9_alt_ref_aq.h"
|
|
#include "vp9/encoder/vp9_aq_360.h"
|
|
#include "vp9/encoder/vp9_aq_complexity.h"
|
|
#include "vp9/encoder/vp9_aq_cyclicrefresh.h"
|
|
#include "vp9/encoder/vp9_aq_variance.h"
|
|
#include "vp9/encoder/vp9_bitstream.h"
|
|
#include "vp9/encoder/vp9_context_tree.h"
|
|
#include "vp9/encoder/vp9_encodeframe.h"
|
|
#include "vp9/encoder/vp9_encodemv.h"
|
|
#include "vp9/encoder/vp9_encoder.h"
|
|
#include "vp9/encoder/vp9_extend.h"
|
|
#include "vp9/encoder/vp9_ethread.h"
|
|
#include "vp9/encoder/vp9_firstpass.h"
|
|
#include "vp9/encoder/vp9_mbgraph.h"
|
|
#include "vp9/encoder/vp9_multi_thread.h"
|
|
#include "vp9/encoder/vp9_noise_estimate.h"
|
|
#include "vp9/encoder/vp9_picklpf.h"
|
|
#include "vp9/encoder/vp9_ratectrl.h"
|
|
#include "vp9/encoder/vp9_rd.h"
|
|
#include "vp9/encoder/vp9_resize.h"
|
|
#include "vp9/encoder/vp9_segmentation.h"
|
|
#include "vp9/encoder/vp9_skin_detection.h"
|
|
#include "vp9/encoder/vp9_speed_features.h"
|
|
#include "vp9/encoder/vp9_svc_layercontext.h"
|
|
#include "vp9/encoder/vp9_temporal_filter.h"
|
|
|
|
#define AM_SEGMENT_ID_INACTIVE 7
|
|
#define AM_SEGMENT_ID_ACTIVE 0
|
|
|
|
#define ALTREF_HIGH_PRECISION_MV 1 // Whether to use high precision mv
|
|
// for altref computation.
|
|
#define HIGH_PRECISION_MV_QTHRESH 200 // Q threshold for high precision
|
|
// mv. Choose a very high value for
|
|
// now so that HIGH_PRECISION is always
|
|
// chosen.
|
|
|
|
#define FRAME_SIZE_FACTOR 128 // empirical params for context model threshold
|
|
#define FRAME_RATE_FACTOR 8
|
|
|
|
#ifdef OUTPUT_YUV_DENOISED
|
|
FILE *yuv_denoised_file = NULL;
|
|
#endif
|
|
#ifdef OUTPUT_YUV_SKINMAP
|
|
static FILE *yuv_skinmap_file = NULL;
|
|
#endif
|
|
#ifdef OUTPUT_YUV_REC
|
|
FILE *yuv_rec_file;
|
|
#endif
|
|
|
|
#if 0
|
|
FILE *framepsnr;
|
|
FILE *kf_list;
|
|
FILE *keyfile;
|
|
#endif
|
|
|
|
#ifdef ENABLE_KF_DENOISE
|
|
// Test condition for spatial denoise of source.
|
|
static int is_spatial_denoise_enabled(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
|
|
|
|
return (oxcf->pass != 1) && !is_lossless_requested(&cpi->oxcf) &&
|
|
frame_is_intra_only(cm);
|
|
}
|
|
#endif
|
|
|
|
// compute adaptive threshold for skip recoding
|
|
static int compute_context_model_thresh(const VP9_COMP *const cpi) {
|
|
const VP9_COMMON *const cm = &cpi->common;
|
|
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
|
|
const int frame_size = (cm->width * cm->height) >> 10;
|
|
const int bitrate = (int)(oxcf->target_bandwidth >> 10);
|
|
const int qindex_factor = cm->base_qindex + (MAXQ >> 1);
|
|
|
|
// This equation makes the threshold adaptive to frame size.
|
|
// Coding gain obtained by recoding comes from alternate frames of large
|
|
// content change. We skip recoding if the difference of previous and current
|
|
// frame context probability model is less than a certain threshold.
|
|
// The first component is the most critical part to guarantee adaptivity.
|
|
// Other parameters are estimated based on normal setting of hd resolution
|
|
// parameters. e.g frame_size = 1920x1080, bitrate = 8000, qindex_factor < 50
|
|
const int thresh =
|
|
((FRAME_SIZE_FACTOR * frame_size - FRAME_RATE_FACTOR * bitrate) *
|
|
qindex_factor) >>
|
|
9;
|
|
|
|
return thresh;
|
|
}
|
|
|
|
// compute the total cost difference between current
|
|
// and previous frame context prob model.
|
|
static int compute_context_model_diff(const VP9_COMMON *const cm) {
|
|
const FRAME_CONTEXT *const pre_fc =
|
|
&cm->frame_contexts[cm->frame_context_idx];
|
|
const FRAME_CONTEXT *const cur_fc = cm->fc;
|
|
const FRAME_COUNTS *counts = &cm->counts;
|
|
vpx_prob pre_last_prob, cur_last_prob;
|
|
int diff = 0;
|
|
int i, j, k, l, m, n;
|
|
|
|
// y_mode_prob
|
|
for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) {
|
|
for (j = 0; j < INTRA_MODES - 1; ++j) {
|
|
diff += (int)counts->y_mode[i][j] *
|
|
(pre_fc->y_mode_prob[i][j] - cur_fc->y_mode_prob[i][j]);
|
|
}
|
|
pre_last_prob = MAX_PROB - pre_fc->y_mode_prob[i][INTRA_MODES - 2];
|
|
cur_last_prob = MAX_PROB - cur_fc->y_mode_prob[i][INTRA_MODES - 2];
|
|
|
|
diff += (int)counts->y_mode[i][INTRA_MODES - 1] *
|
|
(pre_last_prob - cur_last_prob);
|
|
}
|
|
|
|
// uv_mode_prob
|
|
for (i = 0; i < INTRA_MODES; ++i) {
|
|
for (j = 0; j < INTRA_MODES - 1; ++j) {
|
|
diff += (int)counts->uv_mode[i][j] *
|
|
(pre_fc->uv_mode_prob[i][j] - cur_fc->uv_mode_prob[i][j]);
|
|
}
|
|
pre_last_prob = MAX_PROB - pre_fc->uv_mode_prob[i][INTRA_MODES - 2];
|
|
cur_last_prob = MAX_PROB - cur_fc->uv_mode_prob[i][INTRA_MODES - 2];
|
|
|
|
diff += (int)counts->uv_mode[i][INTRA_MODES - 1] *
|
|
(pre_last_prob - cur_last_prob);
|
|
}
|
|
|
|
// partition_prob
|
|
for (i = 0; i < PARTITION_CONTEXTS; ++i) {
|
|
for (j = 0; j < PARTITION_TYPES - 1; ++j) {
|
|
diff += (int)counts->partition[i][j] *
|
|
(pre_fc->partition_prob[i][j] - cur_fc->partition_prob[i][j]);
|
|
}
|
|
pre_last_prob = MAX_PROB - pre_fc->partition_prob[i][PARTITION_TYPES - 2];
|
|
cur_last_prob = MAX_PROB - cur_fc->partition_prob[i][PARTITION_TYPES - 2];
|
|
|
|
diff += (int)counts->partition[i][PARTITION_TYPES - 1] *
|
|
(pre_last_prob - cur_last_prob);
|
|
}
|
|
|
|
// coef_probs
|
|
for (i = 0; i < TX_SIZES; ++i) {
|
|
for (j = 0; j < PLANE_TYPES; ++j) {
|
|
for (k = 0; k < REF_TYPES; ++k) {
|
|
for (l = 0; l < COEF_BANDS; ++l) {
|
|
for (m = 0; m < BAND_COEFF_CONTEXTS(l); ++m) {
|
|
for (n = 0; n < UNCONSTRAINED_NODES; ++n) {
|
|
diff += (int)counts->coef[i][j][k][l][m][n] *
|
|
(pre_fc->coef_probs[i][j][k][l][m][n] -
|
|
cur_fc->coef_probs[i][j][k][l][m][n]);
|
|
}
|
|
|
|
pre_last_prob =
|
|
MAX_PROB -
|
|
pre_fc->coef_probs[i][j][k][l][m][UNCONSTRAINED_NODES - 1];
|
|
cur_last_prob =
|
|
MAX_PROB -
|
|
cur_fc->coef_probs[i][j][k][l][m][UNCONSTRAINED_NODES - 1];
|
|
|
|
diff += (int)counts->coef[i][j][k][l][m][UNCONSTRAINED_NODES] *
|
|
(pre_last_prob - cur_last_prob);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// switchable_interp_prob
|
|
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) {
|
|
for (j = 0; j < SWITCHABLE_FILTERS - 1; ++j) {
|
|
diff += (int)counts->switchable_interp[i][j] *
|
|
(pre_fc->switchable_interp_prob[i][j] -
|
|
cur_fc->switchable_interp_prob[i][j]);
|
|
}
|
|
pre_last_prob =
|
|
MAX_PROB - pre_fc->switchable_interp_prob[i][SWITCHABLE_FILTERS - 2];
|
|
cur_last_prob =
|
|
MAX_PROB - cur_fc->switchable_interp_prob[i][SWITCHABLE_FILTERS - 2];
|
|
|
|
diff += (int)counts->switchable_interp[i][SWITCHABLE_FILTERS - 1] *
|
|
(pre_last_prob - cur_last_prob);
|
|
}
|
|
|
|
// inter_mode_probs
|
|
for (i = 0; i < INTER_MODE_CONTEXTS; ++i) {
|
|
for (j = 0; j < INTER_MODES - 1; ++j) {
|
|
diff += (int)counts->inter_mode[i][j] *
|
|
(pre_fc->inter_mode_probs[i][j] - cur_fc->inter_mode_probs[i][j]);
|
|
}
|
|
pre_last_prob = MAX_PROB - pre_fc->inter_mode_probs[i][INTER_MODES - 2];
|
|
cur_last_prob = MAX_PROB - cur_fc->inter_mode_probs[i][INTER_MODES - 2];
|
|
|
|
diff += (int)counts->inter_mode[i][INTER_MODES - 1] *
|
|
(pre_last_prob - cur_last_prob);
|
|
}
|
|
|
|
// intra_inter_prob
|
|
for (i = 0; i < INTRA_INTER_CONTEXTS; ++i) {
|
|
diff += (int)counts->intra_inter[i][0] *
|
|
(pre_fc->intra_inter_prob[i] - cur_fc->intra_inter_prob[i]);
|
|
|
|
pre_last_prob = MAX_PROB - pre_fc->intra_inter_prob[i];
|
|
cur_last_prob = MAX_PROB - cur_fc->intra_inter_prob[i];
|
|
|
|
diff += (int)counts->intra_inter[i][1] * (pre_last_prob - cur_last_prob);
|
|
}
|
|
|
|
// comp_inter_prob
|
|
for (i = 0; i < COMP_INTER_CONTEXTS; ++i) {
|
|
diff += (int)counts->comp_inter[i][0] *
|
|
(pre_fc->comp_inter_prob[i] - cur_fc->comp_inter_prob[i]);
|
|
|
|
pre_last_prob = MAX_PROB - pre_fc->comp_inter_prob[i];
|
|
cur_last_prob = MAX_PROB - cur_fc->comp_inter_prob[i];
|
|
|
|
diff += (int)counts->comp_inter[i][1] * (pre_last_prob - cur_last_prob);
|
|
}
|
|
|
|
// single_ref_prob
|
|
for (i = 0; i < REF_CONTEXTS; ++i) {
|
|
for (j = 0; j < 2; ++j) {
|
|
diff += (int)counts->single_ref[i][j][0] *
|
|
(pre_fc->single_ref_prob[i][j] - cur_fc->single_ref_prob[i][j]);
|
|
|
|
pre_last_prob = MAX_PROB - pre_fc->single_ref_prob[i][j];
|
|
cur_last_prob = MAX_PROB - cur_fc->single_ref_prob[i][j];
|
|
|
|
diff +=
|
|
(int)counts->single_ref[i][j][1] * (pre_last_prob - cur_last_prob);
|
|
}
|
|
}
|
|
|
|
// comp_ref_prob
|
|
for (i = 0; i < REF_CONTEXTS; ++i) {
|
|
diff += (int)counts->comp_ref[i][0] *
|
|
(pre_fc->comp_ref_prob[i] - cur_fc->comp_ref_prob[i]);
|
|
|
|
pre_last_prob = MAX_PROB - pre_fc->comp_ref_prob[i];
|
|
cur_last_prob = MAX_PROB - cur_fc->comp_ref_prob[i];
|
|
|
|
diff += (int)counts->comp_ref[i][1] * (pre_last_prob - cur_last_prob);
|
|
}
|
|
|
|
// tx_probs
|
|
for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
|
|
// p32x32
|
|
for (j = 0; j < TX_SIZES - 1; ++j) {
|
|
diff += (int)counts->tx.p32x32[i][j] *
|
|
(pre_fc->tx_probs.p32x32[i][j] - cur_fc->tx_probs.p32x32[i][j]);
|
|
}
|
|
pre_last_prob = MAX_PROB - pre_fc->tx_probs.p32x32[i][TX_SIZES - 2];
|
|
cur_last_prob = MAX_PROB - cur_fc->tx_probs.p32x32[i][TX_SIZES - 2];
|
|
|
|
diff += (int)counts->tx.p32x32[i][TX_SIZES - 1] *
|
|
(pre_last_prob - cur_last_prob);
|
|
|
|
// p16x16
|
|
for (j = 0; j < TX_SIZES - 2; ++j) {
|
|
diff += (int)counts->tx.p16x16[i][j] *
|
|
(pre_fc->tx_probs.p16x16[i][j] - cur_fc->tx_probs.p16x16[i][j]);
|
|
}
|
|
pre_last_prob = MAX_PROB - pre_fc->tx_probs.p16x16[i][TX_SIZES - 3];
|
|
cur_last_prob = MAX_PROB - cur_fc->tx_probs.p16x16[i][TX_SIZES - 3];
|
|
|
|
diff += (int)counts->tx.p16x16[i][TX_SIZES - 2] *
|
|
(pre_last_prob - cur_last_prob);
|
|
|
|
// p8x8
|
|
for (j = 0; j < TX_SIZES - 3; ++j) {
|
|
diff += (int)counts->tx.p8x8[i][j] *
|
|
(pre_fc->tx_probs.p8x8[i][j] - cur_fc->tx_probs.p8x8[i][j]);
|
|
}
|
|
pre_last_prob = MAX_PROB - pre_fc->tx_probs.p8x8[i][TX_SIZES - 4];
|
|
cur_last_prob = MAX_PROB - cur_fc->tx_probs.p8x8[i][TX_SIZES - 4];
|
|
|
|
diff +=
|
|
(int)counts->tx.p8x8[i][TX_SIZES - 3] * (pre_last_prob - cur_last_prob);
|
|
}
|
|
|
|
// skip_probs
|
|
for (i = 0; i < SKIP_CONTEXTS; ++i) {
|
|
diff += (int)counts->skip[i][0] *
|
|
(pre_fc->skip_probs[i] - cur_fc->skip_probs[i]);
|
|
|
|
pre_last_prob = MAX_PROB - pre_fc->skip_probs[i];
|
|
cur_last_prob = MAX_PROB - cur_fc->skip_probs[i];
|
|
|
|
diff += (int)counts->skip[i][1] * (pre_last_prob - cur_last_prob);
|
|
}
|
|
|
|
// mv
|
|
for (i = 0; i < MV_JOINTS - 1; ++i) {
|
|
diff += (int)counts->mv.joints[i] *
|
|
(pre_fc->nmvc.joints[i] - cur_fc->nmvc.joints[i]);
|
|
}
|
|
pre_last_prob = MAX_PROB - pre_fc->nmvc.joints[MV_JOINTS - 2];
|
|
cur_last_prob = MAX_PROB - cur_fc->nmvc.joints[MV_JOINTS - 2];
|
|
|
|
diff +=
|
|
(int)counts->mv.joints[MV_JOINTS - 1] * (pre_last_prob - cur_last_prob);
|
|
|
|
for (i = 0; i < 2; ++i) {
|
|
const nmv_component_counts *nmv_count = &counts->mv.comps[i];
|
|
const nmv_component *pre_nmv_prob = &pre_fc->nmvc.comps[i];
|
|
const nmv_component *cur_nmv_prob = &cur_fc->nmvc.comps[i];
|
|
|
|
// sign
|
|
diff += (int)nmv_count->sign[0] * (pre_nmv_prob->sign - cur_nmv_prob->sign);
|
|
|
|
pre_last_prob = MAX_PROB - pre_nmv_prob->sign;
|
|
cur_last_prob = MAX_PROB - cur_nmv_prob->sign;
|
|
|
|
diff += (int)nmv_count->sign[1] * (pre_last_prob - cur_last_prob);
|
|
|
|
// classes
|
|
for (j = 0; j < MV_CLASSES - 1; ++j) {
|
|
diff += (int)nmv_count->classes[j] *
|
|
(pre_nmv_prob->classes[j] - cur_nmv_prob->classes[j]);
|
|
}
|
|
pre_last_prob = MAX_PROB - pre_nmv_prob->classes[MV_CLASSES - 2];
|
|
cur_last_prob = MAX_PROB - cur_nmv_prob->classes[MV_CLASSES - 2];
|
|
|
|
diff += (int)nmv_count->classes[MV_CLASSES - 1] *
|
|
(pre_last_prob - cur_last_prob);
|
|
|
|
// class0
|
|
for (j = 0; j < CLASS0_SIZE - 1; ++j) {
|
|
diff += (int)nmv_count->class0[j] *
|
|
(pre_nmv_prob->class0[j] - cur_nmv_prob->class0[j]);
|
|
}
|
|
pre_last_prob = MAX_PROB - pre_nmv_prob->class0[CLASS0_SIZE - 2];
|
|
cur_last_prob = MAX_PROB - cur_nmv_prob->class0[CLASS0_SIZE - 2];
|
|
|
|
diff += (int)nmv_count->class0[CLASS0_SIZE - 1] *
|
|
(pre_last_prob - cur_last_prob);
|
|
|
|
// bits
|
|
for (j = 0; j < MV_OFFSET_BITS; ++j) {
|
|
diff += (int)nmv_count->bits[j][0] *
|
|
(pre_nmv_prob->bits[j] - cur_nmv_prob->bits[j]);
|
|
|
|
pre_last_prob = MAX_PROB - pre_nmv_prob->bits[j];
|
|
cur_last_prob = MAX_PROB - cur_nmv_prob->bits[j];
|
|
|
|
diff += (int)nmv_count->bits[j][1] * (pre_last_prob - cur_last_prob);
|
|
}
|
|
|
|
// class0_fp
|
|
for (j = 0; j < CLASS0_SIZE; ++j) {
|
|
for (k = 0; k < MV_FP_SIZE - 1; ++k) {
|
|
diff += (int)nmv_count->class0_fp[j][k] *
|
|
(pre_nmv_prob->class0_fp[j][k] - cur_nmv_prob->class0_fp[j][k]);
|
|
}
|
|
pre_last_prob = MAX_PROB - pre_nmv_prob->class0_fp[j][MV_FP_SIZE - 2];
|
|
cur_last_prob = MAX_PROB - cur_nmv_prob->class0_fp[j][MV_FP_SIZE - 2];
|
|
|
|
diff += (int)nmv_count->class0_fp[j][MV_FP_SIZE - 1] *
|
|
(pre_last_prob - cur_last_prob);
|
|
}
|
|
|
|
// fp
|
|
for (j = 0; j < MV_FP_SIZE - 1; ++j) {
|
|
diff +=
|
|
(int)nmv_count->fp[j] * (pre_nmv_prob->fp[j] - cur_nmv_prob->fp[j]);
|
|
}
|
|
pre_last_prob = MAX_PROB - pre_nmv_prob->fp[MV_FP_SIZE - 2];
|
|
cur_last_prob = MAX_PROB - cur_nmv_prob->fp[MV_FP_SIZE - 2];
|
|
|
|
diff +=
|
|
(int)nmv_count->fp[MV_FP_SIZE - 1] * (pre_last_prob - cur_last_prob);
|
|
|
|
// class0_hp
|
|
diff += (int)nmv_count->class0_hp[0] *
|
|
(pre_nmv_prob->class0_hp - cur_nmv_prob->class0_hp);
|
|
|
|
pre_last_prob = MAX_PROB - pre_nmv_prob->class0_hp;
|
|
cur_last_prob = MAX_PROB - cur_nmv_prob->class0_hp;
|
|
|
|
diff += (int)nmv_count->class0_hp[1] * (pre_last_prob - cur_last_prob);
|
|
|
|
// hp
|
|
diff += (int)nmv_count->hp[0] * (pre_nmv_prob->hp - cur_nmv_prob->hp);
|
|
|
|
pre_last_prob = MAX_PROB - pre_nmv_prob->hp;
|
|
cur_last_prob = MAX_PROB - cur_nmv_prob->hp;
|
|
|
|
diff += (int)nmv_count->hp[1] * (pre_last_prob - cur_last_prob);
|
|
}
|
|
|
|
return -diff;
|
|
}
|
|
|
|
// Test for whether to calculate metrics for the frame.
|
|
static int is_psnr_calc_enabled(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
|
|
|
|
return cpi->b_calculate_psnr && (oxcf->pass != 1) && cm->show_frame;
|
|
}
|
|
|
|
/* clang-format off */
|
|
const Vp9LevelSpec vp9_level_defs[VP9_LEVELS] = {
|
|
{ LEVEL_1, 829440, 36864, 200, 400, 2, 1, 4, 8 },
|
|
{ LEVEL_1_1, 2764800, 73728, 800, 1000, 2, 1, 4, 8 },
|
|
{ LEVEL_2, 4608000, 122880, 1800, 1500, 2, 1, 4, 8 },
|
|
{ LEVEL_2_1, 9216000, 245760, 3600, 2800, 2, 2, 4, 8 },
|
|
{ LEVEL_3, 20736000, 552960, 7200, 6000, 2, 4, 4, 8 },
|
|
{ LEVEL_3_1, 36864000, 983040, 12000, 10000, 2, 4, 4, 8 },
|
|
{ LEVEL_4, 83558400, 2228224, 18000, 16000, 4, 4, 4, 8 },
|
|
{ LEVEL_4_1, 160432128, 2228224, 30000, 18000, 4, 4, 5, 6 },
|
|
{ LEVEL_5, 311951360, 8912896, 60000, 36000, 6, 8, 6, 4 },
|
|
{ LEVEL_5_1, 588251136, 8912896, 120000, 46000, 8, 8, 10, 4 },
|
|
// TODO(huisu): update max_cpb_size for level 5_2 ~ 6_2 when
|
|
// they are finalized (currently tentative).
|
|
{ LEVEL_5_2, 1176502272, 8912896, 180000, 90000, 8, 8, 10, 4 },
|
|
{ LEVEL_6, 1176502272, 35651584, 180000, 90000, 8, 16, 10, 4 },
|
|
{ LEVEL_6_1, 2353004544u, 35651584, 240000, 180000, 8, 16, 10, 4 },
|
|
{ LEVEL_6_2, 4706009088u, 35651584, 480000, 360000, 8, 16, 10, 4 },
|
|
};
|
|
/* clang-format on */
|
|
|
|
static const char *level_fail_messages[TARGET_LEVEL_FAIL_IDS] =
|
|
{ "The average bit-rate is too high.",
|
|
"The picture size is too large.",
|
|
"The luma sample rate is too large.",
|
|
"The CPB size is too large.",
|
|
"The compression ratio is too small",
|
|
"Too many column tiles are used.",
|
|
"The alt-ref distance is too small.",
|
|
"Too many reference buffers are used." };
|
|
|
|
static INLINE void Scale2Ratio(VPX_SCALING mode, int *hr, int *hs) {
|
|
switch (mode) {
|
|
case NORMAL:
|
|
*hr = 1;
|
|
*hs = 1;
|
|
break;
|
|
case FOURFIVE:
|
|
*hr = 4;
|
|
*hs = 5;
|
|
break;
|
|
case THREEFIVE:
|
|
*hr = 3;
|
|
*hs = 5;
|
|
break;
|
|
case ONETWO:
|
|
*hr = 1;
|
|
*hs = 2;
|
|
break;
|
|
default:
|
|
*hr = 1;
|
|
*hs = 1;
|
|
assert(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Mark all inactive blocks as active. Other segmentation features may be set
|
|
// so memset cannot be used, instead only inactive blocks should be reset.
|
|
static void suppress_active_map(VP9_COMP *cpi) {
|
|
unsigned char *const seg_map = cpi->segmentation_map;
|
|
|
|
if (cpi->active_map.enabled || cpi->active_map.update) {
|
|
const int rows = cpi->common.mi_rows;
|
|
const int cols = cpi->common.mi_cols;
|
|
int i;
|
|
|
|
for (i = 0; i < rows * cols; ++i)
|
|
if (seg_map[i] == AM_SEGMENT_ID_INACTIVE)
|
|
seg_map[i] = AM_SEGMENT_ID_ACTIVE;
|
|
}
|
|
}
|
|
|
|
static void apply_active_map(VP9_COMP *cpi) {
|
|
struct segmentation *const seg = &cpi->common.seg;
|
|
unsigned char *const seg_map = cpi->segmentation_map;
|
|
const unsigned char *const active_map = cpi->active_map.map;
|
|
int i;
|
|
|
|
assert(AM_SEGMENT_ID_ACTIVE == CR_SEGMENT_ID_BASE);
|
|
|
|
if (frame_is_intra_only(&cpi->common)) {
|
|
cpi->active_map.enabled = 0;
|
|
cpi->active_map.update = 1;
|
|
}
|
|
|
|
if (cpi->active_map.update) {
|
|
if (cpi->active_map.enabled) {
|
|
for (i = 0; i < cpi->common.mi_rows * cpi->common.mi_cols; ++i)
|
|
if (seg_map[i] == AM_SEGMENT_ID_ACTIVE) seg_map[i] = active_map[i];
|
|
vp9_enable_segmentation(seg);
|
|
vp9_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP);
|
|
vp9_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF);
|
|
// Setting the data to -MAX_LOOP_FILTER will result in the computed loop
|
|
// filter level being zero regardless of the value of seg->abs_delta.
|
|
vp9_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF,
|
|
-MAX_LOOP_FILTER);
|
|
} else {
|
|
vp9_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP);
|
|
vp9_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF);
|
|
if (seg->enabled) {
|
|
seg->update_data = 1;
|
|
seg->update_map = 1;
|
|
}
|
|
}
|
|
cpi->active_map.update = 0;
|
|
}
|
|
}
|
|
|
|
static void init_level_info(Vp9LevelInfo *level_info) {
|
|
Vp9LevelStats *const level_stats = &level_info->level_stats;
|
|
Vp9LevelSpec *const level_spec = &level_info->level_spec;
|
|
|
|
memset(level_stats, 0, sizeof(*level_stats));
|
|
memset(level_spec, 0, sizeof(*level_spec));
|
|
level_spec->level = LEVEL_UNKNOWN;
|
|
level_spec->min_altref_distance = INT_MAX;
|
|
}
|
|
|
|
VP9_LEVEL vp9_get_level(const Vp9LevelSpec *const level_spec) {
|
|
int i;
|
|
const Vp9LevelSpec *this_level;
|
|
|
|
vpx_clear_system_state();
|
|
|
|
for (i = 0; i < VP9_LEVELS; ++i) {
|
|
this_level = &vp9_level_defs[i];
|
|
if ((double)level_spec->max_luma_sample_rate >
|
|
(double)this_level->max_luma_sample_rate *
|
|
(1 + SAMPLE_RATE_GRACE_P) ||
|
|
level_spec->max_luma_picture_size > this_level->max_luma_picture_size ||
|
|
level_spec->average_bitrate > this_level->average_bitrate ||
|
|
level_spec->max_cpb_size > this_level->max_cpb_size ||
|
|
level_spec->compression_ratio < this_level->compression_ratio ||
|
|
level_spec->max_col_tiles > this_level->max_col_tiles ||
|
|
level_spec->min_altref_distance < this_level->min_altref_distance ||
|
|
level_spec->max_ref_frame_buffers > this_level->max_ref_frame_buffers)
|
|
continue;
|
|
break;
|
|
}
|
|
return (i == VP9_LEVELS) ? LEVEL_UNKNOWN : vp9_level_defs[i].level;
|
|
}
|
|
|
|
int vp9_set_active_map(VP9_COMP *cpi, unsigned char *new_map_16x16, int rows,
|
|
int cols) {
|
|
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) {
|
|
unsigned char *const active_map_8x8 = cpi->active_map.map;
|
|
const int mi_rows = cpi->common.mi_rows;
|
|
const int mi_cols = cpi->common.mi_cols;
|
|
cpi->active_map.update = 1;
|
|
if (new_map_16x16) {
|
|
int r, c;
|
|
for (r = 0; r < mi_rows; ++r) {
|
|
for (c = 0; c < mi_cols; ++c) {
|
|
active_map_8x8[r * mi_cols + c] =
|
|
new_map_16x16[(r >> 1) * cols + (c >> 1)]
|
|
? AM_SEGMENT_ID_ACTIVE
|
|
: AM_SEGMENT_ID_INACTIVE;
|
|
}
|
|
}
|
|
cpi->active_map.enabled = 1;
|
|
} else {
|
|
cpi->active_map.enabled = 0;
|
|
}
|
|
return 0;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int vp9_get_active_map(VP9_COMP *cpi, unsigned char *new_map_16x16, int rows,
|
|
int cols) {
|
|
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols &&
|
|
new_map_16x16) {
|
|
unsigned char *const seg_map_8x8 = cpi->segmentation_map;
|
|
const int mi_rows = cpi->common.mi_rows;
|
|
const int mi_cols = cpi->common.mi_cols;
|
|
memset(new_map_16x16, !cpi->active_map.enabled, rows * cols);
|
|
if (cpi->active_map.enabled) {
|
|
int r, c;
|
|
for (r = 0; r < mi_rows; ++r) {
|
|
for (c = 0; c < mi_cols; ++c) {
|
|
// Cyclic refresh segments are considered active despite not having
|
|
// AM_SEGMENT_ID_ACTIVE
|
|
new_map_16x16[(r >> 1) * cols + (c >> 1)] |=
|
|
seg_map_8x8[r * mi_cols + c] != AM_SEGMENT_ID_INACTIVE;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
void vp9_set_high_precision_mv(VP9_COMP *cpi, int allow_high_precision_mv) {
|
|
MACROBLOCK *const mb = &cpi->td.mb;
|
|
cpi->common.allow_high_precision_mv = allow_high_precision_mv;
|
|
if (cpi->common.allow_high_precision_mv) {
|
|
mb->mvcost = mb->nmvcost_hp;
|
|
mb->mvsadcost = mb->nmvsadcost_hp;
|
|
} else {
|
|
mb->mvcost = mb->nmvcost;
|
|
mb->mvsadcost = mb->nmvsadcost;
|
|
}
|
|
}
|
|
|
|
static void setup_frame(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
// Set up entropy context depending on frame type. The decoder mandates
|
|
// the use of the default context, index 0, for keyframes and inter
|
|
// frames where the error_resilient_mode or intra_only flag is set. For
|
|
// other inter-frames the encoder currently uses only two contexts;
|
|
// context 1 for ALTREF frames and context 0 for the others.
|
|
if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
|
|
vp9_setup_past_independence(cm);
|
|
} else {
|
|
if (!cpi->use_svc) cm->frame_context_idx = cpi->refresh_alt_ref_frame;
|
|
}
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
if (!is_two_pass_svc(cpi)) cpi->refresh_golden_frame = 1;
|
|
cpi->refresh_alt_ref_frame = 1;
|
|
vp9_zero(cpi->interp_filter_selected);
|
|
} else {
|
|
*cm->fc = cm->frame_contexts[cm->frame_context_idx];
|
|
vp9_zero(cpi->interp_filter_selected[0]);
|
|
}
|
|
}
|
|
|
|
static void vp9_enc_setup_mi(VP9_COMMON *cm) {
|
|
int i;
|
|
cm->mi = cm->mip + cm->mi_stride + 1;
|
|
memset(cm->mip, 0, cm->mi_stride * (cm->mi_rows + 1) * sizeof(*cm->mip));
|
|
cm->prev_mi = cm->prev_mip + cm->mi_stride + 1;
|
|
// Clear top border row
|
|
memset(cm->prev_mip, 0, sizeof(*cm->prev_mip) * cm->mi_stride);
|
|
// Clear left border column
|
|
for (i = 1; i < cm->mi_rows + 1; ++i)
|
|
memset(&cm->prev_mip[i * cm->mi_stride], 0, sizeof(*cm->prev_mip));
|
|
|
|
cm->mi_grid_visible = cm->mi_grid_base + cm->mi_stride + 1;
|
|
cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mi_stride + 1;
|
|
|
|
memset(cm->mi_grid_base, 0,
|
|
cm->mi_stride * (cm->mi_rows + 1) * sizeof(*cm->mi_grid_base));
|
|
}
|
|
|
|
static int vp9_enc_alloc_mi(VP9_COMMON *cm, int mi_size) {
|
|
cm->mip = vpx_calloc(mi_size, sizeof(*cm->mip));
|
|
if (!cm->mip) return 1;
|
|
cm->prev_mip = vpx_calloc(mi_size, sizeof(*cm->prev_mip));
|
|
if (!cm->prev_mip) return 1;
|
|
cm->mi_alloc_size = mi_size;
|
|
|
|
cm->mi_grid_base = (MODE_INFO **)vpx_calloc(mi_size, sizeof(MODE_INFO *));
|
|
if (!cm->mi_grid_base) return 1;
|
|
cm->prev_mi_grid_base =
|
|
(MODE_INFO **)vpx_calloc(mi_size, sizeof(MODE_INFO *));
|
|
if (!cm->prev_mi_grid_base) return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vp9_enc_free_mi(VP9_COMMON *cm) {
|
|
vpx_free(cm->mip);
|
|
cm->mip = NULL;
|
|
vpx_free(cm->prev_mip);
|
|
cm->prev_mip = NULL;
|
|
vpx_free(cm->mi_grid_base);
|
|
cm->mi_grid_base = NULL;
|
|
vpx_free(cm->prev_mi_grid_base);
|
|
cm->prev_mi_grid_base = NULL;
|
|
}
|
|
|
|
static void vp9_swap_mi_and_prev_mi(VP9_COMMON *cm) {
|
|
// Current mip will be the prev_mip for the next frame.
|
|
MODE_INFO **temp_base = cm->prev_mi_grid_base;
|
|
MODE_INFO *temp = cm->prev_mip;
|
|
cm->prev_mip = cm->mip;
|
|
cm->mip = temp;
|
|
|
|
// Update the upper left visible macroblock ptrs.
|
|
cm->mi = cm->mip + cm->mi_stride + 1;
|
|
cm->prev_mi = cm->prev_mip + cm->mi_stride + 1;
|
|
|
|
cm->prev_mi_grid_base = cm->mi_grid_base;
|
|
cm->mi_grid_base = temp_base;
|
|
cm->mi_grid_visible = cm->mi_grid_base + cm->mi_stride + 1;
|
|
cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mi_stride + 1;
|
|
}
|
|
|
|
void vp9_initialize_enc(void) {
|
|
static volatile int init_done = 0;
|
|
|
|
if (!init_done) {
|
|
vp9_rtcd();
|
|
vpx_dsp_rtcd();
|
|
vpx_scale_rtcd();
|
|
vp9_init_intra_predictors();
|
|
vp9_init_me_luts();
|
|
vp9_rc_init_minq_luts();
|
|
vp9_entropy_mv_init();
|
|
#if !CONFIG_REALTIME_ONLY
|
|
vp9_temporal_filter_init();
|
|
#endif
|
|
init_done = 1;
|
|
}
|
|
}
|
|
|
|
static void dealloc_compressor_data(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
int i;
|
|
|
|
vpx_free(cpi->mbmi_ext_base);
|
|
cpi->mbmi_ext_base = NULL;
|
|
|
|
vpx_free(cpi->tile_data);
|
|
cpi->tile_data = NULL;
|
|
|
|
vpx_free(cpi->segmentation_map);
|
|
cpi->segmentation_map = NULL;
|
|
vpx_free(cpi->coding_context.last_frame_seg_map_copy);
|
|
cpi->coding_context.last_frame_seg_map_copy = NULL;
|
|
|
|
vpx_free(cpi->nmvcosts[0]);
|
|
vpx_free(cpi->nmvcosts[1]);
|
|
cpi->nmvcosts[0] = NULL;
|
|
cpi->nmvcosts[1] = NULL;
|
|
|
|
vpx_free(cpi->nmvcosts_hp[0]);
|
|
vpx_free(cpi->nmvcosts_hp[1]);
|
|
cpi->nmvcosts_hp[0] = NULL;
|
|
cpi->nmvcosts_hp[1] = NULL;
|
|
|
|
vpx_free(cpi->nmvsadcosts[0]);
|
|
vpx_free(cpi->nmvsadcosts[1]);
|
|
cpi->nmvsadcosts[0] = NULL;
|
|
cpi->nmvsadcosts[1] = NULL;
|
|
|
|
vpx_free(cpi->nmvsadcosts_hp[0]);
|
|
vpx_free(cpi->nmvsadcosts_hp[1]);
|
|
cpi->nmvsadcosts_hp[0] = NULL;
|
|
cpi->nmvsadcosts_hp[1] = NULL;
|
|
|
|
vpx_free(cpi->skin_map);
|
|
cpi->skin_map = NULL;
|
|
|
|
vpx_free(cpi->prev_partition);
|
|
cpi->prev_partition = NULL;
|
|
|
|
vpx_free(cpi->svc.prev_partition_svc);
|
|
cpi->svc.prev_partition_svc = NULL;
|
|
|
|
vpx_free(cpi->prev_segment_id);
|
|
cpi->prev_segment_id = NULL;
|
|
|
|
vpx_free(cpi->prev_variance_low);
|
|
cpi->prev_variance_low = NULL;
|
|
|
|
vpx_free(cpi->copied_frame_cnt);
|
|
cpi->copied_frame_cnt = NULL;
|
|
|
|
vpx_free(cpi->content_state_sb_fd);
|
|
cpi->content_state_sb_fd = NULL;
|
|
|
|
vpx_free(cpi->count_arf_frame_usage);
|
|
cpi->count_arf_frame_usage = NULL;
|
|
vpx_free(cpi->count_lastgolden_frame_usage);
|
|
cpi->count_lastgolden_frame_usage = NULL;
|
|
|
|
vp9_cyclic_refresh_free(cpi->cyclic_refresh);
|
|
cpi->cyclic_refresh = NULL;
|
|
|
|
vpx_free(cpi->active_map.map);
|
|
cpi->active_map.map = NULL;
|
|
|
|
vpx_free(cpi->consec_zero_mv);
|
|
cpi->consec_zero_mv = NULL;
|
|
|
|
vp9_free_ref_frame_buffers(cm->buffer_pool);
|
|
#if CONFIG_VP9_POSTPROC
|
|
vp9_free_postproc_buffers(cm);
|
|
#endif
|
|
vp9_free_context_buffers(cm);
|
|
|
|
vpx_free_frame_buffer(&cpi->last_frame_uf);
|
|
vpx_free_frame_buffer(&cpi->scaled_source);
|
|
vpx_free_frame_buffer(&cpi->scaled_last_source);
|
|
vpx_free_frame_buffer(&cpi->alt_ref_buffer);
|
|
#ifdef ENABLE_KF_DENOISE
|
|
vpx_free_frame_buffer(&cpi->raw_unscaled_source);
|
|
vpx_free_frame_buffer(&cpi->raw_scaled_source);
|
|
#endif
|
|
|
|
vp9_lookahead_destroy(cpi->lookahead);
|
|
|
|
vpx_free(cpi->tile_tok[0][0]);
|
|
cpi->tile_tok[0][0] = 0;
|
|
|
|
vpx_free(cpi->tplist[0][0]);
|
|
cpi->tplist[0][0] = NULL;
|
|
|
|
vp9_free_pc_tree(&cpi->td);
|
|
|
|
for (i = 0; i < cpi->svc.number_spatial_layers; ++i) {
|
|
LAYER_CONTEXT *const lc = &cpi->svc.layer_context[i];
|
|
vpx_free(lc->rc_twopass_stats_in.buf);
|
|
lc->rc_twopass_stats_in.buf = NULL;
|
|
lc->rc_twopass_stats_in.sz = 0;
|
|
}
|
|
|
|
if (cpi->source_diff_var != NULL) {
|
|
vpx_free(cpi->source_diff_var);
|
|
cpi->source_diff_var = NULL;
|
|
}
|
|
|
|
for (i = 0; i < MAX_LAG_BUFFERS; ++i) {
|
|
vpx_free_frame_buffer(&cpi->svc.scaled_frames[i]);
|
|
}
|
|
memset(&cpi->svc.scaled_frames[0], 0,
|
|
MAX_LAG_BUFFERS * sizeof(cpi->svc.scaled_frames[0]));
|
|
|
|
vpx_free_frame_buffer(&cpi->svc.scaled_temp);
|
|
memset(&cpi->svc.scaled_temp, 0, sizeof(cpi->svc.scaled_temp));
|
|
|
|
vpx_free_frame_buffer(&cpi->svc.empty_frame.img);
|
|
memset(&cpi->svc.empty_frame, 0, sizeof(cpi->svc.empty_frame));
|
|
|
|
vp9_free_svc_cyclic_refresh(cpi);
|
|
}
|
|
|
|
static void save_coding_context(VP9_COMP *cpi) {
|
|
CODING_CONTEXT *const cc = &cpi->coding_context;
|
|
VP9_COMMON *cm = &cpi->common;
|
|
|
|
// Stores a snapshot of key state variables which can subsequently be
|
|
// restored with a call to vp9_restore_coding_context. These functions are
|
|
// intended for use in a re-code loop in vp9_compress_frame where the
|
|
// quantizer value is adjusted between loop iterations.
|
|
vp9_copy(cc->nmvjointcost, cpi->td.mb.nmvjointcost);
|
|
|
|
memcpy(cc->nmvcosts[0], cpi->nmvcosts[0],
|
|
MV_VALS * sizeof(*cpi->nmvcosts[0]));
|
|
memcpy(cc->nmvcosts[1], cpi->nmvcosts[1],
|
|
MV_VALS * sizeof(*cpi->nmvcosts[1]));
|
|
memcpy(cc->nmvcosts_hp[0], cpi->nmvcosts_hp[0],
|
|
MV_VALS * sizeof(*cpi->nmvcosts_hp[0]));
|
|
memcpy(cc->nmvcosts_hp[1], cpi->nmvcosts_hp[1],
|
|
MV_VALS * sizeof(*cpi->nmvcosts_hp[1]));
|
|
|
|
vp9_copy(cc->segment_pred_probs, cm->seg.pred_probs);
|
|
|
|
memcpy(cpi->coding_context.last_frame_seg_map_copy, cm->last_frame_seg_map,
|
|
(cm->mi_rows * cm->mi_cols));
|
|
|
|
vp9_copy(cc->last_ref_lf_deltas, cm->lf.last_ref_deltas);
|
|
vp9_copy(cc->last_mode_lf_deltas, cm->lf.last_mode_deltas);
|
|
|
|
cc->fc = *cm->fc;
|
|
}
|
|
|
|
static void restore_coding_context(VP9_COMP *cpi) {
|
|
CODING_CONTEXT *const cc = &cpi->coding_context;
|
|
VP9_COMMON *cm = &cpi->common;
|
|
|
|
// Restore key state variables to the snapshot state stored in the
|
|
// previous call to vp9_save_coding_context.
|
|
vp9_copy(cpi->td.mb.nmvjointcost, cc->nmvjointcost);
|
|
|
|
memcpy(cpi->nmvcosts[0], cc->nmvcosts[0], MV_VALS * sizeof(*cc->nmvcosts[0]));
|
|
memcpy(cpi->nmvcosts[1], cc->nmvcosts[1], MV_VALS * sizeof(*cc->nmvcosts[1]));
|
|
memcpy(cpi->nmvcosts_hp[0], cc->nmvcosts_hp[0],
|
|
MV_VALS * sizeof(*cc->nmvcosts_hp[0]));
|
|
memcpy(cpi->nmvcosts_hp[1], cc->nmvcosts_hp[1],
|
|
MV_VALS * sizeof(*cc->nmvcosts_hp[1]));
|
|
|
|
vp9_copy(cm->seg.pred_probs, cc->segment_pred_probs);
|
|
|
|
memcpy(cm->last_frame_seg_map, cpi->coding_context.last_frame_seg_map_copy,
|
|
(cm->mi_rows * cm->mi_cols));
|
|
|
|
vp9_copy(cm->lf.last_ref_deltas, cc->last_ref_lf_deltas);
|
|
vp9_copy(cm->lf.last_mode_deltas, cc->last_mode_lf_deltas);
|
|
|
|
*cm->fc = cc->fc;
|
|
}
|
|
|
|
#if !CONFIG_REALTIME_ONLY
|
|
static void configure_static_seg_features(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
const RATE_CONTROL *const rc = &cpi->rc;
|
|
struct segmentation *const seg = &cm->seg;
|
|
|
|
int high_q = (int)(rc->avg_q > 48.0);
|
|
int qi_delta;
|
|
|
|
// Disable and clear down for KF
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
// Clear down the global segmentation map
|
|
memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
|
|
seg->update_map = 0;
|
|
seg->update_data = 0;
|
|
cpi->static_mb_pct = 0;
|
|
|
|
// Disable segmentation
|
|
vp9_disable_segmentation(seg);
|
|
|
|
// Clear down the segment features.
|
|
vp9_clearall_segfeatures(seg);
|
|
} else if (cpi->refresh_alt_ref_frame) {
|
|
// If this is an alt ref frame
|
|
// Clear down the global segmentation map
|
|
memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
|
|
seg->update_map = 0;
|
|
seg->update_data = 0;
|
|
cpi->static_mb_pct = 0;
|
|
|
|
// Disable segmentation and individual segment features by default
|
|
vp9_disable_segmentation(seg);
|
|
vp9_clearall_segfeatures(seg);
|
|
|
|
// Scan frames from current to arf frame.
|
|
// This function re-enables segmentation if appropriate.
|
|
vp9_update_mbgraph_stats(cpi);
|
|
|
|
// If segmentation was enabled set those features needed for the
|
|
// arf itself.
|
|
if (seg->enabled) {
|
|
seg->update_map = 1;
|
|
seg->update_data = 1;
|
|
|
|
qi_delta =
|
|
vp9_compute_qdelta(rc, rc->avg_q, rc->avg_q * 0.875, cm->bit_depth);
|
|
vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta - 2);
|
|
vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
|
|
|
|
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
|
|
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
|
|
|
|
// Where relevant assume segment data is delta data
|
|
seg->abs_delta = SEGMENT_DELTADATA;
|
|
}
|
|
} else if (seg->enabled) {
|
|
// All other frames if segmentation has been enabled
|
|
|
|
// First normal frame in a valid gf or alt ref group
|
|
if (rc->frames_since_golden == 0) {
|
|
// Set up segment features for normal frames in an arf group
|
|
if (rc->source_alt_ref_active) {
|
|
seg->update_map = 0;
|
|
seg->update_data = 1;
|
|
seg->abs_delta = SEGMENT_DELTADATA;
|
|
|
|
qi_delta =
|
|
vp9_compute_qdelta(rc, rc->avg_q, rc->avg_q * 1.125, cm->bit_depth);
|
|
vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta + 2);
|
|
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
|
|
|
|
vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
|
|
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
|
|
|
|
// Segment coding disabled for compred testing
|
|
if (high_q || (cpi->static_mb_pct == 100)) {
|
|
vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
|
|
vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
|
|
vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP);
|
|
}
|
|
} else {
|
|
// Disable segmentation and clear down features if alt ref
|
|
// is not active for this group
|
|
|
|
vp9_disable_segmentation(seg);
|
|
|
|
memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
|
|
|
|
seg->update_map = 0;
|
|
seg->update_data = 0;
|
|
|
|
vp9_clearall_segfeatures(seg);
|
|
}
|
|
} else if (rc->is_src_frame_alt_ref) {
|
|
// Special case where we are coding over the top of a previous
|
|
// alt ref frame.
|
|
// Segment coding disabled for compred testing
|
|
|
|
// Enable ref frame features for segment 0 as well
|
|
vp9_enable_segfeature(seg, 0, SEG_LVL_REF_FRAME);
|
|
vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
|
|
|
|
// All mbs should use ALTREF_FRAME
|
|
vp9_clear_segdata(seg, 0, SEG_LVL_REF_FRAME);
|
|
vp9_set_segdata(seg, 0, SEG_LVL_REF_FRAME, ALTREF_FRAME);
|
|
vp9_clear_segdata(seg, 1, SEG_LVL_REF_FRAME);
|
|
vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
|
|
|
|
// Skip all MBs if high Q (0,0 mv and skip coeffs)
|
|
if (high_q) {
|
|
vp9_enable_segfeature(seg, 0, SEG_LVL_SKIP);
|
|
vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP);
|
|
}
|
|
// Enable data update
|
|
seg->update_data = 1;
|
|
} else {
|
|
// All other frames.
|
|
|
|
// No updates.. leave things as they are.
|
|
seg->update_map = 0;
|
|
seg->update_data = 0;
|
|
}
|
|
}
|
|
}
|
|
#endif // !CONFIG_REALTIME_ONLY
|
|
|
|
static void update_reference_segmentation_map(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MODE_INFO **mi_8x8_ptr = cm->mi_grid_visible;
|
|
uint8_t *cache_ptr = cm->last_frame_seg_map;
|
|
int row, col;
|
|
|
|
for (row = 0; row < cm->mi_rows; row++) {
|
|
MODE_INFO **mi_8x8 = mi_8x8_ptr;
|
|
uint8_t *cache = cache_ptr;
|
|
for (col = 0; col < cm->mi_cols; col++, mi_8x8++, cache++)
|
|
cache[0] = mi_8x8[0]->segment_id;
|
|
mi_8x8_ptr += cm->mi_stride;
|
|
cache_ptr += cm->mi_cols;
|
|
}
|
|
}
|
|
|
|
static void alloc_raw_frame_buffers(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
const VP9EncoderConfig *oxcf = &cpi->oxcf;
|
|
|
|
if (!cpi->lookahead)
|
|
cpi->lookahead = vp9_lookahead_init(oxcf->width, oxcf->height,
|
|
cm->subsampling_x, cm->subsampling_y,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
cm->use_highbitdepth,
|
|
#endif
|
|
oxcf->lag_in_frames);
|
|
if (!cpi->lookahead)
|
|
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate lag buffers");
|
|
|
|
// TODO(agrange) Check if ARF is enabled and skip allocation if not.
|
|
if (vpx_realloc_frame_buffer(&cpi->alt_ref_buffer, oxcf->width, oxcf->height,
|
|
cm->subsampling_x, cm->subsampling_y,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
cm->use_highbitdepth,
|
|
#endif
|
|
VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
|
|
NULL, NULL, NULL))
|
|
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate altref buffer");
|
|
}
|
|
|
|
static void alloc_util_frame_buffers(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
if (vpx_realloc_frame_buffer(&cpi->last_frame_uf, cm->width, cm->height,
|
|
cm->subsampling_x, cm->subsampling_y,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
cm->use_highbitdepth,
|
|
#endif
|
|
VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
|
|
NULL, NULL, NULL))
|
|
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate last frame buffer");
|
|
|
|
if (vpx_realloc_frame_buffer(&cpi->scaled_source, cm->width, cm->height,
|
|
cm->subsampling_x, cm->subsampling_y,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
cm->use_highbitdepth,
|
|
#endif
|
|
VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
|
|
NULL, NULL, NULL))
|
|
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate scaled source buffer");
|
|
|
|
// For 1 pass cbr: allocate scaled_frame that may be used as an intermediate
|
|
// buffer for a 2 stage down-sampling: two stages of 1:2 down-sampling for a
|
|
// target of 1/4x1/4.
|
|
if (is_one_pass_cbr_svc(cpi) && !cpi->svc.scaled_temp_is_alloc) {
|
|
cpi->svc.scaled_temp_is_alloc = 1;
|
|
if (vpx_realloc_frame_buffer(
|
|
&cpi->svc.scaled_temp, cm->width >> 1, cm->height >> 1,
|
|
cm->subsampling_x, cm->subsampling_y,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
cm->use_highbitdepth,
|
|
#endif
|
|
VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment, NULL, NULL, NULL))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate scaled_frame for svc ");
|
|
}
|
|
|
|
if (vpx_realloc_frame_buffer(&cpi->scaled_last_source, cm->width, cm->height,
|
|
cm->subsampling_x, cm->subsampling_y,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
cm->use_highbitdepth,
|
|
#endif
|
|
VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
|
|
NULL, NULL, NULL))
|
|
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate scaled last source buffer");
|
|
#ifdef ENABLE_KF_DENOISE
|
|
if (vpx_realloc_frame_buffer(&cpi->raw_unscaled_source, cm->width, cm->height,
|
|
cm->subsampling_x, cm->subsampling_y,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
cm->use_highbitdepth,
|
|
#endif
|
|
VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
|
|
NULL, NULL, NULL))
|
|
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate unscaled raw source frame buffer");
|
|
|
|
if (vpx_realloc_frame_buffer(&cpi->raw_scaled_source, cm->width, cm->height,
|
|
cm->subsampling_x, cm->subsampling_y,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
cm->use_highbitdepth,
|
|
#endif
|
|
VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
|
|
NULL, NULL, NULL))
|
|
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate scaled raw source frame buffer");
|
|
#endif
|
|
}
|
|
|
|
static int alloc_context_buffers_ext(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
int mi_size = cm->mi_cols * cm->mi_rows;
|
|
|
|
cpi->mbmi_ext_base = vpx_calloc(mi_size, sizeof(*cpi->mbmi_ext_base));
|
|
if (!cpi->mbmi_ext_base) return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void alloc_compressor_data(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
int sb_rows;
|
|
|
|
vp9_alloc_context_buffers(cm, cm->width, cm->height);
|
|
|
|
alloc_context_buffers_ext(cpi);
|
|
|
|
vpx_free(cpi->tile_tok[0][0]);
|
|
|
|
{
|
|
unsigned int tokens = get_token_alloc(cm->mb_rows, cm->mb_cols);
|
|
CHECK_MEM_ERROR(cm, cpi->tile_tok[0][0],
|
|
vpx_calloc(tokens, sizeof(*cpi->tile_tok[0][0])));
|
|
}
|
|
|
|
sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2;
|
|
vpx_free(cpi->tplist[0][0]);
|
|
CHECK_MEM_ERROR(
|
|
cm, cpi->tplist[0][0],
|
|
vpx_calloc(sb_rows * 4 * (1 << 6), sizeof(*cpi->tplist[0][0])));
|
|
|
|
vp9_setup_pc_tree(&cpi->common, &cpi->td);
|
|
}
|
|
|
|
void vp9_new_framerate(VP9_COMP *cpi, double framerate) {
|
|
cpi->framerate = framerate < 0.1 ? 30 : framerate;
|
|
vp9_rc_update_framerate(cpi);
|
|
}
|
|
|
|
static void set_tile_limits(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
|
|
int min_log2_tile_cols, max_log2_tile_cols;
|
|
vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
|
|
|
|
if (is_two_pass_svc(cpi) && (cpi->svc.encode_empty_frame_state == ENCODING ||
|
|
cpi->svc.number_spatial_layers > 1)) {
|
|
cm->log2_tile_cols = 0;
|
|
cm->log2_tile_rows = 0;
|
|
} else {
|
|
cm->log2_tile_cols =
|
|
clamp(cpi->oxcf.tile_columns, min_log2_tile_cols, max_log2_tile_cols);
|
|
cm->log2_tile_rows = cpi->oxcf.tile_rows;
|
|
}
|
|
|
|
if (cpi->oxcf.target_level == LEVEL_AUTO) {
|
|
const uint32_t pic_size = cpi->common.width * cpi->common.height;
|
|
const int level_tile_cols = log_tile_cols_from_picsize_level(pic_size);
|
|
if (cm->log2_tile_cols > level_tile_cols) {
|
|
cm->log2_tile_cols = VPXMAX(level_tile_cols, min_log2_tile_cols);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_frame_size(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
|
|
|
|
vp9_set_mb_mi(cm, cm->width, cm->height);
|
|
vp9_init_context_buffers(cm);
|
|
vp9_init_macroblockd(cm, xd, NULL);
|
|
cpi->td.mb.mbmi_ext_base = cpi->mbmi_ext_base;
|
|
memset(cpi->mbmi_ext_base, 0,
|
|
cm->mi_rows * cm->mi_cols * sizeof(*cpi->mbmi_ext_base));
|
|
|
|
set_tile_limits(cpi);
|
|
|
|
if (is_two_pass_svc(cpi)) {
|
|
if (vpx_realloc_frame_buffer(&cpi->alt_ref_buffer, cm->width, cm->height,
|
|
cm->subsampling_x, cm->subsampling_y,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
cm->use_highbitdepth,
|
|
#endif
|
|
VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
|
|
NULL, NULL, NULL))
|
|
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to reallocate alt_ref_buffer");
|
|
}
|
|
}
|
|
|
|
static void init_buffer_indices(VP9_COMP *cpi) {
|
|
cpi->lst_fb_idx = 0;
|
|
cpi->gld_fb_idx = 1;
|
|
cpi->alt_fb_idx = 2;
|
|
}
|
|
|
|
static void init_level_constraint(LevelConstraint *lc) {
|
|
lc->level_index = -1;
|
|
lc->max_cpb_size = INT_MAX;
|
|
lc->max_frame_size = INT_MAX;
|
|
lc->rc_config_updated = 0;
|
|
lc->fail_flag = 0;
|
|
}
|
|
|
|
static void set_level_constraint(LevelConstraint *ls, int8_t level_index) {
|
|
vpx_clear_system_state();
|
|
ls->level_index = level_index;
|
|
if (level_index >= 0) {
|
|
ls->max_cpb_size = vp9_level_defs[level_index].max_cpb_size * (double)1000;
|
|
}
|
|
}
|
|
|
|
static void init_config(struct VP9_COMP *cpi, VP9EncoderConfig *oxcf) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
|
|
cpi->oxcf = *oxcf;
|
|
cpi->framerate = oxcf->init_framerate;
|
|
cm->profile = oxcf->profile;
|
|
cm->bit_depth = oxcf->bit_depth;
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
cm->use_highbitdepth = oxcf->use_highbitdepth;
|
|
#endif
|
|
cm->color_space = oxcf->color_space;
|
|
cm->color_range = oxcf->color_range;
|
|
|
|
cpi->target_level = oxcf->target_level;
|
|
cpi->keep_level_stats = oxcf->target_level != LEVEL_MAX;
|
|
set_level_constraint(&cpi->level_constraint,
|
|
get_level_index(cpi->target_level));
|
|
|
|
cm->width = oxcf->width;
|
|
cm->height = oxcf->height;
|
|
alloc_compressor_data(cpi);
|
|
|
|
cpi->svc.temporal_layering_mode = oxcf->temporal_layering_mode;
|
|
|
|
// Single thread case: use counts in common.
|
|
cpi->td.counts = &cm->counts;
|
|
|
|
// Spatial scalability.
|
|
cpi->svc.number_spatial_layers = oxcf->ss_number_layers;
|
|
// Temporal scalability.
|
|
cpi->svc.number_temporal_layers = oxcf->ts_number_layers;
|
|
|
|
if ((cpi->svc.number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) ||
|
|
((cpi->svc.number_temporal_layers > 1 ||
|
|
cpi->svc.number_spatial_layers > 1) &&
|
|
cpi->oxcf.pass != 1)) {
|
|
vp9_init_layer_context(cpi);
|
|
}
|
|
|
|
// change includes all joint functionality
|
|
vp9_change_config(cpi, oxcf);
|
|
|
|
cpi->static_mb_pct = 0;
|
|
cpi->ref_frame_flags = 0;
|
|
|
|
init_buffer_indices(cpi);
|
|
|
|
vp9_noise_estimate_init(&cpi->noise_estimate, cm->width, cm->height);
|
|
}
|
|
|
|
static void set_rc_buffer_sizes(RATE_CONTROL *rc,
|
|
const VP9EncoderConfig *oxcf) {
|
|
const int64_t bandwidth = oxcf->target_bandwidth;
|
|
const int64_t starting = oxcf->starting_buffer_level_ms;
|
|
const int64_t optimal = oxcf->optimal_buffer_level_ms;
|
|
const int64_t maximum = oxcf->maximum_buffer_size_ms;
|
|
|
|
rc->starting_buffer_level = starting * bandwidth / 1000;
|
|
rc->optimal_buffer_level =
|
|
(optimal == 0) ? bandwidth / 8 : optimal * bandwidth / 1000;
|
|
rc->maximum_buffer_size =
|
|
(maximum == 0) ? bandwidth / 8 : maximum * bandwidth / 1000;
|
|
}
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
#define HIGHBD_BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX4DF) \
|
|
cpi->fn_ptr[BT].sdf = SDF; \
|
|
cpi->fn_ptr[BT].sdaf = SDAF; \
|
|
cpi->fn_ptr[BT].vf = VF; \
|
|
cpi->fn_ptr[BT].svf = SVF; \
|
|
cpi->fn_ptr[BT].svaf = SVAF; \
|
|
cpi->fn_ptr[BT].sdx4df = SDX4DF;
|
|
|
|
#define MAKE_BFP_SAD_WRAPPER(fnname) \
|
|
static unsigned int fnname##_bits8(const uint8_t *src_ptr, \
|
|
int source_stride, \
|
|
const uint8_t *ref_ptr, int ref_stride) { \
|
|
return fnname(src_ptr, source_stride, ref_ptr, ref_stride); \
|
|
} \
|
|
static unsigned int fnname##_bits10( \
|
|
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
|
|
int ref_stride) { \
|
|
return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 2; \
|
|
} \
|
|
static unsigned int fnname##_bits12( \
|
|
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
|
|
int ref_stride) { \
|
|
return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 4; \
|
|
}
|
|
|
|
#define MAKE_BFP_SADAVG_WRAPPER(fnname) \
|
|
static unsigned int fnname##_bits8( \
|
|
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
|
|
int ref_stride, const uint8_t *second_pred) { \
|
|
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred); \
|
|
} \
|
|
static unsigned int fnname##_bits10( \
|
|
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
|
|
int ref_stride, const uint8_t *second_pred) { \
|
|
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred) >> \
|
|
2; \
|
|
} \
|
|
static unsigned int fnname##_bits12( \
|
|
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
|
|
int ref_stride, const uint8_t *second_pred) { \
|
|
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred) >> \
|
|
4; \
|
|
}
|
|
|
|
#define MAKE_BFP_SAD4D_WRAPPER(fnname) \
|
|
static void fnname##_bits8(const uint8_t *src_ptr, int source_stride, \
|
|
const uint8_t *const ref_ptr[], int ref_stride, \
|
|
unsigned int *sad_array) { \
|
|
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
|
|
} \
|
|
static void fnname##_bits10(const uint8_t *src_ptr, int source_stride, \
|
|
const uint8_t *const ref_ptr[], int ref_stride, \
|
|
unsigned int *sad_array) { \
|
|
int i; \
|
|
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
|
|
for (i = 0; i < 4; i++) sad_array[i] >>= 2; \
|
|
} \
|
|
static void fnname##_bits12(const uint8_t *src_ptr, int source_stride, \
|
|
const uint8_t *const ref_ptr[], int ref_stride, \
|
|
unsigned int *sad_array) { \
|
|
int i; \
|
|
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
|
|
for (i = 0; i < 4; i++) sad_array[i] >>= 4; \
|
|
}
|
|
|
|
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad32x16)
|
|
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad32x16_avg)
|
|
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad32x16x4d)
|
|
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad16x32)
|
|
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad16x32_avg)
|
|
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad16x32x4d)
|
|
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad64x32)
|
|
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad64x32_avg)
|
|
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad64x32x4d)
|
|
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad32x64)
|
|
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad32x64_avg)
|
|
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad32x64x4d)
|
|
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad32x32)
|
|
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad32x32_avg)
|
|
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad32x32x4d)
|
|
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad64x64)
|
|
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad64x64_avg)
|
|
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad64x64x4d)
|
|
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad16x16)
|
|
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad16x16_avg)
|
|
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad16x16x4d)
|
|
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad16x8)
|
|
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad16x8_avg)
|
|
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad16x8x4d)
|
|
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad8x16)
|
|
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad8x16_avg)
|
|
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad8x16x4d)
|
|
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad8x8)
|
|
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad8x8_avg)
|
|
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad8x8x4d)
|
|
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad8x4)
|
|
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad8x4_avg)
|
|
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad8x4x4d)
|
|
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad4x8)
|
|
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad4x8_avg)
|
|
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad4x8x4d)
|
|
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad4x4)
|
|
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad4x4_avg)
|
|
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad4x4x4d)
|
|
|
|
static void highbd_set_var_fns(VP9_COMP *const cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
if (cm->use_highbitdepth) {
|
|
switch (cm->bit_depth) {
|
|
case VPX_BITS_8:
|
|
HIGHBD_BFP(BLOCK_32X16, vpx_highbd_sad32x16_bits8,
|
|
vpx_highbd_sad32x16_avg_bits8, vpx_highbd_8_variance32x16,
|
|
vpx_highbd_8_sub_pixel_variance32x16,
|
|
vpx_highbd_8_sub_pixel_avg_variance32x16,
|
|
vpx_highbd_sad32x16x4d_bits8)
|
|
|
|
HIGHBD_BFP(BLOCK_16X32, vpx_highbd_sad16x32_bits8,
|
|
vpx_highbd_sad16x32_avg_bits8, vpx_highbd_8_variance16x32,
|
|
vpx_highbd_8_sub_pixel_variance16x32,
|
|
vpx_highbd_8_sub_pixel_avg_variance16x32,
|
|
vpx_highbd_sad16x32x4d_bits8)
|
|
|
|
HIGHBD_BFP(BLOCK_64X32, vpx_highbd_sad64x32_bits8,
|
|
vpx_highbd_sad64x32_avg_bits8, vpx_highbd_8_variance64x32,
|
|
vpx_highbd_8_sub_pixel_variance64x32,
|
|
vpx_highbd_8_sub_pixel_avg_variance64x32,
|
|
vpx_highbd_sad64x32x4d_bits8)
|
|
|
|
HIGHBD_BFP(BLOCK_32X64, vpx_highbd_sad32x64_bits8,
|
|
vpx_highbd_sad32x64_avg_bits8, vpx_highbd_8_variance32x64,
|
|
vpx_highbd_8_sub_pixel_variance32x64,
|
|
vpx_highbd_8_sub_pixel_avg_variance32x64,
|
|
vpx_highbd_sad32x64x4d_bits8)
|
|
|
|
HIGHBD_BFP(BLOCK_32X32, vpx_highbd_sad32x32_bits8,
|
|
vpx_highbd_sad32x32_avg_bits8, vpx_highbd_8_variance32x32,
|
|
vpx_highbd_8_sub_pixel_variance32x32,
|
|
vpx_highbd_8_sub_pixel_avg_variance32x32,
|
|
vpx_highbd_sad32x32x4d_bits8)
|
|
|
|
HIGHBD_BFP(BLOCK_64X64, vpx_highbd_sad64x64_bits8,
|
|
vpx_highbd_sad64x64_avg_bits8, vpx_highbd_8_variance64x64,
|
|
vpx_highbd_8_sub_pixel_variance64x64,
|
|
vpx_highbd_8_sub_pixel_avg_variance64x64,
|
|
vpx_highbd_sad64x64x4d_bits8)
|
|
|
|
HIGHBD_BFP(BLOCK_16X16, vpx_highbd_sad16x16_bits8,
|
|
vpx_highbd_sad16x16_avg_bits8, vpx_highbd_8_variance16x16,
|
|
vpx_highbd_8_sub_pixel_variance16x16,
|
|
vpx_highbd_8_sub_pixel_avg_variance16x16,
|
|
vpx_highbd_sad16x16x4d_bits8)
|
|
|
|
HIGHBD_BFP(BLOCK_16X8, vpx_highbd_sad16x8_bits8,
|
|
vpx_highbd_sad16x8_avg_bits8, vpx_highbd_8_variance16x8,
|
|
vpx_highbd_8_sub_pixel_variance16x8,
|
|
vpx_highbd_8_sub_pixel_avg_variance16x8,
|
|
vpx_highbd_sad16x8x4d_bits8)
|
|
|
|
HIGHBD_BFP(BLOCK_8X16, vpx_highbd_sad8x16_bits8,
|
|
vpx_highbd_sad8x16_avg_bits8, vpx_highbd_8_variance8x16,
|
|
vpx_highbd_8_sub_pixel_variance8x16,
|
|
vpx_highbd_8_sub_pixel_avg_variance8x16,
|
|
vpx_highbd_sad8x16x4d_bits8)
|
|
|
|
HIGHBD_BFP(
|
|
BLOCK_8X8, vpx_highbd_sad8x8_bits8, vpx_highbd_sad8x8_avg_bits8,
|
|
vpx_highbd_8_variance8x8, vpx_highbd_8_sub_pixel_variance8x8,
|
|
vpx_highbd_8_sub_pixel_avg_variance8x8, vpx_highbd_sad8x8x4d_bits8)
|
|
|
|
HIGHBD_BFP(
|
|
BLOCK_8X4, vpx_highbd_sad8x4_bits8, vpx_highbd_sad8x4_avg_bits8,
|
|
vpx_highbd_8_variance8x4, vpx_highbd_8_sub_pixel_variance8x4,
|
|
vpx_highbd_8_sub_pixel_avg_variance8x4, vpx_highbd_sad8x4x4d_bits8)
|
|
|
|
HIGHBD_BFP(
|
|
BLOCK_4X8, vpx_highbd_sad4x8_bits8, vpx_highbd_sad4x8_avg_bits8,
|
|
vpx_highbd_8_variance4x8, vpx_highbd_8_sub_pixel_variance4x8,
|
|
vpx_highbd_8_sub_pixel_avg_variance4x8, vpx_highbd_sad4x8x4d_bits8)
|
|
|
|
HIGHBD_BFP(
|
|
BLOCK_4X4, vpx_highbd_sad4x4_bits8, vpx_highbd_sad4x4_avg_bits8,
|
|
vpx_highbd_8_variance4x4, vpx_highbd_8_sub_pixel_variance4x4,
|
|
vpx_highbd_8_sub_pixel_avg_variance4x4, vpx_highbd_sad4x4x4d_bits8)
|
|
break;
|
|
|
|
case VPX_BITS_10:
|
|
HIGHBD_BFP(BLOCK_32X16, vpx_highbd_sad32x16_bits10,
|
|
vpx_highbd_sad32x16_avg_bits10, vpx_highbd_10_variance32x16,
|
|
vpx_highbd_10_sub_pixel_variance32x16,
|
|
vpx_highbd_10_sub_pixel_avg_variance32x16,
|
|
vpx_highbd_sad32x16x4d_bits10)
|
|
|
|
HIGHBD_BFP(BLOCK_16X32, vpx_highbd_sad16x32_bits10,
|
|
vpx_highbd_sad16x32_avg_bits10, vpx_highbd_10_variance16x32,
|
|
vpx_highbd_10_sub_pixel_variance16x32,
|
|
vpx_highbd_10_sub_pixel_avg_variance16x32,
|
|
vpx_highbd_sad16x32x4d_bits10)
|
|
|
|
HIGHBD_BFP(BLOCK_64X32, vpx_highbd_sad64x32_bits10,
|
|
vpx_highbd_sad64x32_avg_bits10, vpx_highbd_10_variance64x32,
|
|
vpx_highbd_10_sub_pixel_variance64x32,
|
|
vpx_highbd_10_sub_pixel_avg_variance64x32,
|
|
vpx_highbd_sad64x32x4d_bits10)
|
|
|
|
HIGHBD_BFP(BLOCK_32X64, vpx_highbd_sad32x64_bits10,
|
|
vpx_highbd_sad32x64_avg_bits10, vpx_highbd_10_variance32x64,
|
|
vpx_highbd_10_sub_pixel_variance32x64,
|
|
vpx_highbd_10_sub_pixel_avg_variance32x64,
|
|
vpx_highbd_sad32x64x4d_bits10)
|
|
|
|
HIGHBD_BFP(BLOCK_32X32, vpx_highbd_sad32x32_bits10,
|
|
vpx_highbd_sad32x32_avg_bits10, vpx_highbd_10_variance32x32,
|
|
vpx_highbd_10_sub_pixel_variance32x32,
|
|
vpx_highbd_10_sub_pixel_avg_variance32x32,
|
|
vpx_highbd_sad32x32x4d_bits10)
|
|
|
|
HIGHBD_BFP(BLOCK_64X64, vpx_highbd_sad64x64_bits10,
|
|
vpx_highbd_sad64x64_avg_bits10, vpx_highbd_10_variance64x64,
|
|
vpx_highbd_10_sub_pixel_variance64x64,
|
|
vpx_highbd_10_sub_pixel_avg_variance64x64,
|
|
vpx_highbd_sad64x64x4d_bits10)
|
|
|
|
HIGHBD_BFP(BLOCK_16X16, vpx_highbd_sad16x16_bits10,
|
|
vpx_highbd_sad16x16_avg_bits10, vpx_highbd_10_variance16x16,
|
|
vpx_highbd_10_sub_pixel_variance16x16,
|
|
vpx_highbd_10_sub_pixel_avg_variance16x16,
|
|
vpx_highbd_sad16x16x4d_bits10)
|
|
|
|
HIGHBD_BFP(BLOCK_16X8, vpx_highbd_sad16x8_bits10,
|
|
vpx_highbd_sad16x8_avg_bits10, vpx_highbd_10_variance16x8,
|
|
vpx_highbd_10_sub_pixel_variance16x8,
|
|
vpx_highbd_10_sub_pixel_avg_variance16x8,
|
|
vpx_highbd_sad16x8x4d_bits10)
|
|
|
|
HIGHBD_BFP(BLOCK_8X16, vpx_highbd_sad8x16_bits10,
|
|
vpx_highbd_sad8x16_avg_bits10, vpx_highbd_10_variance8x16,
|
|
vpx_highbd_10_sub_pixel_variance8x16,
|
|
vpx_highbd_10_sub_pixel_avg_variance8x16,
|
|
vpx_highbd_sad8x16x4d_bits10)
|
|
|
|
HIGHBD_BFP(BLOCK_8X8, vpx_highbd_sad8x8_bits10,
|
|
vpx_highbd_sad8x8_avg_bits10, vpx_highbd_10_variance8x8,
|
|
vpx_highbd_10_sub_pixel_variance8x8,
|
|
vpx_highbd_10_sub_pixel_avg_variance8x8,
|
|
vpx_highbd_sad8x8x4d_bits10)
|
|
|
|
HIGHBD_BFP(BLOCK_8X4, vpx_highbd_sad8x4_bits10,
|
|
vpx_highbd_sad8x4_avg_bits10, vpx_highbd_10_variance8x4,
|
|
vpx_highbd_10_sub_pixel_variance8x4,
|
|
vpx_highbd_10_sub_pixel_avg_variance8x4,
|
|
vpx_highbd_sad8x4x4d_bits10)
|
|
|
|
HIGHBD_BFP(BLOCK_4X8, vpx_highbd_sad4x8_bits10,
|
|
vpx_highbd_sad4x8_avg_bits10, vpx_highbd_10_variance4x8,
|
|
vpx_highbd_10_sub_pixel_variance4x8,
|
|
vpx_highbd_10_sub_pixel_avg_variance4x8,
|
|
vpx_highbd_sad4x8x4d_bits10)
|
|
|
|
HIGHBD_BFP(BLOCK_4X4, vpx_highbd_sad4x4_bits10,
|
|
vpx_highbd_sad4x4_avg_bits10, vpx_highbd_10_variance4x4,
|
|
vpx_highbd_10_sub_pixel_variance4x4,
|
|
vpx_highbd_10_sub_pixel_avg_variance4x4,
|
|
vpx_highbd_sad4x4x4d_bits10)
|
|
break;
|
|
|
|
case VPX_BITS_12:
|
|
HIGHBD_BFP(BLOCK_32X16, vpx_highbd_sad32x16_bits12,
|
|
vpx_highbd_sad32x16_avg_bits12, vpx_highbd_12_variance32x16,
|
|
vpx_highbd_12_sub_pixel_variance32x16,
|
|
vpx_highbd_12_sub_pixel_avg_variance32x16,
|
|
vpx_highbd_sad32x16x4d_bits12)
|
|
|
|
HIGHBD_BFP(BLOCK_16X32, vpx_highbd_sad16x32_bits12,
|
|
vpx_highbd_sad16x32_avg_bits12, vpx_highbd_12_variance16x32,
|
|
vpx_highbd_12_sub_pixel_variance16x32,
|
|
vpx_highbd_12_sub_pixel_avg_variance16x32,
|
|
vpx_highbd_sad16x32x4d_bits12)
|
|
|
|
HIGHBD_BFP(BLOCK_64X32, vpx_highbd_sad64x32_bits12,
|
|
vpx_highbd_sad64x32_avg_bits12, vpx_highbd_12_variance64x32,
|
|
vpx_highbd_12_sub_pixel_variance64x32,
|
|
vpx_highbd_12_sub_pixel_avg_variance64x32,
|
|
vpx_highbd_sad64x32x4d_bits12)
|
|
|
|
HIGHBD_BFP(BLOCK_32X64, vpx_highbd_sad32x64_bits12,
|
|
vpx_highbd_sad32x64_avg_bits12, vpx_highbd_12_variance32x64,
|
|
vpx_highbd_12_sub_pixel_variance32x64,
|
|
vpx_highbd_12_sub_pixel_avg_variance32x64,
|
|
vpx_highbd_sad32x64x4d_bits12)
|
|
|
|
HIGHBD_BFP(BLOCK_32X32, vpx_highbd_sad32x32_bits12,
|
|
vpx_highbd_sad32x32_avg_bits12, vpx_highbd_12_variance32x32,
|
|
vpx_highbd_12_sub_pixel_variance32x32,
|
|
vpx_highbd_12_sub_pixel_avg_variance32x32,
|
|
vpx_highbd_sad32x32x4d_bits12)
|
|
|
|
HIGHBD_BFP(BLOCK_64X64, vpx_highbd_sad64x64_bits12,
|
|
vpx_highbd_sad64x64_avg_bits12, vpx_highbd_12_variance64x64,
|
|
vpx_highbd_12_sub_pixel_variance64x64,
|
|
vpx_highbd_12_sub_pixel_avg_variance64x64,
|
|
vpx_highbd_sad64x64x4d_bits12)
|
|
|
|
HIGHBD_BFP(BLOCK_16X16, vpx_highbd_sad16x16_bits12,
|
|
vpx_highbd_sad16x16_avg_bits12, vpx_highbd_12_variance16x16,
|
|
vpx_highbd_12_sub_pixel_variance16x16,
|
|
vpx_highbd_12_sub_pixel_avg_variance16x16,
|
|
vpx_highbd_sad16x16x4d_bits12)
|
|
|
|
HIGHBD_BFP(BLOCK_16X8, vpx_highbd_sad16x8_bits12,
|
|
vpx_highbd_sad16x8_avg_bits12, vpx_highbd_12_variance16x8,
|
|
vpx_highbd_12_sub_pixel_variance16x8,
|
|
vpx_highbd_12_sub_pixel_avg_variance16x8,
|
|
vpx_highbd_sad16x8x4d_bits12)
|
|
|
|
HIGHBD_BFP(BLOCK_8X16, vpx_highbd_sad8x16_bits12,
|
|
vpx_highbd_sad8x16_avg_bits12, vpx_highbd_12_variance8x16,
|
|
vpx_highbd_12_sub_pixel_variance8x16,
|
|
vpx_highbd_12_sub_pixel_avg_variance8x16,
|
|
vpx_highbd_sad8x16x4d_bits12)
|
|
|
|
HIGHBD_BFP(BLOCK_8X8, vpx_highbd_sad8x8_bits12,
|
|
vpx_highbd_sad8x8_avg_bits12, vpx_highbd_12_variance8x8,
|
|
vpx_highbd_12_sub_pixel_variance8x8,
|
|
vpx_highbd_12_sub_pixel_avg_variance8x8,
|
|
vpx_highbd_sad8x8x4d_bits12)
|
|
|
|
HIGHBD_BFP(BLOCK_8X4, vpx_highbd_sad8x4_bits12,
|
|
vpx_highbd_sad8x4_avg_bits12, vpx_highbd_12_variance8x4,
|
|
vpx_highbd_12_sub_pixel_variance8x4,
|
|
vpx_highbd_12_sub_pixel_avg_variance8x4,
|
|
vpx_highbd_sad8x4x4d_bits12)
|
|
|
|
HIGHBD_BFP(BLOCK_4X8, vpx_highbd_sad4x8_bits12,
|
|
vpx_highbd_sad4x8_avg_bits12, vpx_highbd_12_variance4x8,
|
|
vpx_highbd_12_sub_pixel_variance4x8,
|
|
vpx_highbd_12_sub_pixel_avg_variance4x8,
|
|
vpx_highbd_sad4x8x4d_bits12)
|
|
|
|
HIGHBD_BFP(BLOCK_4X4, vpx_highbd_sad4x4_bits12,
|
|
vpx_highbd_sad4x4_avg_bits12, vpx_highbd_12_variance4x4,
|
|
vpx_highbd_12_sub_pixel_variance4x4,
|
|
vpx_highbd_12_sub_pixel_avg_variance4x4,
|
|
vpx_highbd_sad4x4x4d_bits12)
|
|
break;
|
|
|
|
default:
|
|
assert(0 &&
|
|
"cm->bit_depth should be VPX_BITS_8, "
|
|
"VPX_BITS_10 or VPX_BITS_12");
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
static void realloc_segmentation_maps(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
|
|
// Create the encoder segmentation map and set all entries to 0
|
|
vpx_free(cpi->segmentation_map);
|
|
CHECK_MEM_ERROR(cm, cpi->segmentation_map,
|
|
vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
|
|
|
|
// Create a map used for cyclic background refresh.
|
|
if (cpi->cyclic_refresh) vp9_cyclic_refresh_free(cpi->cyclic_refresh);
|
|
CHECK_MEM_ERROR(cm, cpi->cyclic_refresh,
|
|
vp9_cyclic_refresh_alloc(cm->mi_rows, cm->mi_cols));
|
|
|
|
// Create a map used to mark inactive areas.
|
|
vpx_free(cpi->active_map.map);
|
|
CHECK_MEM_ERROR(cm, cpi->active_map.map,
|
|
vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
|
|
|
|
// And a place holder structure is the coding context
|
|
// for use if we want to save and restore it
|
|
vpx_free(cpi->coding_context.last_frame_seg_map_copy);
|
|
CHECK_MEM_ERROR(cm, cpi->coding_context.last_frame_seg_map_copy,
|
|
vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
|
|
}
|
|
|
|
static void alloc_copy_partition_data(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
if (cpi->prev_partition == NULL) {
|
|
CHECK_MEM_ERROR(cm, cpi->prev_partition,
|
|
(BLOCK_SIZE *)vpx_calloc(cm->mi_stride * cm->mi_rows,
|
|
sizeof(*cpi->prev_partition)));
|
|
}
|
|
if (cpi->prev_segment_id == NULL) {
|
|
CHECK_MEM_ERROR(
|
|
cm, cpi->prev_segment_id,
|
|
(int8_t *)vpx_calloc((cm->mi_stride >> 3) * ((cm->mi_rows >> 3) + 1),
|
|
sizeof(*cpi->prev_segment_id)));
|
|
}
|
|
if (cpi->prev_variance_low == NULL) {
|
|
CHECK_MEM_ERROR(cm, cpi->prev_variance_low,
|
|
(uint8_t *)vpx_calloc(
|
|
(cm->mi_stride >> 3) * ((cm->mi_rows >> 3) + 1) * 25,
|
|
sizeof(*cpi->prev_variance_low)));
|
|
}
|
|
if (cpi->copied_frame_cnt == NULL) {
|
|
CHECK_MEM_ERROR(
|
|
cm, cpi->copied_frame_cnt,
|
|
(uint8_t *)vpx_calloc((cm->mi_stride >> 3) * ((cm->mi_rows >> 3) + 1),
|
|
sizeof(*cpi->copied_frame_cnt)));
|
|
}
|
|
}
|
|
|
|
void vp9_change_config(struct VP9_COMP *cpi, const VP9EncoderConfig *oxcf) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
int last_w = cpi->oxcf.width;
|
|
int last_h = cpi->oxcf.height;
|
|
|
|
if (cm->profile != oxcf->profile) cm->profile = oxcf->profile;
|
|
cm->bit_depth = oxcf->bit_depth;
|
|
cm->color_space = oxcf->color_space;
|
|
cm->color_range = oxcf->color_range;
|
|
|
|
cpi->target_level = oxcf->target_level;
|
|
cpi->keep_level_stats = oxcf->target_level != LEVEL_MAX;
|
|
set_level_constraint(&cpi->level_constraint,
|
|
get_level_index(cpi->target_level));
|
|
|
|
if (cm->profile <= PROFILE_1)
|
|
assert(cm->bit_depth == VPX_BITS_8);
|
|
else
|
|
assert(cm->bit_depth > VPX_BITS_8);
|
|
|
|
cpi->oxcf = *oxcf;
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
cpi->td.mb.e_mbd.bd = (int)cm->bit_depth;
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
if ((oxcf->pass == 0) && (oxcf->rc_mode == VPX_Q)) {
|
|
rc->baseline_gf_interval = FIXED_GF_INTERVAL;
|
|
} else {
|
|
rc->baseline_gf_interval = (MIN_GF_INTERVAL + MAX_GF_INTERVAL) / 2;
|
|
}
|
|
|
|
cpi->refresh_golden_frame = 0;
|
|
cpi->refresh_last_frame = 1;
|
|
cm->refresh_frame_context = 1;
|
|
cm->reset_frame_context = 0;
|
|
|
|
vp9_reset_segment_features(&cm->seg);
|
|
vp9_set_high_precision_mv(cpi, 0);
|
|
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_SEGMENTS; i++)
|
|
cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
|
|
}
|
|
cpi->encode_breakout = cpi->oxcf.encode_breakout;
|
|
|
|
set_rc_buffer_sizes(rc, &cpi->oxcf);
|
|
|
|
// Under a configuration change, where maximum_buffer_size may change,
|
|
// keep buffer level clipped to the maximum allowed buffer size.
|
|
rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size);
|
|
rc->buffer_level = VPXMIN(rc->buffer_level, rc->maximum_buffer_size);
|
|
|
|
// Set up frame rate and related parameters rate control values.
|
|
vp9_new_framerate(cpi, cpi->framerate);
|
|
|
|
// Set absolute upper and lower quality limits
|
|
rc->worst_quality = cpi->oxcf.worst_allowed_q;
|
|
rc->best_quality = cpi->oxcf.best_allowed_q;
|
|
|
|
cm->interp_filter = cpi->sf.default_interp_filter;
|
|
|
|
if (cpi->oxcf.render_width > 0 && cpi->oxcf.render_height > 0) {
|
|
cm->render_width = cpi->oxcf.render_width;
|
|
cm->render_height = cpi->oxcf.render_height;
|
|
} else {
|
|
cm->render_width = cpi->oxcf.width;
|
|
cm->render_height = cpi->oxcf.height;
|
|
}
|
|
if (last_w != cpi->oxcf.width || last_h != cpi->oxcf.height) {
|
|
cm->width = cpi->oxcf.width;
|
|
cm->height = cpi->oxcf.height;
|
|
cpi->external_resize = 1;
|
|
}
|
|
|
|
if (cpi->initial_width) {
|
|
int new_mi_size = 0;
|
|
vp9_set_mb_mi(cm, cm->width, cm->height);
|
|
new_mi_size = cm->mi_stride * calc_mi_size(cm->mi_rows);
|
|
if (cm->mi_alloc_size < new_mi_size) {
|
|
vp9_free_context_buffers(cm);
|
|
alloc_compressor_data(cpi);
|
|
realloc_segmentation_maps(cpi);
|
|
cpi->initial_width = cpi->initial_height = 0;
|
|
cpi->external_resize = 0;
|
|
} else if (cm->mi_alloc_size == new_mi_size &&
|
|
(cpi->oxcf.width > last_w || cpi->oxcf.height > last_h)) {
|
|
vp9_alloc_loop_filter(cm);
|
|
}
|
|
}
|
|
|
|
if (cm->current_video_frame == 0 || last_w != cpi->oxcf.width ||
|
|
last_h != cpi->oxcf.height)
|
|
update_frame_size(cpi);
|
|
|
|
if (last_w != cpi->oxcf.width || last_h != cpi->oxcf.height) {
|
|
memset(cpi->consec_zero_mv, 0,
|
|
cm->mi_rows * cm->mi_cols * sizeof(*cpi->consec_zero_mv));
|
|
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
|
|
vp9_cyclic_refresh_reset_resize(cpi);
|
|
}
|
|
|
|
if ((cpi->svc.number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) ||
|
|
((cpi->svc.number_temporal_layers > 1 ||
|
|
cpi->svc.number_spatial_layers > 1) &&
|
|
cpi->oxcf.pass != 1)) {
|
|
vp9_update_layer_context_change_config(cpi,
|
|
(int)cpi->oxcf.target_bandwidth);
|
|
}
|
|
|
|
cpi->alt_ref_source = NULL;
|
|
rc->is_src_frame_alt_ref = 0;
|
|
|
|
#if 0
|
|
// Experimental RD Code
|
|
cpi->frame_distortion = 0;
|
|
cpi->last_frame_distortion = 0;
|
|
#endif
|
|
|
|
set_tile_limits(cpi);
|
|
|
|
cpi->ext_refresh_frame_flags_pending = 0;
|
|
cpi->ext_refresh_frame_context_pending = 0;
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
highbd_set_var_fns(cpi);
|
|
#endif
|
|
|
|
vp9_set_row_mt(cpi);
|
|
}
|
|
|
|
#ifndef M_LOG2_E
|
|
#define M_LOG2_E 0.693147180559945309417
|
|
#endif
|
|
#define log2f(x) (log(x) / (float)M_LOG2_E)
|
|
|
|
/***********************************************************************
|
|
* Read before modifying 'cal_nmvjointsadcost' or 'cal_nmvsadcosts' *
|
|
***********************************************************************
|
|
* The following 2 functions ('cal_nmvjointsadcost' and *
|
|
* 'cal_nmvsadcosts') are used to calculate cost lookup tables *
|
|
* used by 'vp9_diamond_search_sad'. The C implementation of the *
|
|
* function is generic, but the AVX intrinsics optimised version *
|
|
* relies on the following properties of the computed tables: *
|
|
* For cal_nmvjointsadcost: *
|
|
* - mvjointsadcost[1] == mvjointsadcost[2] == mvjointsadcost[3] *
|
|
* For cal_nmvsadcosts: *
|
|
* - For all i: mvsadcost[0][i] == mvsadcost[1][i] *
|
|
* (Equal costs for both components) *
|
|
* - For all i: mvsadcost[0][i] == mvsadcost[0][-i] *
|
|
* (Cost function is even) *
|
|
* If these do not hold, then the AVX optimised version of the *
|
|
* 'vp9_diamond_search_sad' function cannot be used as it is, in which *
|
|
* case you can revert to using the C function instead. *
|
|
***********************************************************************/
|
|
|
|
static void cal_nmvjointsadcost(int *mvjointsadcost) {
|
|
/*********************************************************************
|
|
* Warning: Read the comments above before modifying this function *
|
|
*********************************************************************/
|
|
mvjointsadcost[0] = 600;
|
|
mvjointsadcost[1] = 300;
|
|
mvjointsadcost[2] = 300;
|
|
mvjointsadcost[3] = 300;
|
|
}
|
|
|
|
static void cal_nmvsadcosts(int *mvsadcost[2]) {
|
|
/*********************************************************************
|
|
* Warning: Read the comments above before modifying this function *
|
|
*********************************************************************/
|
|
int i = 1;
|
|
|
|
mvsadcost[0][0] = 0;
|
|
mvsadcost[1][0] = 0;
|
|
|
|
do {
|
|
double z = 256 * (2 * (log2f(8 * i) + .6));
|
|
mvsadcost[0][i] = (int)z;
|
|
mvsadcost[1][i] = (int)z;
|
|
mvsadcost[0][-i] = (int)z;
|
|
mvsadcost[1][-i] = (int)z;
|
|
} while (++i <= MV_MAX);
|
|
}
|
|
|
|
static void cal_nmvsadcosts_hp(int *mvsadcost[2]) {
|
|
int i = 1;
|
|
|
|
mvsadcost[0][0] = 0;
|
|
mvsadcost[1][0] = 0;
|
|
|
|
do {
|
|
double z = 256 * (2 * (log2f(8 * i) + .6));
|
|
mvsadcost[0][i] = (int)z;
|
|
mvsadcost[1][i] = (int)z;
|
|
mvsadcost[0][-i] = (int)z;
|
|
mvsadcost[1][-i] = (int)z;
|
|
} while (++i <= MV_MAX);
|
|
}
|
|
|
|
VP9_COMP *vp9_create_compressor(VP9EncoderConfig *oxcf,
|
|
BufferPool *const pool) {
|
|
unsigned int i;
|
|
VP9_COMP *volatile const cpi = vpx_memalign(32, sizeof(VP9_COMP));
|
|
VP9_COMMON *volatile const cm = cpi != NULL ? &cpi->common : NULL;
|
|
|
|
if (!cm) return NULL;
|
|
|
|
vp9_zero(*cpi);
|
|
|
|
if (setjmp(cm->error.jmp)) {
|
|
cm->error.setjmp = 0;
|
|
vp9_remove_compressor(cpi);
|
|
return 0;
|
|
}
|
|
|
|
cm->error.setjmp = 1;
|
|
cm->alloc_mi = vp9_enc_alloc_mi;
|
|
cm->free_mi = vp9_enc_free_mi;
|
|
cm->setup_mi = vp9_enc_setup_mi;
|
|
|
|
CHECK_MEM_ERROR(cm, cm->fc, (FRAME_CONTEXT *)vpx_calloc(1, sizeof(*cm->fc)));
|
|
CHECK_MEM_ERROR(
|
|
cm, cm->frame_contexts,
|
|
(FRAME_CONTEXT *)vpx_calloc(FRAME_CONTEXTS, sizeof(*cm->frame_contexts)));
|
|
|
|
cpi->use_svc = 0;
|
|
cpi->resize_state = ORIG;
|
|
cpi->external_resize = 0;
|
|
cpi->resize_avg_qp = 0;
|
|
cpi->resize_buffer_underflow = 0;
|
|
cpi->use_skin_detection = 0;
|
|
cpi->common.buffer_pool = pool;
|
|
|
|
cpi->force_update_segmentation = 0;
|
|
|
|
init_config(cpi, oxcf);
|
|
vp9_rc_init(&cpi->oxcf, oxcf->pass, &cpi->rc);
|
|
|
|
cm->current_video_frame = 0;
|
|
cpi->partition_search_skippable_frame = 0;
|
|
cpi->tile_data = NULL;
|
|
|
|
realloc_segmentation_maps(cpi);
|
|
|
|
CHECK_MEM_ERROR(cm, cpi->skin_map, vpx_calloc(cm->mi_rows * cm->mi_cols,
|
|
sizeof(cpi->skin_map[0])));
|
|
|
|
CHECK_MEM_ERROR(cm, cpi->alt_ref_aq, vp9_alt_ref_aq_create());
|
|
|
|
CHECK_MEM_ERROR(
|
|
cm, cpi->consec_zero_mv,
|
|
vpx_calloc(cm->mi_rows * cm->mi_cols, sizeof(*cpi->consec_zero_mv)));
|
|
|
|
CHECK_MEM_ERROR(cm, cpi->nmvcosts[0],
|
|
vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts[0])));
|
|
CHECK_MEM_ERROR(cm, cpi->nmvcosts[1],
|
|
vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts[1])));
|
|
CHECK_MEM_ERROR(cm, cpi->nmvcosts_hp[0],
|
|
vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts_hp[0])));
|
|
CHECK_MEM_ERROR(cm, cpi->nmvcosts_hp[1],
|
|
vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts_hp[1])));
|
|
CHECK_MEM_ERROR(cm, cpi->nmvsadcosts[0],
|
|
vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts[0])));
|
|
CHECK_MEM_ERROR(cm, cpi->nmvsadcosts[1],
|
|
vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts[1])));
|
|
CHECK_MEM_ERROR(cm, cpi->nmvsadcosts_hp[0],
|
|
vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts_hp[0])));
|
|
CHECK_MEM_ERROR(cm, cpi->nmvsadcosts_hp[1],
|
|
vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts_hp[1])));
|
|
|
|
for (i = 0; i < (sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]));
|
|
i++) {
|
|
CHECK_MEM_ERROR(
|
|
cm, cpi->mbgraph_stats[i].mb_stats,
|
|
vpx_calloc(cm->MBs * sizeof(*cpi->mbgraph_stats[i].mb_stats), 1));
|
|
}
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
cpi->use_fp_mb_stats = 0;
|
|
if (cpi->use_fp_mb_stats) {
|
|
// a place holder used to store the first pass mb stats in the first pass
|
|
CHECK_MEM_ERROR(cm, cpi->twopass.frame_mb_stats_buf,
|
|
vpx_calloc(cm->MBs * sizeof(uint8_t), 1));
|
|
} else {
|
|
cpi->twopass.frame_mb_stats_buf = NULL;
|
|
}
|
|
#endif
|
|
|
|
cpi->refresh_alt_ref_frame = 0;
|
|
cpi->multi_arf_last_grp_enabled = 0;
|
|
|
|
cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
|
|
|
|
init_level_info(&cpi->level_info);
|
|
init_level_constraint(&cpi->level_constraint);
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
cpi->b_calculate_blockiness = 1;
|
|
cpi->b_calculate_consistency = 1;
|
|
cpi->total_inconsistency = 0;
|
|
cpi->psnr.worst = 100.0;
|
|
cpi->worst_ssim = 100.0;
|
|
|
|
cpi->count = 0;
|
|
cpi->bytes = 0;
|
|
|
|
if (cpi->b_calculate_psnr) {
|
|
cpi->total_sq_error = 0;
|
|
cpi->total_samples = 0;
|
|
|
|
cpi->totalp_sq_error = 0;
|
|
cpi->totalp_samples = 0;
|
|
|
|
cpi->tot_recode_hits = 0;
|
|
cpi->summed_quality = 0;
|
|
cpi->summed_weights = 0;
|
|
cpi->summedp_quality = 0;
|
|
cpi->summedp_weights = 0;
|
|
}
|
|
|
|
cpi->fastssim.worst = 100.0;
|
|
|
|
cpi->psnrhvs.worst = 100.0;
|
|
|
|
if (cpi->b_calculate_blockiness) {
|
|
cpi->total_blockiness = 0;
|
|
cpi->worst_blockiness = 0.0;
|
|
}
|
|
|
|
if (cpi->b_calculate_consistency) {
|
|
CHECK_MEM_ERROR(cm, cpi->ssim_vars,
|
|
vpx_malloc(sizeof(*cpi->ssim_vars) * 4 *
|
|
cpi->common.mi_rows * cpi->common.mi_cols));
|
|
cpi->worst_consistency = 100.0;
|
|
}
|
|
|
|
#endif
|
|
|
|
cpi->first_time_stamp_ever = INT64_MAX;
|
|
|
|
/*********************************************************************
|
|
* Warning: Read the comments around 'cal_nmvjointsadcost' and *
|
|
* 'cal_nmvsadcosts' before modifying how these tables are computed. *
|
|
*********************************************************************/
|
|
cal_nmvjointsadcost(cpi->td.mb.nmvjointsadcost);
|
|
cpi->td.mb.nmvcost[0] = &cpi->nmvcosts[0][MV_MAX];
|
|
cpi->td.mb.nmvcost[1] = &cpi->nmvcosts[1][MV_MAX];
|
|
cpi->td.mb.nmvsadcost[0] = &cpi->nmvsadcosts[0][MV_MAX];
|
|
cpi->td.mb.nmvsadcost[1] = &cpi->nmvsadcosts[1][MV_MAX];
|
|
cal_nmvsadcosts(cpi->td.mb.nmvsadcost);
|
|
|
|
cpi->td.mb.nmvcost_hp[0] = &cpi->nmvcosts_hp[0][MV_MAX];
|
|
cpi->td.mb.nmvcost_hp[1] = &cpi->nmvcosts_hp[1][MV_MAX];
|
|
cpi->td.mb.nmvsadcost_hp[0] = &cpi->nmvsadcosts_hp[0][MV_MAX];
|
|
cpi->td.mb.nmvsadcost_hp[1] = &cpi->nmvsadcosts_hp[1][MV_MAX];
|
|
cal_nmvsadcosts_hp(cpi->td.mb.nmvsadcost_hp);
|
|
|
|
#if CONFIG_VP9_TEMPORAL_DENOISING
|
|
#ifdef OUTPUT_YUV_DENOISED
|
|
yuv_denoised_file = fopen("denoised.yuv", "ab");
|
|
#endif
|
|
#endif
|
|
#ifdef OUTPUT_YUV_SKINMAP
|
|
yuv_skinmap_file = fopen("skinmap.yuv", "wb");
|
|
#endif
|
|
#ifdef OUTPUT_YUV_REC
|
|
yuv_rec_file = fopen("rec.yuv", "wb");
|
|
#endif
|
|
|
|
#if 0
|
|
framepsnr = fopen("framepsnr.stt", "a");
|
|
kf_list = fopen("kf_list.stt", "w");
|
|
#endif
|
|
|
|
cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED;
|
|
|
|
#if !CONFIG_REALTIME_ONLY
|
|
if (oxcf->pass == 1) {
|
|
vp9_init_first_pass(cpi);
|
|
} else if (oxcf->pass == 2) {
|
|
const size_t packet_sz = sizeof(FIRSTPASS_STATS);
|
|
const int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz);
|
|
|
|
if (cpi->svc.number_spatial_layers > 1 ||
|
|
cpi->svc.number_temporal_layers > 1) {
|
|
FIRSTPASS_STATS *const stats = oxcf->two_pass_stats_in.buf;
|
|
FIRSTPASS_STATS *stats_copy[VPX_SS_MAX_LAYERS] = { 0 };
|
|
int i;
|
|
|
|
for (i = 0; i < oxcf->ss_number_layers; ++i) {
|
|
FIRSTPASS_STATS *const last_packet_for_layer =
|
|
&stats[packets - oxcf->ss_number_layers + i];
|
|
const int layer_id = (int)last_packet_for_layer->spatial_layer_id;
|
|
const int packets_in_layer = (int)last_packet_for_layer->count + 1;
|
|
if (layer_id >= 0 && layer_id < oxcf->ss_number_layers) {
|
|
LAYER_CONTEXT *const lc = &cpi->svc.layer_context[layer_id];
|
|
|
|
vpx_free(lc->rc_twopass_stats_in.buf);
|
|
|
|
lc->rc_twopass_stats_in.sz = packets_in_layer * packet_sz;
|
|
CHECK_MEM_ERROR(cm, lc->rc_twopass_stats_in.buf,
|
|
vpx_malloc(lc->rc_twopass_stats_in.sz));
|
|
lc->twopass.stats_in_start = lc->rc_twopass_stats_in.buf;
|
|
lc->twopass.stats_in = lc->twopass.stats_in_start;
|
|
lc->twopass.stats_in_end =
|
|
lc->twopass.stats_in_start + packets_in_layer - 1;
|
|
stats_copy[layer_id] = lc->rc_twopass_stats_in.buf;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < packets; ++i) {
|
|
const int layer_id = (int)stats[i].spatial_layer_id;
|
|
if (layer_id >= 0 && layer_id < oxcf->ss_number_layers &&
|
|
stats_copy[layer_id] != NULL) {
|
|
*stats_copy[layer_id] = stats[i];
|
|
++stats_copy[layer_id];
|
|
}
|
|
}
|
|
|
|
vp9_init_second_pass_spatial_svc(cpi);
|
|
} else {
|
|
#if CONFIG_FP_MB_STATS
|
|
if (cpi->use_fp_mb_stats) {
|
|
const size_t psz = cpi->common.MBs * sizeof(uint8_t);
|
|
const int ps = (int)(oxcf->firstpass_mb_stats_in.sz / psz);
|
|
|
|
cpi->twopass.firstpass_mb_stats.mb_stats_start =
|
|
oxcf->firstpass_mb_stats_in.buf;
|
|
cpi->twopass.firstpass_mb_stats.mb_stats_end =
|
|
cpi->twopass.firstpass_mb_stats.mb_stats_start +
|
|
(ps - 1) * cpi->common.MBs * sizeof(uint8_t);
|
|
}
|
|
#endif
|
|
|
|
cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
|
|
cpi->twopass.stats_in = cpi->twopass.stats_in_start;
|
|
cpi->twopass.stats_in_end = &cpi->twopass.stats_in[packets - 1];
|
|
|
|
vp9_init_second_pass(cpi);
|
|
}
|
|
}
|
|
#endif // !CONFIG_REALTIME_ONLY
|
|
|
|
vp9_set_speed_features_framesize_independent(cpi);
|
|
vp9_set_speed_features_framesize_dependent(cpi);
|
|
|
|
// Allocate memory to store variances for a frame.
|
|
CHECK_MEM_ERROR(cm, cpi->source_diff_var, vpx_calloc(cm->MBs, sizeof(diff)));
|
|
cpi->source_var_thresh = 0;
|
|
cpi->frames_till_next_var_check = 0;
|
|
|
|
#define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX4DF) \
|
|
cpi->fn_ptr[BT].sdf = SDF; \
|
|
cpi->fn_ptr[BT].sdaf = SDAF; \
|
|
cpi->fn_ptr[BT].vf = VF; \
|
|
cpi->fn_ptr[BT].svf = SVF; \
|
|
cpi->fn_ptr[BT].svaf = SVAF; \
|
|
cpi->fn_ptr[BT].sdx4df = SDX4DF;
|
|
|
|
BFP(BLOCK_32X16, vpx_sad32x16, vpx_sad32x16_avg, vpx_variance32x16,
|
|
vpx_sub_pixel_variance32x16, vpx_sub_pixel_avg_variance32x16,
|
|
vpx_sad32x16x4d)
|
|
|
|
BFP(BLOCK_16X32, vpx_sad16x32, vpx_sad16x32_avg, vpx_variance16x32,
|
|
vpx_sub_pixel_variance16x32, vpx_sub_pixel_avg_variance16x32,
|
|
vpx_sad16x32x4d)
|
|
|
|
BFP(BLOCK_64X32, vpx_sad64x32, vpx_sad64x32_avg, vpx_variance64x32,
|
|
vpx_sub_pixel_variance64x32, vpx_sub_pixel_avg_variance64x32,
|
|
vpx_sad64x32x4d)
|
|
|
|
BFP(BLOCK_32X64, vpx_sad32x64, vpx_sad32x64_avg, vpx_variance32x64,
|
|
vpx_sub_pixel_variance32x64, vpx_sub_pixel_avg_variance32x64,
|
|
vpx_sad32x64x4d)
|
|
|
|
BFP(BLOCK_32X32, vpx_sad32x32, vpx_sad32x32_avg, vpx_variance32x32,
|
|
vpx_sub_pixel_variance32x32, vpx_sub_pixel_avg_variance32x32,
|
|
vpx_sad32x32x4d)
|
|
|
|
BFP(BLOCK_64X64, vpx_sad64x64, vpx_sad64x64_avg, vpx_variance64x64,
|
|
vpx_sub_pixel_variance64x64, vpx_sub_pixel_avg_variance64x64,
|
|
vpx_sad64x64x4d)
|
|
|
|
BFP(BLOCK_16X16, vpx_sad16x16, vpx_sad16x16_avg, vpx_variance16x16,
|
|
vpx_sub_pixel_variance16x16, vpx_sub_pixel_avg_variance16x16,
|
|
vpx_sad16x16x4d)
|
|
|
|
BFP(BLOCK_16X8, vpx_sad16x8, vpx_sad16x8_avg, vpx_variance16x8,
|
|
vpx_sub_pixel_variance16x8, vpx_sub_pixel_avg_variance16x8,
|
|
vpx_sad16x8x4d)
|
|
|
|
BFP(BLOCK_8X16, vpx_sad8x16, vpx_sad8x16_avg, vpx_variance8x16,
|
|
vpx_sub_pixel_variance8x16, vpx_sub_pixel_avg_variance8x16,
|
|
vpx_sad8x16x4d)
|
|
|
|
BFP(BLOCK_8X8, vpx_sad8x8, vpx_sad8x8_avg, vpx_variance8x8,
|
|
vpx_sub_pixel_variance8x8, vpx_sub_pixel_avg_variance8x8, vpx_sad8x8x4d)
|
|
|
|
BFP(BLOCK_8X4, vpx_sad8x4, vpx_sad8x4_avg, vpx_variance8x4,
|
|
vpx_sub_pixel_variance8x4, vpx_sub_pixel_avg_variance8x4, vpx_sad8x4x4d)
|
|
|
|
BFP(BLOCK_4X8, vpx_sad4x8, vpx_sad4x8_avg, vpx_variance4x8,
|
|
vpx_sub_pixel_variance4x8, vpx_sub_pixel_avg_variance4x8, vpx_sad4x8x4d)
|
|
|
|
BFP(BLOCK_4X4, vpx_sad4x4, vpx_sad4x4_avg, vpx_variance4x4,
|
|
vpx_sub_pixel_variance4x4, vpx_sub_pixel_avg_variance4x4, vpx_sad4x4x4d)
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
highbd_set_var_fns(cpi);
|
|
#endif
|
|
|
|
/* vp9_init_quantizer() is first called here. Add check in
|
|
* vp9_frame_init_quantizer() so that vp9_init_quantizer is only
|
|
* called later when needed. This will avoid unnecessary calls of
|
|
* vp9_init_quantizer() for every frame.
|
|
*/
|
|
vp9_init_quantizer(cpi);
|
|
|
|
vp9_loop_filter_init(cm);
|
|
|
|
cm->error.setjmp = 0;
|
|
|
|
return cpi;
|
|
}
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
#define SNPRINT(H, T) snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T))
|
|
|
|
#define SNPRINT2(H, T, V) \
|
|
snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T), (V))
|
|
#endif // CONFIG_INTERNAL_STATS
|
|
|
|
void vp9_remove_compressor(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm;
|
|
unsigned int i;
|
|
int t;
|
|
|
|
if (!cpi) return;
|
|
|
|
cm = &cpi->common;
|
|
if (cm->current_video_frame > 0) {
|
|
#if CONFIG_INTERNAL_STATS
|
|
vpx_clear_system_state();
|
|
|
|
if (cpi->oxcf.pass != 1) {
|
|
char headings[512] = { 0 };
|
|
char results[512] = { 0 };
|
|
FILE *f = fopen("opsnr.stt", "a");
|
|
double time_encoded =
|
|
(cpi->last_end_time_stamp_seen - cpi->first_time_stamp_ever) /
|
|
10000000.000;
|
|
double total_encode_time =
|
|
(cpi->time_receive_data + cpi->time_compress_data) / 1000.000;
|
|
const double dr =
|
|
(double)cpi->bytes * (double)8 / (double)1000 / time_encoded;
|
|
const double peak = (double)((1 << cpi->oxcf.input_bit_depth) - 1);
|
|
const double target_rate = (double)cpi->oxcf.target_bandwidth / 1000;
|
|
const double rate_err = ((100.0 * (dr - target_rate)) / target_rate);
|
|
|
|
if (cpi->b_calculate_psnr) {
|
|
const double total_psnr = vpx_sse_to_psnr(
|
|
(double)cpi->total_samples, peak, (double)cpi->total_sq_error);
|
|
const double totalp_psnr = vpx_sse_to_psnr(
|
|
(double)cpi->totalp_samples, peak, (double)cpi->totalp_sq_error);
|
|
const double total_ssim =
|
|
100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0);
|
|
const double totalp_ssim =
|
|
100 * pow(cpi->summedp_quality / cpi->summedp_weights, 8.0);
|
|
|
|
snprintf(headings, sizeof(headings),
|
|
"Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t"
|
|
"VPXSSIM\tVPSSIMP\tFASTSIM\tPSNRHVS\t"
|
|
"WstPsnr\tWstSsim\tWstFast\tWstHVS");
|
|
snprintf(results, sizeof(results),
|
|
"%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
|
|
"%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
|
|
"%7.3f\t%7.3f\t%7.3f\t%7.3f",
|
|
dr, cpi->psnr.stat[ALL] / cpi->count, total_psnr,
|
|
cpi->psnrp.stat[ALL] / cpi->count, totalp_psnr, total_ssim,
|
|
totalp_ssim, cpi->fastssim.stat[ALL] / cpi->count,
|
|
cpi->psnrhvs.stat[ALL] / cpi->count, cpi->psnr.worst,
|
|
cpi->worst_ssim, cpi->fastssim.worst, cpi->psnrhvs.worst);
|
|
|
|
if (cpi->b_calculate_blockiness) {
|
|
SNPRINT(headings, "\t Block\tWstBlck");
|
|
SNPRINT2(results, "\t%7.3f", cpi->total_blockiness / cpi->count);
|
|
SNPRINT2(results, "\t%7.3f", cpi->worst_blockiness);
|
|
}
|
|
|
|
if (cpi->b_calculate_consistency) {
|
|
double consistency =
|
|
vpx_sse_to_psnr((double)cpi->totalp_samples, peak,
|
|
(double)cpi->total_inconsistency);
|
|
|
|
SNPRINT(headings, "\tConsist\tWstCons");
|
|
SNPRINT2(results, "\t%7.3f", consistency);
|
|
SNPRINT2(results, "\t%7.3f", cpi->worst_consistency);
|
|
}
|
|
|
|
fprintf(f, "%s\t Time\tRcErr\tAbsErr\n", headings);
|
|
fprintf(f, "%s\t%8.0f\t%7.2f\t%7.2f\n", results, total_encode_time,
|
|
rate_err, fabs(rate_err));
|
|
}
|
|
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
|
|
#if 0
|
|
{
|
|
printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
|
|
printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
|
|
printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame,
|
|
cpi->time_receive_data / 1000, cpi->time_encode_sb_row / 1000,
|
|
cpi->time_compress_data / 1000,
|
|
(cpi->time_receive_data + cpi->time_compress_data) / 1000);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if CONFIG_VP9_TEMPORAL_DENOISING
|
|
vp9_denoiser_free(&(cpi->denoiser));
|
|
#endif
|
|
|
|
for (t = 0; t < cpi->num_workers; ++t) {
|
|
VPxWorker *const worker = &cpi->workers[t];
|
|
EncWorkerData *const thread_data = &cpi->tile_thr_data[t];
|
|
|
|
// Deallocate allocated threads.
|
|
vpx_get_worker_interface()->end(worker);
|
|
|
|
// Deallocate allocated thread data.
|
|
if (t < cpi->num_workers - 1) {
|
|
vpx_free(thread_data->td->counts);
|
|
vp9_free_pc_tree(thread_data->td);
|
|
vpx_free(thread_data->td);
|
|
}
|
|
}
|
|
vpx_free(cpi->tile_thr_data);
|
|
vpx_free(cpi->workers);
|
|
vp9_row_mt_mem_dealloc(cpi);
|
|
|
|
if (cpi->num_workers > 1) {
|
|
vp9_loop_filter_dealloc(&cpi->lf_row_sync);
|
|
vp9_bitstream_encode_tiles_buffer_dealloc(cpi);
|
|
}
|
|
|
|
vp9_alt_ref_aq_destroy(cpi->alt_ref_aq);
|
|
|
|
dealloc_compressor_data(cpi);
|
|
|
|
for (i = 0; i < sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]);
|
|
++i) {
|
|
vpx_free(cpi->mbgraph_stats[i].mb_stats);
|
|
}
|
|
|
|
#if CONFIG_FP_MB_STATS
|
|
if (cpi->use_fp_mb_stats) {
|
|
vpx_free(cpi->twopass.frame_mb_stats_buf);
|
|
cpi->twopass.frame_mb_stats_buf = NULL;
|
|
}
|
|
#endif
|
|
|
|
vp9_remove_common(cm);
|
|
vp9_free_ref_frame_buffers(cm->buffer_pool);
|
|
#if CONFIG_VP9_POSTPROC
|
|
vp9_free_postproc_buffers(cm);
|
|
#endif
|
|
vpx_free(cpi);
|
|
|
|
#if CONFIG_VP9_TEMPORAL_DENOISING
|
|
#ifdef OUTPUT_YUV_DENOISED
|
|
fclose(yuv_denoised_file);
|
|
#endif
|
|
#endif
|
|
#ifdef OUTPUT_YUV_SKINMAP
|
|
fclose(yuv_skinmap_file);
|
|
#endif
|
|
#ifdef OUTPUT_YUV_REC
|
|
fclose(yuv_rec_file);
|
|
#endif
|
|
|
|
#if 0
|
|
|
|
if (keyfile)
|
|
fclose(keyfile);
|
|
|
|
if (framepsnr)
|
|
fclose(framepsnr);
|
|
|
|
if (kf_list)
|
|
fclose(kf_list);
|
|
|
|
#endif
|
|
}
|
|
|
|
static void generate_psnr_packet(VP9_COMP *cpi) {
|
|
struct vpx_codec_cx_pkt pkt;
|
|
int i;
|
|
PSNR_STATS psnr;
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
vpx_calc_highbd_psnr(cpi->raw_source_frame, cpi->common.frame_to_show, &psnr,
|
|
cpi->td.mb.e_mbd.bd, cpi->oxcf.input_bit_depth);
|
|
#else
|
|
vpx_calc_psnr(cpi->raw_source_frame, cpi->common.frame_to_show, &psnr);
|
|
#endif
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
pkt.data.psnr.samples[i] = psnr.samples[i];
|
|
pkt.data.psnr.sse[i] = psnr.sse[i];
|
|
pkt.data.psnr.psnr[i] = psnr.psnr[i];
|
|
}
|
|
pkt.kind = VPX_CODEC_PSNR_PKT;
|
|
if (cpi->use_svc)
|
|
cpi->svc
|
|
.layer_context[cpi->svc.spatial_layer_id *
|
|
cpi->svc.number_temporal_layers]
|
|
.psnr_pkt = pkt.data.psnr;
|
|
else
|
|
vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
|
|
}
|
|
|
|
int vp9_use_as_reference(VP9_COMP *cpi, int ref_frame_flags) {
|
|
if (ref_frame_flags > 7) return -1;
|
|
|
|
cpi->ref_frame_flags = ref_frame_flags;
|
|
return 0;
|
|
}
|
|
|
|
void vp9_update_reference(VP9_COMP *cpi, int ref_frame_flags) {
|
|
cpi->ext_refresh_golden_frame = (ref_frame_flags & VP9_GOLD_FLAG) != 0;
|
|
cpi->ext_refresh_alt_ref_frame = (ref_frame_flags & VP9_ALT_FLAG) != 0;
|
|
cpi->ext_refresh_last_frame = (ref_frame_flags & VP9_LAST_FLAG) != 0;
|
|
cpi->ext_refresh_frame_flags_pending = 1;
|
|
}
|
|
|
|
static YV12_BUFFER_CONFIG *get_vp9_ref_frame_buffer(
|
|
VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag) {
|
|
MV_REFERENCE_FRAME ref_frame = NONE;
|
|
if (ref_frame_flag == VP9_LAST_FLAG)
|
|
ref_frame = LAST_FRAME;
|
|
else if (ref_frame_flag == VP9_GOLD_FLAG)
|
|
ref_frame = GOLDEN_FRAME;
|
|
else if (ref_frame_flag == VP9_ALT_FLAG)
|
|
ref_frame = ALTREF_FRAME;
|
|
|
|
return ref_frame == NONE ? NULL : get_ref_frame_buffer(cpi, ref_frame);
|
|
}
|
|
|
|
int vp9_copy_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag,
|
|
YV12_BUFFER_CONFIG *sd) {
|
|
YV12_BUFFER_CONFIG *cfg = get_vp9_ref_frame_buffer(cpi, ref_frame_flag);
|
|
if (cfg) {
|
|
vpx_yv12_copy_frame(cfg, sd);
|
|
return 0;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int vp9_set_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag,
|
|
YV12_BUFFER_CONFIG *sd) {
|
|
YV12_BUFFER_CONFIG *cfg = get_vp9_ref_frame_buffer(cpi, ref_frame_flag);
|
|
if (cfg) {
|
|
vpx_yv12_copy_frame(sd, cfg);
|
|
return 0;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int vp9_update_entropy(VP9_COMP *cpi, int update) {
|
|
cpi->ext_refresh_frame_context = update;
|
|
cpi->ext_refresh_frame_context_pending = 1;
|
|
return 0;
|
|
}
|
|
|
|
#ifdef OUTPUT_YUV_REC
|
|
void vp9_write_yuv_rec_frame(VP9_COMMON *cm) {
|
|
YV12_BUFFER_CONFIG *s = cm->frame_to_show;
|
|
uint8_t *src = s->y_buffer;
|
|
int h = cm->height;
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (s->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
uint16_t *src16 = CONVERT_TO_SHORTPTR(s->y_buffer);
|
|
|
|
do {
|
|
fwrite(src16, s->y_width, 2, yuv_rec_file);
|
|
src16 += s->y_stride;
|
|
} while (--h);
|
|
|
|
src16 = CONVERT_TO_SHORTPTR(s->u_buffer);
|
|
h = s->uv_height;
|
|
|
|
do {
|
|
fwrite(src16, s->uv_width, 2, yuv_rec_file);
|
|
src16 += s->uv_stride;
|
|
} while (--h);
|
|
|
|
src16 = CONVERT_TO_SHORTPTR(s->v_buffer);
|
|
h = s->uv_height;
|
|
|
|
do {
|
|
fwrite(src16, s->uv_width, 2, yuv_rec_file);
|
|
src16 += s->uv_stride;
|
|
} while (--h);
|
|
|
|
fflush(yuv_rec_file);
|
|
return;
|
|
}
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
do {
|
|
fwrite(src, s->y_width, 1, yuv_rec_file);
|
|
src += s->y_stride;
|
|
} while (--h);
|
|
|
|
src = s->u_buffer;
|
|
h = s->uv_height;
|
|
|
|
do {
|
|
fwrite(src, s->uv_width, 1, yuv_rec_file);
|
|
src += s->uv_stride;
|
|
} while (--h);
|
|
|
|
src = s->v_buffer;
|
|
h = s->uv_height;
|
|
|
|
do {
|
|
fwrite(src, s->uv_width, 1, yuv_rec_file);
|
|
src += s->uv_stride;
|
|
} while (--h);
|
|
|
|
fflush(yuv_rec_file);
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
static void scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src,
|
|
YV12_BUFFER_CONFIG *dst,
|
|
int bd) {
|
|
#else
|
|
static void scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src,
|
|
YV12_BUFFER_CONFIG *dst) {
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
// TODO(dkovalev): replace YV12_BUFFER_CONFIG with vpx_image_t
|
|
int i;
|
|
const uint8_t *const srcs[3] = { src->y_buffer, src->u_buffer,
|
|
src->v_buffer };
|
|
const int src_strides[3] = { src->y_stride, src->uv_stride, src->uv_stride };
|
|
const int src_widths[3] = { src->y_crop_width, src->uv_crop_width,
|
|
src->uv_crop_width };
|
|
const int src_heights[3] = { src->y_crop_height, src->uv_crop_height,
|
|
src->uv_crop_height };
|
|
uint8_t *const dsts[3] = { dst->y_buffer, dst->u_buffer, dst->v_buffer };
|
|
const int dst_strides[3] = { dst->y_stride, dst->uv_stride, dst->uv_stride };
|
|
const int dst_widths[3] = { dst->y_crop_width, dst->uv_crop_width,
|
|
dst->uv_crop_width };
|
|
const int dst_heights[3] = { dst->y_crop_height, dst->uv_crop_height,
|
|
dst->uv_crop_height };
|
|
|
|
for (i = 0; i < MAX_MB_PLANE; ++i) {
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (src->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
vp9_highbd_resize_plane(srcs[i], src_heights[i], src_widths[i],
|
|
src_strides[i], dsts[i], dst_heights[i],
|
|
dst_widths[i], dst_strides[i], bd);
|
|
} else {
|
|
vp9_resize_plane(srcs[i], src_heights[i], src_widths[i], src_strides[i],
|
|
dsts[i], dst_heights[i], dst_widths[i], dst_strides[i]);
|
|
}
|
|
#else
|
|
vp9_resize_plane(srcs[i], src_heights[i], src_widths[i], src_strides[i],
|
|
dsts[i], dst_heights[i], dst_widths[i], dst_strides[i]);
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
}
|
|
vpx_extend_frame_borders(dst);
|
|
}
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
static void scale_and_extend_frame(const YV12_BUFFER_CONFIG *src,
|
|
YV12_BUFFER_CONFIG *dst, int bd,
|
|
INTERP_FILTER filter_type,
|
|
int phase_scaler) {
|
|
const int src_w = src->y_crop_width;
|
|
const int src_h = src->y_crop_height;
|
|
const int dst_w = dst->y_crop_width;
|
|
const int dst_h = dst->y_crop_height;
|
|
const uint8_t *const srcs[3] = { src->y_buffer, src->u_buffer,
|
|
src->v_buffer };
|
|
const int src_strides[3] = { src->y_stride, src->uv_stride, src->uv_stride };
|
|
uint8_t *const dsts[3] = { dst->y_buffer, dst->u_buffer, dst->v_buffer };
|
|
const int dst_strides[3] = { dst->y_stride, dst->uv_stride, dst->uv_stride };
|
|
const InterpKernel *const kernel = vp9_filter_kernels[filter_type];
|
|
int x, y, i;
|
|
|
|
for (i = 0; i < MAX_MB_PLANE; ++i) {
|
|
const int factor = (i == 0 || i == 3 ? 1 : 2);
|
|
const int src_stride = src_strides[i];
|
|
const int dst_stride = dst_strides[i];
|
|
for (y = 0; y < dst_h; y += 16) {
|
|
const int y_q4 = y * (16 / factor) * src_h / dst_h + phase_scaler;
|
|
for (x = 0; x < dst_w; x += 16) {
|
|
const int x_q4 = x * (16 / factor) * src_w / dst_w + phase_scaler;
|
|
const uint8_t *src_ptr = srcs[i] +
|
|
(y / factor) * src_h / dst_h * src_stride +
|
|
(x / factor) * src_w / dst_w;
|
|
uint8_t *dst_ptr = dsts[i] + (y / factor) * dst_stride + (x / factor);
|
|
|
|
if (src->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
vpx_highbd_convolve8(CONVERT_TO_SHORTPTR(src_ptr), src_stride,
|
|
CONVERT_TO_SHORTPTR(dst_ptr), dst_stride, kernel,
|
|
x_q4 & 0xf, 16 * src_w / dst_w, y_q4 & 0xf,
|
|
16 * src_h / dst_h, 16 / factor, 16 / factor,
|
|
bd);
|
|
} else {
|
|
vpx_scaled_2d(src_ptr, src_stride, dst_ptr, dst_stride, kernel,
|
|
x_q4 & 0xf, 16 * src_w / dst_w, y_q4 & 0xf,
|
|
16 * src_h / dst_h, 16 / factor, 16 / factor);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
vpx_extend_frame_borders(dst);
|
|
}
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
static int scale_down(VP9_COMP *cpi, int q) {
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
GF_GROUP *const gf_group = &cpi->twopass.gf_group;
|
|
int scale = 0;
|
|
assert(frame_is_kf_gf_arf(cpi));
|
|
|
|
if (rc->frame_size_selector == UNSCALED &&
|
|
q >= rc->rf_level_maxq[gf_group->rf_level[gf_group->index]]) {
|
|
const int max_size_thresh =
|
|
(int)(rate_thresh_mult[SCALE_STEP1] *
|
|
VPXMAX(rc->this_frame_target, rc->avg_frame_bandwidth));
|
|
scale = rc->projected_frame_size > max_size_thresh ? 1 : 0;
|
|
}
|
|
return scale;
|
|
}
|
|
|
|
static int big_rate_miss_high_threshold(VP9_COMP *cpi) {
|
|
const RATE_CONTROL *const rc = &cpi->rc;
|
|
int big_miss_high;
|
|
|
|
if (frame_is_kf_gf_arf(cpi))
|
|
big_miss_high = rc->this_frame_target * 3 / 2;
|
|
else
|
|
big_miss_high = rc->this_frame_target * 2;
|
|
|
|
return big_miss_high;
|
|
}
|
|
|
|
static int big_rate_miss(VP9_COMP *cpi) {
|
|
const RATE_CONTROL *const rc = &cpi->rc;
|
|
int big_miss_high;
|
|
int big_miss_low;
|
|
|
|
// Ignore for overlay frames
|
|
if (rc->is_src_frame_alt_ref) {
|
|
return 0;
|
|
} else {
|
|
big_miss_low = (rc->this_frame_target / 2);
|
|
big_miss_high = big_rate_miss_high_threshold(cpi);
|
|
|
|
return (rc->projected_frame_size > big_miss_high) ||
|
|
(rc->projected_frame_size < big_miss_low);
|
|
}
|
|
}
|
|
|
|
// test in two pass for the first
|
|
static int two_pass_first_group_inter(VP9_COMP *cpi) {
|
|
TWO_PASS *const twopass = &cpi->twopass;
|
|
GF_GROUP *const gf_group = &twopass->gf_group;
|
|
if ((cpi->oxcf.pass == 2) &&
|
|
(gf_group->index == gf_group->first_inter_index)) {
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// Function to test for conditions that indicate we should loop
|
|
// back and recode a frame.
|
|
static int recode_loop_test(VP9_COMP *cpi, int high_limit, int low_limit, int q,
|
|
int maxq, int minq) {
|
|
const RATE_CONTROL *const rc = &cpi->rc;
|
|
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
|
|
const int frame_is_kfgfarf = frame_is_kf_gf_arf(cpi);
|
|
int force_recode = 0;
|
|
|
|
if ((rc->projected_frame_size >= rc->max_frame_bandwidth) ||
|
|
big_rate_miss(cpi) || (cpi->sf.recode_loop == ALLOW_RECODE) ||
|
|
(two_pass_first_group_inter(cpi) &&
|
|
(cpi->sf.recode_loop == ALLOW_RECODE_FIRST)) ||
|
|
(frame_is_kfgfarf && (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF))) {
|
|
if (frame_is_kfgfarf && (oxcf->resize_mode == RESIZE_DYNAMIC) &&
|
|
scale_down(cpi, q)) {
|
|
// Code this group at a lower resolution.
|
|
cpi->resize_pending = 1;
|
|
return 1;
|
|
}
|
|
|
|
// Force recode for extreme overshoot.
|
|
if ((rc->projected_frame_size >= rc->max_frame_bandwidth) ||
|
|
(cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF &&
|
|
rc->projected_frame_size >= big_rate_miss_high_threshold(cpi))) {
|
|
return 1;
|
|
}
|
|
|
|
// TODO(agrange) high_limit could be greater than the scale-down threshold.
|
|
if ((rc->projected_frame_size > high_limit && q < maxq) ||
|
|
(rc->projected_frame_size < low_limit && q > minq)) {
|
|
force_recode = 1;
|
|
} else if (cpi->oxcf.rc_mode == VPX_CQ) {
|
|
// Deal with frame undershoot and whether or not we are
|
|
// below the automatically set cq level.
|
|
if (q > oxcf->cq_level &&
|
|
rc->projected_frame_size < ((rc->this_frame_target * 7) >> 3)) {
|
|
force_recode = 1;
|
|
}
|
|
}
|
|
}
|
|
return force_recode;
|
|
}
|
|
|
|
void vp9_update_reference_frames(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
BufferPool *const pool = cm->buffer_pool;
|
|
|
|
// At this point the new frame has been encoded.
|
|
// If any buffer copy / swapping is signaled it should be done here.
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
|
|
cm->new_fb_idx);
|
|
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->alt_fb_idx],
|
|
cm->new_fb_idx);
|
|
} else if (vp9_preserve_existing_gf(cpi)) {
|
|
// We have decided to preserve the previously existing golden frame as our
|
|
// new ARF frame. However, in the short term in function
|
|
// vp9_get_refresh_mask() we left it in the GF slot and, if
|
|
// we're updating the GF with the current decoded frame, we save it to the
|
|
// ARF slot instead.
|
|
// We now have to update the ARF with the current frame and swap gld_fb_idx
|
|
// and alt_fb_idx so that, overall, we've stored the old GF in the new ARF
|
|
// slot and, if we're updating the GF, the current frame becomes the new GF.
|
|
int tmp;
|
|
|
|
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->alt_fb_idx],
|
|
cm->new_fb_idx);
|
|
|
|
tmp = cpi->alt_fb_idx;
|
|
cpi->alt_fb_idx = cpi->gld_fb_idx;
|
|
cpi->gld_fb_idx = tmp;
|
|
|
|
if (is_two_pass_svc(cpi)) {
|
|
cpi->svc.layer_context[0].gold_ref_idx = cpi->gld_fb_idx;
|
|
cpi->svc.layer_context[0].alt_ref_idx = cpi->alt_fb_idx;
|
|
}
|
|
} else { /* For non key/golden frames */
|
|
if (cpi->refresh_alt_ref_frame) {
|
|
int arf_idx = cpi->alt_fb_idx;
|
|
if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
|
|
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
|
|
arf_idx = gf_group->arf_update_idx[gf_group->index];
|
|
}
|
|
|
|
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[arf_idx], cm->new_fb_idx);
|
|
memcpy(cpi->interp_filter_selected[ALTREF_FRAME],
|
|
cpi->interp_filter_selected[0],
|
|
sizeof(cpi->interp_filter_selected[0]));
|
|
}
|
|
|
|
if (cpi->refresh_golden_frame) {
|
|
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
|
|
cm->new_fb_idx);
|
|
if (!cpi->rc.is_src_frame_alt_ref)
|
|
memcpy(cpi->interp_filter_selected[GOLDEN_FRAME],
|
|
cpi->interp_filter_selected[0],
|
|
sizeof(cpi->interp_filter_selected[0]));
|
|
else
|
|
memcpy(cpi->interp_filter_selected[GOLDEN_FRAME],
|
|
cpi->interp_filter_selected[ALTREF_FRAME],
|
|
sizeof(cpi->interp_filter_selected[ALTREF_FRAME]));
|
|
}
|
|
}
|
|
|
|
if (cpi->refresh_last_frame) {
|
|
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx],
|
|
cm->new_fb_idx);
|
|
if (!cpi->rc.is_src_frame_alt_ref)
|
|
memcpy(cpi->interp_filter_selected[LAST_FRAME],
|
|
cpi->interp_filter_selected[0],
|
|
sizeof(cpi->interp_filter_selected[0]));
|
|
}
|
|
#if CONFIG_VP9_TEMPORAL_DENOISING
|
|
if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) &&
|
|
cpi->denoiser.denoising_level > kDenLowLow) {
|
|
int svc_base_is_key = 0;
|
|
if (cpi->use_svc) {
|
|
int realloc_fail = 0;
|
|
int layer = LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id,
|
|
cpi->svc.temporal_layer_id,
|
|
cpi->svc.number_temporal_layers);
|
|
LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
|
|
svc_base_is_key = lc->is_key_frame;
|
|
|
|
// Check if we need to allocate extra buffers in the denoiser for
|
|
// refreshed frames.
|
|
realloc_fail = vp9_denoiser_realloc_svc(
|
|
cm, &cpi->denoiser, cpi->refresh_alt_ref_frame,
|
|
cpi->refresh_golden_frame, cpi->refresh_last_frame, cpi->alt_fb_idx,
|
|
cpi->gld_fb_idx, cpi->lst_fb_idx);
|
|
if (realloc_fail)
|
|
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to re-allocate denoiser for SVC");
|
|
}
|
|
vp9_denoiser_update_frame_info(
|
|
&cpi->denoiser, *cpi->Source, cpi->common.frame_type,
|
|
cpi->refresh_alt_ref_frame, cpi->refresh_golden_frame,
|
|
cpi->refresh_last_frame, cpi->alt_fb_idx, cpi->gld_fb_idx,
|
|
cpi->lst_fb_idx, cpi->resize_pending, svc_base_is_key);
|
|
}
|
|
#endif
|
|
if (is_one_pass_cbr_svc(cpi)) {
|
|
// Keep track of frame index for each reference frame.
|
|
SVC *const svc = &cpi->svc;
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
svc->ref_frame_index[cpi->lst_fb_idx] = svc->current_superframe;
|
|
svc->ref_frame_index[cpi->gld_fb_idx] = svc->current_superframe;
|
|
svc->ref_frame_index[cpi->alt_fb_idx] = svc->current_superframe;
|
|
} else {
|
|
if (cpi->refresh_last_frame)
|
|
svc->ref_frame_index[cpi->lst_fb_idx] = svc->current_superframe;
|
|
if (cpi->refresh_golden_frame)
|
|
svc->ref_frame_index[cpi->gld_fb_idx] = svc->current_superframe;
|
|
if (cpi->refresh_alt_ref_frame)
|
|
svc->ref_frame_index[cpi->alt_fb_idx] = svc->current_superframe;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void loopfilter_frame(VP9_COMP *cpi, VP9_COMMON *cm) {
|
|
MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
|
|
struct loopfilter *lf = &cm->lf;
|
|
|
|
const int is_reference_frame =
|
|
(cm->frame_type == KEY_FRAME || cpi->refresh_last_frame ||
|
|
cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame);
|
|
|
|
if (xd->lossless) {
|
|
lf->filter_level = 0;
|
|
lf->last_filt_level = 0;
|
|
} else {
|
|
struct vpx_usec_timer timer;
|
|
|
|
vpx_clear_system_state();
|
|
|
|
vpx_usec_timer_start(&timer);
|
|
|
|
if (!cpi->rc.is_src_frame_alt_ref) {
|
|
if ((cpi->common.frame_type == KEY_FRAME) &&
|
|
(!cpi->rc.this_key_frame_forced)) {
|
|
lf->last_filt_level = 0;
|
|
}
|
|
vp9_pick_filter_level(cpi->Source, cpi, cpi->sf.lpf_pick);
|
|
lf->last_filt_level = lf->filter_level;
|
|
} else {
|
|
lf->filter_level = 0;
|
|
}
|
|
|
|
vpx_usec_timer_mark(&timer);
|
|
cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
|
|
}
|
|
|
|
if (lf->filter_level > 0 && is_reference_frame) {
|
|
vp9_build_mask_frame(cm, lf->filter_level, 0);
|
|
|
|
if (cpi->num_workers > 1)
|
|
vp9_loop_filter_frame_mt(cm->frame_to_show, cm, xd->plane,
|
|
lf->filter_level, 0, 0, cpi->workers,
|
|
cpi->num_workers, &cpi->lf_row_sync);
|
|
else
|
|
vp9_loop_filter_frame(cm->frame_to_show, cm, xd, lf->filter_level, 0, 0);
|
|
}
|
|
|
|
vpx_extend_frame_inner_borders(cm->frame_to_show);
|
|
}
|
|
|
|
static INLINE void alloc_frame_mvs(VP9_COMMON *const cm, int buffer_idx) {
|
|
RefCntBuffer *const new_fb_ptr = &cm->buffer_pool->frame_bufs[buffer_idx];
|
|
if (new_fb_ptr->mvs == NULL || new_fb_ptr->mi_rows < cm->mi_rows ||
|
|
new_fb_ptr->mi_cols < cm->mi_cols) {
|
|
vpx_free(new_fb_ptr->mvs);
|
|
CHECK_MEM_ERROR(cm, new_fb_ptr->mvs,
|
|
(MV_REF *)vpx_calloc(cm->mi_rows * cm->mi_cols,
|
|
sizeof(*new_fb_ptr->mvs)));
|
|
new_fb_ptr->mi_rows = cm->mi_rows;
|
|
new_fb_ptr->mi_cols = cm->mi_cols;
|
|
}
|
|
}
|
|
|
|
void vp9_scale_references(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
MV_REFERENCE_FRAME ref_frame;
|
|
const VP9_REFFRAME ref_mask[3] = { VP9_LAST_FLAG, VP9_GOLD_FLAG,
|
|
VP9_ALT_FLAG };
|
|
|
|
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
|
|
// Need to convert from VP9_REFFRAME to index into ref_mask (subtract 1).
|
|
if (cpi->ref_frame_flags & ref_mask[ref_frame - 1]) {
|
|
BufferPool *const pool = cm->buffer_pool;
|
|
const YV12_BUFFER_CONFIG *const ref =
|
|
get_ref_frame_buffer(cpi, ref_frame);
|
|
|
|
if (ref == NULL) {
|
|
cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX;
|
|
continue;
|
|
}
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) {
|
|
RefCntBuffer *new_fb_ptr = NULL;
|
|
int force_scaling = 0;
|
|
int new_fb = cpi->scaled_ref_idx[ref_frame - 1];
|
|
if (new_fb == INVALID_IDX) {
|
|
new_fb = get_free_fb(cm);
|
|
force_scaling = 1;
|
|
}
|
|
if (new_fb == INVALID_IDX) return;
|
|
new_fb_ptr = &pool->frame_bufs[new_fb];
|
|
if (force_scaling || new_fb_ptr->buf.y_crop_width != cm->width ||
|
|
new_fb_ptr->buf.y_crop_height != cm->height) {
|
|
if (vpx_realloc_frame_buffer(&new_fb_ptr->buf, cm->width, cm->height,
|
|
cm->subsampling_x, cm->subsampling_y,
|
|
cm->use_highbitdepth,
|
|
VP9_ENC_BORDER_IN_PIXELS,
|
|
cm->byte_alignment, NULL, NULL, NULL))
|
|
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate frame buffer");
|
|
scale_and_extend_frame(ref, &new_fb_ptr->buf, (int)cm->bit_depth,
|
|
EIGHTTAP, 0);
|
|
cpi->scaled_ref_idx[ref_frame - 1] = new_fb;
|
|
alloc_frame_mvs(cm, new_fb);
|
|
}
|
|
#else
|
|
if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) {
|
|
RefCntBuffer *new_fb_ptr = NULL;
|
|
int force_scaling = 0;
|
|
int new_fb = cpi->scaled_ref_idx[ref_frame - 1];
|
|
if (new_fb == INVALID_IDX) {
|
|
new_fb = get_free_fb(cm);
|
|
force_scaling = 1;
|
|
}
|
|
if (new_fb == INVALID_IDX) return;
|
|
new_fb_ptr = &pool->frame_bufs[new_fb];
|
|
if (force_scaling || new_fb_ptr->buf.y_crop_width != cm->width ||
|
|
new_fb_ptr->buf.y_crop_height != cm->height) {
|
|
if (vpx_realloc_frame_buffer(&new_fb_ptr->buf, cm->width, cm->height,
|
|
cm->subsampling_x, cm->subsampling_y,
|
|
VP9_ENC_BORDER_IN_PIXELS,
|
|
cm->byte_alignment, NULL, NULL, NULL))
|
|
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate frame buffer");
|
|
vp9_scale_and_extend_frame(ref, &new_fb_ptr->buf, EIGHTTAP, 0);
|
|
cpi->scaled_ref_idx[ref_frame - 1] = new_fb;
|
|
alloc_frame_mvs(cm, new_fb);
|
|
}
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
} else {
|
|
int buf_idx;
|
|
RefCntBuffer *buf = NULL;
|
|
if (cpi->oxcf.pass == 0 && !cpi->use_svc) {
|
|
// Check for release of scaled reference.
|
|
buf_idx = cpi->scaled_ref_idx[ref_frame - 1];
|
|
buf = (buf_idx != INVALID_IDX) ? &pool->frame_bufs[buf_idx] : NULL;
|
|
if (buf != NULL) {
|
|
--buf->ref_count;
|
|
cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX;
|
|
}
|
|
}
|
|
buf_idx = get_ref_frame_buf_idx(cpi, ref_frame);
|
|
buf = &pool->frame_bufs[buf_idx];
|
|
buf->buf.y_crop_width = ref->y_crop_width;
|
|
buf->buf.y_crop_height = ref->y_crop_height;
|
|
cpi->scaled_ref_idx[ref_frame - 1] = buf_idx;
|
|
++buf->ref_count;
|
|
}
|
|
} else {
|
|
if (cpi->oxcf.pass != 0 || cpi->use_svc)
|
|
cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void release_scaled_references(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
int i;
|
|
if (cpi->oxcf.pass == 0 && !cpi->use_svc) {
|
|
// Only release scaled references under certain conditions:
|
|
// if reference will be updated, or if scaled reference has same resolution.
|
|
int refresh[3];
|
|
refresh[0] = (cpi->refresh_last_frame) ? 1 : 0;
|
|
refresh[1] = (cpi->refresh_golden_frame) ? 1 : 0;
|
|
refresh[2] = (cpi->refresh_alt_ref_frame) ? 1 : 0;
|
|
for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
|
|
const int idx = cpi->scaled_ref_idx[i - 1];
|
|
RefCntBuffer *const buf =
|
|
idx != INVALID_IDX ? &cm->buffer_pool->frame_bufs[idx] : NULL;
|
|
const YV12_BUFFER_CONFIG *const ref = get_ref_frame_buffer(cpi, i);
|
|
if (buf != NULL &&
|
|
(refresh[i - 1] || (buf->buf.y_crop_width == ref->y_crop_width &&
|
|
buf->buf.y_crop_height == ref->y_crop_height))) {
|
|
--buf->ref_count;
|
|
cpi->scaled_ref_idx[i - 1] = INVALID_IDX;
|
|
}
|
|
}
|
|
} else {
|
|
for (i = 0; i < MAX_REF_FRAMES; ++i) {
|
|
const int idx = cpi->scaled_ref_idx[i];
|
|
RefCntBuffer *const buf =
|
|
idx != INVALID_IDX ? &cm->buffer_pool->frame_bufs[idx] : NULL;
|
|
if (buf != NULL) {
|
|
--buf->ref_count;
|
|
cpi->scaled_ref_idx[i] = INVALID_IDX;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void full_to_model_count(unsigned int *model_count,
|
|
unsigned int *full_count) {
|
|
int n;
|
|
model_count[ZERO_TOKEN] = full_count[ZERO_TOKEN];
|
|
model_count[ONE_TOKEN] = full_count[ONE_TOKEN];
|
|
model_count[TWO_TOKEN] = full_count[TWO_TOKEN];
|
|
for (n = THREE_TOKEN; n < EOB_TOKEN; ++n)
|
|
model_count[TWO_TOKEN] += full_count[n];
|
|
model_count[EOB_MODEL_TOKEN] = full_count[EOB_TOKEN];
|
|
}
|
|
|
|
static void full_to_model_counts(vp9_coeff_count_model *model_count,
|
|
vp9_coeff_count *full_count) {
|
|
int i, j, k, l;
|
|
|
|
for (i = 0; i < PLANE_TYPES; ++i)
|
|
for (j = 0; j < REF_TYPES; ++j)
|
|
for (k = 0; k < COEF_BANDS; ++k)
|
|
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
|
|
full_to_model_count(model_count[i][j][k][l], full_count[i][j][k][l]);
|
|
}
|
|
|
|
#if 0 && CONFIG_INTERNAL_STATS
|
|
static void output_frame_level_debug_stats(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
FILE *const f = fopen("tmp.stt", cm->current_video_frame ? "a" : "w");
|
|
int64_t recon_err;
|
|
|
|
vpx_clear_system_state();
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (cm->use_highbitdepth) {
|
|
recon_err = vpx_highbd_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
|
|
} else {
|
|
recon_err = vpx_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
|
|
}
|
|
#else
|
|
recon_err = vpx_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
|
|
if (cpi->twopass.total_left_stats.coded_error != 0.0) {
|
|
double dc_quant_devisor;
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
switch (cm->bit_depth) {
|
|
case VPX_BITS_8:
|
|
dc_quant_devisor = 4.0;
|
|
break;
|
|
case VPX_BITS_10:
|
|
dc_quant_devisor = 16.0;
|
|
break;
|
|
case VPX_BITS_12:
|
|
dc_quant_devisor = 64.0;
|
|
break;
|
|
default:
|
|
assert(0 && "bit_depth must be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12");
|
|
break;
|
|
}
|
|
#else
|
|
dc_quant_devisor = 4.0;
|
|
#endif
|
|
|
|
if (!cm->current_video_frame) {
|
|
fprintf(f, "frame, width, height, last ts, last end ts, "
|
|
"source_alt_ref_pending, source_alt_ref_active, "
|
|
"this_frame_target, projected_frame_size, "
|
|
"projected_frame_size / MBs, "
|
|
"projected_frame_size - this_frame_target, "
|
|
"vbr_bits_off_target, vbr_bits_off_target_fast, "
|
|
"twopass.extend_minq, twopass.extend_minq_fast, "
|
|
"total_target_vs_actual, "
|
|
"starting_buffer_level - bits_off_target, "
|
|
"total_actual_bits, base_qindex, q for base_qindex, "
|
|
"dc quant, q for active_worst_quality, avg_q, q for oxcf.cq_level, "
|
|
"refresh_last_frame, refresh_golden_frame, refresh_alt_ref_frame, "
|
|
"frame_type, gfu_boost, "
|
|
"twopass.bits_left, "
|
|
"twopass.total_left_stats.coded_error, "
|
|
"twopass.bits_left / (1 + twopass.total_left_stats.coded_error), "
|
|
"tot_recode_hits, recon_err, kf_boost, "
|
|
"twopass.kf_zeromotion_pct, twopass.fr_content_type, "
|
|
"filter_level, seg.aq_av_offset\n");
|
|
}
|
|
|
|
fprintf(f, "%10u, %d, %d, %10"PRId64", %10"PRId64", %d, %d, %10d, %10d, "
|
|
"%10d, %10d, %10"PRId64", %10"PRId64", %5d, %5d, %10"PRId64", "
|
|
"%10"PRId64", %10"PRId64", %10d, %7.2lf, %7.2lf, %7.2lf, %7.2lf, "
|
|
"%7.2lf, %6d, %6d, %5d, %5d, %5d, %10"PRId64", %10.3lf, %10lf, %8u, "
|
|
"%10"PRId64", %10d, %10d, %10d, %10d, %10d\n",
|
|
cpi->common.current_video_frame,
|
|
cm->width, cm->height,
|
|
cpi->last_time_stamp_seen,
|
|
cpi->last_end_time_stamp_seen,
|
|
cpi->rc.source_alt_ref_pending,
|
|
cpi->rc.source_alt_ref_active,
|
|
cpi->rc.this_frame_target,
|
|
cpi->rc.projected_frame_size,
|
|
cpi->rc.projected_frame_size / cpi->common.MBs,
|
|
(cpi->rc.projected_frame_size - cpi->rc.this_frame_target),
|
|
cpi->rc.vbr_bits_off_target,
|
|
cpi->rc.vbr_bits_off_target_fast,
|
|
cpi->twopass.extend_minq,
|
|
cpi->twopass.extend_minq_fast,
|
|
cpi->rc.total_target_vs_actual,
|
|
(cpi->rc.starting_buffer_level - cpi->rc.bits_off_target),
|
|
cpi->rc.total_actual_bits, cm->base_qindex,
|
|
vp9_convert_qindex_to_q(cm->base_qindex, cm->bit_depth),
|
|
(double)vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth) /
|
|
dc_quant_devisor,
|
|
vp9_convert_qindex_to_q(cpi->twopass.active_worst_quality,
|
|
cm->bit_depth),
|
|
cpi->rc.avg_q,
|
|
vp9_convert_qindex_to_q(cpi->oxcf.cq_level, cm->bit_depth),
|
|
cpi->refresh_last_frame, cpi->refresh_golden_frame,
|
|
cpi->refresh_alt_ref_frame, cm->frame_type, cpi->rc.gfu_boost,
|
|
cpi->twopass.bits_left,
|
|
cpi->twopass.total_left_stats.coded_error,
|
|
cpi->twopass.bits_left /
|
|
(1 + cpi->twopass.total_left_stats.coded_error),
|
|
cpi->tot_recode_hits, recon_err, cpi->rc.kf_boost,
|
|
cpi->twopass.kf_zeromotion_pct,
|
|
cpi->twopass.fr_content_type,
|
|
cm->lf.filter_level,
|
|
cm->seg.aq_av_offset);
|
|
}
|
|
fclose(f);
|
|
|
|
if (0) {
|
|
FILE *const fmodes = fopen("Modes.stt", "a");
|
|
int i;
|
|
|
|
fprintf(fmodes, "%6d:%1d:%1d:%1d ", cpi->common.current_video_frame,
|
|
cm->frame_type, cpi->refresh_golden_frame,
|
|
cpi->refresh_alt_ref_frame);
|
|
|
|
for (i = 0; i < MAX_MODES; ++i)
|
|
fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]);
|
|
|
|
fprintf(fmodes, "\n");
|
|
|
|
fclose(fmodes);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void set_mv_search_params(VP9_COMP *cpi) {
|
|
const VP9_COMMON *const cm = &cpi->common;
|
|
const unsigned int max_mv_def = VPXMIN(cm->width, cm->height);
|
|
|
|
// Default based on max resolution.
|
|
cpi->mv_step_param = vp9_init_search_range(max_mv_def);
|
|
|
|
if (cpi->sf.mv.auto_mv_step_size) {
|
|
if (frame_is_intra_only(cm)) {
|
|
// Initialize max_mv_magnitude for use in the first INTER frame
|
|
// after a key/intra-only frame.
|
|
cpi->max_mv_magnitude = max_mv_def;
|
|
} else {
|
|
if (cm->show_frame) {
|
|
// Allow mv_steps to correspond to twice the max mv magnitude found
|
|
// in the previous frame, capped by the default max_mv_magnitude based
|
|
// on resolution.
|
|
cpi->mv_step_param = vp9_init_search_range(
|
|
VPXMIN(max_mv_def, 2 * cpi->max_mv_magnitude));
|
|
}
|
|
cpi->max_mv_magnitude = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void set_size_independent_vars(VP9_COMP *cpi) {
|
|
vp9_set_speed_features_framesize_independent(cpi);
|
|
vp9_set_rd_speed_thresholds(cpi);
|
|
vp9_set_rd_speed_thresholds_sub8x8(cpi);
|
|
cpi->common.interp_filter = cpi->sf.default_interp_filter;
|
|
}
|
|
|
|
static void set_size_dependent_vars(VP9_COMP *cpi, int *q, int *bottom_index,
|
|
int *top_index) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
|
|
// Setup variables that depend on the dimensions of the frame.
|
|
vp9_set_speed_features_framesize_dependent(cpi);
|
|
|
|
// Decide q and q bounds.
|
|
*q = vp9_rc_pick_q_and_bounds(cpi, bottom_index, top_index);
|
|
|
|
if (!frame_is_intra_only(cm)) {
|
|
vp9_set_high_precision_mv(cpi, (*q) < HIGH_PRECISION_MV_QTHRESH);
|
|
}
|
|
|
|
#if !CONFIG_REALTIME_ONLY
|
|
// Configure experimental use of segmentation for enhanced coding of
|
|
// static regions if indicated.
|
|
// Only allowed in the second pass of a two pass encode, as it requires
|
|
// lagged coding, and if the relevant speed feature flag is set.
|
|
if (cpi->oxcf.pass == 2 && cpi->sf.static_segmentation)
|
|
configure_static_seg_features(cpi);
|
|
#endif // !CONFIG_REALTIME_ONLY
|
|
|
|
#if CONFIG_VP9_POSTPROC && !(CONFIG_VP9_TEMPORAL_DENOISING)
|
|
if (cpi->oxcf.noise_sensitivity > 0) {
|
|
int l = 0;
|
|
switch (cpi->oxcf.noise_sensitivity) {
|
|
case 1: l = 20; break;
|
|
case 2: l = 40; break;
|
|
case 3: l = 60; break;
|
|
case 4:
|
|
case 5: l = 100; break;
|
|
case 6: l = 150; break;
|
|
}
|
|
if (!cpi->common.postproc_state.limits) {
|
|
cpi->common.postproc_state.limits =
|
|
vpx_calloc(cpi->un_scaled_source->y_width,
|
|
sizeof(*cpi->common.postproc_state.limits));
|
|
}
|
|
vp9_denoise(cpi->Source, cpi->Source, l, cpi->common.postproc_state.limits);
|
|
}
|
|
#endif // CONFIG_VP9_POSTPROC
|
|
}
|
|
|
|
#if CONFIG_VP9_TEMPORAL_DENOISING
|
|
static void setup_denoiser_buffer(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
if (cpi->oxcf.noise_sensitivity > 0 &&
|
|
!cpi->denoiser.frame_buffer_initialized) {
|
|
if (vp9_denoiser_alloc(cm, cpi->use_svc, &cpi->denoiser, cm->width,
|
|
cm->height, cm->subsampling_x, cm->subsampling_y,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
cm->use_highbitdepth,
|
|
#endif
|
|
VP9_ENC_BORDER_IN_PIXELS))
|
|
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate denoiser");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void init_motion_estimation(VP9_COMP *cpi) {
|
|
int y_stride = cpi->scaled_source.y_stride;
|
|
|
|
if (cpi->sf.mv.search_method == NSTEP) {
|
|
vp9_init3smotion_compensation(&cpi->ss_cfg, y_stride);
|
|
} else if (cpi->sf.mv.search_method == DIAMOND) {
|
|
vp9_init_dsmotion_compensation(&cpi->ss_cfg, y_stride);
|
|
}
|
|
}
|
|
|
|
static void set_frame_size(VP9_COMP *cpi) {
|
|
int ref_frame;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
VP9EncoderConfig *const oxcf = &cpi->oxcf;
|
|
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
|
|
|
|
#if !CONFIG_REALTIME_ONLY
|
|
if (oxcf->pass == 2 && oxcf->rc_mode == VPX_VBR &&
|
|
((oxcf->resize_mode == RESIZE_FIXED && cm->current_video_frame == 0) ||
|
|
(oxcf->resize_mode == RESIZE_DYNAMIC && cpi->resize_pending))) {
|
|
calculate_coded_size(cpi, &oxcf->scaled_frame_width,
|
|
&oxcf->scaled_frame_height);
|
|
|
|
// There has been a change in frame size.
|
|
vp9_set_size_literal(cpi, oxcf->scaled_frame_width,
|
|
oxcf->scaled_frame_height);
|
|
}
|
|
#endif // !CONFIG_REALTIME_ONLY
|
|
|
|
if (oxcf->pass == 0 && oxcf->rc_mode == VPX_CBR && !cpi->use_svc &&
|
|
oxcf->resize_mode == RESIZE_DYNAMIC && cpi->resize_pending != 0) {
|
|
oxcf->scaled_frame_width =
|
|
(oxcf->width * cpi->resize_scale_num) / cpi->resize_scale_den;
|
|
oxcf->scaled_frame_height =
|
|
(oxcf->height * cpi->resize_scale_num) / cpi->resize_scale_den;
|
|
// There has been a change in frame size.
|
|
vp9_set_size_literal(cpi, oxcf->scaled_frame_width,
|
|
oxcf->scaled_frame_height);
|
|
|
|
// TODO(agrange) Scale cpi->max_mv_magnitude if frame-size has changed.
|
|
set_mv_search_params(cpi);
|
|
|
|
vp9_noise_estimate_init(&cpi->noise_estimate, cm->width, cm->height);
|
|
#if CONFIG_VP9_TEMPORAL_DENOISING
|
|
// Reset the denoiser on the resized frame.
|
|
if (cpi->oxcf.noise_sensitivity > 0) {
|
|
vp9_denoiser_free(&(cpi->denoiser));
|
|
setup_denoiser_buffer(cpi);
|
|
// Dynamic resize is only triggered for non-SVC, so we can force
|
|
// golden frame update here as temporary fix to denoiser.
|
|
cpi->refresh_golden_frame = 1;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
if ((oxcf->pass == 2) &&
|
|
(!cpi->use_svc || (is_two_pass_svc(cpi) &&
|
|
cpi->svc.encode_empty_frame_state != ENCODING))) {
|
|
vp9_set_target_rate(cpi);
|
|
}
|
|
|
|
alloc_frame_mvs(cm, cm->new_fb_idx);
|
|
|
|
// Reset the frame pointers to the current frame size.
|
|
if (vpx_realloc_frame_buffer(get_frame_new_buffer(cm), cm->width, cm->height,
|
|
cm->subsampling_x, cm->subsampling_y,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
cm->use_highbitdepth,
|
|
#endif
|
|
VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
|
|
NULL, NULL, NULL))
|
|
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate frame buffer");
|
|
|
|
alloc_util_frame_buffers(cpi);
|
|
init_motion_estimation(cpi);
|
|
|
|
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
|
|
RefBuffer *const ref_buf = &cm->frame_refs[ref_frame - 1];
|
|
const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame);
|
|
|
|
ref_buf->idx = buf_idx;
|
|
|
|
if (buf_idx != INVALID_IDX) {
|
|
YV12_BUFFER_CONFIG *const buf = &cm->buffer_pool->frame_bufs[buf_idx].buf;
|
|
ref_buf->buf = buf;
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
vp9_setup_scale_factors_for_frame(
|
|
&ref_buf->sf, buf->y_crop_width, buf->y_crop_height, cm->width,
|
|
cm->height, (buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0);
|
|
#else
|
|
vp9_setup_scale_factors_for_frame(&ref_buf->sf, buf->y_crop_width,
|
|
buf->y_crop_height, cm->width,
|
|
cm->height);
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
if (vp9_is_scaled(&ref_buf->sf)) vpx_extend_frame_borders(buf);
|
|
} else {
|
|
ref_buf->buf = NULL;
|
|
}
|
|
}
|
|
|
|
set_ref_ptrs(cm, xd, LAST_FRAME, LAST_FRAME);
|
|
}
|
|
|
|
static void encode_without_recode_loop(VP9_COMP *cpi, size_t *size,
|
|
uint8_t *dest) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
int q = 0, bottom_index = 0, top_index = 0; // Dummy variables.
|
|
const INTERP_FILTER filter_scaler =
|
|
(is_one_pass_cbr_svc(cpi))
|
|
? cpi->svc.downsample_filter_type[cpi->svc.spatial_layer_id]
|
|
: EIGHTTAP;
|
|
const int phase_scaler =
|
|
(is_one_pass_cbr_svc(cpi))
|
|
? cpi->svc.downsample_filter_phase[cpi->svc.spatial_layer_id]
|
|
: 0;
|
|
|
|
// Flag to check if its valid to compute the source sad (used for
|
|
// scene detection and for superblock content state in CBR mode).
|
|
// The flag may get reset below based on SVC or resizing state.
|
|
cpi->compute_source_sad_onepass = cpi->oxcf.mode == REALTIME;
|
|
|
|
vpx_clear_system_state();
|
|
|
|
set_frame_size(cpi);
|
|
|
|
if (is_one_pass_cbr_svc(cpi) &&
|
|
cpi->un_scaled_source->y_width == cm->width << 2 &&
|
|
cpi->un_scaled_source->y_height == cm->height << 2 &&
|
|
cpi->svc.scaled_temp.y_width == cm->width << 1 &&
|
|
cpi->svc.scaled_temp.y_height == cm->height << 1) {
|
|
// For svc, if it is a 1/4x1/4 downscaling, do a two-stage scaling to take
|
|
// advantage of the 1:2 optimized scaler. In the process, the 1/2x1/2
|
|
// result will be saved in scaled_temp and might be used later.
|
|
const INTERP_FILTER filter_scaler2 = cpi->svc.downsample_filter_type[1];
|
|
const int phase_scaler2 = cpi->svc.downsample_filter_phase[1];
|
|
cpi->Source = vp9_svc_twostage_scale(
|
|
cm, cpi->un_scaled_source, &cpi->scaled_source, &cpi->svc.scaled_temp,
|
|
filter_scaler, phase_scaler, filter_scaler2, phase_scaler2);
|
|
cpi->svc.scaled_one_half = 1;
|
|
} else if (is_one_pass_cbr_svc(cpi) &&
|
|
cpi->un_scaled_source->y_width == cm->width << 1 &&
|
|
cpi->un_scaled_source->y_height == cm->height << 1 &&
|
|
cpi->svc.scaled_one_half) {
|
|
// If the spatial layer is 1/2x1/2 and the scaling is already done in the
|
|
// two-stage scaling, use the result directly.
|
|
cpi->Source = &cpi->svc.scaled_temp;
|
|
cpi->svc.scaled_one_half = 0;
|
|
} else {
|
|
cpi->Source = vp9_scale_if_required(
|
|
cm, cpi->un_scaled_source, &cpi->scaled_source, (cpi->oxcf.pass == 0),
|
|
filter_scaler, phase_scaler);
|
|
}
|
|
// Unfiltered raw source used in metrics calculation if the source
|
|
// has been filtered.
|
|
if (is_psnr_calc_enabled(cpi)) {
|
|
#ifdef ENABLE_KF_DENOISE
|
|
if (is_spatial_denoise_enabled(cpi)) {
|
|
cpi->raw_source_frame = vp9_scale_if_required(
|
|
cm, &cpi->raw_unscaled_source, &cpi->raw_scaled_source,
|
|
(cpi->oxcf.pass == 0), EIGHTTAP, phase_scaler);
|
|
} else {
|
|
cpi->raw_source_frame = cpi->Source;
|
|
}
|
|
#else
|
|
cpi->raw_source_frame = cpi->Source;
|
|
#endif
|
|
}
|
|
|
|
if ((cpi->use_svc &&
|
|
(cpi->svc.spatial_layer_id < cpi->svc.number_spatial_layers - 1 ||
|
|
cpi->svc.temporal_layer_id < cpi->svc.number_temporal_layers - 1 ||
|
|
cpi->svc.current_superframe < 1)) ||
|
|
cpi->resize_pending || cpi->resize_state || cpi->external_resize ||
|
|
cpi->resize_state != ORIG) {
|
|
cpi->compute_source_sad_onepass = 0;
|
|
if (cpi->content_state_sb_fd != NULL)
|
|
memset(cpi->content_state_sb_fd, 0,
|
|
(cm->mi_stride >> 3) * ((cm->mi_rows >> 3) + 1) *
|
|
sizeof(*cpi->content_state_sb_fd));
|
|
}
|
|
|
|
// Avoid scaling last_source unless its needed.
|
|
// Last source is needed if avg_source_sad() is used, or if
|
|
// partition_search_type == SOURCE_VAR_BASED_PARTITION, or if noise
|
|
// estimation is enabled.
|
|
if (cpi->unscaled_last_source != NULL &&
|
|
(cpi->oxcf.content == VP9E_CONTENT_SCREEN ||
|
|
(cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == VPX_VBR &&
|
|
cpi->oxcf.mode == REALTIME && cpi->oxcf.speed >= 5) ||
|
|
cpi->sf.partition_search_type == SOURCE_VAR_BASED_PARTITION ||
|
|
(cpi->noise_estimate.enabled && !cpi->oxcf.noise_sensitivity) ||
|
|
cpi->compute_source_sad_onepass))
|
|
cpi->Last_Source = vp9_scale_if_required(
|
|
cm, cpi->unscaled_last_source, &cpi->scaled_last_source,
|
|
(cpi->oxcf.pass == 0), EIGHTTAP, 0);
|
|
|
|
if (cpi->Last_Source == NULL ||
|
|
cpi->Last_Source->y_width != cpi->Source->y_width ||
|
|
cpi->Last_Source->y_height != cpi->Source->y_height)
|
|
cpi->compute_source_sad_onepass = 0;
|
|
|
|
if (cm->frame_type == KEY_FRAME || cpi->resize_pending != 0) {
|
|
memset(cpi->consec_zero_mv, 0,
|
|
cm->mi_rows * cm->mi_cols * sizeof(*cpi->consec_zero_mv));
|
|
}
|
|
|
|
vp9_update_noise_estimate(cpi);
|
|
|
|
// Scene detection is always used for VBR mode or screen-content case.
|
|
// For other cases (e.g., CBR mode) use it for 5 <= speed < 8 for now
|
|
// (need to check encoding time cost for doing this for speed 8).
|
|
cpi->rc.high_source_sad = 0;
|
|
if (cpi->compute_source_sad_onepass && cm->show_frame &&
|
|
(cpi->oxcf.rc_mode == VPX_VBR ||
|
|
cpi->oxcf.content == VP9E_CONTENT_SCREEN ||
|
|
(cpi->oxcf.speed >= 5 && cpi->oxcf.speed < 8 && !cpi->use_svc)))
|
|
vp9_scene_detection_onepass(cpi);
|
|
|
|
// For 1 pass CBR SVC, only ZEROMV is allowed for spatial reference frame
|
|
// when svc->force_zero_mode_spatial_ref = 1. Under those conditions we can
|
|
// avoid this frame-level upsampling (for non intra_only frames).
|
|
if (frame_is_intra_only(cm) == 0 &&
|
|
!(is_one_pass_cbr_svc(cpi) && cpi->svc.force_zero_mode_spatial_ref)) {
|
|
vp9_scale_references(cpi);
|
|
}
|
|
|
|
set_size_independent_vars(cpi);
|
|
set_size_dependent_vars(cpi, &q, &bottom_index, &top_index);
|
|
|
|
if (cpi->sf.copy_partition_flag) alloc_copy_partition_data(cpi);
|
|
|
|
if (cpi->sf.svc_use_lowres_part && cpi->svc.spatial_layer_id == 1) {
|
|
if (cpi->svc.prev_partition_svc == NULL) {
|
|
CHECK_MEM_ERROR(
|
|
cm, cpi->svc.prev_partition_svc,
|
|
(BLOCK_SIZE *)vpx_calloc(cm->mi_stride * cm->mi_rows,
|
|
sizeof(*cpi->svc.prev_partition_svc)));
|
|
}
|
|
}
|
|
|
|
if (cpi->oxcf.speed >= 5 && cpi->oxcf.pass == 0 &&
|
|
cpi->oxcf.rc_mode == VPX_CBR &&
|
|
cpi->oxcf.content != VP9E_CONTENT_SCREEN &&
|
|
cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
|
|
cpi->use_skin_detection = 1;
|
|
}
|
|
|
|
vp9_set_quantizer(cm, q);
|
|
vp9_set_variance_partition_thresholds(cpi, q, 0);
|
|
|
|
setup_frame(cpi);
|
|
|
|
suppress_active_map(cpi);
|
|
|
|
// Variance adaptive and in frame q adjustment experiments are mutually
|
|
// exclusive.
|
|
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
|
|
vp9_vaq_frame_setup(cpi);
|
|
} else if (cpi->oxcf.aq_mode == EQUATOR360_AQ) {
|
|
vp9_360aq_frame_setup(cpi);
|
|
} else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
|
|
vp9_setup_in_frame_q_adj(cpi);
|
|
} else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
|
|
vp9_cyclic_refresh_setup(cpi);
|
|
} else if (cpi->oxcf.aq_mode == LOOKAHEAD_AQ) {
|
|
// it may be pretty bad for rate-control,
|
|
// and I should handle it somehow
|
|
vp9_alt_ref_aq_setup_map(cpi->alt_ref_aq, cpi);
|
|
}
|
|
|
|
apply_active_map(cpi);
|
|
|
|
vp9_encode_frame(cpi);
|
|
|
|
// Check if we should drop this frame because of high overshoot.
|
|
// Only for frames where high temporal-source SAD is detected.
|
|
if (cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == VPX_CBR &&
|
|
cpi->resize_state == ORIG && cm->frame_type != KEY_FRAME &&
|
|
cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
|
|
cpi->rc.high_source_sad == 1) {
|
|
int frame_size = 0;
|
|
// Get an estimate of the encoded frame size.
|
|
save_coding_context(cpi);
|
|
vp9_pack_bitstream(cpi, dest, size);
|
|
restore_coding_context(cpi);
|
|
frame_size = (int)(*size) << 3;
|
|
// Check if encoded frame will overshoot too much, and if so, set the q and
|
|
// adjust some rate control parameters, and return to re-encode the frame.
|
|
if (vp9_encodedframe_overshoot(cpi, frame_size, &q)) {
|
|
vpx_clear_system_state();
|
|
vp9_set_quantizer(cm, q);
|
|
vp9_set_variance_partition_thresholds(cpi, q, 0);
|
|
suppress_active_map(cpi);
|
|
// Turn-off cyclic refresh for re-encoded frame.
|
|
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
|
|
unsigned char *const seg_map = cpi->segmentation_map;
|
|
memset(seg_map, 0, cm->mi_rows * cm->mi_cols);
|
|
vp9_disable_segmentation(&cm->seg);
|
|
}
|
|
apply_active_map(cpi);
|
|
vp9_encode_frame(cpi);
|
|
}
|
|
}
|
|
|
|
// Update some stats from cyclic refresh, and check for golden frame update.
|
|
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled &&
|
|
cm->frame_type != KEY_FRAME)
|
|
vp9_cyclic_refresh_postencode(cpi);
|
|
|
|
// Update the skip mb flag probabilities based on the distribution
|
|
// seen in the last encoder iteration.
|
|
// update_base_skip_probs(cpi);
|
|
vpx_clear_system_state();
|
|
}
|
|
|
|
#define MAX_QSTEP_ADJ 4
|
|
static int get_qstep_adj(int rate_excess, int rate_limit) {
|
|
int qstep =
|
|
rate_limit ? ((rate_excess + rate_limit / 2) / rate_limit) : INT_MAX;
|
|
return VPXMIN(qstep, MAX_QSTEP_ADJ);
|
|
}
|
|
|
|
static void encode_with_recode_loop(VP9_COMP *cpi, size_t *size,
|
|
uint8_t *dest) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
int bottom_index, top_index;
|
|
int loop_count = 0;
|
|
int loop_at_this_size = 0;
|
|
int loop = 0;
|
|
int overshoot_seen = 0;
|
|
int undershoot_seen = 0;
|
|
int frame_over_shoot_limit;
|
|
int frame_under_shoot_limit;
|
|
int q = 0, q_low = 0, q_high = 0;
|
|
int enable_acl;
|
|
#ifdef AGGRESSIVE_VBR
|
|
int qrange_adj = 1;
|
|
#endif
|
|
|
|
set_size_independent_vars(cpi);
|
|
|
|
enable_acl = cpi->sf.allow_acl
|
|
? (cm->frame_type == KEY_FRAME) || (cm->show_frame == 0)
|
|
: 0;
|
|
|
|
do {
|
|
vpx_clear_system_state();
|
|
|
|
set_frame_size(cpi);
|
|
|
|
if (loop_count == 0 || cpi->resize_pending != 0) {
|
|
set_size_dependent_vars(cpi, &q, &bottom_index, &top_index);
|
|
|
|
#ifdef AGGRESSIVE_VBR
|
|
if (two_pass_first_group_inter(cpi)) {
|
|
// Adjustment limits for min and max q
|
|
qrange_adj = VPXMAX(1, (top_index - bottom_index) / 2);
|
|
|
|
bottom_index =
|
|
VPXMAX(bottom_index - qrange_adj / 2, cpi->oxcf.best_allowed_q);
|
|
top_index =
|
|
VPXMIN(cpi->oxcf.worst_allowed_q, top_index + qrange_adj / 2);
|
|
}
|
|
#endif
|
|
// TODO(agrange) Scale cpi->max_mv_magnitude if frame-size has changed.
|
|
set_mv_search_params(cpi);
|
|
|
|
// Reset the loop state for new frame size.
|
|
overshoot_seen = 0;
|
|
undershoot_seen = 0;
|
|
|
|
// Reconfiguration for change in frame size has concluded.
|
|
cpi->resize_pending = 0;
|
|
|
|
q_low = bottom_index;
|
|
q_high = top_index;
|
|
|
|
loop_at_this_size = 0;
|
|
}
|
|
|
|
// Decide frame size bounds first time through.
|
|
if (loop_count == 0) {
|
|
vp9_rc_compute_frame_size_bounds(cpi, rc->this_frame_target,
|
|
&frame_under_shoot_limit,
|
|
&frame_over_shoot_limit);
|
|
}
|
|
|
|
cpi->Source =
|
|
vp9_scale_if_required(cm, cpi->un_scaled_source, &cpi->scaled_source,
|
|
(cpi->oxcf.pass == 0), EIGHTTAP, 0);
|
|
|
|
// Unfiltered raw source used in metrics calculation if the source
|
|
// has been filtered.
|
|
if (is_psnr_calc_enabled(cpi)) {
|
|
#ifdef ENABLE_KF_DENOISE
|
|
if (is_spatial_denoise_enabled(cpi)) {
|
|
cpi->raw_source_frame = vp9_scale_if_required(
|
|
cm, &cpi->raw_unscaled_source, &cpi->raw_scaled_source,
|
|
(cpi->oxcf.pass == 0), EIGHTTAP, 0);
|
|
} else {
|
|
cpi->raw_source_frame = cpi->Source;
|
|
}
|
|
#else
|
|
cpi->raw_source_frame = cpi->Source;
|
|
#endif
|
|
}
|
|
|
|
if (cpi->unscaled_last_source != NULL)
|
|
cpi->Last_Source = vp9_scale_if_required(
|
|
cm, cpi->unscaled_last_source, &cpi->scaled_last_source,
|
|
(cpi->oxcf.pass == 0), EIGHTTAP, 0);
|
|
|
|
if (frame_is_intra_only(cm) == 0) {
|
|
if (loop_count > 0) {
|
|
release_scaled_references(cpi);
|
|
}
|
|
vp9_scale_references(cpi);
|
|
}
|
|
|
|
vp9_set_quantizer(cm, q);
|
|
|
|
if (loop_count == 0) setup_frame(cpi);
|
|
|
|
// Variance adaptive and in frame q adjustment experiments are mutually
|
|
// exclusive.
|
|
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
|
|
vp9_vaq_frame_setup(cpi);
|
|
} else if (cpi->oxcf.aq_mode == EQUATOR360_AQ) {
|
|
vp9_360aq_frame_setup(cpi);
|
|
} else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
|
|
vp9_setup_in_frame_q_adj(cpi);
|
|
} else if (cpi->oxcf.aq_mode == LOOKAHEAD_AQ) {
|
|
vp9_alt_ref_aq_setup_map(cpi->alt_ref_aq, cpi);
|
|
}
|
|
|
|
vp9_encode_frame(cpi);
|
|
|
|
// Update the skip mb flag probabilities based on the distribution
|
|
// seen in the last encoder iteration.
|
|
// update_base_skip_probs(cpi);
|
|
|
|
vpx_clear_system_state();
|
|
|
|
// Dummy pack of the bitstream using up to date stats to get an
|
|
// accurate estimate of output frame size to determine if we need
|
|
// to recode.
|
|
if (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF) {
|
|
save_coding_context(cpi);
|
|
if (!cpi->sf.use_nonrd_pick_mode) vp9_pack_bitstream(cpi, dest, size);
|
|
|
|
rc->projected_frame_size = (int)(*size) << 3;
|
|
|
|
if (frame_over_shoot_limit == 0) frame_over_shoot_limit = 1;
|
|
}
|
|
|
|
if (cpi->oxcf.rc_mode == VPX_Q) {
|
|
loop = 0;
|
|
} else {
|
|
if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced &&
|
|
(rc->projected_frame_size < rc->max_frame_bandwidth)) {
|
|
int last_q = q;
|
|
int64_t kf_err;
|
|
|
|
int64_t high_err_target = cpi->ambient_err;
|
|
int64_t low_err_target = cpi->ambient_err >> 1;
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (cm->use_highbitdepth) {
|
|
kf_err = vpx_highbd_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
|
|
} else {
|
|
kf_err = vpx_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
|
|
}
|
|
#else
|
|
kf_err = vpx_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
// Prevent possible divide by zero error below for perfect KF
|
|
kf_err += !kf_err;
|
|
|
|
// The key frame is not good enough or we can afford
|
|
// to make it better without undue risk of popping.
|
|
if ((kf_err > high_err_target &&
|
|
rc->projected_frame_size <= frame_over_shoot_limit) ||
|
|
(kf_err > low_err_target &&
|
|
rc->projected_frame_size <= frame_under_shoot_limit)) {
|
|
// Lower q_high
|
|
q_high = q > q_low ? q - 1 : q_low;
|
|
|
|
// Adjust Q
|
|
q = (int)((q * high_err_target) / kf_err);
|
|
q = VPXMIN(q, (q_high + q_low) >> 1);
|
|
} else if (kf_err < low_err_target &&
|
|
rc->projected_frame_size >= frame_under_shoot_limit) {
|
|
// The key frame is much better than the previous frame
|
|
// Raise q_low
|
|
q_low = q < q_high ? q + 1 : q_high;
|
|
|
|
// Adjust Q
|
|
q = (int)((q * low_err_target) / kf_err);
|
|
q = VPXMIN(q, (q_high + q_low + 1) >> 1);
|
|
}
|
|
|
|
// Clamp Q to upper and lower limits:
|
|
q = clamp(q, q_low, q_high);
|
|
|
|
loop = q != last_q;
|
|
} else if (recode_loop_test(cpi, frame_over_shoot_limit,
|
|
frame_under_shoot_limit, q,
|
|
VPXMAX(q_high, top_index), bottom_index)) {
|
|
// Is the projected frame size out of range and are we allowed
|
|
// to attempt to recode.
|
|
int last_q = q;
|
|
int retries = 0;
|
|
int qstep;
|
|
|
|
if (cpi->resize_pending == 1) {
|
|
// Change in frame size so go back around the recode loop.
|
|
cpi->rc.frame_size_selector =
|
|
SCALE_STEP1 - cpi->rc.frame_size_selector;
|
|
cpi->rc.next_frame_size_selector = cpi->rc.frame_size_selector;
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
++cpi->tot_recode_hits;
|
|
#endif
|
|
++loop_count;
|
|
loop = 1;
|
|
continue;
|
|
}
|
|
|
|
// Frame size out of permitted range:
|
|
// Update correction factor & compute new Q to try...
|
|
|
|
// Frame is too large
|
|
if (rc->projected_frame_size > rc->this_frame_target) {
|
|
// Special case if the projected size is > the max allowed.
|
|
if ((q == q_high) &&
|
|
((rc->projected_frame_size >= rc->max_frame_bandwidth) ||
|
|
(rc->projected_frame_size >=
|
|
big_rate_miss_high_threshold(cpi)))) {
|
|
int max_rate = VPXMAX(1, VPXMIN(rc->max_frame_bandwidth,
|
|
big_rate_miss_high_threshold(cpi)));
|
|
double q_val_high;
|
|
q_val_high = vp9_convert_qindex_to_q(q_high, cm->bit_depth);
|
|
q_val_high =
|
|
q_val_high * ((double)rc->projected_frame_size / max_rate);
|
|
q_high = vp9_convert_q_to_qindex(q_val_high, cm->bit_depth);
|
|
q_high = clamp(q_high, rc->best_quality, rc->worst_quality);
|
|
}
|
|
|
|
// Raise Qlow as to at least the current value
|
|
qstep =
|
|
get_qstep_adj(rc->projected_frame_size, rc->this_frame_target);
|
|
q_low = VPXMIN(q + qstep, q_high);
|
|
|
|
if (undershoot_seen || loop_at_this_size > 1) {
|
|
// Update rate_correction_factor unless
|
|
vp9_rc_update_rate_correction_factors(cpi);
|
|
|
|
q = (q_high + q_low + 1) / 2;
|
|
} else {
|
|
// Update rate_correction_factor unless
|
|
vp9_rc_update_rate_correction_factors(cpi);
|
|
|
|
q = vp9_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
|
|
VPXMAX(q_high, top_index));
|
|
|
|
while (q < q_low && retries < 10) {
|
|
vp9_rc_update_rate_correction_factors(cpi);
|
|
q = vp9_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
|
|
VPXMAX(q_high, top_index));
|
|
retries++;
|
|
}
|
|
}
|
|
|
|
overshoot_seen = 1;
|
|
} else {
|
|
// Frame is too small
|
|
qstep =
|
|
get_qstep_adj(rc->this_frame_target, rc->projected_frame_size);
|
|
q_high = VPXMAX(q - qstep, q_low);
|
|
|
|
if (overshoot_seen || loop_at_this_size > 1) {
|
|
vp9_rc_update_rate_correction_factors(cpi);
|
|
q = (q_high + q_low) / 2;
|
|
} else {
|
|
vp9_rc_update_rate_correction_factors(cpi);
|
|
q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
|
|
VPXMIN(q_low, bottom_index), top_index);
|
|
// Special case reset for qlow for constrained quality.
|
|
// This should only trigger where there is very substantial
|
|
// undershoot on a frame and the auto cq level is above
|
|
// the user passsed in value.
|
|
if (cpi->oxcf.rc_mode == VPX_CQ && q < q_low) {
|
|
q_low = q;
|
|
}
|
|
|
|
while (q > q_high && retries < 10) {
|
|
vp9_rc_update_rate_correction_factors(cpi);
|
|
q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
|
|
VPXMIN(q_low, bottom_index), top_index);
|
|
retries++;
|
|
}
|
|
}
|
|
undershoot_seen = 1;
|
|
}
|
|
|
|
// Clamp Q to upper and lower limits:
|
|
q = clamp(q, q_low, q_high);
|
|
|
|
loop = (q != last_q);
|
|
} else {
|
|
loop = 0;
|
|
}
|
|
}
|
|
|
|
// Special case for overlay frame.
|
|
if (rc->is_src_frame_alt_ref &&
|
|
rc->projected_frame_size < rc->max_frame_bandwidth)
|
|
loop = 0;
|
|
|
|
if (loop) {
|
|
++loop_count;
|
|
++loop_at_this_size;
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
++cpi->tot_recode_hits;
|
|
#endif
|
|
}
|
|
|
|
if (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF)
|
|
if (loop || !enable_acl) restore_coding_context(cpi);
|
|
} while (loop);
|
|
|
|
#ifdef AGGRESSIVE_VBR
|
|
if (two_pass_first_group_inter(cpi)) {
|
|
cpi->twopass.active_worst_quality =
|
|
VPXMIN(q + qrange_adj, cpi->oxcf.worst_allowed_q);
|
|
} else if (!frame_is_kf_gf_arf(cpi)) {
|
|
#else
|
|
if (!frame_is_kf_gf_arf(cpi)) {
|
|
#endif
|
|
// Have we been forced to adapt Q outside the expected range by an extreme
|
|
// rate miss. If so adjust the active maxQ for the subsequent frames.
|
|
if (q > cpi->twopass.active_worst_quality) {
|
|
cpi->twopass.active_worst_quality = q;
|
|
#ifdef CORPUS_VBR_EXPERIMENT
|
|
} else if (q == q_low && rc->projected_frame_size < rc->this_frame_target) {
|
|
cpi->twopass.active_worst_quality =
|
|
VPXMAX(q, cpi->twopass.active_worst_quality - 1);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (enable_acl) {
|
|
// Skip recoding, if model diff is below threshold
|
|
const int thresh = compute_context_model_thresh(cpi);
|
|
const int diff = compute_context_model_diff(cm);
|
|
if (diff < thresh) {
|
|
vpx_clear_system_state();
|
|
restore_coding_context(cpi);
|
|
return;
|
|
}
|
|
|
|
vp9_encode_frame(cpi);
|
|
vpx_clear_system_state();
|
|
restore_coding_context(cpi);
|
|
vp9_pack_bitstream(cpi, dest, size);
|
|
|
|
vp9_encode_frame(cpi);
|
|
vpx_clear_system_state();
|
|
|
|
restore_coding_context(cpi);
|
|
}
|
|
}
|
|
|
|
static int get_ref_frame_flags(const VP9_COMP *cpi) {
|
|
const int *const map = cpi->common.ref_frame_map;
|
|
const int gold_is_last = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idx];
|
|
const int alt_is_last = map[cpi->alt_fb_idx] == map[cpi->lst_fb_idx];
|
|
const int gold_is_alt = map[cpi->gld_fb_idx] == map[cpi->alt_fb_idx];
|
|
int flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG;
|
|
|
|
if (gold_is_last) flags &= ~VP9_GOLD_FLAG;
|
|
|
|
if (cpi->rc.frames_till_gf_update_due == INT_MAX &&
|
|
(cpi->svc.number_temporal_layers == 1 &&
|
|
cpi->svc.number_spatial_layers == 1))
|
|
flags &= ~VP9_GOLD_FLAG;
|
|
|
|
if (alt_is_last) flags &= ~VP9_ALT_FLAG;
|
|
|
|
if (gold_is_alt) flags &= ~VP9_ALT_FLAG;
|
|
|
|
return flags;
|
|
}
|
|
|
|
static void set_ext_overrides(VP9_COMP *cpi) {
|
|
// Overrides the defaults with the externally supplied values with
|
|
// vp9_update_reference() and vp9_update_entropy() calls
|
|
// Note: The overrides are valid only for the next frame passed
|
|
// to encode_frame_to_data_rate() function
|
|
if (cpi->ext_refresh_frame_context_pending) {
|
|
cpi->common.refresh_frame_context = cpi->ext_refresh_frame_context;
|
|
cpi->ext_refresh_frame_context_pending = 0;
|
|
}
|
|
if (cpi->ext_refresh_frame_flags_pending) {
|
|
cpi->refresh_last_frame = cpi->ext_refresh_last_frame;
|
|
cpi->refresh_golden_frame = cpi->ext_refresh_golden_frame;
|
|
cpi->refresh_alt_ref_frame = cpi->ext_refresh_alt_ref_frame;
|
|
}
|
|
}
|
|
|
|
YV12_BUFFER_CONFIG *vp9_svc_twostage_scale(
|
|
VP9_COMMON *cm, YV12_BUFFER_CONFIG *unscaled, YV12_BUFFER_CONFIG *scaled,
|
|
YV12_BUFFER_CONFIG *scaled_temp, INTERP_FILTER filter_type,
|
|
int phase_scaler, INTERP_FILTER filter_type2, int phase_scaler2) {
|
|
if (cm->mi_cols * MI_SIZE != unscaled->y_width ||
|
|
cm->mi_rows * MI_SIZE != unscaled->y_height) {
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (cm->bit_depth == VPX_BITS_8) {
|
|
vp9_scale_and_extend_frame(unscaled, scaled_temp, filter_type2,
|
|
phase_scaler2);
|
|
vp9_scale_and_extend_frame(scaled_temp, scaled, filter_type,
|
|
phase_scaler);
|
|
} else {
|
|
scale_and_extend_frame(unscaled, scaled_temp, (int)cm->bit_depth,
|
|
filter_type2, phase_scaler2);
|
|
scale_and_extend_frame(scaled_temp, scaled, (int)cm->bit_depth,
|
|
filter_type, phase_scaler);
|
|
}
|
|
#else
|
|
vp9_scale_and_extend_frame(unscaled, scaled_temp, filter_type2,
|
|
phase_scaler2);
|
|
vp9_scale_and_extend_frame(scaled_temp, scaled, filter_type, phase_scaler);
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
return scaled;
|
|
} else {
|
|
return unscaled;
|
|
}
|
|
}
|
|
|
|
YV12_BUFFER_CONFIG *vp9_scale_if_required(
|
|
VP9_COMMON *cm, YV12_BUFFER_CONFIG *unscaled, YV12_BUFFER_CONFIG *scaled,
|
|
int use_normative_scaler, INTERP_FILTER filter_type, int phase_scaler) {
|
|
if (cm->mi_cols * MI_SIZE != unscaled->y_width ||
|
|
cm->mi_rows * MI_SIZE != unscaled->y_height) {
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (use_normative_scaler && unscaled->y_width <= (scaled->y_width << 1) &&
|
|
unscaled->y_height <= (scaled->y_height << 1))
|
|
if (cm->bit_depth == VPX_BITS_8)
|
|
vp9_scale_and_extend_frame(unscaled, scaled, filter_type, phase_scaler);
|
|
else
|
|
scale_and_extend_frame(unscaled, scaled, (int)cm->bit_depth,
|
|
filter_type, phase_scaler);
|
|
else
|
|
scale_and_extend_frame_nonnormative(unscaled, scaled, (int)cm->bit_depth);
|
|
#else
|
|
if (use_normative_scaler && unscaled->y_width <= (scaled->y_width << 1) &&
|
|
unscaled->y_height <= (scaled->y_height << 1))
|
|
vp9_scale_and_extend_frame(unscaled, scaled, filter_type, phase_scaler);
|
|
else
|
|
scale_and_extend_frame_nonnormative(unscaled, scaled);
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
return scaled;
|
|
} else {
|
|
return unscaled;
|
|
}
|
|
}
|
|
|
|
static void set_arf_sign_bias(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
int arf_sign_bias;
|
|
|
|
if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
|
|
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
|
|
arf_sign_bias = cpi->rc.source_alt_ref_active &&
|
|
(!cpi->refresh_alt_ref_frame ||
|
|
(gf_group->rf_level[gf_group->index] == GF_ARF_LOW));
|
|
} else {
|
|
arf_sign_bias =
|
|
(cpi->rc.source_alt_ref_active && !cpi->refresh_alt_ref_frame);
|
|
}
|
|
cm->ref_frame_sign_bias[ALTREF_FRAME] = arf_sign_bias;
|
|
}
|
|
|
|
static int setup_interp_filter_search_mask(VP9_COMP *cpi) {
|
|
INTERP_FILTER ifilter;
|
|
int ref_total[MAX_REF_FRAMES] = { 0 };
|
|
MV_REFERENCE_FRAME ref;
|
|
int mask = 0;
|
|
if (cpi->common.last_frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame)
|
|
return mask;
|
|
for (ref = LAST_FRAME; ref <= ALTREF_FRAME; ++ref)
|
|
for (ifilter = EIGHTTAP; ifilter <= EIGHTTAP_SHARP; ++ifilter)
|
|
ref_total[ref] += cpi->interp_filter_selected[ref][ifilter];
|
|
|
|
for (ifilter = EIGHTTAP; ifilter <= EIGHTTAP_SHARP; ++ifilter) {
|
|
if ((ref_total[LAST_FRAME] &&
|
|
cpi->interp_filter_selected[LAST_FRAME][ifilter] == 0) &&
|
|
(ref_total[GOLDEN_FRAME] == 0 ||
|
|
cpi->interp_filter_selected[GOLDEN_FRAME][ifilter] * 50 <
|
|
ref_total[GOLDEN_FRAME]) &&
|
|
(ref_total[ALTREF_FRAME] == 0 ||
|
|
cpi->interp_filter_selected[ALTREF_FRAME][ifilter] * 50 <
|
|
ref_total[ALTREF_FRAME]))
|
|
mask |= 1 << ifilter;
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
#ifdef ENABLE_KF_DENOISE
|
|
// Baseline Kernal weights for denoise
|
|
static uint8_t dn_kernal_3[9] = { 1, 2, 1, 2, 4, 2, 1, 2, 1 };
|
|
static uint8_t dn_kernal_5[25] = { 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4,
|
|
2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1 };
|
|
|
|
static INLINE void add_denoise_point(int centre_val, int data_val, int thresh,
|
|
uint8_t point_weight, int *sum_val,
|
|
int *sum_weight) {
|
|
if (abs(centre_val - data_val) <= thresh) {
|
|
*sum_weight += point_weight;
|
|
*sum_val += (int)data_val * (int)point_weight;
|
|
}
|
|
}
|
|
|
|
static void spatial_denoise_point(uint8_t *src_ptr, const int stride,
|
|
const int strength) {
|
|
int sum_weight = 0;
|
|
int sum_val = 0;
|
|
int thresh = strength;
|
|
int kernal_size = 5;
|
|
int half_k_size = 2;
|
|
int i, j;
|
|
int max_diff = 0;
|
|
uint8_t *tmp_ptr;
|
|
uint8_t *kernal_ptr;
|
|
|
|
// Find the maximum deviation from the source point in the locale.
|
|
tmp_ptr = src_ptr - (stride * (half_k_size + 1)) - (half_k_size + 1);
|
|
for (i = 0; i < kernal_size + 2; ++i) {
|
|
for (j = 0; j < kernal_size + 2; ++j) {
|
|
max_diff = VPXMAX(max_diff, abs((int)*src_ptr - (int)tmp_ptr[j]));
|
|
}
|
|
tmp_ptr += stride;
|
|
}
|
|
|
|
// Select the kernal size.
|
|
if (max_diff > (strength + (strength >> 1))) {
|
|
kernal_size = 3;
|
|
half_k_size = 1;
|
|
thresh = thresh >> 1;
|
|
}
|
|
kernal_ptr = (kernal_size == 3) ? dn_kernal_3 : dn_kernal_5;
|
|
|
|
// Apply the kernal
|
|
tmp_ptr = src_ptr - (stride * half_k_size) - half_k_size;
|
|
for (i = 0; i < kernal_size; ++i) {
|
|
for (j = 0; j < kernal_size; ++j) {
|
|
add_denoise_point((int)*src_ptr, (int)tmp_ptr[j], thresh, *kernal_ptr,
|
|
&sum_val, &sum_weight);
|
|
++kernal_ptr;
|
|
}
|
|
tmp_ptr += stride;
|
|
}
|
|
|
|
// Update the source value with the new filtered value
|
|
*src_ptr = (uint8_t)((sum_val + (sum_weight >> 1)) / sum_weight);
|
|
}
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
static void highbd_spatial_denoise_point(uint16_t *src_ptr, const int stride,
|
|
const int strength) {
|
|
int sum_weight = 0;
|
|
int sum_val = 0;
|
|
int thresh = strength;
|
|
int kernal_size = 5;
|
|
int half_k_size = 2;
|
|
int i, j;
|
|
int max_diff = 0;
|
|
uint16_t *tmp_ptr;
|
|
uint8_t *kernal_ptr;
|
|
|
|
// Find the maximum deviation from the source point in the locale.
|
|
tmp_ptr = src_ptr - (stride * (half_k_size + 1)) - (half_k_size + 1);
|
|
for (i = 0; i < kernal_size + 2; ++i) {
|
|
for (j = 0; j < kernal_size + 2; ++j) {
|
|
max_diff = VPXMAX(max_diff, abs((int)src_ptr - (int)tmp_ptr[j]));
|
|
}
|
|
tmp_ptr += stride;
|
|
}
|
|
|
|
// Select the kernal size.
|
|
if (max_diff > (strength + (strength >> 1))) {
|
|
kernal_size = 3;
|
|
half_k_size = 1;
|
|
thresh = thresh >> 1;
|
|
}
|
|
kernal_ptr = (kernal_size == 3) ? dn_kernal_3 : dn_kernal_5;
|
|
|
|
// Apply the kernal
|
|
tmp_ptr = src_ptr - (stride * half_k_size) - half_k_size;
|
|
for (i = 0; i < kernal_size; ++i) {
|
|
for (j = 0; j < kernal_size; ++j) {
|
|
add_denoise_point((int)*src_ptr, (int)tmp_ptr[j], thresh, *kernal_ptr,
|
|
&sum_val, &sum_weight);
|
|
++kernal_ptr;
|
|
}
|
|
tmp_ptr += stride;
|
|
}
|
|
|
|
// Update the source value with the new filtered value
|
|
*src_ptr = (uint16_t)((sum_val + (sum_weight >> 1)) / sum_weight);
|
|
}
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
// Apply thresholded spatial noise supression to a given buffer.
|
|
static void spatial_denoise_buffer(VP9_COMP *cpi, uint8_t *buffer,
|
|
const int stride, const int width,
|
|
const int height, const int strength) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
uint8_t *src_ptr = buffer;
|
|
int row;
|
|
int col;
|
|
|
|
for (row = 0; row < height; ++row) {
|
|
for (col = 0; col < width; ++col) {
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (cm->use_highbitdepth)
|
|
highbd_spatial_denoise_point(CONVERT_TO_SHORTPTR(&src_ptr[col]), stride,
|
|
strength);
|
|
else
|
|
spatial_denoise_point(&src_ptr[col], stride, strength);
|
|
#else
|
|
spatial_denoise_point(&src_ptr[col], stride, strength);
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
}
|
|
src_ptr += stride;
|
|
}
|
|
}
|
|
|
|
// Apply thresholded spatial noise supression to source.
|
|
static void spatial_denoise_frame(VP9_COMP *cpi) {
|
|
YV12_BUFFER_CONFIG *src = cpi->Source;
|
|
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
|
|
TWO_PASS *const twopass = &cpi->twopass;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
|
|
// Base the filter strength on the current active max Q.
|
|
const int q = (int)(vp9_convert_qindex_to_q(twopass->active_worst_quality,
|
|
cm->bit_depth));
|
|
int strength =
|
|
VPXMAX(oxcf->arnr_strength >> 2, VPXMIN(oxcf->arnr_strength, (q >> 4)));
|
|
|
|
// Denoise each of Y,U and V buffers.
|
|
spatial_denoise_buffer(cpi, src->y_buffer, src->y_stride, src->y_width,
|
|
src->y_height, strength);
|
|
|
|
strength += (strength >> 1);
|
|
spatial_denoise_buffer(cpi, src->u_buffer, src->uv_stride, src->uv_width,
|
|
src->uv_height, strength << 1);
|
|
|
|
spatial_denoise_buffer(cpi, src->v_buffer, src->uv_stride, src->uv_width,
|
|
src->uv_height, strength << 1);
|
|
}
|
|
#endif // ENABLE_KF_DENOISE
|
|
|
|
static void vp9_try_disable_lookahead_aq(VP9_COMP *cpi, size_t *size,
|
|
uint8_t *dest) {
|
|
if (cpi->common.seg.enabled)
|
|
if (ALT_REF_AQ_PROTECT_GAIN) {
|
|
size_t nsize = *size;
|
|
int overhead;
|
|
|
|
// TODO(yuryg): optimize this, as
|
|
// we don't really need to repack
|
|
|
|
save_coding_context(cpi);
|
|
vp9_disable_segmentation(&cpi->common.seg);
|
|
vp9_pack_bitstream(cpi, dest, &nsize);
|
|
restore_coding_context(cpi);
|
|
|
|
overhead = (int)*size - (int)nsize;
|
|
|
|
if (vp9_alt_ref_aq_disable_if(cpi->alt_ref_aq, overhead, (int)*size))
|
|
vp9_encode_frame(cpi);
|
|
else
|
|
vp9_enable_segmentation(&cpi->common.seg);
|
|
}
|
|
}
|
|
|
|
static void encode_frame_to_data_rate(VP9_COMP *cpi, size_t *size,
|
|
uint8_t *dest,
|
|
unsigned int *frame_flags) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
|
|
struct segmentation *const seg = &cm->seg;
|
|
TX_SIZE t;
|
|
|
|
set_ext_overrides(cpi);
|
|
vpx_clear_system_state();
|
|
|
|
#ifdef ENABLE_KF_DENOISE
|
|
// Spatial denoise of key frame.
|
|
if (is_spatial_denoise_enabled(cpi)) spatial_denoise_frame(cpi);
|
|
#endif
|
|
|
|
// Set the arf sign bias for this frame.
|
|
set_arf_sign_bias(cpi);
|
|
|
|
// Set default state for segment based loop filter update flags.
|
|
cm->lf.mode_ref_delta_update = 0;
|
|
|
|
if (cpi->oxcf.pass == 2 && cpi->sf.adaptive_interp_filter_search)
|
|
cpi->sf.interp_filter_search_mask = setup_interp_filter_search_mask(cpi);
|
|
|
|
// Set various flags etc to special state if it is a key frame.
|
|
if (frame_is_intra_only(cm)) {
|
|
// Reset the loop filter deltas and segmentation map.
|
|
vp9_reset_segment_features(&cm->seg);
|
|
|
|
// If segmentation is enabled force a map update for key frames.
|
|
if (seg->enabled) {
|
|
seg->update_map = 1;
|
|
seg->update_data = 1;
|
|
}
|
|
|
|
// The alternate reference frame cannot be active for a key frame.
|
|
cpi->rc.source_alt_ref_active = 0;
|
|
|
|
cm->error_resilient_mode = oxcf->error_resilient_mode;
|
|
cm->frame_parallel_decoding_mode = oxcf->frame_parallel_decoding_mode;
|
|
|
|
// By default, encoder assumes decoder can use prev_mi.
|
|
if (cm->error_resilient_mode) {
|
|
cm->frame_parallel_decoding_mode = 1;
|
|
cm->reset_frame_context = 0;
|
|
cm->refresh_frame_context = 0;
|
|
} else if (cm->intra_only) {
|
|
// Only reset the current context.
|
|
cm->reset_frame_context = 2;
|
|
}
|
|
}
|
|
if (is_two_pass_svc(cpi) && cm->error_resilient_mode == 0) {
|
|
// Use context 0 for intra only empty frame, but the last frame context
|
|
// for other empty frames.
|
|
if (cpi->svc.encode_empty_frame_state == ENCODING) {
|
|
if (cpi->svc.encode_intra_empty_frame != 0)
|
|
cm->frame_context_idx = 0;
|
|
else
|
|
cm->frame_context_idx = FRAME_CONTEXTS - 1;
|
|
} else {
|
|
cm->frame_context_idx =
|
|
cpi->svc.spatial_layer_id * cpi->svc.number_temporal_layers +
|
|
cpi->svc.temporal_layer_id;
|
|
}
|
|
|
|
cm->frame_parallel_decoding_mode = oxcf->frame_parallel_decoding_mode;
|
|
|
|
// The probs will be updated based on the frame type of its previous
|
|
// frame if frame_parallel_decoding_mode is 0. The type may vary for
|
|
// the frame after a key frame in base layer since we may drop enhancement
|
|
// layers. So set frame_parallel_decoding_mode to 1 in this case.
|
|
if (cm->frame_parallel_decoding_mode == 0) {
|
|
if (cpi->svc.number_temporal_layers == 1) {
|
|
if (cpi->svc.spatial_layer_id == 0 &&
|
|
cpi->svc.layer_context[0].last_frame_type == KEY_FRAME)
|
|
cm->frame_parallel_decoding_mode = 1;
|
|
} else if (cpi->svc.spatial_layer_id == 0) {
|
|
// Find the 2nd frame in temporal base layer and 1st frame in temporal
|
|
// enhancement layers from the key frame.
|
|
int i;
|
|
for (i = 0; i < cpi->svc.number_temporal_layers; ++i) {
|
|
if (cpi->svc.layer_context[0].frames_from_key_frame == 1 << i) {
|
|
cm->frame_parallel_decoding_mode = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// For 1 pass CBR, check if we are dropping this frame.
|
|
// For spatial layers, for now only check for frame-dropping on first spatial
|
|
// layer, and if decision is to drop, we drop whole super-frame.
|
|
if (oxcf->pass == 0 && oxcf->rc_mode == VPX_CBR &&
|
|
cm->frame_type != KEY_FRAME) {
|
|
if (vp9_rc_drop_frame(cpi) ||
|
|
(is_one_pass_cbr_svc(cpi) && cpi->svc.rc_drop_superframe == 1)) {
|
|
vp9_rc_postencode_update_drop_frame(cpi);
|
|
++cm->current_video_frame;
|
|
cpi->ext_refresh_frame_flags_pending = 0;
|
|
cpi->svc.rc_drop_superframe = 1;
|
|
cpi->last_frame_dropped = 1;
|
|
// TODO(marpan): Advancing the svc counters on dropped frames can break
|
|
// the referencing scheme for the fixed svc patterns defined in
|
|
// vp9_one_pass_cbr_svc_start_layer(). Look into fixing this issue, but
|
|
// for now, don't advance the svc frame counters on dropped frame.
|
|
// if (cpi->use_svc)
|
|
// vp9_inc_frame_in_layer(cpi);
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
vpx_clear_system_state();
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
memset(cpi->mode_chosen_counts, 0,
|
|
MAX_MODES * sizeof(*cpi->mode_chosen_counts));
|
|
#endif
|
|
|
|
if (cpi->sf.recode_loop == DISALLOW_RECODE) {
|
|
encode_without_recode_loop(cpi, size, dest);
|
|
} else {
|
|
encode_with_recode_loop(cpi, size, dest);
|
|
}
|
|
|
|
cpi->last_frame_dropped = 0;
|
|
|
|
// Disable segmentation if it decrease rate/distortion ratio
|
|
if (cpi->oxcf.aq_mode == LOOKAHEAD_AQ)
|
|
vp9_try_disable_lookahead_aq(cpi, size, dest);
|
|
|
|
#if CONFIG_VP9_TEMPORAL_DENOISING
|
|
#ifdef OUTPUT_YUV_DENOISED
|
|
if (oxcf->noise_sensitivity > 0 && denoise_svc(cpi)) {
|
|
vpx_write_yuv_frame(yuv_denoised_file,
|
|
&cpi->denoiser.running_avg_y[INTRA_FRAME]);
|
|
}
|
|
#endif
|
|
#endif
|
|
#ifdef OUTPUT_YUV_SKINMAP
|
|
if (cpi->common.current_video_frame > 1) {
|
|
vp9_output_skin_map(cpi, yuv_skinmap_file);
|
|
}
|
|
#endif
|
|
|
|
// Special case code to reduce pulsing when key frames are forced at a
|
|
// fixed interval. Note the reconstruction error if it is the frame before
|
|
// the force key frame
|
|
if (cpi->rc.next_key_frame_forced && cpi->rc.frames_to_key == 1) {
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (cm->use_highbitdepth) {
|
|
cpi->ambient_err =
|
|
vpx_highbd_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
|
|
} else {
|
|
cpi->ambient_err = vpx_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
|
|
}
|
|
#else
|
|
cpi->ambient_err = vpx_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
}
|
|
|
|
// If the encoder forced a KEY_FRAME decision
|
|
if (cm->frame_type == KEY_FRAME) cpi->refresh_last_frame = 1;
|
|
|
|
cm->frame_to_show = get_frame_new_buffer(cm);
|
|
cm->frame_to_show->color_space = cm->color_space;
|
|
cm->frame_to_show->color_range = cm->color_range;
|
|
cm->frame_to_show->render_width = cm->render_width;
|
|
cm->frame_to_show->render_height = cm->render_height;
|
|
|
|
// Pick the loop filter level for the frame.
|
|
loopfilter_frame(cpi, cm);
|
|
|
|
// build the bitstream
|
|
vp9_pack_bitstream(cpi, dest, size);
|
|
|
|
if (cm->seg.update_map) update_reference_segmentation_map(cpi);
|
|
|
|
if (frame_is_intra_only(cm) == 0) {
|
|
release_scaled_references(cpi);
|
|
}
|
|
vp9_update_reference_frames(cpi);
|
|
|
|
for (t = TX_4X4; t <= TX_32X32; t++)
|
|
full_to_model_counts(cpi->td.counts->coef[t],
|
|
cpi->td.rd_counts.coef_counts[t]);
|
|
|
|
if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode)
|
|
vp9_adapt_coef_probs(cm);
|
|
|
|
if (!frame_is_intra_only(cm)) {
|
|
if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) {
|
|
vp9_adapt_mode_probs(cm);
|
|
vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv);
|
|
}
|
|
}
|
|
|
|
cpi->ext_refresh_frame_flags_pending = 0;
|
|
|
|
if (cpi->refresh_golden_frame == 1)
|
|
cpi->frame_flags |= FRAMEFLAGS_GOLDEN;
|
|
else
|
|
cpi->frame_flags &= ~FRAMEFLAGS_GOLDEN;
|
|
|
|
if (cpi->refresh_alt_ref_frame == 1)
|
|
cpi->frame_flags |= FRAMEFLAGS_ALTREF;
|
|
else
|
|
cpi->frame_flags &= ~FRAMEFLAGS_ALTREF;
|
|
|
|
cpi->ref_frame_flags = get_ref_frame_flags(cpi);
|
|
|
|
cm->last_frame_type = cm->frame_type;
|
|
|
|
if (!(is_two_pass_svc(cpi) && cpi->svc.encode_empty_frame_state == ENCODING))
|
|
vp9_rc_postencode_update(cpi, *size);
|
|
|
|
#if 0
|
|
output_frame_level_debug_stats(cpi);
|
|
#endif
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
// Tell the caller that the frame was coded as a key frame
|
|
*frame_flags = cpi->frame_flags | FRAMEFLAGS_KEY;
|
|
} else {
|
|
*frame_flags = cpi->frame_flags & ~FRAMEFLAGS_KEY;
|
|
}
|
|
|
|
// Clear the one shot update flags for segmentation map and mode/ref loop
|
|
// filter deltas.
|
|
cm->seg.update_map = 0;
|
|
cm->seg.update_data = 0;
|
|
cm->lf.mode_ref_delta_update = 0;
|
|
|
|
// keep track of the last coded dimensions
|
|
cm->last_width = cm->width;
|
|
cm->last_height = cm->height;
|
|
|
|
// reset to normal state now that we are done.
|
|
if (!cm->show_existing_frame) cm->last_show_frame = cm->show_frame;
|
|
|
|
if (cm->show_frame) {
|
|
vp9_swap_mi_and_prev_mi(cm);
|
|
// Don't increment frame counters if this was an altref buffer
|
|
// update not a real frame
|
|
++cm->current_video_frame;
|
|
if (cpi->use_svc) vp9_inc_frame_in_layer(cpi);
|
|
}
|
|
cm->prev_frame = cm->cur_frame;
|
|
|
|
if (cpi->use_svc)
|
|
cpi->svc
|
|
.layer_context[cpi->svc.spatial_layer_id *
|
|
cpi->svc.number_temporal_layers +
|
|
cpi->svc.temporal_layer_id]
|
|
.last_frame_type = cm->frame_type;
|
|
|
|
cpi->force_update_segmentation = 0;
|
|
|
|
if (cpi->oxcf.aq_mode == LOOKAHEAD_AQ)
|
|
vp9_alt_ref_aq_unset_all(cpi->alt_ref_aq, cpi);
|
|
}
|
|
|
|
static void SvcEncode(VP9_COMP *cpi, size_t *size, uint8_t *dest,
|
|
unsigned int *frame_flags) {
|
|
vp9_rc_get_svc_params(cpi);
|
|
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
|
|
}
|
|
|
|
static void Pass0Encode(VP9_COMP *cpi, size_t *size, uint8_t *dest,
|
|
unsigned int *frame_flags) {
|
|
if (cpi->oxcf.rc_mode == VPX_CBR) {
|
|
vp9_rc_get_one_pass_cbr_params(cpi);
|
|
} else {
|
|
vp9_rc_get_one_pass_vbr_params(cpi);
|
|
}
|
|
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
|
|
}
|
|
|
|
#if !CONFIG_REALTIME_ONLY
|
|
static void Pass2Encode(VP9_COMP *cpi, size_t *size, uint8_t *dest,
|
|
unsigned int *frame_flags) {
|
|
cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED;
|
|
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
|
|
|
|
if (!(is_two_pass_svc(cpi) && cpi->svc.encode_empty_frame_state == ENCODING))
|
|
vp9_twopass_postencode_update(cpi);
|
|
}
|
|
#endif // !CONFIG_REALTIME_ONLY
|
|
|
|
static void init_ref_frame_bufs(VP9_COMMON *cm) {
|
|
int i;
|
|
BufferPool *const pool = cm->buffer_pool;
|
|
cm->new_fb_idx = INVALID_IDX;
|
|
for (i = 0; i < REF_FRAMES; ++i) {
|
|
cm->ref_frame_map[i] = INVALID_IDX;
|
|
pool->frame_bufs[i].ref_count = 0;
|
|
}
|
|
}
|
|
|
|
static void check_initial_width(VP9_COMP *cpi,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
int use_highbitdepth,
|
|
#endif
|
|
int subsampling_x, int subsampling_y) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
|
|
if (!cpi->initial_width ||
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
cm->use_highbitdepth != use_highbitdepth ||
|
|
#endif
|
|
cm->subsampling_x != subsampling_x ||
|
|
cm->subsampling_y != subsampling_y) {
|
|
cm->subsampling_x = subsampling_x;
|
|
cm->subsampling_y = subsampling_y;
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
cm->use_highbitdepth = use_highbitdepth;
|
|
#endif
|
|
|
|
alloc_raw_frame_buffers(cpi);
|
|
init_ref_frame_bufs(cm);
|
|
alloc_util_frame_buffers(cpi);
|
|
|
|
init_motion_estimation(cpi); // TODO(agrange) This can be removed.
|
|
|
|
cpi->initial_width = cm->width;
|
|
cpi->initial_height = cm->height;
|
|
cpi->initial_mbs = cm->MBs;
|
|
}
|
|
}
|
|
|
|
int vp9_receive_raw_frame(VP9_COMP *cpi, vpx_enc_frame_flags_t frame_flags,
|
|
YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
|
|
int64_t end_time) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
struct vpx_usec_timer timer;
|
|
int res = 0;
|
|
const int subsampling_x = sd->subsampling_x;
|
|
const int subsampling_y = sd->subsampling_y;
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
const int use_highbitdepth = (sd->flags & YV12_FLAG_HIGHBITDEPTH) != 0;
|
|
#endif
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
check_initial_width(cpi, use_highbitdepth, subsampling_x, subsampling_y);
|
|
#else
|
|
check_initial_width(cpi, subsampling_x, subsampling_y);
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
#if CONFIG_VP9_TEMPORAL_DENOISING
|
|
setup_denoiser_buffer(cpi);
|
|
#endif
|
|
vpx_usec_timer_start(&timer);
|
|
|
|
if (vp9_lookahead_push(cpi->lookahead, sd, time_stamp, end_time,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
use_highbitdepth,
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
frame_flags))
|
|
res = -1;
|
|
vpx_usec_timer_mark(&timer);
|
|
cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
|
|
|
|
if ((cm->profile == PROFILE_0 || cm->profile == PROFILE_2) &&
|
|
(subsampling_x != 1 || subsampling_y != 1)) {
|
|
vpx_internal_error(&cm->error, VPX_CODEC_INVALID_PARAM,
|
|
"Non-4:2:0 color format requires profile 1 or 3");
|
|
res = -1;
|
|
}
|
|
if ((cm->profile == PROFILE_1 || cm->profile == PROFILE_3) &&
|
|
(subsampling_x == 1 && subsampling_y == 1)) {
|
|
vpx_internal_error(&cm->error, VPX_CODEC_INVALID_PARAM,
|
|
"4:2:0 color format requires profile 0 or 2");
|
|
res = -1;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static int frame_is_reference(const VP9_COMP *cpi) {
|
|
const VP9_COMMON *cm = &cpi->common;
|
|
|
|
return cm->frame_type == KEY_FRAME || cpi->refresh_last_frame ||
|
|
cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame ||
|
|
cm->refresh_frame_context || cm->lf.mode_ref_delta_update ||
|
|
cm->seg.update_map || cm->seg.update_data;
|
|
}
|
|
|
|
static void adjust_frame_rate(VP9_COMP *cpi,
|
|
const struct lookahead_entry *source) {
|
|
int64_t this_duration;
|
|
int step = 0;
|
|
|
|
if (source->ts_start == cpi->first_time_stamp_ever) {
|
|
this_duration = source->ts_end - source->ts_start;
|
|
step = 1;
|
|
} else {
|
|
int64_t last_duration =
|
|
cpi->last_end_time_stamp_seen - cpi->last_time_stamp_seen;
|
|
|
|
this_duration = source->ts_end - cpi->last_end_time_stamp_seen;
|
|
|
|
// do a step update if the duration changes by 10%
|
|
if (last_duration)
|
|
step = (int)((this_duration - last_duration) * 10 / last_duration);
|
|
}
|
|
|
|
if (this_duration) {
|
|
if (step) {
|
|
vp9_new_framerate(cpi, 10000000.0 / this_duration);
|
|
} else {
|
|
// Average this frame's rate into the last second's average
|
|
// frame rate. If we haven't seen 1 second yet, then average
|
|
// over the whole interval seen.
|
|
const double interval = VPXMIN(
|
|
(double)(source->ts_end - cpi->first_time_stamp_ever), 10000000.0);
|
|
double avg_duration = 10000000.0 / cpi->framerate;
|
|
avg_duration *= (interval - avg_duration + this_duration);
|
|
avg_duration /= interval;
|
|
|
|
vp9_new_framerate(cpi, 10000000.0 / avg_duration);
|
|
}
|
|
}
|
|
cpi->last_time_stamp_seen = source->ts_start;
|
|
cpi->last_end_time_stamp_seen = source->ts_end;
|
|
}
|
|
|
|
// Returns 0 if this is not an alt ref else the offset of the source frame
|
|
// used as the arf midpoint.
|
|
static int get_arf_src_index(VP9_COMP *cpi) {
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
int arf_src_index = 0;
|
|
if (is_altref_enabled(cpi)) {
|
|
if (cpi->oxcf.pass == 2) {
|
|
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
|
|
if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
|
|
arf_src_index = gf_group->arf_src_offset[gf_group->index];
|
|
}
|
|
} else if (rc->source_alt_ref_pending) {
|
|
arf_src_index = rc->frames_till_gf_update_due;
|
|
}
|
|
}
|
|
return arf_src_index;
|
|
}
|
|
|
|
static void check_src_altref(VP9_COMP *cpi,
|
|
const struct lookahead_entry *source) {
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
|
|
if (cpi->oxcf.pass == 2) {
|
|
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
|
|
rc->is_src_frame_alt_ref =
|
|
(gf_group->update_type[gf_group->index] == OVERLAY_UPDATE);
|
|
} else {
|
|
rc->is_src_frame_alt_ref =
|
|
cpi->alt_ref_source && (source == cpi->alt_ref_source);
|
|
}
|
|
|
|
if (rc->is_src_frame_alt_ref) {
|
|
// Current frame is an ARF overlay frame.
|
|
cpi->alt_ref_source = NULL;
|
|
|
|
// Don't refresh the last buffer for an ARF overlay frame. It will
|
|
// become the GF so preserve last as an alternative prediction option.
|
|
cpi->refresh_last_frame = 0;
|
|
}
|
|
}
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
extern double vp9_get_blockiness(const uint8_t *img1, int img1_pitch,
|
|
const uint8_t *img2, int img2_pitch, int width,
|
|
int height);
|
|
|
|
static void adjust_image_stat(double y, double u, double v, double all,
|
|
ImageStat *s) {
|
|
s->stat[Y] += y;
|
|
s->stat[U] += u;
|
|
s->stat[V] += v;
|
|
s->stat[ALL] += all;
|
|
s->worst = VPXMIN(s->worst, all);
|
|
}
|
|
#endif // CONFIG_INTERNAL_STATS
|
|
|
|
// Adjust the maximum allowable frame size for the target level.
|
|
static void level_rc_framerate(VP9_COMP *cpi, int arf_src_index) {
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
LevelConstraint *const ls = &cpi->level_constraint;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
const double max_cpb_size = ls->max_cpb_size;
|
|
vpx_clear_system_state();
|
|
rc->max_frame_bandwidth = VPXMIN(rc->max_frame_bandwidth, ls->max_frame_size);
|
|
if (frame_is_intra_only(cm)) {
|
|
rc->max_frame_bandwidth =
|
|
VPXMIN(rc->max_frame_bandwidth, (int)(max_cpb_size * 0.5));
|
|
} else if (arf_src_index > 0) {
|
|
rc->max_frame_bandwidth =
|
|
VPXMIN(rc->max_frame_bandwidth, (int)(max_cpb_size * 0.4));
|
|
} else {
|
|
rc->max_frame_bandwidth =
|
|
VPXMIN(rc->max_frame_bandwidth, (int)(max_cpb_size * 0.2));
|
|
}
|
|
}
|
|
|
|
static void update_level_info(VP9_COMP *cpi, size_t *size, int arf_src_index) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
Vp9LevelInfo *const level_info = &cpi->level_info;
|
|
Vp9LevelSpec *const level_spec = &level_info->level_spec;
|
|
Vp9LevelStats *const level_stats = &level_info->level_stats;
|
|
int i, idx;
|
|
uint64_t luma_samples, dur_end;
|
|
const uint32_t luma_pic_size = cm->width * cm->height;
|
|
LevelConstraint *const level_constraint = &cpi->level_constraint;
|
|
const int8_t level_index = level_constraint->level_index;
|
|
double cpb_data_size;
|
|
|
|
vpx_clear_system_state();
|
|
|
|
// update level_stats
|
|
level_stats->total_compressed_size += *size;
|
|
if (cm->show_frame) {
|
|
level_stats->total_uncompressed_size +=
|
|
luma_pic_size +
|
|
2 * (luma_pic_size >> (cm->subsampling_x + cm->subsampling_y));
|
|
level_stats->time_encoded =
|
|
(cpi->last_end_time_stamp_seen - cpi->first_time_stamp_ever) /
|
|
(double)TICKS_PER_SEC;
|
|
}
|
|
|
|
if (arf_src_index > 0) {
|
|
if (!level_stats->seen_first_altref) {
|
|
level_stats->seen_first_altref = 1;
|
|
} else if (level_stats->frames_since_last_altref <
|
|
level_spec->min_altref_distance) {
|
|
level_spec->min_altref_distance = level_stats->frames_since_last_altref;
|
|
}
|
|
level_stats->frames_since_last_altref = 0;
|
|
} else {
|
|
++level_stats->frames_since_last_altref;
|
|
}
|
|
|
|
if (level_stats->frame_window_buffer.len < FRAME_WINDOW_SIZE - 1) {
|
|
idx = (level_stats->frame_window_buffer.start +
|
|
level_stats->frame_window_buffer.len++) %
|
|
FRAME_WINDOW_SIZE;
|
|
} else {
|
|
idx = level_stats->frame_window_buffer.start;
|
|
level_stats->frame_window_buffer.start = (idx + 1) % FRAME_WINDOW_SIZE;
|
|
}
|
|
level_stats->frame_window_buffer.buf[idx].ts = cpi->last_time_stamp_seen;
|
|
level_stats->frame_window_buffer.buf[idx].size = (uint32_t)(*size);
|
|
level_stats->frame_window_buffer.buf[idx].luma_samples = luma_pic_size;
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
level_stats->ref_refresh_map = 0;
|
|
} else {
|
|
int count = 0;
|
|
level_stats->ref_refresh_map |= vp9_get_refresh_mask(cpi);
|
|
// Also need to consider the case where the encoder refers to a buffer
|
|
// that has been implicitly refreshed after encoding a keyframe.
|
|
if (!cm->intra_only) {
|
|
level_stats->ref_refresh_map |= (1 << cpi->lst_fb_idx);
|
|
level_stats->ref_refresh_map |= (1 << cpi->gld_fb_idx);
|
|
level_stats->ref_refresh_map |= (1 << cpi->alt_fb_idx);
|
|
}
|
|
for (i = 0; i < REF_FRAMES; ++i) {
|
|
count += (level_stats->ref_refresh_map >> i) & 1;
|
|
}
|
|
if (count > level_spec->max_ref_frame_buffers) {
|
|
level_spec->max_ref_frame_buffers = count;
|
|
}
|
|
}
|
|
|
|
// update average_bitrate
|
|
level_spec->average_bitrate = (double)level_stats->total_compressed_size /
|
|
125.0 / level_stats->time_encoded;
|
|
|
|
// update max_luma_sample_rate
|
|
luma_samples = 0;
|
|
for (i = 0; i < level_stats->frame_window_buffer.len; ++i) {
|
|
idx = (level_stats->frame_window_buffer.start +
|
|
level_stats->frame_window_buffer.len - 1 - i) %
|
|
FRAME_WINDOW_SIZE;
|
|
if (i == 0) {
|
|
dur_end = level_stats->frame_window_buffer.buf[idx].ts;
|
|
}
|
|
if (dur_end - level_stats->frame_window_buffer.buf[idx].ts >=
|
|
TICKS_PER_SEC) {
|
|
break;
|
|
}
|
|
luma_samples += level_stats->frame_window_buffer.buf[idx].luma_samples;
|
|
}
|
|
if (luma_samples > level_spec->max_luma_sample_rate) {
|
|
level_spec->max_luma_sample_rate = luma_samples;
|
|
}
|
|
|
|
// update max_cpb_size
|
|
cpb_data_size = 0;
|
|
for (i = 0; i < CPB_WINDOW_SIZE; ++i) {
|
|
if (i >= level_stats->frame_window_buffer.len) break;
|
|
idx = (level_stats->frame_window_buffer.start +
|
|
level_stats->frame_window_buffer.len - 1 - i) %
|
|
FRAME_WINDOW_SIZE;
|
|
cpb_data_size += level_stats->frame_window_buffer.buf[idx].size;
|
|
}
|
|
cpb_data_size = cpb_data_size / 125.0;
|
|
if (cpb_data_size > level_spec->max_cpb_size) {
|
|
level_spec->max_cpb_size = cpb_data_size;
|
|
}
|
|
|
|
// update max_luma_picture_size
|
|
if (luma_pic_size > level_spec->max_luma_picture_size) {
|
|
level_spec->max_luma_picture_size = luma_pic_size;
|
|
}
|
|
|
|
// update compression_ratio
|
|
level_spec->compression_ratio = (double)level_stats->total_uncompressed_size *
|
|
cm->bit_depth /
|
|
level_stats->total_compressed_size / 8.0;
|
|
|
|
// update max_col_tiles
|
|
if (level_spec->max_col_tiles < (1 << cm->log2_tile_cols)) {
|
|
level_spec->max_col_tiles = (1 << cm->log2_tile_cols);
|
|
}
|
|
|
|
if (level_index >= 0 && level_constraint->fail_flag == 0) {
|
|
if (level_spec->max_luma_picture_size >
|
|
vp9_level_defs[level_index].max_luma_picture_size) {
|
|
level_constraint->fail_flag |= (1 << LUMA_PIC_SIZE_TOO_LARGE);
|
|
vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
|
|
"Failed to encode to the target level %d. %s",
|
|
vp9_level_defs[level_index].level,
|
|
level_fail_messages[LUMA_PIC_SIZE_TOO_LARGE]);
|
|
}
|
|
|
|
if ((double)level_spec->max_luma_sample_rate >
|
|
(double)vp9_level_defs[level_index].max_luma_sample_rate *
|
|
(1 + SAMPLE_RATE_GRACE_P)) {
|
|
level_constraint->fail_flag |= (1 << LUMA_SAMPLE_RATE_TOO_LARGE);
|
|
vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
|
|
"Failed to encode to the target level %d. %s",
|
|
vp9_level_defs[level_index].level,
|
|
level_fail_messages[LUMA_SAMPLE_RATE_TOO_LARGE]);
|
|
}
|
|
|
|
if (level_spec->max_col_tiles > vp9_level_defs[level_index].max_col_tiles) {
|
|
level_constraint->fail_flag |= (1 << TOO_MANY_COLUMN_TILE);
|
|
vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
|
|
"Failed to encode to the target level %d. %s",
|
|
vp9_level_defs[level_index].level,
|
|
level_fail_messages[TOO_MANY_COLUMN_TILE]);
|
|
}
|
|
|
|
if (level_spec->min_altref_distance <
|
|
vp9_level_defs[level_index].min_altref_distance) {
|
|
level_constraint->fail_flag |= (1 << ALTREF_DIST_TOO_SMALL);
|
|
vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
|
|
"Failed to encode to the target level %d. %s",
|
|
vp9_level_defs[level_index].level,
|
|
level_fail_messages[ALTREF_DIST_TOO_SMALL]);
|
|
}
|
|
|
|
if (level_spec->max_ref_frame_buffers >
|
|
vp9_level_defs[level_index].max_ref_frame_buffers) {
|
|
level_constraint->fail_flag |= (1 << TOO_MANY_REF_BUFFER);
|
|
vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
|
|
"Failed to encode to the target level %d. %s",
|
|
vp9_level_defs[level_index].level,
|
|
level_fail_messages[TOO_MANY_REF_BUFFER]);
|
|
}
|
|
|
|
if (level_spec->max_cpb_size > vp9_level_defs[level_index].max_cpb_size) {
|
|
level_constraint->fail_flag |= (1 << CPB_TOO_LARGE);
|
|
vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
|
|
"Failed to encode to the target level %d. %s",
|
|
vp9_level_defs[level_index].level,
|
|
level_fail_messages[CPB_TOO_LARGE]);
|
|
}
|
|
|
|
// Set an upper bound for the next frame size. It will be used in
|
|
// level_rc_framerate() before encoding the next frame.
|
|
cpb_data_size = 0;
|
|
for (i = 0; i < CPB_WINDOW_SIZE - 1; ++i) {
|
|
if (i >= level_stats->frame_window_buffer.len) break;
|
|
idx = (level_stats->frame_window_buffer.start +
|
|
level_stats->frame_window_buffer.len - 1 - i) %
|
|
FRAME_WINDOW_SIZE;
|
|
cpb_data_size += level_stats->frame_window_buffer.buf[idx].size;
|
|
}
|
|
cpb_data_size = cpb_data_size / 125.0;
|
|
level_constraint->max_frame_size =
|
|
(int)((vp9_level_defs[level_index].max_cpb_size - cpb_data_size) *
|
|
1000.0);
|
|
if (level_stats->frame_window_buffer.len < CPB_WINDOW_SIZE - 1)
|
|
level_constraint->max_frame_size >>= 1;
|
|
}
|
|
}
|
|
|
|
int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags,
|
|
size_t *size, uint8_t *dest, int64_t *time_stamp,
|
|
int64_t *time_end, int flush) {
|
|
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
BufferPool *const pool = cm->buffer_pool;
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
struct vpx_usec_timer cmptimer;
|
|
YV12_BUFFER_CONFIG *force_src_buffer = NULL;
|
|
struct lookahead_entry *last_source = NULL;
|
|
struct lookahead_entry *source = NULL;
|
|
int arf_src_index;
|
|
int i;
|
|
|
|
if (is_two_pass_svc(cpi)) {
|
|
#if CONFIG_SPATIAL_SVC
|
|
vp9_svc_start_frame(cpi);
|
|
// Use a small empty frame instead of a real frame
|
|
if (cpi->svc.encode_empty_frame_state == ENCODING)
|
|
source = &cpi->svc.empty_frame;
|
|
#endif
|
|
if (oxcf->pass == 2) vp9_restore_layer_context(cpi);
|
|
} else if (is_one_pass_cbr_svc(cpi)) {
|
|
vp9_one_pass_cbr_svc_start_layer(cpi);
|
|
}
|
|
|
|
vpx_usec_timer_start(&cmptimer);
|
|
|
|
vp9_set_high_precision_mv(cpi, ALTREF_HIGH_PRECISION_MV);
|
|
|
|
// Is multi-arf enabled.
|
|
// Note that at the moment multi_arf is only configured for 2 pass VBR and
|
|
// will not work properly with svc.
|
|
if ((oxcf->pass == 2) && !cpi->use_svc && (cpi->oxcf.enable_auto_arf > 1))
|
|
cpi->multi_arf_allowed = 1;
|
|
else
|
|
cpi->multi_arf_allowed = 0;
|
|
|
|
// Normal defaults
|
|
cm->reset_frame_context = 0;
|
|
cm->refresh_frame_context = 1;
|
|
if (!is_one_pass_cbr_svc(cpi)) {
|
|
cpi->refresh_last_frame = 1;
|
|
cpi->refresh_golden_frame = 0;
|
|
cpi->refresh_alt_ref_frame = 0;
|
|
}
|
|
|
|
// Should we encode an arf frame.
|
|
arf_src_index = get_arf_src_index(cpi);
|
|
|
|
// Skip alt frame if we encode the empty frame
|
|
if (is_two_pass_svc(cpi) && source != NULL) arf_src_index = 0;
|
|
|
|
if (arf_src_index) {
|
|
for (i = 0; i <= arf_src_index; ++i) {
|
|
struct lookahead_entry *e = vp9_lookahead_peek(cpi->lookahead, i);
|
|
// Avoid creating an alt-ref if there's a forced keyframe pending.
|
|
if (e == NULL) {
|
|
break;
|
|
} else if (e->flags == VPX_EFLAG_FORCE_KF) {
|
|
arf_src_index = 0;
|
|
flush = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (arf_src_index) {
|
|
assert(arf_src_index <= rc->frames_to_key);
|
|
|
|
if ((source = vp9_lookahead_peek(cpi->lookahead, arf_src_index)) != NULL) {
|
|
cpi->alt_ref_source = source;
|
|
|
|
#if CONFIG_SPATIAL_SVC
|
|
if (is_two_pass_svc(cpi) && cpi->svc.spatial_layer_id > 0) {
|
|
int i;
|
|
// Reference a hidden frame from a lower layer
|
|
for (i = cpi->svc.spatial_layer_id - 1; i >= 0; --i) {
|
|
if (oxcf->ss_enable_auto_arf[i]) {
|
|
cpi->gld_fb_idx = cpi->svc.layer_context[i].alt_ref_idx;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
cpi->svc.layer_context[cpi->svc.spatial_layer_id].has_alt_frame = 1;
|
|
#endif
|
|
#if !CONFIG_REALTIME_ONLY
|
|
if ((oxcf->mode != REALTIME) && (oxcf->arnr_max_frames > 0) &&
|
|
(oxcf->arnr_strength > 0)) {
|
|
int bitrate = cpi->rc.avg_frame_bandwidth / 40;
|
|
int not_low_bitrate = bitrate > ALT_REF_AQ_LOW_BITRATE_BOUNDARY;
|
|
|
|
int not_last_frame = (cpi->lookahead->sz - arf_src_index > 1);
|
|
not_last_frame |= ALT_REF_AQ_APPLY_TO_LAST_FRAME;
|
|
|
|
// Produce the filtered ARF frame.
|
|
vp9_temporal_filter(cpi, arf_src_index);
|
|
vpx_extend_frame_borders(&cpi->alt_ref_buffer);
|
|
|
|
// for small bitrates segmentation overhead usually
|
|
// eats all bitrate gain from enabling delta quantizers
|
|
if (cpi->oxcf.alt_ref_aq != 0 && not_low_bitrate && not_last_frame)
|
|
vp9_alt_ref_aq_setup_mode(cpi->alt_ref_aq, cpi);
|
|
|
|
force_src_buffer = &cpi->alt_ref_buffer;
|
|
}
|
|
#endif
|
|
cm->show_frame = 0;
|
|
cm->intra_only = 0;
|
|
cpi->refresh_alt_ref_frame = 1;
|
|
cpi->refresh_golden_frame = 0;
|
|
cpi->refresh_last_frame = 0;
|
|
rc->is_src_frame_alt_ref = 0;
|
|
rc->source_alt_ref_pending = 0;
|
|
} else {
|
|
rc->source_alt_ref_pending = 0;
|
|
}
|
|
}
|
|
|
|
if (!source) {
|
|
// Get last frame source.
|
|
if (cm->current_video_frame > 0) {
|
|
if ((last_source = vp9_lookahead_peek(cpi->lookahead, -1)) == NULL)
|
|
return -1;
|
|
}
|
|
|
|
// Read in the source frame.
|
|
if (cpi->use_svc)
|
|
source = vp9_svc_lookahead_pop(cpi, cpi->lookahead, flush);
|
|
else
|
|
source = vp9_lookahead_pop(cpi->lookahead, flush);
|
|
|
|
if (source != NULL) {
|
|
cm->show_frame = 1;
|
|
cm->intra_only = 0;
|
|
// if the flags indicate intra frame, but if the current picture is for
|
|
// non-zero spatial layer, it should not be an intra picture.
|
|
// TODO(Won Kap): this needs to change if per-layer intra frame is
|
|
// allowed.
|
|
if ((source->flags & VPX_EFLAG_FORCE_KF) &&
|
|
cpi->svc.spatial_layer_id > cpi->svc.first_spatial_layer_to_encode) {
|
|
source->flags &= ~(unsigned int)(VPX_EFLAG_FORCE_KF);
|
|
}
|
|
|
|
// Check to see if the frame should be encoded as an arf overlay.
|
|
check_src_altref(cpi, source);
|
|
}
|
|
}
|
|
|
|
if (source) {
|
|
cpi->un_scaled_source = cpi->Source =
|
|
force_src_buffer ? force_src_buffer : &source->img;
|
|
|
|
#ifdef ENABLE_KF_DENOISE
|
|
// Copy of raw source for metrics calculation.
|
|
if (is_psnr_calc_enabled(cpi))
|
|
vp9_copy_and_extend_frame(cpi->Source, &cpi->raw_unscaled_source);
|
|
#endif
|
|
|
|
cpi->unscaled_last_source = last_source != NULL ? &last_source->img : NULL;
|
|
|
|
*time_stamp = source->ts_start;
|
|
*time_end = source->ts_end;
|
|
*frame_flags = (source->flags & VPX_EFLAG_FORCE_KF) ? FRAMEFLAGS_KEY : 0;
|
|
|
|
} else {
|
|
*size = 0;
|
|
#if !CONFIG_REALTIME_ONLY
|
|
if (flush && oxcf->pass == 1 && !cpi->twopass.first_pass_done) {
|
|
vp9_end_first_pass(cpi); /* get last stats packet */
|
|
cpi->twopass.first_pass_done = 1;
|
|
}
|
|
#endif // !CONFIG_REALTIME_ONLY
|
|
return -1;
|
|
}
|
|
|
|
if (source->ts_start < cpi->first_time_stamp_ever) {
|
|
cpi->first_time_stamp_ever = source->ts_start;
|
|
cpi->last_end_time_stamp_seen = source->ts_start;
|
|
}
|
|
|
|
// Clear down mmx registers
|
|
vpx_clear_system_state();
|
|
|
|
// adjust frame rates based on timestamps given
|
|
if (cm->show_frame) {
|
|
adjust_frame_rate(cpi, source);
|
|
}
|
|
|
|
if (is_one_pass_cbr_svc(cpi)) {
|
|
vp9_update_temporal_layer_framerate(cpi);
|
|
vp9_restore_layer_context(cpi);
|
|
}
|
|
|
|
// Find a free buffer for the new frame, releasing the reference previously
|
|
// held.
|
|
if (cm->new_fb_idx != INVALID_IDX) {
|
|
--pool->frame_bufs[cm->new_fb_idx].ref_count;
|
|
}
|
|
cm->new_fb_idx = get_free_fb(cm);
|
|
|
|
if (cm->new_fb_idx == INVALID_IDX) return -1;
|
|
|
|
cm->cur_frame = &pool->frame_bufs[cm->new_fb_idx];
|
|
|
|
if (!cpi->use_svc && cpi->multi_arf_allowed) {
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
init_buffer_indices(cpi);
|
|
} else if (oxcf->pass == 2) {
|
|
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
|
|
cpi->alt_fb_idx = gf_group->arf_ref_idx[gf_group->index];
|
|
}
|
|
}
|
|
|
|
// Start with a 0 size frame.
|
|
*size = 0;
|
|
|
|
cpi->frame_flags = *frame_flags;
|
|
|
|
#if !CONFIG_REALTIME_ONLY
|
|
if ((oxcf->pass == 2) &&
|
|
(!cpi->use_svc || (is_two_pass_svc(cpi) &&
|
|
cpi->svc.encode_empty_frame_state != ENCODING))) {
|
|
vp9_rc_get_second_pass_params(cpi);
|
|
} else if (oxcf->pass == 1) {
|
|
set_frame_size(cpi);
|
|
}
|
|
#endif // !CONFIG_REALTIME_ONLY
|
|
|
|
if (oxcf->pass != 1 && cpi->level_constraint.level_index >= 0 &&
|
|
cpi->level_constraint.fail_flag == 0)
|
|
level_rc_framerate(cpi, arf_src_index);
|
|
|
|
if (cpi->oxcf.pass != 0 || cpi->use_svc || frame_is_intra_only(cm) == 1) {
|
|
for (i = 0; i < MAX_REF_FRAMES; ++i) cpi->scaled_ref_idx[i] = INVALID_IDX;
|
|
}
|
|
|
|
cpi->td.mb.fp_src_pred = 0;
|
|
#if CONFIG_REALTIME_ONLY
|
|
if (cpi->use_svc) {
|
|
SvcEncode(cpi, size, dest, frame_flags);
|
|
} else {
|
|
// One pass encode
|
|
Pass0Encode(cpi, size, dest, frame_flags);
|
|
}
|
|
#else // !CONFIG_REALTIME_ONLY
|
|
if (oxcf->pass == 1 && (!cpi->use_svc || is_two_pass_svc(cpi))) {
|
|
const int lossless = is_lossless_requested(oxcf);
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (cpi->oxcf.use_highbitdepth)
|
|
cpi->td.mb.fwd_txfm4x4 =
|
|
lossless ? vp9_highbd_fwht4x4 : vpx_highbd_fdct4x4;
|
|
else
|
|
cpi->td.mb.fwd_txfm4x4 = lossless ? vp9_fwht4x4 : vpx_fdct4x4;
|
|
cpi->td.mb.highbd_inv_txfm_add =
|
|
lossless ? vp9_highbd_iwht4x4_add : vp9_highbd_idct4x4_add;
|
|
#else
|
|
cpi->td.mb.fwd_txfm4x4 = lossless ? vp9_fwht4x4 : vpx_fdct4x4;
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
cpi->td.mb.inv_txfm_add = lossless ? vp9_iwht4x4_add : vp9_idct4x4_add;
|
|
vp9_first_pass(cpi, source);
|
|
} else if (oxcf->pass == 2 && (!cpi->use_svc || is_two_pass_svc(cpi))) {
|
|
Pass2Encode(cpi, size, dest, frame_flags);
|
|
} else if (cpi->use_svc) {
|
|
SvcEncode(cpi, size, dest, frame_flags);
|
|
} else {
|
|
// One pass encode
|
|
Pass0Encode(cpi, size, dest, frame_flags);
|
|
}
|
|
#endif // CONFIG_REALTIME_ONLY
|
|
|
|
if (cm->refresh_frame_context)
|
|
cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
|
|
|
|
// No frame encoded, or frame was dropped, release scaled references.
|
|
if ((*size == 0) && (frame_is_intra_only(cm) == 0)) {
|
|
release_scaled_references(cpi);
|
|
}
|
|
|
|
if (*size > 0) {
|
|
cpi->droppable = !frame_is_reference(cpi);
|
|
}
|
|
|
|
// Save layer specific state.
|
|
if (is_one_pass_cbr_svc(cpi) || ((cpi->svc.number_temporal_layers > 1 ||
|
|
cpi->svc.number_spatial_layers > 1) &&
|
|
oxcf->pass == 2)) {
|
|
vp9_save_layer_context(cpi);
|
|
}
|
|
|
|
vpx_usec_timer_mark(&cmptimer);
|
|
cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
|
|
|
|
// Should we calculate metrics for the frame.
|
|
if (is_psnr_calc_enabled(cpi)) generate_psnr_packet(cpi);
|
|
|
|
if (cpi->keep_level_stats && oxcf->pass != 1)
|
|
update_level_info(cpi, size, arf_src_index);
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
|
|
if (oxcf->pass != 1) {
|
|
double samples = 0.0;
|
|
cpi->bytes += (int)(*size);
|
|
|
|
if (cm->show_frame) {
|
|
uint32_t bit_depth = 8;
|
|
uint32_t in_bit_depth = 8;
|
|
cpi->count++;
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (cm->use_highbitdepth) {
|
|
in_bit_depth = cpi->oxcf.input_bit_depth;
|
|
bit_depth = cm->bit_depth;
|
|
}
|
|
#endif
|
|
|
|
if (cpi->b_calculate_psnr) {
|
|
YV12_BUFFER_CONFIG *orig = cpi->raw_source_frame;
|
|
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
|
|
YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer;
|
|
PSNR_STATS psnr;
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
vpx_calc_highbd_psnr(orig, recon, &psnr, cpi->td.mb.e_mbd.bd,
|
|
in_bit_depth);
|
|
#else
|
|
vpx_calc_psnr(orig, recon, &psnr);
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
adjust_image_stat(psnr.psnr[1], psnr.psnr[2], psnr.psnr[3],
|
|
psnr.psnr[0], &cpi->psnr);
|
|
cpi->total_sq_error += psnr.sse[0];
|
|
cpi->total_samples += psnr.samples[0];
|
|
samples = psnr.samples[0];
|
|
|
|
{
|
|
PSNR_STATS psnr2;
|
|
double frame_ssim2 = 0, weight = 0;
|
|
#if CONFIG_VP9_POSTPROC
|
|
if (vpx_alloc_frame_buffer(
|
|
pp, recon->y_crop_width, recon->y_crop_height,
|
|
cm->subsampling_x, cm->subsampling_y,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
cm->use_highbitdepth,
|
|
#endif
|
|
VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment) < 0) {
|
|
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate post processing buffer");
|
|
}
|
|
{
|
|
vp9_ppflags_t ppflags;
|
|
ppflags.post_proc_flag = VP9D_DEBLOCK;
|
|
ppflags.deblocking_level = 0; // not used in vp9_post_proc_frame()
|
|
ppflags.noise_level = 0; // not used in vp9_post_proc_frame()
|
|
vp9_post_proc_frame(cm, pp, &ppflags);
|
|
}
|
|
#endif
|
|
vpx_clear_system_state();
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
vpx_calc_highbd_psnr(orig, pp, &psnr2, cpi->td.mb.e_mbd.bd,
|
|
cpi->oxcf.input_bit_depth);
|
|
#else
|
|
vpx_calc_psnr(orig, pp, &psnr2);
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
cpi->totalp_sq_error += psnr2.sse[0];
|
|
cpi->totalp_samples += psnr2.samples[0];
|
|
adjust_image_stat(psnr2.psnr[1], psnr2.psnr[2], psnr2.psnr[3],
|
|
psnr2.psnr[0], &cpi->psnrp);
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (cm->use_highbitdepth) {
|
|
frame_ssim2 = vpx_highbd_calc_ssim(orig, recon, &weight, bit_depth,
|
|
in_bit_depth);
|
|
} else {
|
|
frame_ssim2 = vpx_calc_ssim(orig, recon, &weight);
|
|
}
|
|
#else
|
|
frame_ssim2 = vpx_calc_ssim(orig, recon, &weight);
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
cpi->worst_ssim = VPXMIN(cpi->worst_ssim, frame_ssim2);
|
|
cpi->summed_quality += frame_ssim2 * weight;
|
|
cpi->summed_weights += weight;
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (cm->use_highbitdepth) {
|
|
frame_ssim2 = vpx_highbd_calc_ssim(orig, pp, &weight, bit_depth,
|
|
in_bit_depth);
|
|
} else {
|
|
frame_ssim2 = vpx_calc_ssim(orig, pp, &weight);
|
|
}
|
|
#else
|
|
frame_ssim2 = vpx_calc_ssim(orig, pp, &weight);
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
cpi->summedp_quality += frame_ssim2 * weight;
|
|
cpi->summedp_weights += weight;
|
|
#if 0
|
|
{
|
|
FILE *f = fopen("q_used.stt", "a");
|
|
fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n",
|
|
cpi->common.current_video_frame, y2, u2, v2,
|
|
frame_psnr2, frame_ssim2);
|
|
fclose(f);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
if (cpi->b_calculate_blockiness) {
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (!cm->use_highbitdepth)
|
|
#endif
|
|
{
|
|
double frame_blockiness = vp9_get_blockiness(
|
|
cpi->Source->y_buffer, cpi->Source->y_stride,
|
|
cm->frame_to_show->y_buffer, cm->frame_to_show->y_stride,
|
|
cpi->Source->y_width, cpi->Source->y_height);
|
|
cpi->worst_blockiness =
|
|
VPXMAX(cpi->worst_blockiness, frame_blockiness);
|
|
cpi->total_blockiness += frame_blockiness;
|
|
}
|
|
}
|
|
|
|
if (cpi->b_calculate_consistency) {
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
if (!cm->use_highbitdepth)
|
|
#endif
|
|
{
|
|
double this_inconsistency = vpx_get_ssim_metrics(
|
|
cpi->Source->y_buffer, cpi->Source->y_stride,
|
|
cm->frame_to_show->y_buffer, cm->frame_to_show->y_stride,
|
|
cpi->Source->y_width, cpi->Source->y_height, cpi->ssim_vars,
|
|
&cpi->metrics, 1);
|
|
|
|
const double peak = (double)((1 << cpi->oxcf.input_bit_depth) - 1);
|
|
double consistency =
|
|
vpx_sse_to_psnr(samples, peak, (double)cpi->total_inconsistency);
|
|
if (consistency > 0.0)
|
|
cpi->worst_consistency =
|
|
VPXMIN(cpi->worst_consistency, consistency);
|
|
cpi->total_inconsistency += this_inconsistency;
|
|
}
|
|
}
|
|
|
|
{
|
|
double y, u, v, frame_all;
|
|
frame_all = vpx_calc_fastssim(cpi->Source, cm->frame_to_show, &y, &u,
|
|
&v, bit_depth, in_bit_depth);
|
|
adjust_image_stat(y, u, v, frame_all, &cpi->fastssim);
|
|
}
|
|
{
|
|
double y, u, v, frame_all;
|
|
frame_all = vpx_psnrhvs(cpi->Source, cm->frame_to_show, &y, &u, &v,
|
|
bit_depth, in_bit_depth);
|
|
adjust_image_stat(y, u, v, frame_all, &cpi->psnrhvs);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
if (is_two_pass_svc(cpi)) {
|
|
if (cpi->svc.encode_empty_frame_state == ENCODING) {
|
|
cpi->svc.encode_empty_frame_state = ENCODED;
|
|
cpi->svc.encode_intra_empty_frame = 0;
|
|
}
|
|
|
|
if (cm->show_frame) {
|
|
++cpi->svc.spatial_layer_to_encode;
|
|
if (cpi->svc.spatial_layer_to_encode >= cpi->svc.number_spatial_layers)
|
|
cpi->svc.spatial_layer_to_encode = 0;
|
|
|
|
// May need the empty frame after an visible frame.
|
|
cpi->svc.encode_empty_frame_state = NEED_TO_ENCODE;
|
|
}
|
|
} else if (is_one_pass_cbr_svc(cpi)) {
|
|
if (cm->show_frame) {
|
|
++cpi->svc.spatial_layer_to_encode;
|
|
if (cpi->svc.spatial_layer_to_encode >= cpi->svc.number_spatial_layers)
|
|
cpi->svc.spatial_layer_to_encode = 0;
|
|
}
|
|
}
|
|
|
|
vpx_clear_system_state();
|
|
return 0;
|
|
}
|
|
|
|
int vp9_get_preview_raw_frame(VP9_COMP *cpi, YV12_BUFFER_CONFIG *dest,
|
|
vp9_ppflags_t *flags) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
#if !CONFIG_VP9_POSTPROC
|
|
(void)flags;
|
|
#endif
|
|
|
|
if (!cm->show_frame) {
|
|
return -1;
|
|
} else {
|
|
int ret;
|
|
#if CONFIG_VP9_POSTPROC
|
|
ret = vp9_post_proc_frame(cm, dest, flags);
|
|
#else
|
|
if (cm->frame_to_show) {
|
|
*dest = *cm->frame_to_show;
|
|
dest->y_width = cm->width;
|
|
dest->y_height = cm->height;
|
|
dest->uv_width = cm->width >> cm->subsampling_x;
|
|
dest->uv_height = cm->height >> cm->subsampling_y;
|
|
ret = 0;
|
|
} else {
|
|
ret = -1;
|
|
}
|
|
#endif // !CONFIG_VP9_POSTPROC
|
|
vpx_clear_system_state();
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
int vp9_set_internal_size(VP9_COMP *cpi, VPX_SCALING horiz_mode,
|
|
VPX_SCALING vert_mode) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
int hr = 0, hs = 0, vr = 0, vs = 0;
|
|
|
|
if (horiz_mode > ONETWO || vert_mode > ONETWO) return -1;
|
|
|
|
Scale2Ratio(horiz_mode, &hr, &hs);
|
|
Scale2Ratio(vert_mode, &vr, &vs);
|
|
|
|
// always go to the next whole number
|
|
cm->width = (hs - 1 + cpi->oxcf.width * hr) / hs;
|
|
cm->height = (vs - 1 + cpi->oxcf.height * vr) / vs;
|
|
if (cm->current_video_frame) {
|
|
assert(cm->width <= cpi->initial_width);
|
|
assert(cm->height <= cpi->initial_height);
|
|
}
|
|
|
|
update_frame_size(cpi);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vp9_set_size_literal(VP9_COMP *cpi, unsigned int width,
|
|
unsigned int height) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
check_initial_width(cpi, cm->use_highbitdepth, 1, 1);
|
|
#else
|
|
check_initial_width(cpi, 1, 1);
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|
|
|
|
#if CONFIG_VP9_TEMPORAL_DENOISING
|
|
setup_denoiser_buffer(cpi);
|
|
#endif
|
|
|
|
if (width) {
|
|
cm->width = width;
|
|
if (cm->width > cpi->initial_width) {
|
|
cm->width = cpi->initial_width;
|
|
printf("Warning: Desired width too large, changed to %d\n", cm->width);
|
|
}
|
|
}
|
|
|
|
if (height) {
|
|
cm->height = height;
|
|
if (cm->height > cpi->initial_height) {
|
|
cm->height = cpi->initial_height;
|
|
printf("Warning: Desired height too large, changed to %d\n", cm->height);
|
|
}
|
|
}
|
|
assert(cm->width <= cpi->initial_width);
|
|
assert(cm->height <= cpi->initial_height);
|
|
|
|
update_frame_size(cpi);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void vp9_set_svc(VP9_COMP *cpi, int use_svc) {
|
|
cpi->use_svc = use_svc;
|
|
return;
|
|
}
|
|
|
|
int vp9_get_quantizer(VP9_COMP *cpi) { return cpi->common.base_qindex; }
|
|
|
|
void vp9_apply_encoding_flags(VP9_COMP *cpi, vpx_enc_frame_flags_t flags) {
|
|
if (flags &
|
|
(VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF)) {
|
|
int ref = 7;
|
|
|
|
if (flags & VP8_EFLAG_NO_REF_LAST) ref ^= VP9_LAST_FLAG;
|
|
|
|
if (flags & VP8_EFLAG_NO_REF_GF) ref ^= VP9_GOLD_FLAG;
|
|
|
|
if (flags & VP8_EFLAG_NO_REF_ARF) ref ^= VP9_ALT_FLAG;
|
|
|
|
vp9_use_as_reference(cpi, ref);
|
|
}
|
|
|
|
if (flags &
|
|
(VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
|
|
VP8_EFLAG_FORCE_GF | VP8_EFLAG_FORCE_ARF)) {
|
|
int upd = 7;
|
|
|
|
if (flags & VP8_EFLAG_NO_UPD_LAST) upd ^= VP9_LAST_FLAG;
|
|
|
|
if (flags & VP8_EFLAG_NO_UPD_GF) upd ^= VP9_GOLD_FLAG;
|
|
|
|
if (flags & VP8_EFLAG_NO_UPD_ARF) upd ^= VP9_ALT_FLAG;
|
|
|
|
vp9_update_reference(cpi, upd);
|
|
}
|
|
|
|
if (flags & VP8_EFLAG_NO_UPD_ENTROPY) {
|
|
vp9_update_entropy(cpi, 0);
|
|
}
|
|
}
|
|
|
|
void vp9_set_row_mt(VP9_COMP *cpi) {
|
|
// Enable row based multi-threading for supported modes of encoding
|
|
cpi->row_mt = 0;
|
|
if (((cpi->oxcf.mode == GOOD || cpi->oxcf.mode == BEST) &&
|
|
cpi->oxcf.speed < 5 && cpi->oxcf.pass == 1) &&
|
|
cpi->oxcf.row_mt && !cpi->use_svc)
|
|
cpi->row_mt = 1;
|
|
|
|
if (cpi->oxcf.mode == GOOD && cpi->oxcf.speed < 5 &&
|
|
(cpi->oxcf.pass == 0 || cpi->oxcf.pass == 2) && cpi->oxcf.row_mt &&
|
|
!cpi->use_svc)
|
|
cpi->row_mt = 1;
|
|
|
|
// In realtime mode, enable row based multi-threading for all the speed levels
|
|
// where non-rd path is used.
|
|
if (cpi->oxcf.mode == REALTIME && cpi->oxcf.speed >= 5 && cpi->oxcf.row_mt) {
|
|
cpi->row_mt = 1;
|
|
}
|
|
|
|
if (cpi->row_mt)
|
|
cpi->row_mt_bit_exact = 1;
|
|
else
|
|
cpi->row_mt_bit_exact = 0;
|
|
}
|